

An XML-based Framework for Developing Usable and Reusable
User Interfaces for Multi-channel Applications
__

Report - 2002 -

Helsinki, 3rd May 2002

Pro Gradu Thesis

Department of Computer Science

UNIVERSITY OF HELSINKI

An XML-based Framework for Developing Usable and Reusable
User Interfaces for Multi-channel Environments
Antti Martikainen

Pro Gradu thesis, Report - 2002 -

Department of Computer Science

UNIVERSITY OF HELSINKI

Helsinki, 3rd May 2002, 91 pages

Supervisors:

PhD Jukka Paakki, University of Helsinki

PhD Pekka Kähkipuro, SysOpen Plc

Lic.Sc. (Tech.) Marko Nieminen, Helsinki University of Technology

Abstract

User interface languages are struggling to meet the requirements for supporting universal

usability in multi-channel environments. Significant problems relate to achieving a systematic

user interface modelling process that is flexible enough to satisfy device specific usability

requirements. The difficulties commonly result in laborious application maintenance and large

development costs, or in bad usability. This thesis introduces a subset of RDIXML, an XML-

based device independent user interface language. RDIXML is a task-based language that

addresses device specific requirements for task sequences. While device specific functionality is

allowed, the language effectively reuses the device independent task elements. A framework is

sketched to interact with devices and to dynamically transform RDIXML descriptions to device

specific user interfaces. An example application is used to simulate the framework's functionality.

Computing Reviews Categories: D.2.13, H.5.2, K.6.3

Keywords: User interfaces, User-centered design, User interface management systems (UIMS),

Reuse models, Software maintenance

Additional keywords: Task modelling, Universal usability, Device-based navigation, Automatic

