
Using a Configurator for Modelling and Configuring
Software Product Lines based on Feature Models

Timo Asikainen, Tomi Männistö, and Timo Soininen

Helsinki University of Technology, Software Business and Engineering Institute
P.O. Box 9210, FIN-02015 HUT, Finland

{timo.asikainen, tomi.mannisto, timo.soininen}@hut.fi
http://www.soberit.hut.fi/

Abstract. We show how WeCoTin, an academic prototype product configura-
tor originally designed for non-software products, can be used to create and edit
feature models of software product lines. Further, we show that WeCoTin en-
ables the easy configuration of software product lines, i.e., generating descrip-
tions of valid products in the product line.

1 Introduction

A software product line may comprise a very large number of different individual
systems, and means to distinguish between these systems are required. One such
means is to create a feature model that describes all the possible combinations of
features that products in a specific product line may deliver [1]. A large number of
feature modelling methods exists [2-5]. They give somewhat divergent definitions for
feature, ranging from “attribute of a system that directly affects end-users” [2] to
“distinguishable characteristic of a concept that is relevant to some stakeholder” [5].

Feature models of industrial software product lines can be very large [6-8]: e.g.,
[6] mentions a feature model with about 500 features. Consequently, creating and
managing such models can become burdensome. Further, the task of selecting a valid
and suitable set of features for a single system can become very difficult to solve; we
call this task the configuration task. Some attempts have been made towards solving
these problems [7, 9], but no generally applicable and accepted solution has been
found. Hence, additional research is needed.

Problems similar to the above-mentioned ones have been previously encountered
in the context of configurable (non-software) products. These problems have been
studied in the product configuration domain, a sub-domain of artificial intelligence
[10-12]. The studies have resulted in a rough consensus about the concepts relevant
for describing configurable products [13, 14], and a number of supporting systems,
product configurators, have been developed and deployed in companies [15].

In the remainder of this paper, we will show how a particular product configurator,
WeCoTin, can be used to support the tasks of creating and maintaining feature mod-
els of software product lines, and that of configuring individual systems in software
product lines based on their features.

The remainder of this paper is structured as follows. Next, in Section 2 we will
briefly discuss feature modelling in general and in particular the feature modelling
concepts that are used as the baseline in this paper. Thereafter, in Section 3, we will
provide an overview of the product configuration domain, including the most impor-
tant results achieved in it, and describe the functionality of WeCoTin. A translation
from the feature modelling concepts to the concepts of WeCoTin in follows in Sec-
tion 4. Discussion and comparison to previous work follows in Section 5. Conclu-
sions and an outline for further in Section 6 round up the paper.

2 Features and Feature Modelling

In this section, we describe the feature modelling concepts that is used as the baseline
in this paper. The concepts are based on a number of feature modelling methods: the
basis of these concepts is FODA [2], the first and still widely-cited feature modelling
method, and a feature modelling method introduced by Czarnecki et al. [16], which
introduces some interesting extensions to feature modelling.

There is no single, commonly accepted definition for feature. However, according
to [5], the two most popular definitions are: 1) an end user visible characteristic of a
system, and 2) a distinguishable characteristic of a concept (e.g., system, component,
and so on) that is relevant to some stakeholder of the concept.

A feature model is a description of the commonalities and differences between the
individual software systems in a software product family. In other words, a feature
model defines a set of valid feature combinations. Each such valid feature combina-
tion can serve as a specification of a software system.

Structurally, feature model is a rooted tree. The nodes of the tree are features. Each
feature is identified by a name. The root of the tree is called root feature. Each feature
may have a number of other feature as its subfeatures, each of which must have a
unique name. Each subfeature has a cardinality that specifies how many instances of
the subfeature may occur in a valid feature combination. Syntactically, cardinality is a
set of integer values. There are two important special cases: a mandatory subfeature
has cardinality {1}, and an optional subfeature cardinality {0, 1}.

Example. Throughout the paper, we will use a running example introduced in Fig.
1 (a); Fig. 1 (b) contains a legend of the notation used. The example is a feature
model of an advanced text editor: in addition to the standard functionality of a text
editor, our editor includes sophisticated features, namely equation editing and option-
ally importing data from SQL databases. ■

A subfeature may have the form of an alternative feature. The difference with or-
dinary subfeatures is that instead of a single feature, there are multiple features that
form a group. The semantics of alternative features is the same as that of ordinary
subfeatures, with the extension that any feature in the group may be used in a valid
feature combination, as long as the bounds specified by the cardinality are obeyed.
Notice that at this point, our notion of cardinality is different from that in [16]; how-
ever, in [17] the authors of [16] have changed their notion of cardinality to that used
in this paper.

