
Kumbang Modeler: A Prototype Tool for

Modeling Variability

Hanna Koivu, Mikko Raatikainen, Marko Nieminen, and Tomi Männistö

Helsinki University of Technology
Software Business and Engineering Institute (SoberIT)

P.O. Box 9210, 02015 TKK, Finland
{Hanna.Koivu, Mikko.Raatikainen, Marko.Nieminen, Tomi.Mannisto}@tkk.fi

Abstract. Variability is the ability of a system to be e�ciently ex-
tended, changed, customized, or con�gured for use in a particular con-
text. Several methods of modeling variability have been reported. How-
ever, tool support is also needed to take full advantage of models. We
describe a prototype tool called Kumbang Modeler. Kumbang Modeler
enables modeling the variability of a software product family using Kum-
bang conceptualization and language. The study follows the design sci-
ence methodology. A user-centered design was applied in the develop-
ment of Kumbang Modeler, and light-weight usability tests in the evalu-
ation. The usability tests show that a person with knowledge of Kumbang
concepts is able to correctly model the variability of a software product
family using Kumbang Modeler.

1 Introduction

Variability is the ability of a system to be e�ciently extended, changed, cus-
tomized, or con�gured for use in a particular context [1]. As a successful means
of managing variability, a software product family approach has emerged [2]. A
software product family refers to a set of product individuals that reuse the same
software assets and have a common structure called a software product family
architecture [3]. The assets and the architecture of a software product family
contain variability. This variability is resolved and, typically, product-speci�c
software is also developed in order to derive the di�erent product individuals
of a software product family [4]. In a con�gurable software product family, the
product individuals are constructed entirely on a basis of existing software only
by resolving the variability [5,6].

A con�gurable software product family can contain a great amount of vari-
ability. In addition, this variability includes, for example, traceability relations
and constraints [7]. Therefore, capturing and managing variability is challeng-
ing. Di�erent variability modeling methods have emerged for variability manage-
ment. When variability is expressed rigorously, such as in models with adequate
rigor, product derivation can bene�t from tool support. Tools can deduce con-
sequences, check conformance to the model, and show when all variability is
bound, for example [8]. Modeling also bene�ts from tools. Tools can hide the



details of the modeling language and tools can provide a viewpoint to model
such that the model is only partially visible and easily navigatable. Hence, prod-
uct expects can express variability without considering the syntax details of a
particular language A modeling tool should also make it easier to demonstrate
variability modeling to companies that could bene�t from it, as well as making
it more approachable.

In this paper, we describe Kumbang Modeler, which is a prototype modeling
tool for Kumbang. Kumbang [9] is a domain ontology for modeling the vari-
ability in software product families. Kumbang includes concepts for modeling
variability, from the point of view of the component and feature structures. The
language that utilizes Kumbang conceptualization is likewise called Kumbang.
The modeling tool is an Eclipse plug-in [10] for creating and editing Kumbang
models. The tool stores models using the Kumbang language. In the study, we
followed the design science methodology [11]. For developing the tool, we applied
a user-centered design, and, in particular, the personas method [12,13]. The tool
was tested for feasibility and in two lightweight usability tests.

The rest of the paper is organized as follows. In Section 2, we describe the
research methods. In Section 3, we give an overview of Kumbang. Section 4 intro-
duces Kumbang Modeler. In Section 5, we describe the validation of Kumbang
Modeler. Section 6 discusses our experiences in developing Kumbang Modeler.
Section 7 outlines related work. Section 8 draws conclusions and provides some
directions for future work.

2 Method

The research followed the design science methodology [11]. The construction is
a prototype Kumbang Modeler. The objective of the prototype was to provide
the user with the ability to be able to create and edit Kumbang models through
a graphical user interface. The models made using Kumbang Modeler should
be saved to text �les using the Kumbang language. The study built on existing
Kumbang concepts, without changing them.

