
Deficiencies in Feature Models

Thomas von der Maßen, Horst Lichter

{vdmass, lichter}@cs.rwth-aachen.de

Research Group Software Construction

RWTH Aachen

Ahornstr. 55, 52074 Aachen

Abstract. Software product lines are characterized through common and vari-

able parts. Modeling variability is one of the most important tasks during the

analysis phase. Domain analysis and requirements elicitation bring up a huge

amount of requirements and dependencies between product characteristics. Fea-

ture modeling is one approach to deal with complexity in expressing several re-

quirements in features and structure them hierarchically in feature diagrams.

Unfortunately these feature models become very complex as well. Therefore it

is necessary to develop and maintain feature models very carefully with respect

to redundancy and consistency. As feature models are not only used for domain

modeling, but for product derivation in product line development as well, in-

consistent feature models will limit the chance to build consistent product con-

figurations. Hence, it must be defined, what is meant by consistency and redun-

dancy in the context of feature models. Experiences show that an adequate tool

support is needed to manage the feature models and to support automatic detec-

tion of redundancies and inconsistent models and product derivations. Our re-

search group has developed a prototype of a requirements engineering tool that

supports feature modeling and provides automatic consistency checks.

1. Introduction

The development of software-intensive systems shifts more and more from single

product to software product line development. The development of a software product

line requires a comprehensive understanding of the domains, targeted by the product

line. A detailed and thorough analysis of the domains must be performed and the

results have to be documented in a coherent way. The research area of domain analy-

sis deals with the investigation and modeling of domains. As van Deursen and Klint

pointed out in [9], “domain analysis originates from software reuse research, and can

be used when constructing domain-specific reusable libraries, frameworks, languages,

or product lines”. A number of analysis methodologies exists, of which Organization

Domain Modeling (ODM [10]), Feature-Oriented Domain Analysis (FODA [1]), and

Domain-Specific Software Architectures (DSSA [11]) are the most popular ones.

Furthermore FODA is one approach to model high level reusable characteristics in

terms of features. Kang et al. define a feature as “a prominent user-visible aspect,

quality, or characteristic of a software system or systems” [1]. Since its introduction

Thomas von der Maßen, Horst Lichter

in 1990, feature modeling has been more and more appreciated by requirements engi-

neers and domain analysts. There are several approaches for modeling features that

are all based on the initial approach presented by Kang et al. (e.g. [2], [3], [4], [5],

[6]). Goals and purposes of feature modeling shifted from domain modeling to prod-

uct line modeling and feature models are used in many different application areas.

Additional modeling elements, groupings and views have been introduced to fulfill

the requirements that were put on feature modeling. Whereas Lichter et al. provide a

good survey of the different feature modeling approaches [8], the various application

areas in which feature modeling were applied are documented by Müller et al. [12].

That work presents, that feature modeling has been successfully applied in portfolio

and project management, architecture derivation and mapping, commissioning, and of

course in domain analysis and product derivation in the context of product line devel-

opment.

In this paper we focus on using features for domain modeling and product derivation.

Independently from the application area, feature models and the corresponding dia-

grams become very complex and difficult to survey and maintain, unfortunately.

Therefore the feature models must be of high quality. The quality of a feature model

is determined by how adequately it captures a given domain and by the integrity of

the model itself with respect to the used modeling elements. As the adequate capture

of the domain can only hardly be analyzed and reviewed by domain experts, the integ-

rity of the model can be determined by the occurrence of redundancies, anomalies and

inconsistencies. We see the following correlations:

• Maintainability of the model is very much influenced by redundancy

• Readability may be increased if important information is modeled redundantly.

On the other hand, redundantly modeled information is very hard to maintain and

side effects, while changing the model, are very likely to occur.

• The stability of a model depends mainly on anomalies and consistency. Inconsis-

tent models contain contradictory information. If the domain model is inconsis-

tent it cannot be used for product derivations, because the derived products may

have inconsistent configurations, as well.

Hence, there is a strong demand for consistent domain and derived product models.