Fig. 1 (a) A feature model for an advanced text editor. (b) Legend of the notation used.

Example. There are four occurrences of alternative features in our example.
Language defines an alternative feature with three alternatives, English, Finnish,
and Swedish. The intuition is that the language in the user interface must be one of
these three languages. Similarly, a Clipboard is either a Single-item clipboard, or a
Multi-item clipboard. Further, OCI and JDBC are the two alternative means to
implement SQL import. However, the alternative subfeature of Equation editor has
different semantics: the choice is not exclusive, but both subfeatures can be selected;
this is denoted by the cardinality 1..2 of the subfeature. Intuitively, a Text editor may
contain either one or both of the two possible equation editors.■

A feature may define a number of attributes. An attribute represents a characteris-
tic of a feature, and is identified by a name. Each attribute has a value type, which
specifies the values the attribute may take in a valid feature combination.

Example. In our running example, feature Multi-item clipboard has an attribute
name capacity. The possible values for this attribute are 3, 5, and 9; the intuition is
that a multi-item clipboard may hold a maximum of either 3, 5, or 9 items at a time. ■

Finally, feature models may be augmented with composition rules. Composition
rules come in two forms, namely requires and incompatible with. Both take two oper-
ands, which may be references to the presence of a feature, or attribute values of
features operated on a comparison operator.

Example. There is one composition rule in our example: if there is a MathPal in a
text editor, there may not be a Multi-item clipboard with capacity equal to 9. ■

Text editor

Clipboard

User interface Equation editor SQL import

Language

English Swedish

Finnish

EqEdit MathPal OCI JDBC

Single-item clipboard Multi-item clipboard

capacity: {3, 5, 9}

(a)

A Feature (A)
Alternative features

b: S Attribute (b) with possible values S

Optional
subfeature m..n

Subfeature with
cardinality m..n

Mandatory
subfeature

(b)

Composition rule: MathPal incompatible with Multi-item clipboard where capacity == 9

1..2

3 Product Configuration and Product Configurators

In this section, we provide an overview of product configuration research, a subfield
of artificial intelligence [10] that has inspired the approach presented in this paper.

3.1 Overview of Product Configuration Research

Research in product configuration domain is based on the notion of configurable
product: a configurable product is such a product that each product individual is
adapted to the needs of a particular customer order. Historically, the configurable
products studied in the domain have been non-software products, typically mechani-
cal and electronics products. A fundamental characteristic of a configurable product
is that it has a modular structure: product individuals consist of pre-designed compo-
nents, and different product variant can be produced by selecting different compo-
nents. [12]

The possibilities for adapting the configurable product are predefined in a configu-
ration model that specifies the entities that may appear in a configuration and the
rules on how the entities can be combined. A specification of a product individual,
configuration, is produced in the configuration task based on the configuration model
and a set of customer needs.

Efficient knowledge-based information systems, product configurators, have be-
come an important and successful application of artificial intelligence techniques for
companies selling products adapted to customer needs [10]. The basic functionality of
a configurator is to support a user in generating a valid and suitable configuration
with respect to a given configuration model matching his specific needs. Examples of
the kinds of support provided are: a configurator represents the choices provided by
the underlying configuration model in a way that enables the user to easily enter his
needs. Further, the configurator makes deductions based on the needs the user has
entered so far: it automatically makes choices required by earlier choices, prevents
the user from making incompatible choices, and is able to generate a configuration
based on choices made so far, if such a configuration exists. The above-described
functionality is based on representing configuration model using knowledge represen-
tation languages with declarative, formal semantics, and efficient, sound, and com-
plete inference tools operating on these.

Product configurators are not merely a theoretical endeavour: they have been ap-
plied to a number of different kinds of products; perhaps the most challenging kinds
of products have been telephone switching systems at Siemens [15], and other kind of
telecommunication products at AT&T [18]. At Siemens, the problem instances have
been considerably large: typically, a configuration has included tens of thousands of
components with hundreds of thousands of attributes, and over 100,000 connection
points. Finally, product configurators have become parts of ERP (Enterprise Resource
Planning) systems, such as SAP [19], and Baan [20], and are available as embeddable
products (see, e.g., http://www.ilog.fr/products/configurator).