The development of Kumbang Modeler followed a user-centered design. The
methods used were Goal-Directed Design, and especially Personas [12,13]. How-
ever, users and context, which are central in user-centered design [14], could not
be studied in practice, e.g., in a case study. This was because Kumbang Modeler
is a new kind of product and not used anywhere. Therefore, di�erent use scenar-
ios and characteristics of potential users were explored, mainly on the basis of
results reported in the literature. The objective was to achieve a better under-
standing of the e�ective use of a modeling tool in an industrial setting, and the
skill requirements for users. In addition, the feasibility of a user-centered design
without actual users was assessed.

Kumbang Modeler was tested for feasibility and in lightweight usability tests.
In the feasibility test, di�erent models were developed and their correctness was
validated. The lightweight formative usability tests were carried out with two
di�erent users. Both users had experience with software product families. The



users had not used or even seen Kumbang Modeler before the test. One user did
not have knowledge of Kumbang, while the other was familiar with Kumbang
concepts and language. The tests took roughly an hour and were done in an
o�ce room with a PC. Both tests were recorded with a video camera and screen
capture software. The users were interviewed before and after the tests.

3 Kumbang Overview

Kumbang [9] is a domain ontology for modeling variability in software product
families. Kumbang di�erentiates between a con�guration model, which describes
a family and contains variability, and a product description, which is a model of
a product individual derived from a con�guration model by resolving variability.
The elements in a con�guration model are referred to as types, while the elements
in a product description are referred to as instances.

Kumbang includes concepts for modeling variability from both a structural
and feature point of view. More speci�cally, the modeling concepts include com-

ponents and features with inheritance structure and compositional structure,
attributes, the interfaces of components and connections between these, and
constraints. A compositional structure is achieved through the concepts of a
subfeature de�nition and part de�nition that state what kinds of parts can ex-
ists for a feature or component, respectively. Constraints can be speci�ed within
components and features. Implementation constraints are a special class of con-
straints between features and components.

The semantics of Kumbang is rigorously described using natural language
and a UML pro�le. A language based on the Kumbang ontology, likewise called
Kumbang, has been de�ned. Kumbang has been provided with formal semantics
by de�ning and implementing a translation from Kumbang to WCRL (Weight
Constraint Rule Language) [15], a general-purpose knowledge representation lan-
guage with formal semantics.

A tool called Kumbang Con�gurator, which supports product derivation for
software product families modeled using Kumbang, has been implemented [8].
Kumbang Con�gurator supports a user in the con�guration task as follows:
Kumbang Con�gurator reads a Kumbang model and represents the variability
in the model in a graphical user interface. The user resolves the variability by
entering her requirements for the product individual: for example, the user may
decide whether to include an optional element in the con�guration or not, to se-
lect attribute values or the type of a given part, or create a connection between
interfaces. After each requirement entered by the user, the Kumbang Con�gu-
rator checks the consistency of the con�guration, i.e., whether the requirements
entered so far are mutually compatible, and deduces the consequences of the
requirements entered so far, e.g., automatically choosing an alternative that has
been constrained down to one; the consequences are re�ected in the user inter-
face. The consistency checks and deductions are performed using an inference
engine called smodels [15] based on the WCRL program translated from the
model. Once all the variation points have been resolved and a valid con�gura-



tion thus found, the tool is able to export the con�guration, which can act as an
input for tools used to implement the software, or used for other purposes.

4 Kumbang Modeler

This section introduces Kumbang Modeler, a prototype tool for creating Kum-
bang models. Kumbang Modeler has been implemented as a plug-in for the
Eclipse Platform [10]. First, a short introduction to Eclipse will be given below,
then Kumbang Modeler is described in terms of architecture, user interface, and
usage.

4.1 Eclipse

Eclipse [10] is an integrated development environment popular among Java de-
velopers [16]. Eclipse began as an open source IDE tool for Java development,
but has been extended to a multi-purpose development environment via plug-in
extensions. Eclipse plug-ins are currently very popular [17].