user interface generation, Multi-channel architectures, XML, WWW

Contents
1 Introduction.. 1

2 Usability Foundation.. 5

2.1 Task-based Design .. 5

2.2 Universal Usability ... 8

2.3 Context-sensitive Navigation.. 10

3 Device Independent UI Languages and Models .. 13

3.1 Device Independent User Interface Languages .. 13

3.2 User Interface Modelling .. 18

4 The RDIXML Language .. 26

4.1 Objectives for the Language ... 26

4.2 Models of the Language.. 28

4.3 Model Mappings ... 40

5 The RDIXML Framework... 44

5.1 An Introduction to Multi-channel Architectures... 44

5.2 Objectives for the Framework... 45

5.3 Technological Foundations ... 47

5.4 Run-time Application Logic ... 51

5.5 The RDIXML engine .. 53

5.6 Specializing the Framework.. 60

6 E-shop - An Example Use Case... 64

6.1 Objectives.. 64

6.2 The Use Case in General... 65

6.3 Simulation... 67

7 Analysis.. 78

8 Conclusions and Future Work.. 81

References... 84

A Grammar of RDIXML task model .. 92

B E-shop – Task Model Source Code... 96

C E-shop – Presentation for PDA device.. 100

List of figures
FIGURE 1: COMPLETING A TASK THROUGH DIVERSE SEQUENCES OF ACTIONS.................... 12

FIGURE 2: AN ABSTRACT UI DESCRIPTION CAN BE TRANSFORMED FOR VARIOUS TARGET

PLATFORMS. ... 14

FIGURE 3: GOLF RESULTS VIEWED BY A PALM VII DEVICE. ... 16

FIGURE 4: SCROLLING VIOLATES USABILITY. ... 16

FIGURE 5: THE MAPPING PROBLEM. ... 24

FIGURE 6: VIEWS COMBINE SUBVIEWS BY MAPPING THEM TO LAYOUT STRUCTURES. 32

FIGURE 7: PRESENTATION STRUCTURE FOR A SINGLE ATTRIBUTE. 33

FIGURE 8: A SKETCH OF A DOMAIN OBJECT DESCRIPTION IN RDIXML FORMAT. 35

FIGURE 9: RDIXML MODELS DEVICES IN A HIERARCHICAL TREE STRUCTURE. 37

FIGURE 10: ACCESS LEVEL 2 IS REQUIRED FOR ACCESSING TASK “BUY_ITEM”. 39

FIGURE 11: APPLICATIONS COMPRISE OF TASK, DOMAIN , USER, DIALOGUE AND

PRESENTATION ELEMENTS.. 40

FIGURE 12: MAPPINGS BETWEEN RDIXML MODELS ... 41

FIGURE 13: THE RDIXML ARCHITECTURE. .. 50

FIGURE 14: A SINGLE TASK PRINTED AS ACTIVE (ABOVE) AND AS INACTIVE (BELOW)....... 55

FIGURE 15: THE LOGICAL RENDERING PROCESS. .. 58

FIGURE 16: TASK FLOW FOR WWW-BROWSERS. ... 66

FIGURE 17: TASK FLOW FOR PDA DEVICES ... 67

FIGURE 18: COMMUNICATOR - VIEW STRUCTURE.. 68

FIGURE 19: COMMUNICATOR - STARTING POINT OF THE SERVICE. 68

FIGURE 20: COMMUNICATOR - LAYOUT STRUCTURE FOR THE VIEW. 68

FIGURE 21: ENTERING A SERVICE. ... 70

FIGURE 22: WEB BROWSER - A FLASH ADVERTISEMENT IS THE USER’S ROUTE TO THE

SERVICE. .. 71

FIGURE 23: WEB BROWSER - STARTING POINT OF THE SERVICE. .. 72

FIGURE 24: WEB BROWSER - LAYOUT STRUCTURE FOR THE VIEW. 72

FIGURE 25: COMMUNICATOR - SEARCH RESULTS. ... 73

FIGURE 26: COMMUNICATOR - AN INSTRUMENT IS ADDED TO THE SHOPPING CART. 73

FIGURE 27: SEQUENCE CHART OF HANDLING THE “ADD_TO_CART” ACTION. 75

FIGURE 28: COMMUNICATOR - ORDER ACCEPTED. .. 76

FIGURE 29: WEB BROWSER - THE CONTENTS OF THE CART. ... 76

FIGURE 30: WEB BROWSER - THE CHECK OUT PHASE. ... 76

FIGURE 31: WEB BROWSER – ORDER ACCEPTED.. 77

List of tables
TABLE 1: VARIANCE OF DISPLAY RESOLUTION BETWEEN VARIOUS INTERNET DEVICES 9

TABLE 2 VARIOUS INTERNET DEVICES AND THE UI LANGUAGES THEY USE....................... 10

TABLE 3: ESSENTIAL MODELS OF UIM SYSTEMS. .. 22

TABLE 4: SOME OF THE POSSIBLE MAPPINGS BETWEEN UIM MODELS. 25

TABLE 5: KEY ELEMENTS OF RDIXML TASK MODEL.. 29

TABLE 6: DESIGN TIME MAPPING POSSIBILITIES BETWEEN RDIXML MODELS. 42

 1

1 Introduction

Increasing number of mobile devices has led to a significant growth in the number of

variety of contexts that user interface software must support [Eis00]. As new standards

evolve and some devices deviate from them, the equipment used to browse the Internet

varies more than in the past. In addition, new user groups with diverse educational and

cultural backgrounds are discovering the Web [Shn01]. This heterogeneity altogether

forms a huge design challenge and serving the users of the World Wide Web is getting

more and more complicated.

These days enterprises typically deliver content to one or more channels in the World

Wide Web. Existing separate channels, such as Web and voice, are typically not

integrated [Lun01]. As enterprises are striving to support universal usability, they must

provide multi-channel content, i.e. their Web-based services should be available for

various user groups with various browsing equipment. Even though application server

technologies do exist to enable faster and more robust Web application development,

delivering multi-channel content is difficult. Many companies have trouble with their

Web development and are in need for design methods, formalisms, languages and tools

for enhancing the existing technology, even more so in the future [Bon99].

Maintaining separate software processes for separate deliverables will prove cost

prohibitive over time [Lun01]. It is certainly not beneficial to describe each user interface

separately for various devices, such as Web browsers, WAP phones and a choice of PDA

devices. It is desirable to describe bi-directional interactions between the client and

application server in a device independent manner. These abstract interactions can then

be converted to meet device specific requirements by using systematic modelling

principles.