An adequate tool support is needed to manage features, their relationships and de-

pendencies to guarantee the development of consistent models. Therefore the detec-

tion of redundancies and inconsistencies is a very important requirement on feature

modeling tools. The strong demands for a tool supporting software product line de-

velopment have been described in detail in [7]. In order that tools can support feature

model developer, it must be defined what is meant by redundancy and consistency in

feature models. Guidelines for detecting redundancies and inconsistencies are neces-

sary and guidelines for resolving these circumstances are desirable, as well.

In this paper we focus on redundancy, anomalies and inconsistency in feature models.

We define these properties and list typical occurrences in feature models. We have

organized this paper as follows: In chapter 2 we briefly present existing work in this

research area, which results have been produced and how these results can be used for

Deficiencies in Feature Models

our work. In chapter 3 we define redundancy and inconsistency in the context of fea-

ture models and give an enumeration of different types. Furthermore we give some

guidelines to resolve these deficiencies. In chapter 4 we show how the detection of

redundancies and inconsistencies in feature models can be supported by a tool. Fi-

nally, in chapter 5 we give a brief outlook on our future work.

2. Related Work

Even though, feature modeling became very popular in the last few years, only a few

researches have been engaged in consistency topics. Most research results deal with

formalization of feature models, which is necessary for tool support and normaliza-

tion of feature models. Furthermore, guidelines are given for developing feature mod-

els.

Van Deursen and Klint propose in their work [9] a Feature Description Language

(FDL) to describe features in a textual language and to support domain-specific lan-

guage design. Based on their textual representation of feature diagrams they define

rules to manipulate these models with respect to normalization and expansion to a

disjunctive normal form. The following rules have been defined:

• Normalization rules, to simplify the model by eliminating duplicate features and

degenerate cases of various constructs

• Variability rules, to determine the cardinality of possible feature combinations,

based on the modeled variability

• Expansion rules, to expand a normalized feature expression into a disjunctive

normal form

• Satisfaction rules, to determine which disjuncts satisfy given constraints, based on

the disjunctive normal form

The work gives a good basis for further analysis of feature models. Unfortunately, the

coherence of domain relationships, variability and dependencies is not discussed,

which we see as one of the main sources of degenerated and inconsistent feature

models.

Czarnecki and Eisenecker deal with normalization of feature diagrams, too [3]. Nor-

malization is achieved by transforming combinations of child features with different

types of variability to child features with a single type of variability. The combination

of various types of variability includes for example that child features of an alterna-

tive-relationship are modeled as optional features. The combination of various types

of variability in a single parent-child relationship should be avoided, to eliminate any

possibility of misinterpretations and is not allowed in all feature modeling ap-

proaches.

Furthermore, Dörr gives a quite good overview of guidelines for inspecting domain

model relationships [14]. This work classifies non-domain specific relationships and

Thomas von der Maßen, Horst Lichter

gives guidelines how to make them explicit and how to use them to improve the qual-

ity of the domain model. Again, the coherence of domain relationships, variability and

dependencies is not discussed and there is no discussion about modeling features and

relationships redundantly.

3. Redundancy and Consistency in Feature Models

In this section we describe what is meant by redundancy, anomalies and inconsistency

and how these deficiencies can occur in feature models with respect to the used mod-

eling elements, most feature modeling approaches offer.

3.1 Feature Modeling Concepts

As pointed out in the introduction there are many feature modeling approaches which

most of them take the FODA modeling concepts as a basis. Table 1 summarizes the

relationships, most approaches offer. It must be explicitly mentioned that FODA

characterizes features to be either mandatory or optional. With respect to feature reuse

and the fact that features can be mandatory in one context (domain) and optional in

another, variability should be expressed through a relationship between two features.

Therefore we model mandatory and optional relationships with the semantic de-

scribed in Table 1.

