
An Analysis of Variability Modeling
and Management Tools for
Product Line Development

Rafael Capilla, Alejandro Sánchez
Universidad Rey Juan Carlos de Madrid

Juan C. Dueñas
Universidad Politécnica de Madrid

SPAIN

Rafael Capilla, Alejandro Sánchez
Universidad Rey Juan Carlos de Madrid

Juan C. Dueñas
Universidad Politécnica de Madrid

SPAIN

MotivationMotivation 2

Time to market of complex software systems and
Product Family/Product Line approaches demand
variability-based solutions.

Software Variability is key for PL development.

The increasing number of variation points needs of techniques
and tools able to manage the variability of systems.

Managing variability at runtime becomes a complex
problem that has to be addressed.

Different variability techniques and approaches have been
proposed and used but a lack of agreements is missing.

Several tools for the same goal.

R. Capilla, A. Sánchez, J.C. Dueñas, SVM-WS’07, Helsinki, Finland

OriginsOrigins 3

FODA models (1990) are used for modeling
and representing the common and variable
parts of software systems.

Describe the external and visible properties of systems

Requirements are modeled as “features”

Features are used to describe the variability and the
relationships among these features

Complex dependencies are not straightforward

R. Capilla, A. Sánchez, J.C. Dueñas, SVM-WS’07, Helsinki, Finland

Variability conceptsVariability concepts 4

Variation point: An area of a software system affected by variability

Variant: The alternatives defined for each particular VP

Variability in space (allowed set of product configurations) and
variability in time (when the variability is realized)

Extensibility. Closed VP (variants are known at pre-deployment
time) Open VP (VP and variants can be added at runtime)

Varibility realization: Different techniques proposed for
implementing the variability model (i.e.: inheritance, aggregation,
parameterization, etc…)

R. Capilla, A. Sánchez, J.C. Dueñas, SVM-WS’07, Helsinki, Finland

Feature dependency analysisFeature dependency analysis 5

Dependencies and constraints limit the number and type of
configurable products from the number of possible configurations

Dependency links introduce a factor of complexity that variability
models have to manage.

Several dimensions and categories are possible in the
variability model.

Complex and simple dependencies are possible.

Dependencies can be used to establish traceability issues.

R. Capilla, A. Sánchez, J.C. Dueñas, SVM-WS’07, Helsinki, Finland

Types of dependenciesTypes of dependencies 6

A feature may depend on other features
AND, OR, XOR boolean relationships

Requires and excludes dependencies

Usage, Modification, Others [LEE & KANG, ICSR2004]

F1

Needs

F2

F1

Not in the same product

F2

F1

Depends

F2

F1

Modifies

Behavior of F2

R. Capilla, A. Sánchez, J.C. Dueñas, SVM-WS’07, Helsinki, Finland

Dependencies in Linux systemsDependencies in Linux systems 7

R. Capilla, A. Sánchez, J.C. Dueñas, SVM-WS’07, Helsinki, Finland

Variability managementVariability management 8

Deals with the processes to create, use, modify, maintain and
document the variability model across different stages of the
lifecyle.

Variation points and their dependencies have to be maintained.

Some approaches / tools provide adequate visualization support.

Integration with source code is needed for product derivation.

Evolution of products and VPs must be supported.

Feature categorization for PL development facilitates the
visualization of feature models.

R. Capilla, A. Sánchez, J.C. Dueñas, SVM-WS’07, Helsinki, Finland

Tools for modeling and managing variabiliy
for PL development
Tools for modeling and managing variabiliy
for PL development

9

The scope of the study carried out was focused on variability and
management and modeling tools.

The analysis describes the main characteristics of the tools from the
information gathered from the authors (interviews, discussions).

No tool evaluation was done because two of them are not
available for the general public.

No cross-comparison and ranking between tools was made.

R. Capilla, A. Sánchez, J.C. Dueñas, SVM-WS’07, Helsinki, Finland

Tools for modeling and managing variabiliy
for PL development GEARS
Tools for modeling and managing variabiliy
for PL development GEARS

GEARS is a commercial SPL development tool from BigLever Inc.

