Goal and Variability Modeling for Service-oriented Systems: Integrating i* with Decision Models

Paul Grünbacher
Deepak Dhungana
Michael Quintus
Norbert Seyff

Lidia López
Roger Clotet
Xavier Franch
Jordi Marco

Johannes Kepler University
Linz, Austria

Universitat Politècnica de Catalunya
Barcelona, Spain
Research Context

- Multi-Stakeholder Distributed System (MSDS) [Hall-2002]
 - Nodes are designed, developed, and operated by distinct stakeholders
 - Stakeholders have limited knowledge about nodes developed by other stakeholder groups
 - Changes to system nodes are uncontrollable and likely lead to conflicts between stakeholders’ requirements

- Example: Networks of web services
 - Provider of payment service has incentive to sell personal data about customer behavior
 - Web portal insists to ensure her privacy
Framework for MSDS Requirements Engineering

Stakeholder Needs
(Interests, Values, Goals, Conflicts, Agreements)

Analysis Monitoring

Architecture Prescription
(Service and Component Specifications)

Payment Service Provider: “Maximize benefit”

Payment Service
Flight Booking Service

Solution Architecture
(SELECTED SERVICES AND COMPONENTS, CONFIGURATION)

Payment Service CheatCard
Flight Booking Service Amadeus

Open System
(Runtime Components and Services)

Customer: “Ensure privacy of personal data”

CheatCard deployed at URL someurl.com

Example

- Understand variability at different levels/views
 - Deal with different levels of abstraction
 - Model dependencies between views

Architecture prescription Solution architecture

Runtime configuration

Stakeholder needs
Dealing with variability

- Visualize variation points in i* models ("?")

- Complement i* with decision model
 - i* benefits
 - Visualize dependencies
 - Views for different concerns
 - Traceability
 - What is missing in i*
 - Constraints (e.g., between services)
 - Precise conditions under which services become active or inactive
 - Support for different types of decisions and cardinalities
Variation point: Travel service provider

- **Decision**: `typeOfTravelServiceProvider`
- **Alternative values**: flight, hotel, camping
- **Cardinality**: 1:3
- **Layer**: Architecture Prescription
- **i* element**: Travel services provider
- **Relevance**: always
- **Constraints**: if `typeOfTravelServiceProvider=="camping"` then `whichTravelService=Amadeus`

- **Decision**: `whichTravelService`
- **Alternative values**: Amadeus, TS
- **Cardinality**: 1
- **Layer**: Architecture Solution
- **i* element**: Travel services provider
- **Relevance**: `typeOfTravelServiceProvider` does not include camping
- **Constraints**: none
<table>
<thead>
<tr>
<th>Decision</th>
<th>alternative values</th>
<th>cari* level</th>
<th>Stakeholder* element</th>
<th>relevance</th>
<th>Constrains</th>
</tr>
</thead>
<tbody>
<tr>
<td>typeOfCustomerAssistance</td>
<td>synch, asynch</td>
<td>1/2 SN</td>
<td>TA</td>
<td>Customer Assistance Provided</td>
<td></td>
</tr>
<tr>
<td>typeOfSynchronousAssistance</td>
<td>Human, Computer</td>
<td>1/2 AP</td>
<td>TA</td>
<td>Synchronous support</td>
<td></td>
</tr>
<tr>
<td>typeOfAsynchronousAssistance</td>
<td>email, SMS</td>
<td>1/2 AP</td>
<td>TA</td>
<td>Asynchronous support</td>
<td></td>
</tr>
<tr>
<td>typeOfComputerAssistance</td>
<td>skypes, MSN Messenger</td>
<td>1/2 AS</td>
<td>TA</td>
<td>Computer based assistance (role)</td>
<td></td>
</tr>
<tr>
<td>typeOfSkype</td>
<td>My skypes, hosted skylarke</td>
<td>1/2 OS</td>
<td>TA</td>
<td>Skype (agent)</td>
<td></td>
</tr>
<tr>
<td>LevelOfCustomerSupport</td>
<td>minimal, medium, full</td>
<td>1 SN</td>
<td>TA</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td>LevelOfReliability</td>
<td>high, low</td>
<td>1 SN</td>
<td>TA</td>
<td>Reliability</td>
<td></td>
</tr>
<tr>
<td>typeOfIdentification</td>
<td>classical login, finger print</td>
<td>1 AP</td>
<td>TA</td>
<td>Identification means provided</td>
<td></td>
</tr>
<tr>
<td>typeOfLogin</td>
<td>fastLogin, secureLogin</td>
<td>1 AS</td>
<td>TA</td>
<td>Login (Management (role)</td>
<td></td>
</tr>
<tr>
<td>typeOfFingerPrint</td>
<td>cheap finger match, fast finger match</td>
<td>1 AS</td>
<td>TA</td>
<td>Finger (Management (role)</td>
<td></td>
</tr>
<tr>
<td>LevelOfSecurity</td>
<td>minimal, medium, full</td>
<td>1 SN</td>
<td>TA</td>
<td>Contracting process perceived as secure</td>
<td></td>
</tr>
<tr>
<td>LevelOfPrivacy</td>
<td>minimal, medium, full</td>
<td>1 SN</td>
<td>TA</td>
<td>Customer data kept isolated</td>
<td></td>
</tr>
<tr>
<td>typeOfTravelPayment</td>
<td>credit card, transfer, worldwide</td>
<td>1 AP</td>
<td>TSI, TA</td>
<td>Payment services provider (external actor)</td>
<td></td>
</tr>
<tr>
<td>typeOfServiceTravelProvider</td>
<td>flight, hotel, camping</td>
<td>1 AP</td>
<td>TSI, TA</td>
<td>Travel service provider</td>
<td></td>
</tr>
<tr>
<td>whichTravelService</td>
<td>Amadeus, TS</td>
<td>1 AS</td>
<td>TA</td>
<td>Travel service provider</td>
<td></td>
</tr>
<tr>
<td>whichCreditCardService</td>
<td>CheapCard, Securitas, NorbSecureCredit, FastAndCheap</td>
<td>1 AS</td>
<td>TA</td>
<td>CreditCardService</td>
<td></td>
</tr>
<tr>
<td>whichAmadeusService</td>
<td>Austrian, Spanish</td>
<td>1 OP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AustrianAmadeusAverageResponse</td>
<td></td>
<td>0P</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SpanishAmadeusAverageResponse</td>
<td></td>
<td>0P</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tool Support: Customizing the DecisionKing meta tool
Tool Support: Decision modeling in DecisionKing
Configuration Wizard for design-time / runtime decisions
Illustrative Scenario

Automated adaptation of runtime configurations
Summary

Current status

- Developing decision tables for TA example
 - Refining decision tables design
 - Using means-end link to describe variation points on i* models
- Focus on monitoring and adapting
 - How to use models and decision tables to react to the system changes
 - Monitoring values are decisions!

Future work

- Use of variability models in runtime service monitoring
 - Develop plug-in for ConfigurationWizard that integrates with service monitors
- Integrating tools (based on i*ML)
 - REDEPEND: i* models
 - Decision King: variability models
Thank you for your attention!

http://ase.jku.at/dopler