Table 1: Feature modeling relationships

Relationship Type Semantic Characteristic Notation

Mandatory If the father feature

is selected, the

child feature must

be selected as well

Option If the father feature

is selected, the

child feature can

but need not to be

selected

Alternative If the father feature

is selected, exactly

one feature of the

alternative-child-

features must be

selected

Implicit mutu-

ally exclusion

between alterna-

tive-child-

features

Domain

Relationship

Or If the father feature

is selected, at least

one feature of the

or-child-features

must be selected

Deficiencies in Feature Models

Relationship Type Semantic Characteristic Notation

Implication If one feature is

selected the im-

plied feature has to

be selected as well,

ignoring their posi-

tion in the feature

tree

Transitive

Dependency

Exclusion Indicates that both

features cannot be

selected in one

product configura-

tion and are there-

fore mutually ex-

clusive

Symmetric

Hence we define mandatory features as follows:

mandatory feature

a feature is mandatory, if it is connected to its father feature through a mandatory

relationship.

Nevertheless we follow the definition of a feature model given by the FODA ap-

proach [1]. That means a feature model is based on a tree structure, where the root

represents the concept node. The constraint that the domain relationships build a tree

structure and not a graph structure, is motivated thereby that most of the features

modeling approaches propose a tree structure and that tree structures are much more

easier to understand and to communicate to stakeholders in the domain modeling an

product configuration processes. Taking the feature model as a basis for product con-

figuration, the selection process of which feature should belong to a special product

and which not, starts at the concept node and follows the tree down to the leafs. A

child feature can only be selected if the father feature has been selected as well. At a

variation point – that means a feature which is connected to child feature(s) by an

optional, alternative or or-relationship – the product configurator has the choice which

child feature(s) to select. We define a selectable feature as follows:

selectable feature

a feature is a selectable feature, if it is a child feature of an optional, alternative or or-

relationship

Though the core set of relationships is very small, it misleads the modeler to build

redundant and inconsistent models, as well as models which contain other types of

anomalies. The aim is to build redundancy-free, anomaly-free and consistent feature

models to guarantee modifiability - like maintainability, scalability and extendibility -

and reusability.

Thomas von der Maßen, Horst Lichter

3.2 Redundancy, Anomalies and Inconsistency

In this subsection we want to characterize several undesirable properties of feature

models. To determine the quality of a feature model we want to analyze whether the

model contains these specific characteristics which might point to a falsely modeled

domain. These characteristics are categorized by the severity of the problems that

might arise from them. The categories are:

• Redundancy – A feature model contains redundancy, if at least one semantic

information is modeled in a multiple way. If information is modeled redundantly,

the maintainability of the model may decrease. On the other hand is must be ex-

plicitly mentioned, that redundancy is not always a bad thing. If redundancy helps

to increase readability and understandability of the model, it is an adequate means

that has to be applied very thoroughly. Here the model developer has to make a

tradeoff between the quality criteria maintainability and readability. Therefore re-

dundancy is regarded as a light issue.

• Anomalies – A feature model contains anomalies, if potential configurations are

being lost, though these configurations should be possible. The reason for this

circumstance is that some senseless information has been modeled. If a feature

model shows the characteristic of anomalies, it likely captures the domain

wrongly. Anomalies in a feature model are regarded as a medium issue.

• Inconsistency – A feature model contains inconsistencies, if the model includes

contradictory information. Therefore, inconsistent models contain information

that is conflicting with some other information in the same model. Inconsistency

leads to the fact that in most cases no consistent product configuration can be de-

rived from the domain model. Thus, inconsistencies are characterized as a severe

issue.

The problem of modeling redundancies, anomalies and inconsistencies arises - among

other issues - because of the overlapping semantic of domain relationships and de-

pendencies. For example: The alternative-relationship implies that all alternative-child

features are mutually exclusive. In the following subsections we analyze representa-

tives for redundancy, anomalies and inconsistency, a feature model might have.

For the descriptions of the different occurrences of redundancies, anomalies and in-

consistencies, we define two new concepts:

full-mandatory feature

a full-mandatory feature is a mandatory feature, whose predecessors in the feature

tree are all mandatory.

relative-full-mandatory feature

a feature F2 is a relative-full-mandatory-feature to a feature F1 if F2 is a mandatory

feature and all features on the path to its predecessor F1 are all mandatory. F1 itself

has not to be a mandatory feature, stringently.