GEARS enables modeling optional and varying features for
producing different products

GEARS distinguises between features at the domain modeling level and
variations points at the implementation level

Components with variation points are turned into reusable assets that are
automatically composed and configured into product instances

Dependencies are expressed as relational assertions which may contain 3
or more features and relationships

Specific product profiles to select the choices for each product in the feature
model

10

R. Capilla, A. Sánchez, J.C. Dueñas, SVM-WS’07, Helsinki, Finland

R. Capilla, A. Sánchez, J.C. Dueñas, SVM-WS’07, Helsinki, Finland

Tools for modeling and managing variabiliy
in PL development GEARS
Tools for modeling and managing variabiliy
in PL development GEARS

Feature models
A product feature
profile is created
for each product in
the portfolio

Configurable assets
and variation points
Gears provides a
language for
programming each VP

A product configurator automatically
produces the products in the portfolio
composing the assets and configuring the VP

Gears manufactures each product
based on specific profiles
and reflect the changes when assets
are modified

11

Tools for modeling and managing variabiliy in PL
development V-Manage
Tools for modeling and managing variabiliy in PL
development V-Manage

12

V-Manage tool for small/medium organizations that want to implement a PL
and supports SFE in the context of MDA

V-manage consists of 3 modules:

V-define: Represents the variation model (i.e.: decision model) and its
relationships

V-Resolve: Builds application models and sets the values of the decision
model to produce a suitable configuration

V-Implement: Produces the reusable components

R. Capilla, A. Sánchez, J.C. Dueñas, SVM-WS’07, Helsinki, Finland

Tools for modeling and managing variabiliy
in PL development V-Manage
Tools for modeling and managing variabiliy
in PL development V-Manage

Variation
Model

V
-
D
E
F
I
N
E

User

R. Capilla, A. Sánchez, J.C. Dueñas, SVM-WS’07, Helsinki, Finland

PL Model
Application
Model

Variability is
resolved

V
-

IM
PLE

MENT

V
-

RE
SOL
VE

13

Concrete system
Model

Tools for modeling and managing variabiliy in PL
development V-Manage
Tools for modeling and managing variabiliy in PL
development V-Manage

File

Element

Variants

Attributes of the decision

14

R. Capilla, A. Sánchez, J.C. Dueñas, SVM-WS’07, Helsinki, Finland

Tools for modeling and managing variabiliy in PL
development V-Manage
Tools for modeling and managing variabiliy in PL
development V-Manage

Cond. associated
to parameters

Source code

15

R. Capilla, A. Sánchez, J.C. Dueñas, SVM-WS’07, Helsinki, Finland

Tools for modeling and managing variabiliy
in PL development COVAMOF
Tools for modeling and managing variabiliy
in PL development COVAMOF

16

COVAMOF (ConIPF Variability Modeling Framework) is a tool for
representing VP and variants at all levels of abstraction

Supports dependencies and a hierarchical variability model.
Complex dependencies are defined as dynamically analizable
dependencies

5 types of VP are supported

COVAMOF Variability View (CVV) represents the view of the
variability for PF artifacts and unifies this variability on all layers.
CVV also models the dependencies to restrict the binding of VPs

The Mocca tool supports multiple variability views in COVAMOF

R. Capilla, A. Sánchez, J.C. Dueñas, SVM-WS’07, Helsinki, Finland

Tools for modeling and managing variabiliy
in PL development COVAMOF
Tools for modeling and managing variabiliy
in PL development COVAMOF

Memory Consumption

Editor
Component

Notepad

Persistency
Component

Built-in Word FilesDatabase

Product class

Full Custom Basic

Realizes

Variant

Variation
Point

Dependency

Realization

Legend

Feature
Layer

Architecture
Layer

Processor Usage

Performance

Dependency
Interaction

notepad
interface

mail
manager

database
interface

network
interface

file
storage

word
interface

built-in
editor

17

R. Capilla, A. Sánchez, J.C. Dueñas, SVM-WS’07, Helsinki, Finland

Tools for modeling and managing variabiliy
in PL development COVAMOF
Tools for modeling and managing variabiliy
in PL development COVAMOF