Eclipse's development environment is called a workbench [18]. A user sees
a workbench as one or several windows. Each window contains a menu bar, a
toolbar, and one or more perspectives. A perspective de�nes what is included in
the menus and toolbar. The perspective also de�nes a default layout, which can
be changed or reloaded to undo changes. A perspective is also a container that
de�nes the initial group and layout of a group of editors and views. An editor or
a view contains the actual user interface elements. Plug-ins can consist of any of
the element such as views, editors, menus, or perspectives.

4.2 Kumbang Modeler Architecture

The main elements of the Kumbang Modeler architecture are the model layer, the
controllers layer, and the user interface layer. A Kumbang model is represented
as Java objects at the model layer and can be imported from or exported to
a text �le. The controllers layer combines some display information with he
model objects, provides ways to change the model and updates these changes
at the graphical user interface layer. The user interface elements are at the
graphical user interface layer. Kumbang Modeler reuses the model and parser
from Kumbang Con�gurator [8].

4.3 Kumbang Modeler User Interface

User interface elements speci�c to Kumbang Modeler are a perspective, an edi-
tor, and three views. In addition, Kumbang Modeler uses two standard Eclipse
views. The user interface design was guided by the Eclipse User Interface Guide-
lines [19].

The perspective for Kumbang Modeler comprises six di�erent areas, depicted
by letters a-f in Figure 1. The perspective is automatically opened when a �le
containing a Kumbang model is opened or a new Kumbang model is created.



Fig. 1: The perspective for Kumbang Modeler: a) the editor area b) the type view c)
the feature view d) the component view e) the properties view f) the navigator view

The editor area (Figure 1, a) shows the currently active editor and enables
switching between open editors by selecting the model from the tabs. The editor
area displays the model name and type; all other information is shown in the
views. This gives the user more control over the user interface, as views can be
resized, moved, and closed freely. The editor takes care of opening and saving
the model. Several editors can be open at the same time.

The three views peculiar to Kumbang are a type view, a feature view and a

component view (Figure 1 b, c and d, respectively). The type view lists currently
available types. Kumbang has feature, component, interface, and attribute value
types. The feature and component views show the compositional hierarchies.
The hierarchies form trees with one root. The tree is composed using the sub-
feature de�nitions within the features types and the part de�nitions within the
components types. In addition, constraints are added to the feature and com-
ponent types in the feature and component views. Implementation constraints
between the feature hierarchy and the component hierarchy are placed in the
feature view.

The properties and navigator views are standard views in the Eclipse IDE.
The properties view (Figure 1, e) shows additional information on the currently



(a) (b)

Fig. 2: Two Kumbang Modeler dialogs: a) a dialog for adding a new feature type; b) a
dialog for a subfeature de�nition.

selected elements. The navigator view (Figure 1, f) shows Eclipse projects and
�les.

Finally, Kumbang Modeler contains several dialogs that are needed when
editing a model. The archetypes of the dialogs are shown below in the section
describing the usage of Kumbang Modeler.

4.4 Usage

The available types, such as di�erent feature and component types, of a model are
created using dialogs. Figure 2(a) shows a dialog for creating a new feature type;
similar dialogs are used for other types, although the exact �elds are peculiar
for the respective type. The dialogs are needed in order to set all details of the
speci�c type. For example, a new feature type needs a name, possible supertypes,
speci�cation if the type is abstract, and an optional comment. The same dialogs
that are used for creating new types are used to display and change existing
types. Right-clicking in any of the views peculiar to Kumbang opens a menu
from which an option for the dialog for creating new types can be selected.
Alternatively, the dialog can be opened and new types created while de�ning
compositional structures other than root, as described below.



The compositional structure of the features and components needs to proceed
from the root to the leafs. When a type is dragged from the type view to an
empty structural view of that type, the type becomes the root; or, when there
is no root set, an existing type can be selected to be the root from a list of all
possible types. Consequently, only existing type can be selected to be a root.