Deficiencies in Feature Models

3.3 Redundancy

We have identified two different sources, leading to redundant information in feature

models. The trivial case, modeling multiple domain relationships or dependencies of

the same type between features, will be ignored at this point.

Redundant modeled features

A feature is modeled redundantly if it appears multiple times in the feature model.

That means all occurrences of the feature are connected through domain relations to

different father features. This is often the case when the model is constrained to be in

a tree structure. Thus, a feature is not allowed to have more than one parent feature

and therefore it appears at least two times within the feature tree. In this case it must

be decided whether the redundancy has been explicitly modeled that means the multi-

ple appearance of the feature is desired, or if the redundant feature has been acciden-

tally modeled. This might be the case, when the feature is connected through different

domain relationships, for example, it is part of a mandatory relation and an optional

relation.

Combinations of domain relationships and dependencies

Some kinds of combinations between domain and dependency relationships lead to

redundant information. Table 2 lists those combinations. Typically, the redundancy

can be resolved by eliminating the superfluous dependency. In the examples, the

superfluous relationship is visualized by a dashed line.

Table 2: Redundant modeled relationships

Combination Description Example

Mandatory and

Implication

A full-mandatory feature is implied by an-

other feature. As the feature is already full-

mandatory, the implication is superfluous.

Another case exists if a feature F1 implies a

feature F2 and F2 is relative-full-mandatory

to F1.

Alternative and

Exclusion

A mutual exclusion is modeled between alter-

native-child features. As the alternative rela-

tion implies a mutual exclusion between the

child features the dependency is superfluous.

Multiple Impli-

cations

A feature is implied by multiple features

F1,...,Fn whereas F1 is a parent of F2,...,Fn

and F2,…Fn are relative-full-mandatory to

F1. The implications from F2,…,Fn are su-

perfluous.

Thomas von der Maßen, Horst Lichter

Combination Description Example

Multiple Exclu-

sions

A feature is mutual exclusive to multiple

features F1,...,Fn whereas F1 is a parent of

F2,...,Fn and F2,…Fn are relative-full-

mandatory to F1 or imply each other. The

implications from F2,…,Fn are superfluous.

Transitive Im-

plications

A feature F3 is directly implied by the fea-

tures F1 and F2 and F2 is implied by F1.

As F3 is already implied by the transitive

implication from F1 through F2, the direct

implication from F1 to F3 might be superflu-

ous.

3.4 Anomalies

In this subsection we focus on feature models which contain anomalies. Such feature

models indicate a wrong modeled domain. Problems arise, as the choice of possible

product configurations by resolving variation points is restricted, by senseless mod-

eled information. Again, combinations of domain and dependencies relationships are

responsible for the senseless models. To be more precise, the model contains sense-

less information whenever a dependency is modeled between a selectable and a full-

mandatory feature. As the full-mandatory feature is always part of a product configu-

ration the selectable feature is not selectable anymore, but the selection is constrained

by the dependency from the full-mandatory feature. This circumstance will lead to

misinterpretations of the feature model. Table 3 lists identified types of anomalies in a

feature model. Nevertheless, it must be mentioned that these cases neither provide any

redundant information, nor any inconsistencies.

3.5 Inconsistency

The problems discussed in section 3.3 and 3.4 point to a possibly wrong captured

domain. Though the modeled information is redundant or senseless it includes no

contradicting information. In this section we discuss inconsistent feature models con-

taining contradicting information which indicates a wrong captured domain. Whereas

from the feature models which contain redundancies or anomalies, a product deriva-

tion is possible, inconsistencies make it impossible to derive consistent product con-

figurations in most cases and have therefore to be resolved. We have identified incon-

sistencies on two levels. First, inconsistencies may occur at the domain level and

second, they may occur at the product configuration level. In the following, we ana-

lyze these levels in more detail.

Deficiencies in Feature Models

Table 3: Anomalies in feature models

Combination Description Example

Implication and

Option

An optional feature is implied by a full-

mandatory feature. Consequently the op-

tional feature is not optional anymore but

becomes a full-mandatory feature, as well.