Providing services to multiple types of user agents requires UI systems that concentrate

on tasks, rather than on exploiting the capabilities of some specific UI environment

[Ban00]. In the age of voice-based devices and variable visual UI environments, effective

 2

adaptation to various devices cannot be based on estimations on the visual properties of

the devices used, as that does not support the goals of pervasive computing. Little

information exists of the requirements for a task-based user interface framework’s

functionality. The possible implications need scrutiny especially in terms of usability of

such frameworks from the developer’s point of view, the amount of source code used for

the UI description, run-time UI management, and usability of the resulting applications.

Today’s standards do not provide a comprehensive solution that enables long-term

investments for distributing content for many channels in a consistent and systematic

way. Integrating small-scale technologies that only partly cover the problem field, such as

CC/PP [W3C00a], requires additional effort and expertise. Today, enterprises must create

application development mechanisms of their own based on various smaller technologies.

Changes in small technology standards cause incompatibilities and maintaining these

kinds of solutions is often tedious and difficult.

A user interface model (UIM) is a declarative specification of a user interface (UI),

including its appearance, the connections between its elements or how it interacts with

the underlying application functionality. It represents all the relevant aspects of a user

interface in some type of interface modelling language [Pue99a]. UIM systems are

generally task-oriented and use formality and higher abstraction levels to achieve device

independence and UI description reuse. Abstract UI descriptions are dynamically

transformed into device specific target format. However, immature mechanisms in

combining the abstract model elements to concrete ones have made even most successful

models applicable to only very narrow target specific areas [Pue99a]. In addition, UIM

systems are typically not based on standards, which makes their adoption difficult.

XML is a text-based, structural mechanism, which can be used for partially describing the

functionality of the computer programs that process them [W3C00b]. It is also well

supported by industry and techniques for transforming XML-docume nts to other textual

formats are mature. XML is thus concerned to be well suited for describing user

interfaces for multi-channel environments [Mül01a]. A DTD (Document Type

 3

Description) is used to compose a grammar that the ones implementing XML-based user

interfaces must follow.

A subset of an XML-based device independent user interface language, RDIXML

(Reusable Device independent Interaction XML), is introduced in this thesis. The

language strives for usability and comprehensive device independence by founding the

UI development process on users tasks and noticing the device dependent requirements

on this matter. The task-oriented nature of the language requires a task-oriented

framework to implement the language; this work should provide an insight to the

functionality of the RDIXML framework and its feasibility with existing technology.

Today’s application development technologies typically do not support usability

objectives. Hence, a major objective for the framework is to provide a usability-oriented

UIM system in a package that is acceptable for today’s enterprises seeking for systematic

application development models. A credible multi-channel application development

environment must combine qualities of efficiency, usability, pervasiveness and ease of

maintenance. The design of the RDIXML framework should notice these requirements.

The scope of this thesis covers implementing the RDIXML task model grammar in DTD

format and providing an overall picture of related language models. A general level

design for the RDIXML framework is presented. Based on presented design solutions and

the simulation, the language and the framework are analysed to reveal the benefits and

drawbacks of achieved solutions; the analysis emphasizes the significance of task-

oriented UI development model concerning usability, as well as the overall feasibility of

this kind of task-based multi-channelled UI framework. The functionality of the

framework is simulated with a use case. No usability evaluation is done for the resulted

user interfaces, yet the usability power of the framework is generally discussed.

The rest of the work is organised as follows: Usability issues in multi-channel

environments are discussed in chapter 2. Chapter 3 discusses user interfaces in terms of

languages and UIM systems. The core of the RDIXML language is presented in chapter

4. The RDIXML framework is presented in chapter 5, where existing knowledge of

 4

multi-channel architectures is also briefly discussed. A use case to simulate the

functionality of the framework is presented in chapter 6. Chapter 7 provides an analysis

of the work and discusses the used methods. Finally, chapter 8 concludes the thesis by

providing a summary and requirements for future work.

 5

2 Usability Foundation

This chapter discusses some usability research areas that have significantly motivated this

thesis. First, some arguments for task-based design are made. Secondly, the main

difficulties in supporting universal usability are presented. Finally, requirements for

providing different kinds of navigational structures in multi-channel environments are

discussed.

