
Variability & Compositional
Software Development
Jilles van Gurp

Nokia Research Center, Helsinki
Smart Space Application Platform Team
Computing Structures Lab

Overview

• Discussion points for after the presentation
• What is compositional development and why does the software world evolve to

it
• What are the implications for SPL development

• Specifically for variability management

• What can/should we do about it
• i.e. research agenda for future SPLC confs

• Discussion
• Whole point of this presentation is to provoke some

Discussion points (originally my last slide)

• How can existing variability management solutions be used in compositional
development

• XX MLOC
• XXXXX Developers
• Multiple organizations, countries, business units etc.

• Why should we try to do this?
• OSS community seems to be doing fine without SVM overhead

• After ~10+ years of SPL and SVM research, what are the key things that we are
going to keep assuming things will get more compositional

• And what are things we need to rethink

SPL Development = Integrational development

• Develop platform(s)
• Support product Commonalities
• Central, configurable feature models

• Derive products
• Collect requirements
• Configure platform + Product specific development

• Key concepts
• Central collection, analysis & modeling of requirements & features

• Platform level
• Product level

• Large reusable asset base, i.e. the platform
• Reduce product development effort by not repeating platform development effort

Trends

• Software systems keep getting larger
• Moore's law mirrored in software size (LOC)
• Now: Millions of lines of code
• Tens of thousands of developers
• Billions $ investments
• Also true for embedded systems, home ground for SPL methodology

• Existing software platforms widening in scope
• Expand domain & feature set
• Diversify from competition

• Cross organizational boundaries
• No company has 10000 people in 1 department
• Subcontractors, Licensensees, Customer platforms

• Time to market increasing
• Especially true for hierarchical platforms

Consequences

• Increasing testing cost
• Repeated testing cost

• Decreasing differentiating power
• Also hard to substitute integrated parts with cheap/free replacements

• Especially long time to market for differentiating platform features
• Platform design decisions limit/constrain product development
• Product increasingly smaller percentage of platform code
• Also increasing amounts of product specific code

• Inevitable conclusion:
• The "old way" just does not scale
• And it needs to scale anyway!

This is what we are seeing in Nokia Series 60

• Hierarchical platform
• E.g. Panasonic S60 based SPL was presented at SPLC 2006
• Based on Symbian platform

• XX MLOC (cannot disclose XX)
• XXXX people involved with S60 development @nokia

• Hint: no SVM for S60

• Nokia is pushing the limit of what is possible in a single company
• Not many companies with this amount of in-house developed software

• Rest of the industry will experience similar growth in software size

Solution: compositional development

• Key concept: decentralize
• Everything!

• Accept that
• No person can oversee XX MLOC systems

• empirical limit is (X)XX KLOC
• Disqualifies anyone but superman for centrally made technical decisions

• XX MLOC will become XXX MLOC at some point, BLOC in sight (10-20 years ?)
• This is actually good (i.e. we are reusing stuff)!

• You don't own most of 'your' software
• Fixed cost per person per LOC
• You're not going to build most of the stuff in your products

• Systems are composed of many components with independent
• ownership, management, evolution, interests,

Compositional platform
Integration Platform

Derived Products

base platform + components

integrated platform

additions + no
changes to

platform

additions +
many changes

to platform

base platform +
reuse comp. +
prod specific

component

product 1

product 2

product 3

product 4

base platform +
reuse comp. +
prod specific

component

Consequence of decentralization

• No central
• Ownership
• Decision making
• Architecture
• Feature models
• Requirements collection
• Requirements analysis
• Variability management (needs all of the above)

• Open source =
• You can take ownership (i.e. you have the right to modify)
• But generally you won't due to the cost

• Lesson: most software that you don't own is used unmodified
• You can configure it or extend it in its intended way(s)

Does this sound familiar?

• It should because this is how the open source community works
• And they produce vast amounts of good quality software fast
• The question is no longer if you should use OSS but if you should adopt an OSS

mode of operation

Does this sound familiar (2)?

• Is this just repeating COTS?
• No, COTS fragmented into

• Integrated Platforms
• SPLs
• Open Source
• 'True' COTS

• Compositional development tries to combine best of both worlds in OSS and SPL
development

• Arguably the two most successful forms of software reuse

Variability (a very brief history)

• Originally: planned reuse
• Analyse requirements
• Identify where variation are
• Plan for use of appropriate techniques

• Later: supported reuse
• Provide feature model of software platform
• Guide product derivation process using this model

• Later (2): automated reuse
• Provide feature model + software configuration model
• Auto generate working/valid product configurations from feature configurations

Variability tooling

• Support product derivation process
• Product configuration validation
• Build configuration tooling
• MDA
• Feature Modelling
• Sales support
• Software License enforcement/configuration
•

Impact of decentralization on variability management

• Variation points are introduced in software by component owners
• Important architecture decisions are taken locally rather than centrally
• Centrally maintained models of features or software variation do not get

updated when that happens
• Nor can you make the owners make these modifications for you

• Conclusion, any tool/method depending on centralized models is not going to
work in combination with decentralizing development as implied in compositional
development

• This affects most existing SPL approaches
• Not all, e.g. Van Ommering

So now what?

• Are central models really essential?
• Was it all for nothing?
• What bits and pieces can we reuse?

• I think not all is lost.
• Just need to re think a few things

Variability management is about provided variability

• Provided variant features
• Variability actually present in the implemented software

• Required variant features
• Variability needs emerging from the requirements during requirements analysis

• Same for provided and required arch & des.
• Most Rational Rose licenses are actually used to document rather than design

• SPL research contributions depend mostly on
• models of provided variant features in software and ...
• ... mappings to variation points in the provided software design

• Independently developed software components can still have explicit provided
variant features and explicit variation points

• Nothing inherently central to this

Problems

• Documenting features & design is not likely to be done consistently in a
compositional development environment

• No incentive for component owners
• Could be done centrally

• whole point is not doing that anymore

• Could be sanctioned from management that all owners do this 'properly'
• except that implies central governance which we no longer have

• Consistent enforcement of any processes, methods & tools is hard due to lack of
central governance

• Conflicts of interest between parties

Nice research topics

• How to automatically aggregate decentralized feature models & design into larger
models such that

• They can support product development (similar to how current variability tools do)

• First class representation in software for variation & variant features
• E.g. using annotations

• Dealing with cross cutting features and components that are not centrally owned
• E.g. security

• Locally using selected SPL methods & techniques
• Without imposing them on all components

• Micro kernel like architectures with variability management support
• E.g. OSGI

Discussion points (again)

• How can existing variability management solutions be used in compositional
development

• XX MLOC
• XXXXX Developers
• Multiple organizations, countries, business units etc.

• Why should we try to do this?
• OSS community seems to be doing fine without SVM overhead

• After ~10+ years of SPL and SVM research, what are the key things that we are
going to keep assuming things will get more compositional

• And what are things we need to rethink

	Variability & Compositional Software Development
	Overview
	Discussion points (originally my last slide)
	SPL Development = Integrational development
	Trends
	Consequences
	This is what we are seeing in Nokia	Series 60
	Solution: compositional development
	Consequence of decentralization
	Does this sound familiar?
	Does this sound familiar (2)?
	Variability (a very brief history)
	Variability tooling
	Impact of decentralization on variability management
	So now what?
	Variability management is about provided variability
	Problems
	Nice research topics
	Discussion points (again)