Implication and

Alternative

An alternative-child feature is implied by a

full-mandatory feature. Consequently the

implied feature becomes a full-mandatory

feature, too and the remaining alternative-

child feature(s) can never be selected.

Implication and

Or

An or-child feature is implied by a full-

mandatory feature. Consequently the or-

child feature becomes a full-mandatory

feature, too. Now the implied or-child fea-

ture is always part of the selection when

resolving this variation point.

Exclusion and

Option

An optional feature is mutual exclusive to a

full-mandatory feature. Consequently the

optional feature can never be chosen when

resolving this variation point.

Exclusion and

Alternative

An alternative-child feature is mutual exclu-

sive to a full-mandatory feature. Conse-

quently the alternative-child feature can

never be chosen and always one of the re-

maining alternative-child features has to be

selected when resolving this variation point.

Exclusion and

Or

An or-child feature is mutual exclusive to a

full-mandatory feature. Consequently the or-

child feature can never be chosen and that at

least one of the remaining child features has

to be selected when resolving this variation

point.

3.5.1 Inconsistency on the domain level

Inconsistencies on the domain level represent contradicting information in the domain

feature model. Independently from resolving variation points the model includes

contradictions which can never be fulfilled. We have identified four different situa-

tions which lead to inconsistent information. These are summarized in Table 4. Only

in the latter two examples, a consistent product configuration can be derived and only

if the feature F2 is part of the product configuration and the feature F1 is not.

Thomas von der Maßen, Horst Lichter

Table 4: Inconsistencies on the domain level

Combination Description Example

Exclusion between

full-mandatory

features

A mutual exclusion between two full-

mandatory features has been modeled. As

both features have to be part of every po-

tential product they must not exclude each

other.

Exclusion between

relative-full-

mandatory fea-

tures.

A mutual exclusion between a feature F1

and a relative-full-mandatory feature to F1

has been modeled. If F1 is selected in a

product configuration the relative-full-

mandatory feature has to be selected as

well and they must therefore not exclude

each other.

Implication be-

tween alternative-

child features

An implication between two alternative-

child features has been modeled. As the

alternative-child features are mutual exclu-

sive, one feature must not imply the other.

Exclusion and

Implication

A mutual exclusion and an implication

have been modeled between two features,

simultaneously. Two features cannot be

mutual exclusive and implied at the same

time.

Though the mentioned inconsistencies can always be resolved by eliminating the

dependency, these inconsistencies point to a falsely captured domain which normally

leads to a complete restructuring of parts or even the whole feature model.

3.5.2 Inconsistency on the product configuration level

Inconsistencies on the product configuration level represent conflicting or incomplete

product configurations. A product configuration can be derived from the domain

feature model by resolving variation points and including all features which have to

be part of the product, regarding the domain relationships and dependencies. Inconsis-

tencies can arise, if not all features which should be in the configuration or if conflict-

ing features are selected for a specific configuration. Table 5 lists inconsistencies that

can appear in a product configuration.

These inconsistencies can be avoided by strictly obeying the semantics of the mod-

eled domain relationships and dependencies. As this is a very difficult task in very

large domain models, an adequate tool supported is needed that guides the product

configurator through the steps of product derivation.

Deficiencies in Feature Models

Table 5: Inconsistencies on the product configuration level

Case Description

Missing full-

mandatory features

One or more full-mandatory features have not been selected

for a specific product configuration. As full-mandatory fea-

tures should be part of any product configuration, the con-

figuration is incomplete.

Missing mandatory

child features

All mandatory child features of a feature have to be selected

for a product configuration. Otherwise, there is an incom-

plete product configuration.

Wrong resolving of

an alternative-

variation point

Either no or more than one alternative-child feature is se-

lected. As exactly one alternative-child feature has to be

selected, conflicting features are part of the product configu-

ration.

Wrong resolving of

an or-variation-point

No or-child feature is selected. As at least one or-child fea-

ture has to be selected, the configuration is incomplete.

Missing implied

features

An implied feature is not selected. As the implied feature

has to be selected if the implying feature is selected, the

configuration is incomplete.