3.2 Product Configuration Modelling Language (PCML) and WeCoTin

WeCoTin [21] operates on PCML (Product Configuration Modelling Language), a
language for modelling configurable products. The conceptual basis of PCML, in
turn, is a subset of a conceptualisation of configuration knowledge represented in
[13].

A PCML model is a description of a configurable product. Such a model has a
number of configurations, and each of these describes a valid and suitable instance of
the configurable product.

The most important modelling concept in PCML is component type. A component
type intentionally specifies the properties of their instances; each component instance
is directly of exactly one type, and indirectly of all the supertypes of this type. Com-
ponent types can be defined a compositional structure using part definitions. A part
definition consists of a part name, a (nonempty) set of possible component types, and
a cardinality. In addition, component types can be defined properties and constraints.
A property definition contains property name, a property value type. A constraint, in
turn, specifies a condition that must hold for the instances of the type. Finally, the
component types are organised in a taxonomy, where the subtypes of a type inherit
the properties (part definitions, property definitions, and constraints) of their super-
type. A configuration consists of a set of component instances and relations between
them.

Fig. 2 depicts the one view of the architecture of WeCoTin. The configurator con-
sists of two main subsystems, one of which is used for modelling, and the other for
configuration. Using the terms in the software product line domain, the modelling
support can be used as part of the domain engineering phase; deployment support is
intended for the application engineering phase. The idea is that the result from the
configuration task is an abstract description of an individual system that can be used
as input to realisation tools, such as make. In the following, we will describe the two
subsystems of WeCoTin; for more details, the reader should refer to [21].

Modelling Support. The purpose of the modelling support is to enable the easy crea-
tion and maintenance of configuration models. WeCoTin supports this in various
ways. Foremost, WeCoTin includes a graphical modelling tool, called Modelling-
Tool, for creating and editing taxonomies of component types and the compositional
structure of components in terms of part definitions.

Once a model has been created, WeCoTin can be used to translate the model into
Weigh Constraint Rule Language (WCRL) [22], a general-purpose knowledge repre-
sentation language similar to logic programs. The translation can be time-consuming,
but can be done offline: that is, the model needs to be retranslated only when it is
changed, not between executions of successive configuration tasks.

Configuration Support. When using WeCoTin, the user performs the configuration
task using a web-based configuration interface specific to the configuration model at
hand. WeCoTin generates such an interface automatically; no programming is re-
quired. The main idea is that each property and part definition is used to generate a
question that goes into the configuration interface.

Fig. 2 The basic data flows and processing elements of WeCoTin

An inference tool smodels [22] operating on WCRL is used to support the user in
the configuration task. First, given a set of customer needs, the inference engine can
be used to calculate a partial stable model. A partial stable model describes what
must be true, what must not be true, and what is still unknown of the configuration
satisfying the customer requirements entered so far. The partial stable model can be
used, e.g., to prevent a customer from making incompatible choices by disabling
alternatives in the configuration interface. Second, at any point, the inference engine
can be used to find a configuration that satisfies the customer needs entered so far.

The configuration task is completed when a valid configuration satisfying the
needs of the user has been generated.

4 Translating Features into WeCoTin Concepts

In this section, we suggest a translation from the feature modelling concepts of Sec-
tion 2 to those of the configuration ontology. In more detail, we will show how dif-
ferent concepts and relations in feature modelling methods are translated into con-
figuration modelling concepts. An overview of the translation is presented in Table 1.

Features are translated into component type; the root feature is mapped to be the
configuration type of the configuration model. The name of the feature becomes the
name of the type.

Subfeatures are translated into part definitions. We use the terms whole-feature
and subfeature to refer to the feature containing a subfeature and the subfeature, re-
spectively. The part definition is located in the component type corresponding to the

Configuration
model

(PCML)

Transl. to
WCRL

WCRL
model

Customer
needs

Inference
engine

(smodels)

Transl. to
WCRL

Individual
system

(description)

Legend: data processing

data flow

Modelling

Deployment

subsystem

whole-feature. The name of the part definition is the name of the subfeature. The
cardinality of the feature becomes the cardinality of the part definition. The set of
possible part types contains a single type, namely the component type to which the
subfeature is translated.

