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Overview

• Discussion points for after the presentation
• What is compositional development and why does the software world evolve to 

it
• What are the implications for SPL development

• Specifically for variability management

• What can/should we do about it
• i.e. research agenda for future SPLC confs

• Discussion
• Whole point of this presentation is to provoke some



Discussion points (originally my last slide)

• How can existing variability management solutions be used in compositional 
development 

• XX MLOC
• XXXXX Developers
• Multiple organizations, countries, business units etc.

• Why should we try to do this?
• OSS community seems to be doing fine without SVM overhead

• After ~10+ years of SPL and SVM research, what are the key things that we are 
going to keep assuming things will get more compositional

• And what are things we need to rethink



SPL Development = Integrational development

• Develop platform(s)
• Support product Commonalities
• Central, configurable feature models

• Derive products
• Collect requirements
• Configure platform + Product specific development

• Key concepts
• Central collection, analysis & modeling of requirements & features

• Platform level
• Product level

• Large reusable asset base, i.e. the platform
• Reduce product development effort by not repeating platform development effort



Trends

• Software systems keep getting larger
• Moore's law mirrored in software size (LOC)
• Now: Millions of lines of code
• Tens of thousands of developers
• Billions $ investments
• Also true for embedded systems, home ground for SPL methodology

• Existing software platforms widening in scope
• Expand domain & feature set
• Diversify from competition

• Cross organizational boundaries
• No company has 10000 people in 1 department
• Subcontractors, Licensensees, Customer platforms

• Time to market increasing
• Especially true for hierarchical platforms



Consequences

• Increasing testing cost
• Repeated testing cost

• Decreasing differentiating power
• Also hard to substitute integrated parts with cheap/free replacements

• Especially long time to market for differentiating platform features
• Platform design decisions limit/constrain product development
• Product increasingly smaller percentage of platform code
• Also increasing amounts of product specific code

• Inevitable conclusion:
• The "old way" just does not scale
• And it needs to scale anyway!



This is what we are seeing in Nokia Series 60

• Hierarchical platform 
• E.g. Panasonic S60 based SPL was presented at SPLC 2006
• Based on Symbian platform

• XX MLOC (cannot disclose XX)
• XXXX people involved with S60 development @nokia

• Hint: no SVM for S60

• Nokia is pushing the limit of what is possible in a single company
• Not many companies with this amount of in-house developed software

• Rest of the industry will experience similar growth in software size



Solution: compositional development

• Key concept: decentralize
• Everything!

• Accept that
• No person can oversee XX MLOC systems

• empirical limit is (X)XX KLOC
• Disqualifies anyone but superman for centrally made technical decisions

• XX MLOC will become XXX MLOC at some point, BLOC in sight (10-20 years ?)
• This is actually good (i.e. we are reusing stuff)!

• You don't own most of 'your' software
• Fixed cost per person per LOC
• You're not going to build most of the stuff in your products

• Systems are composed of many components with independent 
• ownership, management, evolution, interests, ......
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Consequence of decentralization

• No central
• Ownership
• Decision making
• Architecture
• Feature models
• Requirements collection
• Requirements analysis
• Variability management (needs all of the above)

• Open source =
• You can take ownership (i.e. you have the right to modify)
• But generally you won't due to the cost

• Lesson: most software that you don't own is used unmodified
• You can configure it or extend it in its intended way(s)



Does this sound familiar?

• It should because this is how the open source community works
• And they produce vast amounts of good quality software fast
• The question is no longer if you should use OSS but if you should adopt an OSS 

mode of operation



Does this sound familiar (2)?

• Is this just repeating COTS?
• No, COTS fragmented into

• Integrated Platforms
• SPLs
• Open Source
• 'True' COTS

• Compositional development tries to combine best of both worlds in OSS and SPL 
development

• Arguably the two most successful forms of software reuse



Variability (a very brief history)

• Originally: planned reuse
• Analyse requirements
• Identify where variation are
• Plan for use of appropriate techniques

• Later: supported reuse
• Provide feature model of software platform
• Guide product derivation process using this model

• Later (2): automated reuse
• Provide feature model + software configuration model
• Auto generate working/valid product configurations from feature configurations



Variability tooling

• Support product derivation process
• Product configuration validation
• Build configuration tooling
• MDA
• Feature Modelling
• Sales support
• Software License enforcement/configuration
• ....



Impact of decentralization on variability management

• Variation points are introduced in software by component owners
• Important architecture decisions are taken locally rather than centrally
• Centrally maintained models of features or software variation do not get 

updated when that happens
• Nor can you make the owners make these modifications for you

• Conclusion, any tool/method depending on centralized models is not going to 
work in combination with decentralizing development as implied in compositional 
development

• This affects most existing SPL approaches 
• Not all, e.g. Van Ommering



So now what?

• Are central models really essential?
• Was it all for nothing?
• What bits and pieces can we reuse?

• I think not all is lost.
• Just need to re think a few things



Variability management is about provided variability

• Provided variant features
• Variability actually present in the implemented software

• Required variant features
• Variability needs emerging from the requirements during requirements analysis

• Same for provided and required arch & des.
• Most Rational Rose licenses are actually used to document rather than design

• SPL research contributions depend mostly on 
• models of provided variant features in software and ...
• ... mappings to variation points in the provided software design

• Independently developed software components can still have explicit provided 
variant features and explicit variation points

• Nothing inherently central to this



Problems

• Documenting features & design is not likely to be done consistently in a 
compositional development environment

• No incentive for component owners
• Could be done centrally 

• whole point is not doing that anymore

• Could be sanctioned from management that all owners do this 'properly'
• except that implies central governance which we no longer have

• Consistent enforcement of any processes, methods & tools is hard due to lack of 
central governance

• Conflicts of interest between parties



Nice research topics

• How to automatically aggregate decentralized feature models & design into larger 
models such that

• They can support product development (similar to how current variability tools do)

• First class representation in software for variation & variant features
• E.g. using annotations

• Dealing with cross cutting features and components that are not centrally owned
• E.g. security

• Locally using selected SPL methods & techniques
• Without imposing them on all components

• Micro kernel like architectures with variability management support
• E.g. OSGI



Discussion points (again)

• How can existing variability management solutions be used in compositional 
development 

• XX MLOC
• XXXXX Developers
• Multiple organizations, countries, business units etc.

• Why should we try to do this?
• OSS community seems to be doing fine without SVM overhead

• After ~10+ years of SPL and SVM research, what are the key things that we are 
going to keep assuming things will get more compositional

• And what are things we need to rethink
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