2.1 Task-based Design

The practice of designing products in terms of the needs of their users is called user-

centered design [Nor86]. Producing usable user interfaces, i.e. doing user-centered

design, requires a thorough understanding of the underlying goals of the users. The UI

design should be done with the goals in mind, which essentially means that the UI

developers should possess the knowledge of how they are effectively achieved. Within

the HCI (Human-Computer Interaction) community, task analysis is considered to make

an important contribution to the design of interactive applications [Sch98]. This is due to

the fact that it fundamentally is about designing user interfaces by first communicating

the knowledge of user’s tasks between domain experts and UI developers.

Describing user interfaces has traditionally started by describing the static visual

interfaces with certain structure and controls, often called widgets [Van93, Sti98].

However, it has widely been suggested that this is a faulty starting point. Designers must

think in terms of functionality [Bir98]. Starting the design by specifically thinking about

the users task and especially the steps (subtasks) that the user must take in order to get the

task completed is considered to better support the idea of user-centered design [Nor86]. If

the flow of the task and its subtasks is clear, it is then easier to choose the right layout and

widgets to give the user concrete tools to complete the task [Bir98]. Providing highly task

specific interactive applications that allow people to focus on the actual task domain,

 6

rather than having to map that domain to the domain of computation, is the underlying

idea of task-based user interface design [Sch98].

Typically, task analysis as a method is only used in the beginning of the design process

and the usage of its output is unclear in the actual UI implementation process. The output

is usually presented with natural or pseudo languages and thus cannot be included in the

computerized UI implementation process. As UIs are built with tools that are based on

screen and element structures, rather than user’s tasks, it is very easy to create user

interfaces that are seemingly acceptable, but do not in fact possess the flow of the original

task description. When using traditional kinds of tools and techniques, there remains a

gap to be filled by the builder of the actual interface; the separately described task flow

offers support often too vague for a successful implementation of the actual user

interface.

Use cases have commonly been used for describing the requirements to satisfy the needs

of the user. Yet, the definition for a use case (Jacobson) is commonly considered vague.

Cockburn has found more than 18 definitions for a use case; this strongly suggests that no

true consensus about use cases exist [Coc97]. This ambiguity may also be one of the

reasons for the success of use cases; the fact that the definition can be interpreted in many

ways satisfies different kinds of people [For99]. Partly due to this imprecise definition

and the confusion of the intended purpose of the use case concept, many use cases

intermingle analysis and design, business rules and design objectives, internals and

interface descriptions, combined with unessential remarks [Con01]. Hence, use cases as

the output of the task analysis do not necessarily capture the essence of user’s task flow.

A stronger means to describe the users needs, and only them, is needed.

Prototyping is an iterative method through which the user interface is achieved by

mending the faults of previous designs. A satisfactory level of usability is usually reached

after a number of usability tests and redesigns. But, isn’t the user interface design in the

form of prototyping really a part of the solution description rather than the problem

definition? Isn’t there a way to achieve a better design right at the beginning? A common

 7

response is that usability cannot be captured by general specifications, and that usability

is essentially implemented case-by-case. Initially, this seems acceptable. However,

formal and task-based UI languages, capturing the user’s case-by-case task model, have

the potential for providing the best of both worlds. Being formal, they provide a direct

basis for a computerized UI implementation process and, being task-based, they directly

aim for producing usable user interfaces.

The Rational Unified Process (RUP) is a widespread application development model by

Rational Software Corporation [Rat02]. RUP provides a development model for large-

scale applications by defining best practices for the guidance of team development

activities. The RUP advices development teams to use prototyping and use cases as key

UI development methods. Hence, it does not seem to promote best practices for effective

development of usable user interfaces for multi-channelled applications.

Hackos and Redish present a development model where the output of task analysis is

used as the basis for textual scenarios, which present the task flow in its execution

environment [Hac98, p. 346]. This description is then used to proceed towards the actual

UI. Scenarios freely describe the user’s natural movements between screens and as well

describe the relevant elements in the screen during an execution of a task. Based on the

verbally expressed scenarios, presentation and interaction elements can be constructed to

implement the user’s task sequences. Even though scenarios are clearly a useful method

when proceeding from abstract tasks towards concrete UIs, there remains a gap to be

filled by the UI designer. Today’s UI languages do not provide task-based concepts that

could be used as the starting point for the development process. Implementing the given

task flow in practice is still difficult.