When the root is set, the other types can be added to the compositional
structure through their respective de�nitions. A type can be added to the struc-
ture by dragging. Alternatively, an existing type can be selected or a new type
can be created for the compositional structure during the construction of the
de�nition. Attributes and interfaces are attached to the structure using the con-
cept of de�nition, similar to the way the compositional structure is constructed.
A dialog is always needed to determine the necessary information when adding
a type to a structure. Figure 2(b) shows an example dialog for a subfeature def-
inition. If a type is dragged to the tree, those values that have feasible default
values are pre-�lled. For instance, the cardinality of de�nitions has a default
value of one-to-one, and the name is derived from the type, but the direction of
an interface de�nition has no sensible default value.

The constraint language of Kumbang [20] combines predicates with Boolean
algebra. A constraint can be very complex; hence, there is no simple way to
manage them. In addition, �exibility is required in constructing the constraints,
since length cannot be determined beforehand. The approach taken in Kumbang
Modeler splits constraints into parts that can be constructed separately. There
are two kinds of basic parts: expressions, which are predicates or functions, and
operators, which combine the expressions or implicate relationships between the
expressions. These parts are shown in a list, which is expanded every time a part
is added, as seen in Figure 3(a). When a new expression is added, an expression
type must �rst be chosen (Figure 3(b)). A similar dialog is also used for choosing
operators. Each expression has a special dialog for de�ning the details.

5 Validation of Kumbang Modeler

5.1 Feasibility to Produce Valid Models

We tested whether Kumbang Modeler is able to produce valid models based
on Kumbang concepts and written in the Kumbang language. The models were
syntactically correct and could be opened also in Kumbang Con�gurator. In
addition, Kumbang Modeler can be used to open and modify various existing
Kumbang test models.

5.2 Usability Evaluation of the Prototype

Kumbang Modeler was tested through lightweight formative usability tests with
two di�erent users by a prede�ned modeling task de�ned as a scenario. The
�rst user, who knew Kumbang very well, had very little trouble making a model
according to the scenario. She did have some suggestions for improving the user



Fig. 3: A dialog for editing a constraint and a dialog for choosing an expression to a
constraint.

interface, however. Most of these proposals were implemented before the second
usability test. The second user had no previous knowledge of Kumbang before
participating in the test. He had trouble understanding the need for relation
between types and de�nitions used for compositional structure. This made him
very frustrated; when he wanted to add a feature to the model, he did not
understand why he had to make both a feature type and a subfeature de�nition
to achieve this. However, he was able to produce an acceptable model. Table 1
summarizes the main usability changes made to Kumbang Modeler on the basis
of the usability tests.

Problem Action taken

The icon used in an interface de�nition
did not show whether the interface was
provided or required.

Instead of a single interface icon, di�er-
ent icons was designed for a required and
provided interface.

Subfeature de�nitions could not be
moved in the feature structure.

Subfeature de�nitions were made drag-
gable.

User was irritated with having to name
both types and de�nitions.

Lower case version of the type name was
made to be the default de�nition name.

User was irritated with having to do too
many steps when wanting to make a def-
inition with a type that did not exist yet.

Several steps were combined into one.

Table 1: Changes made after the feedback from the usability tests



6 Discussion

6.1 Feasibility of Tool Support for Variability Modeling

Kumbang Modeler seems feasible for modeling variability in software product
families. In addition, Kumbang Modeler seems to have advantages over writing
a model by a text editor. For example, the produced models are syntactically
correct, and the tree structure seems to make navigating within the hierarchy
easier.

Kumbang Modeler was developed as a plug-in for Eclipse, which seems to be
a practically applicable platform for such a modeling tool as Eclipse is currently
a popular development environment. In addition, di�erent plug-in extensions are
also relatively widely used and easy to install. Many developers are thus familiar
with Eclipse as a development environment, and with plug-in extensions for
Eclipse.