Mutual excluded

features

Two mutual excluded features have been selected. As mu-

tual excluded features cannot be both part of a configuration,

the configuration contains conflicting information.

3.6 Normalized feature models

We define a feature model as normalized, if it does not contain any characteristics

described in section 3.3, 3.4 and 3.5. Therefore no redundancies, no anomalies and no

inconsistencies are contained in a normalized feature model.

Transforming a redundant feature model into a normalized feature model is difficult,

if features have been modeled redundantly. Either it comes along with a complete

restructuring of the tree or the strict tree structure has to be abolished and the model

has to bee transformed into a feature graph. In this case, the former redundantly mod-

eled feature has two (or more) father features. Redundantly modeled relationships,

mentioned in section 3.3, can be resolved by deleting the superfluous dependency

(illustrated as a dashed line in Table 2). Nevertheless, it must be mentioned that this

step should not be performed automatically by a tool, but domain experts have to

analyze those situations, since automated transformations might damage the intention

of the domain model.

Eliminating anomalies in a feature model is difficult, too. In general there are three

possibilities to transform the model containing anomalies into a normalized feature

model:

• Deleting the irritating dependency. As this step influences the modeled semantic

in a very serious way, it cannot be applied in most cases. This is because it would

Thomas von der Maßen, Horst Lichter

mean that the modeled dependency depicts the domain wrongly, though it has

been modeled explicitly.

• Transforming the full-mandatory feature to a selectable feature, e.g. an optional

feature. Now the dependency would make sense, though the semantic of the for-

mer full-mandatory feature has been changed. This transformation might be ap-

plied if this case points to the fact that the modeled full-mandatory feature should

not be a full-mandatory feature.

• Changing the feature that is dependent on the full-mandatory feature. Changing

means that this feature might change its domain variability or the domain rela-

tionships of this feature have to be restructured.

Again it must be mentioned that the anomalies point to a falsely modeled domain.

Analysts have to investigate the appearing problems very seriously to capture the

domain correctly.

Feature models which contain inconsistencies must be divided in those which contain

inconsistencies on the domain level and in those on the product configuration level.

To resolve domain inconsistencies as described in section 3.5.1, a thorough analysis is

needed, as inconsistencies on this level definitely point to a falsely modeled domain.

Inconsistencies on the product configuration level can be easily resolved by obeying

the semantics of the used relationships. Therefore, missing features have to be added

and additional conflicting features have to be removed.

4. Tool Support

As mentioned in the previous section, adequate tool support is needed to facilitate

feature model development and in deriving product configurations from the domain

model. Especially a tool should be able to detect inconsistencies in the domain and

should indicate deficiencies of the model because of redundancies and anomalies.

At our group we have developed a prototype of a requirements engineering tool for

software product lines – named RequiLine - that supports feature modeling. This tool

allows to create feature models – textual or graphically and to query for specific in-

formation, the user is interested in. Furthermore RequiLine provides a consistency

checker which is able to detect inconsistencies on the domain and on the product

configuration level [13]. RequiLine has been positively evaluated by a small local

software company and by a global player of the automotive industry. In both cases,

RequiLine helped to detect inconsistencies in the domain model and in product con-

figurations. Until now, the process of product configuration is only weakly supported,

as the user has to manually select which features should be part of a product and

which not. Furthermore, RequiLine is capable of detecting the inconsistencies men-

tioned in section 3.5 but a product configuration wizard guiding the user through the

steps of selecting features would be desirable. This kind of a wizard would avoid

creating inconsistent product configurations and would not just detect inconsistencies

afterwards, like the consistency checker currently does.

Deficiencies in Feature Models

5. Summary and Future Work

In this paper we have illustrated types of deficiencies a feature model might contain.

The deficiencies can be redundancies, anomalies and inconsistencies in the domain

and the product configuration model. We have defined what is meant by redundancy,

anomalies and inconsistency in feature models and we have shown, which cases of

redundancy, anomalies and inconsistency can appear and how these cases might be

resolved. In most cases the deficiencies cannot be resolved automatically but a serious

investigation and analysis by the domain experts is needed. Most deficiencies result

from the overlapping semantic of domain relationships and dependencies. Therefore

we will evaluate the measure of adapting the meta-model for features, so that the use

of dependencies is constrained in a way that no anomalies and inconsistencies can

appear and therefore avoiding these cases. The detection of redundancies and incon-

sistencies is a very hard task in very large models and should therefore be tool sup-

ported. RequiLine is a first prototype that is able to detect such inconsistencies and

other model deficiencies like feature property completeness and categorizes them into

light and severe deficiencies.