Alternative features are likewise translated into part definitions. At this point, there
is no obvious choice for the name of the part definition; let us name all such part
definitions arbitrarily as Choice. The set of possible types consists of the types corre-
sponding to the features in the set. Cardinality is the cardinality of the alternative
feature.

Attributes are translated into property definitions in component types. The name of
the attribute definitions is simply the name of the attribute.

Example. Fig. 3 illustrates how the WeCoTin ModellingTool can be used to create
a configuration model corresponding to the feature model of our running example. As
can be seen, the window has been divided into three panes. The upper-left pane con-
tains the component types. The lower-left pane, in turn, contains the part structure of
component types. Finally, the right pane, in turn, illustrates detailed information
about the currently active element; in this case, it is the subfeature named Choice that
corresponds to the alternative feature of Language in Fig. 2.

Table 1 The translation from feature modelling concepts to PCML concepts

Feature modelling concept PCML / WeCoTin concept
Feature Component type
 Name Name
Root feature Configuration type
Subfeature Part definition
 Cardinality Cardinality
Alternative feature Part definition
 Alternatives Possible part type
 Cardinality Cardinality
Attribute Property definition
 Name Name
 Possible values Possible values
Composition rule Constraint

Creating the kind of Fig. 3 is easy. First, one creates component types correspond-

ing to the features; this amount to giving type a name and adding the attributes, if
any. Second, one nominates the root feature types as configuration type. Finally, the
subfeature structure can be created simply by dragging the different types into the
hierarchy in the lower-left pane; some extra effort is needed to handle the alternative
feature groups. ■

Further, Fig. 4 illustrates a configuration interface corresponding to our running
example. Such an interface is generated automatically based on the configuration
model; hence, there is no additional effort required once the configuration model has
been created using the above-described process.

Fig. 3 WeCoTin ModellingTool. In this version of the modelling tool, some concepts have
been renamed: component types are called features, part definitions are called subfeatures, and
properties are called attributes.

The configuration interface is divided into three panes. The left pane contains the
compositional structure and illustrates the choices made so far, and the choices still to
be made. In the figure, all the necessary choices have already been made: e.g., it has
been decided that the Clipboard will be Multi-item clipboard with capacity 9.

The fact that all the choices has been made is illustrated with a full circle contain-
ing an OK sign in the lower-right pane. The same pane also contains a field for a
price of the currently made choices; this is zero due to the fact that we have not en-
tered pricing information for our example.

Finally, the upper-right pane contains an example of a configuration question. In
more detail, previously it has been decided that there will be one equation editor in
the text editor, and now it is to decided whether an EqEdit or MathPal should be
chosen. However, the choice for MathPal has been greyed. This is due to the fact
that a Multi-item clipboard with capacity 9 has already been selected, and there is a
constraint saying that the MathPal is incompatible with this choice, see Fig. 1.

MathPal could, nevertheless be selected, but this would lead to an inconsistent con-
figuration. ■

Fig. 4 WeCoTin configuration interface.

5 Discussion and Comparison with Previous Work

In this section, we will first iterate on some issues arising from the translation pre-
sented above, and thereafter contrast this paper with previous work.

The central observation to be made from the above-presented description of We-
CoTin and translation from feature models to WeCoTin is that it is feasible to create
feature models using WeCoTin and to use it in the deployment process to come up
with valid and suitable feature combinations. This is encouraging, as feature models
have been a prominent method for describing software product lines [2].

However, WeCoTin is not perfectly suited for modelling and configuring features.
Perhaps the most important reason for this is that WeCoTin distinguishes between the
definition of component types and their use in composition hierarchy, whereas feature
modelling methods make no such distinction. An implication of this that there is a
need to separately create the component types corresponding to features, and to or-
ganise them into the composition hierarchy; in the configuration interface, the same
phenomenon is manifested as the feature names appearing twice, first as the name of
the part and thereafter as the (only possible) type for that part, see Fig. 4.

However, the above-discussed distinction may also be used to derive advantages.
It is not too difficult to imagine situations in which it would be beneficial to distin-
guish between the role of a subfeature from the particular subfeature filling in the
role. Also, the fact that features are made into types enables the easy and consistent

reuse of features at multiple places in the same feature model, or in different feature
models.