18

R. Capilla, A. Sánchez, J.C. Dueñas, SVM-WS’07, Helsinki, Finland

Tools for modeling and managing variabiliy
in PL development VMWT
Tools for modeling and managing variabiliy
in PL development VMWT

19

The variability Modeling Web Tool is a Web-based tool with PHP+AJAX for
modeling variability for product line development

FODA trees for visualizing the variability model

Dependencies supported: Boolean connectors and requires,
excludes

Dependency checking before producing the product configuration

Computes the number of allowed products

Automatic documentation as PDF documents

VP and variants are included in the code assets

R. Capilla, A. Sánchez, J.C. Dueñas, SVM-WS’07, Helsinki, Finland

R. Capilla, A. Sánchez, J.C. Dueñas, SVM-WS’07, Helsinki, Finland

Tools for modeling and managing variabiliy
in PL development VMWT
Tools for modeling and managing variabiliy
in PL development VMWT

20

Tools for modeling and managing variabiliy
in PL development AHEAD
Tools for modeling and managing variabiliy
in PL development AHEAD

21

The AHEAD (Algebraic Hierarchical Equations for Application
Development) tool suite supports the development of PL by means of
compositional programming and based on the GenVoca methodology for
incrementally add features to product family members

The key tool in AHEAD tool suit is the composer, which expands AHEAD
equations to yield the target system

AHEAD distinguishes between “product features” and “built-in features”

AHEAD uses a step-wise refinement process. Refinements are packaged
in layers. The base layer contains base artifacts which are enhanced with
specific features

Automatic derivation process

R. Capilla, A. Sánchez, J.C. Dueñas, SVM-WS’07, Helsinki, Finland

Tools for modeling and managing
variabiliy in PL development AHEAD
Tools for modeling and managing
variabiliy in PL development AHEAD

Features are
directories!!

model
explorer

22

R. Capilla, A. Sánchez, J.C. Dueñas, SVM-WS’07, Helsinki, Finland

Tools for modeling and managing
variabiliy in PL development AHEAD
Tools for modeling and managing
variabiliy in PL development AHEAD

23

Composing Features
> composer --equation=baseRef
#baseref.equation
base
ref Compose

base

mul

add

composer
basemuladd

> composer –target=basemuladd add mul base

basemuladd = add ● mul ● base

R. Capilla, A. Sánchez, J.C. Dueñas, SVM-WS’07, Helsinki, Finland

Impact on SPL developmentImpact on SPL development 24

Several successful examples have demonstrated how
Product Lines are useful for industry to meet market
demands

Examples of savings and reuse producing multiple
products in parallel are provided in the literature

e.g.: Around the 80% of the code produced by Engenio (a firm to high
performance disk storage systems) is common to 82 products of
the firm

Tools are becoming key pieces for managing the
increasing amount of variability in PFE and for
automating the derivation process

R. Capilla, A. Sánchez, J.C. Dueñas, SVM-WS’07, Helsinki, Finland

ConlusionsConlusions 25

Most of the tools examines share many similarities

Lack of a unified variability approach that leads
to several tools / approaches, and notations

Visualizing hundreds of VP is a limitation to overcome

Need to handle complex dependencies

Incompatible versions of products must be checked
before product derivation

Managing variability at runtime is hard

R. Capilla, A. Sánchez, J.C. Dueñas, SVM-WS’07, Helsinki, Finland

Future needs – Discussion topicsFuture needs – Discussion topics 26

Integration with other SE development tools and SCM tools

More visualization capabilities

Support for runtime variability

Agreement on standard notation?

Estimation of the cost of products from the product portfolio

Better integration from modeling and configuration to
product synthesis

Identify and extract features from code
(reverse engineering, feature location) to
integrate them with an existing feature model

R. Capilla, A. Sánchez, J.C. Dueñas, SVM-WS’07, Helsinki, Finland