Our future work comprises the analysis of the completeness of the identified cases of

redundancies and inconsistencies and to analyze relations to approaches that rely on

artificial intelligence techniques for product configurations. Furthermore we want to

enhance RequiLine in a way that it will be able to detect redundancies and the men-

tioned anomalies as well, and provide a product configuration wizard.

References

1. Kyo Kang et al., Feature-Oriented Domain Analysis (FODA) Feasibility Study, Techni-

cal report CMU/SEI-90-TR-021, Software Engineering Institute, Carnegie Mellon Uni-

versity, 2000.

2. Kyo Kang et al., Concepts and Guidelines of Feature Modeling for Product Line Soft-

ware Engineering, 7th International Conference on Software Reuse (ICSR), Austin,

Texas, USA, pp. 62-77, April 15-19, 2002.

3. Ulrich Eisenecker, Krzysztof Czarnecki, Generative Programming – Methods, Tools,

and Applications, Addison-Wesley 2000.

4. Martin L. Griss, John Favaro, Massimo d’Alessandro, Integrating Feature Modeling

with the RSEB, Proceedings of the Fifth International Conference on Software Reuse,

IEEE Computer Society, Los Alamitos, CA, USA, 1998.

5. D. Fey, R Fajta, A. Boros, Feature modeling: A meta-model to enhance usability and

Usefulness, in SPLC2, LNCS 2379, pages 198–216. Springer, 2002.

6. J. Savolainen et al., Feature analysis, Technical report, ESAPS, June 2001.

7. Len. Bass, Paul. Clements, Patrick. Donohoe, John. McGregor, Linda. Northrop, Fourth

Product Line Practice Workshop Report, CMU/SEI-2000-TR-002, Software Engineer-

ing Institute, Carnegie Mellon University, 2000.

 8. Horst Lichter, Alexander Nyßen, Thomas von der Maßen, Thomas Weiler, Vergleich

von Ansätzen zur Feature Modellierung bei der Softwareproduktlinienentwicklung,

Aachener Informatik Berichte, Aachen 2003.

9. Arie van Deursen, Paul Klint, Domain-Specific Language Design Requires Feature

Thomas von der Maßen, Horst Lichter

Descriptions, Journal of Computing and Information Technology, 2001

10. M. Simos, D. Creps, C. Klinger, L. Levine, D. Allemang, Organization domain model-

ling (ODM) guidebook 2.0, Technical Report STARS-VC-A025/001/00, Synquiry Tech-

nologies Inc., 1996.

11. R. N. Taylor, W. Tracz, L Coglianese, Software Development using domain-specific

software architectures, ACM SIGSOFT Software Engineering Notes, 20(5):27-37, 1995.

12. Klaus Müller, John MacGregor, Eva Geisberger, Jörg Dörr, Frank Houdek, Harbhajan

Singh, Holger Wußmann, Hans-Veit Bacher, Thomas von der Maßen, Einsatz von Fea-

tures im Softwareentwicklungsprozess, Technical Report, Abschlussbericht des Ar-

beitskreises „Features“ im Rahmen der Fachgruppe Requirements Engineering der

Gesellschaft für Informatik, To be published.

13. T. von der Maßen, H. Lichter, RequiLine: A requirements engineering tool for software

product lines, Proceedings of International Workshop on Product Family Engineering

PFE-5, Springer LNCS 3014, Siena, Italy, November 2003

14. Jörg Dörr, Guidelines for Inspecting Domain Model Relationships, Diploma thesis,

University of Kaiserslautern in cooperation with Fraunhofer Institute for Experimental

Software Engineering (IESE) and Avaya Inc., Kaiserslautern, July 2002