There is a number of problematic issues inherent to product configuration. The
most important such problem is that the complexity of the computational tasks related
to configuration is potentially very high [22], which may result in intolerable running
times and memory consumption. However, the high complexity has been successfully
managed for large products previously [15, 23], which suggests that the complexity is
not necessarily a problem in the context of software product families either.

Research closely related to the work presented in this paper has been conducted
earlier. However, to the best of our knowledge, the idea of applying existing product
configurators to feature models has not been considered previously. Hence, we con-
sider this the main contribution of our paper.

In [24], Krebs and Wolter iterate on the idea of modelling evolving product fami-
lies using feature models. Their work is similar to ours in that it uses feature model-
ling concepts as its conceptual basis. However, unlike we, they do not suggest that an
existing configurator could be used to carry out the configuration task.

Beuche et al. have introduced an approach called CONSUL for creating and con-
figuring feature models [12]. In their approach, software product families are mod-
elled not only using features, but components as well. However, what seems to dif-
ferentiate their work from knowledge-based configuration is the lack of automated
inference and its advantages.

In [25], Mannion shows how requirement models (and feature models) can be en-
coded as propositional formulae. A single system is represented as a set of require-
ments that the system fulfils. A valid system is such a system that satisfies the for-
mula representing the product line. Further, a product line is defined to be valid if the
line contains at least one valid system. He provides tool support for checking the
validity of single systems and product line models using Prolog and for counting the
number of valid single systems and enumerating all of them. What differentiates our
approach from that of Mannion is that ours includes extensive support for creating
feature models, whereas he describes no such support. The same applies to the con-
figuration task: WeCoTin is designed to support it in various ways, while Mannion
seems to provide no support for the task.

In addition to WeCoTin, a large number of product configurators have been cre-
ated, e.g. [19, 20]. Many of these configurators would probably have been equally
well suited for our purposes as WeCoTin; the reason for using WeCoTin was that it
was freely and easily available to us for this purpose.

6 Conclusions and Further Work

Above, we have shown how WeCoTin, an existing product configurator designed
originally for non-software products, can be used to create feature models of software
product lines and to generate valid and suitable (with respect to a given set of cus-
tomer needs) feature combinations based on these models. The fact that WeCoTin
was originally designed to support a concept set different from feature modelling
concepts resulted in some anomalies.

More research is required to assess the practical applicability of the results pre-
sented in this paper. A natural first step would be to try using WeCoTin in industrial
contexts, and thereby empirically assess its applicability. Based on the findings from
the assessments, the modelling concepts and their supporting tools should be further
improved. Finally, as the computational tasks related to configuration are potentially
very complex, the computational feasibility of configuring software should be ana-
lysed through practical experiments and theoretical complexity analysis.

Acknowledgements

We gratefully acknowledge the financial support from the Academy of Finland (pro-
ject number 51394) and National Technology Agency of Finland (Tekes). We also
thank Mr. Andreas Anderson for his assistance in installing and running WeCoTin.

References

1. Kang, K., Lee, J., Donohoe, P.: Feature-oriented Product Line Engineering. IEEE Software
19(4) (2002) 58-65

2. Kang, K., Cohen, S. G., Hess, J. A., Novak, W. E., Peterson, S. A.: Feature-Oriented
Domain Analysis (FODA) - Feasibility Study . CMU/SEI-90-TR-21, Software Engineering
Institute, Carnegie Mellon University (1990)

3. Kang, K., Kim, S., Lee, J., Kim, K., Shin, E., Huh, M.: FORM: A Feature-Oriented Reuse
Method with Domain-Specific Reference Architectures. Annals of Software Engineering
5(1998) 143-168

4. Griss, M., Favaro, J., d'Alessandro, M.: Integrating Feature Modelling with the RSEB. In:
Proceedings of the Fifth International Conference on Software ReuseIEEE Computer Soci-
ety (1998) 76-85

5. Czarnecki, K. and Eisenecker, U. W.: Generative Programming. Addison-Wesley, Boston
(MA) (2000)

6. Lee, K., Kang, K., Lee, J.: Concepts and Guidelines of Feature Modeling for Product Line
Software Engineering. In: Proceedings of the 7th International Conference on Software
Reuse. LNCS 2319Springer, Berlin-Heidelberg (2002) 62-77