6.2 Validation of Kumbang Modeler

Two tests for Kumbang Modeler were carried out: the test of the validity of the
models produced and the usability tests. However, these tests have weaknesses.
First, Kumbang Modeler does not check anything other than the syntactical cor-
rectness of a produced model. However, we are currently implementing advanced
checks for Kumbang Modeler. The advanced checks ensure, for example, that a
model does not contain cycles in the inheritance, part, or subfeature structures;
a model contains all the references needed, such as the type declarations for the
types used in a part de�nition, and at least one con�guration can be found such
that all interfaces can be connected; for every required interface, a provided in-
terface exists; and constraints are not in con�ict with each other. Second, the
usability tests were lightweight and were not carried out using a real product.
Hence, more usability tests are required in industrial settings.

6.3 Feasibility to use Kumbang Modeler to Model Variability

Kumbang Modeler seems to be feasible for product experts to express the vari-
ability of a software product family as Kumbang models. The user who knew
Kumbang concepts was able to use the tool without di�culties. The user seems
to be, however, required to have some knowledge of Kumbang and software
product families, as the second usability test showed. Nevertheless, a thorough
understanding of Kumbang syntax and semantics did not seem to be needed.
The requirement of understanding Kumbang concepts is not necessarily a prob-
lem, since the tool is meant for highly specialized use. However, more tests are
needed, as argued above.

The di�culties the other user had with producing a model using Kumbang
Modeler seemed to be more related to Kumbang concepts than Kumbang Mod-
eler as a tool. The user had no previous knowledge of Kumbang and was, in fact,
used to modeling software product families di�erently. Especially troublesome



were those concepts that are not widely used in other modeling approaches.
Three issues especially caused di�culties: the type and instance di�erentiation,
the part and subfeature de�nitions in the compositional structure, and termi-
nology. These are discussed in more depth below.

First, many feature modeling methods, for example, do not di�erentiate be-
tween types and instances. However, in Kumbang they are used in order to
distinguish between a family model that contains variability and an instance
model in which variability is resolved, enable several instances of the same type,
and enable feature type reuse in di�erent places of the model [21]. In addition,
software product family engineering distinguishes between family and instance,
e.g., in a form of family and instance development processes, or reusable and
reused assets. Consequently, di�erentiating between types and instances seems
reasonable.

Second, despite the fact that subfeatures and the compositional structure of
components are used in most modeling methods, the subfeature and part de�ni-
tions, which are slightly di�erent in Kumbang, caused di�culties. The subfeature
and part de�nitions are regarded as required in Kumbang [21]. However, espe-
cially in simple structures, such as in a subfeature structure without variability,
it seems that in many cases, default values can be used for the details of the
subfeature de�nitions. The user interface was simpli�ed, e.g., by making a low-
ercase version of the type name the default name of the part de�nition. Although
the subfeature de�nitions, for example, can be simpli�ed in the user interface by
using default values, they are still needed in order to express complex variability.

Third, the terminology of Kumbang Modeler was confusing. However, in soft-
ware product family engineering the same term is often used to refer to di�erent
concepts or several terms are used to refer the same concept. For example, fea-
ture modeling methods do not terminologically distinguish between feature types
and feature instances or product derivation can be also called instantiation, de-
ployment or con�guring. Hence, the terminology in general is ambiguous and
not established. A person used to one terminology can get confused when she
needs to use another terminology.

6.4 Variability Modeling

Issues concerning the nature of variability arose during the study. For example,
Kumbang uses constructs that can be used to model complex variability. How-
ever, much of the variability in usability tests was so simple that using Kumbang
constructs meant inserting information that was laborious, and default values
would have been feasible. In order to enhance tool support, the nature of vari-
ability in software in terms of, for example, the amount and complexity of vari-
ability needs to be studied in more depth. This could then be used to develop
tools that meet the actual requirements for modeling variability. For example,
syntactic sugar on top of modeling concepts could be developed in order to hide
complex structures. However, the rigor of the models should not be lost. The
models should be based on a well-founded conceptual foundation.



6.5 User-Centered Design

We faced problems with the user-centered design approach during the develop-
ment of Kumbang Modeler. The users of Kumbang Modeler do not exist and,
hence, cannot be studied. We tried to study the literature in order to capture,
e.g., the skills of potential users, but little is reported in the literature. Another
option would have been to carry out a user study of software product family
engineers in general, but this was considered to be beyond the scope of this
study.

Goal-Directed Design considers necessary-use scenarios to be less important
than daily-use scenarios. However, Kumbang Modeler is mainly a prototype tool
and thus the threshold for using it for modeling should be low. Therefore, the
creation of new models is just as important in Kumbang Modeler as modifying
existing ones, although only modifying a model can be considered a daily use sce-
nario. Therefore, Goal-Directed Design was not directly applicable in Kumbang
Modeler design.

The usability tests brought about the same problem as with the overall de-
velopment of the tool, namely a lack of real users who would use the tool in
an actual, industrial environment. However, we assumed that such users could
have three kinds of knowledge: knowledge of the speci�c con�gurable product
family, con�gurable product family concepts, and modeling concepts. Since con-
�gurable product families are hard to �nd, in usability tests we used two kinds
of user: both had knowledge of con�gurable product family concepts and one
knew Kumbang.

7 Related Work

Several software variability modeling methods have been developed in addition
to Kumbang, such as feature modeling [22], orthogonal variability modeling [23],
and COVAMOF [24]. Di�erent kinds of tools have been developed for the mod-
eling methods; a review of a set of tools is provided in the ConIPF methodol-
ogy [25].

In addition, there are variability modeling tools that are not used for software
products. Instead, the tools are originally meant for modeling mechanical and
electronic products. Examples of such tools are the Wecotin [26] and EngCon [27]
modelers.

Tools can be also used in other phases of the software life cycle. In ConIPF
methodology [25], tools are used for requirements engineering, modeling, con�g-
uring, realization, and software con�guration management. Di�erent tools can
be used in di�erent phases. Kumbang currently has tool support for the model-
ing and con�guration phases. Di�erent tools or new tools for Kumbang need to
be developed for the other phases of development.



8 Conclusions

In this paper we described Kumbang Modeler, which is a tool for modeling the
variability of a software product family. Modeling is based on Kumbang concep-
tualization. Hence, Kumbang Modeler enables modeling both from a structural
and feature point of view. The study followed design science methodology. We ap-
plied a user-centered design in developing Kumbang Modeler; more speci�cally,
the Goal-Directed Design and Personas methods. Kumbang Modeler was tested
for feasibility to produce correct models and in lightweight formative usability
tests.

The results showed the feasibility of modeling variability with Kumbang
Modeler. At least some knowledge on the applied Kumbang variability concepts
is required to use the tool. We faced problems with the user-centered design be-
cause actual users were not available. The usability tests, nevertheless, showed
that despite the fact that variability can be modeled with the existing methods,
more studies are needed to show that modeling is e�cient and convenient. For
example, much of the variability can be simple and details of more complex con-
structs to model variability can then be hidden or default values can be used.
However, modeling also seems to need complex structures. In addition, in order
for, e.g., tool-supported derivation to be possible, modeling should be based on
rigorous foundations.

Kumbang Modeler provides the missing tools support for Kumbang. That is,
with Kumbang Modeler, the captured variability of a software product family
can be modeled, whereas with the existing Kumbang Con�gurator, expressed
variability can be bound during product derivation. Hence, other tools, such as
a generator, are still needed.

Acknowledgements

The authors acknowledge the �nancial support of Tekes, the Finnish Funding
Agency for Technology and Innovation.