7. von der Maßen, T., Lichter, H.: RequiLine: A Requirements Engineering Tool for Software
Product Lines. In: Prodeedings of the 5th International Workshop on Product Family Engi-
neering. LNCS 3014Springer, Berlin Heidelberg (2003)

8. Fey, D., Fajta, R., Boros, A.: Feature Modeling: A Meta-model to Enhance Usability and
Usefulness. In: Chastek, Gary J.: Proceedings of Second International Software Product
Line Conference (SPLC2). Lecture Notes in Computer Science 2379, Berlin-Heidelberg
(2002) 198-216

9. Beuche, D., Papajewski, H. , Schröder-Preikschaft, W.: Variability Management with
Feature Models. In: van Gurp, Jilles and Bosch, Jan: Proceedings of Software Variability
Management Workshop. IWI preprint 2003-7-01University of Groningen, Groningen, The
Netherlands (2004) 72-82

10. Faltings, B., Freuder, E. C.: Special Issue on Configuration. IEEE Intelligent Systems 14(4)
(1998) 29-85

11. Darr, T., Klein, M., McGuinness, D. L.: Special Issue on Configuration Design. Artificial
Intelligence for Engineering Design, Analysis and Manufacturing 12(4) (1998) 293-397

12. Soininen, T., Stumptner, M.: Introduction to Special Issue on Configuration. Artificial
Intelligence for Engineering Design, Analysis and Manufacturing 17(1-2) (2003) 1-2

13. Soininen, T., Tiihonen, J., Männistö, T., Sulonen, R.: Towards a General Ontology of
Configuration. Artificial Intelligence for Engineering Design, Analysis and Manufacturing
12(4) (1998) 357-372

14. Felfernig, A., Friedrich, G., Jannach, D.: UML as Domain Specific Language for the Con-
struction of Knowledge-Based Configuration Systems. International Journal of Software
Engineering and Knowledge Engineering 10(4) (2000) 449-469

15. Fleischanderl, G., Friedrich, G., Haselböck, A., Schreiner, H., Stumptner, M.: Configuring
Large Systems Using Generative Constraint Satisfaction. IEEE Intelligent Systems 13(4)
(1998) 59-68

16. Czarnecki, K., Bednasch, T., Unger, P., Eisenecker, U. W.: Generative Programming for
Embedded Software: An Industrial Experience Report. In: ACM SIGPLAN/SIGSOFT
Conference on Generative Programming and Component EngineeringSpringer-Verlag, Ber-
lin-Heidelberg (2002) 156-172

17. Czarnecki, K., Helsen, S. , Eisenecker, U. W.: Staged Configuration Using Feature Models.
In: Nord, Robert L.: Proceedings of Third Software Product Line Conference (SPLC-
3)Springer, Berlin-Heidelberg (2004)

18. McGuinness, D. L., Wright, J. R.: An Industrial-Strength Description Logic-Based Con-
figurator Platform. IEEE Intelligent Systems 14(4) (1998) 69-77

19. Haag, A.: Sales Configuration in Business Processes. IEEE Intelligent Systems 13(4)
(1998) 78-85

20. Yu, B., Skovgaard, J.: A Configuration Tool to Increase Product Competitiveness. IEEE
Intelligent Systems 13(4) (1998) 34-41

21. Tiihonen, J., Soininen, T., Niemelä, I., Sulonen, R.: A Practical Tool for Mass-Customising
Configurable Products. In: Proceedings of the International Conference on Engineering De-
sign (ICED'03), Stockholm, Sweden (2003)

22. Simons, P., Niemelä, I., Soininen, T.: Extending and Implementing the Stable Model Se-
mantics. Artificial Intelligence 138(1-2) (2002) 181-234

23. Kojo, T., Männistö, T., Soininen, T.: Towards Intelligent Support for Managing Evolution
of Configurable Software Product Families. In: Proceedings of 11th International Work-
shop on Software Configuration Management (SCM-11), LNCS 2649Springer, Berlin Hei-
delberg (2003) 86-101

24. Krebs, T., Wolter, K.: Mass Customization for Evolving Product Families. In: Proceedings
of PETO, Copenhagen, Denmark (2004)

25. Mannion, M.: Using First-Order Logic for Product Line Model Validation. In: Chastek,
Gary J.: Proceedings of the Second International Conference on Software Product Lines
(SPLC2). Lecture Notes in Computer Science 2379.Springer, Berlin-Heidelberg (2002)
176-187