References

1. Svahnberg, M., van Gurp, J., Bosch, J.: A taxonomy of variability realization
techniques. Software � Practice and Experience 35 (2000)

2. Weiss, D.M., Lai, C.T.R.: Software Product-Line Engineering: A Family-Based
Software Development Process. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA (1999)

3. Clements, P., Northrop, L.M.: Software Product Lines: Practices and Patterns.
Addison-Wesley (2001)

4. Bosch, J.: Design and Use of Software Architecture. Addison-Wesley (2000)
5. Bosch, J.: Maturity and evolution in software product line: Approaches, artefacts

and organization. Lecture Notes in Computer Science (Proc. of SPLC2) 2379

(2002) 257�271



6. Männistö, T., Soininen, T., Sulonen, R.: Con�gurable software product families.
In: ECAI 2000 Con�guration Workshop, Berlin. (2000)

7. Thiel, S., Hein, A.: Modeling and using product line variability in automotive
systems. IEEE Software 19(4) (2002)

8. Myllärniemi, V., Asikainen, T., Männistö, T., Soininen, T.: Kumbang
con�gurator�a con�guration tool for software product families. In: IJCAI-05
Workshop on Con�guration. (2005)

9. Asikainen, T., Männistö, T., Soininen, T.: Kumbang: A domain ontology for mod-
elling variability in software product families. Advanced Engineering Informatics
21(1) (2007)

10. Eclipse Foundation: Eclipse platform. http://www.eclipse.org/ (2006) Visited
December 2006.

11. Hevner, A.R., March, S.T., Park, J., Ram, S.: Design science in information systems
research. MIS Quarterly 28(1) (2004)

12. Cooper, A.: The Inmates Are Running the Asylum. Macmillan Publishing Co.
Inc. (1999)

13. Cooper, A., Reimann, R.: About Face 2.0: The Essentials of Interaction Design.
John Wiley & Sons, Inc. (2003)

14. ISO/IEC: 9241-11 ergonomic requirements for o�ce work with visual display ter-
minals (vdt)s - part 11: Guidance on usability (1998)

15. Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable
model semantics. Arti�cial Intelligence 138(1-2) (2002)

16. Goth, G.: Beware the march of this ide: Eclipse is overshadowing other tool tech-
nologies. IEEE Software 22(4) (2005) 108�111

17. Murphy, G.C., Kersten, M., Findlater, L.: How are java software developers using
the eclipse ide? IEEE Software 23(4) (2006) 76�83

18. Eclipse 3.2 Documentation. http://help.eclipse.org/help32/index.jsp (2006) Vis-
ited December 2006.

19. Edgar, N., Haaland, K., Li, J., Peter, K.: Eclipse user interface guidelines, v. 2.1
(2004) http://www.eclipse.org/articles/Article-UI-Guidelines/Index.html. Visited
December 2006.

20. Asikainen, T.: Kumbang language, technical report (2007, to appear)
21. Asikainen, T., Männistö, T., Soininen, T.: A uni�ed conceptual foundation for

feature modelling. In: Proceedings of the 10th International Software Product
Line Conference. (2006)

22. Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, A.: Feature-oriented do-
main analysis (foda) feasibility study. Technical Report CMU/SEI-90-TR-21, ADA
235785, Software Engineering Institute (1990)

23. Pohl, K., Böckle, G., van der Linden, F.: Software Product Line Engineering:
Foundations, Principles, and Techniques. Springer (2005)

24. Sinnema, M., Deelstra, S., Nijhuis, J., Bosch, J.: Covamof: A framework for mod-
eling variability in software product families. In: Proceedings of Software Product
Line Conference (SPLC). (2004) 197�213

25. Hotz, L., Wolter, K., Krebs, T., Deelstra, S., Sinnema, M., Nijhuis, J., MacGregor,
J.: Con�guration in Industrial Product Families. IOS Press (2006)

26. Tiihonen, J., Soininen, T., Niemelä, I., Sulonen, R.: A practical tool for mass-
customising con�gurable products. In: In Proceedings of International Conference
on Engineering Design (ICED 03). (2003)

27. Hollmann, O., Wagner, T., Guenter, A.: Engcon - a �exible domain-independent
con�guration engine. In: Con�guration Workshop at ECAI-2000. (2000)