A precise modelling mechanism would help the designer to maintain the task flow in

building concrete user interfaces. The full exploitation of task analysis requires its

implementation to a formal task model, i.e. there should exist a systematic transition from

task identification to user interface construction [Bom98]. Importantly, it would seem that

a formal task model as the basis for the UI development could reduce the number of

 8

redesigns required when using prototyping as the primary development method. Task

formalisms described by the designer could lead to a more effective UI design process

directly aimed at producing usable user interfaces.

2.2 Universal Usability

Universal usability is a young discipline, which aims to provide universal access for

existing Internet services and data for as wide range of users as possible. According to

Shneider, when 90 percent of potential users are successful users of a service, the criteria

for universal usability can be seen as fulfilled [Shn00]. As new technical devices for

browsing the Internet are introduced regularly, it is important for the enterprises to

develop software that can be used from various devices. The diversity of user's cultural

backgrounds and differences in skills and knowledge set further requirements: a user

interface must adapt to the needs of different kinds of users. Mainly two fields of interest,

disability access and mobile computing, have been the driving forces behind the recent

interest in universal usability [Van00].

Universal usability can be divided into three branches of research [Shn00]:

Technological variance - Aims to provide access to Web-based services for all,

regardless of the browsing device used.

Diversity of users - Strives for enabling use of services for all potential users not

considering their knowledge and skills, cultural background, gender, disabilities or age.

Gaps in user knowledge - Bridging the gap between what users know and what they

need to know.

This thesis is motivated by the technological variance of Internet devices and therefore

the research areas concerning diversity of users and gaps in users knowledge are not

further examined in this thesis. The emphasis of the work is on the variance in

technological devices and especially on the requirements that the variance sets for

producing user interfaces. The rest of the chapter presents some of the main problems in

supporting the technological variance of the Internet.

 9

Screen Size and Connection Speed

Perhaps the most significant factor in multi-channel content delivery is the variance of

display resolution, which can vary from wall-sized flat screen to a small screen of a

cellular phone [Eis00]. Examples of display resolutions are presented in table 1.

Device Display resolution

Computers 1024x768

Hand-held devices 256x364

Cellular phones 48x48

Table 1: Variance of display resolution between various Internet devices

The exact resolutions of course vary according to specific manufacturers and models; the

above table however gives an overall picture of the variance. To have similar content

adjusted to fit the various sizes, while still keeping the user interface usable, requires

substantial effort. The size of the content should fit the window as well as possible;

forcing the user to scroll in search for content, especially in horizontal direction, is

considered bad usability [Coo95]. The small size of the screen usually also affects the use

of pictures. Pictures may not have to be altogether abandoned, but dynamic changes in

the size of pictures may be a requirement. In addition, the use of frames and multiple

columns may not be feasible [Nok01b]. A slow connection speed also severely restricts

the size of the content, i.e. use of pictures result in slow rendering of the user interface.

The use of multi-media also becomes questionable and may have to be abandoned

altogether.

Various User Interface Environments

Various UI-environments run user interfaces based on different kinds of user interface

languages. Idiosyncratic implementations of language standards present further

 10

challenges. In addition, UI-environments present various restrictions on the functionality

of the user interfaces, as some are not able to present pictures, for example.

All this richness causes severe problems in trying to adapt the actual content to the

requirements of each device’s UI-environment. Table 2 presents some examples of

existing user interface languages used by Internet devices.

Device type Language

WWW browsers HyperText Markup Language (HTML)

[W3C99a]

WAP browsers Wireless Markup Language (WML)

[WAP98]

Voice-based browsers Voice Extensible Markup Language

(VoiceXML) [Voi00]

Future WWW browsers Extensible HyperText Markup Language

(XHTML) [W3C00d]

Table 2 Various Internet devices and the UI languages they use.

The table above does not provide a comprehensive list, as that would not be meaningful

in the scope of this thesis. It does however list UI languages that differ from each other

considerably. For example, users of a voice-based browser do not see any UI elements

and therefore cannot be expected to handle very complex navigational structures as they

may prove to be overly difficult considering people’s cognitive abilities [W3C99b]. The

functional and presentational capabilities of the languages differ so much that content

must be notably adapted to achieve usable UI solutions.

2.3 Context-sensitive Navigation

Supporting the technological variance of universal usability presents many challenges, of

which not all seem to be very clearly presented in the literature concerning universal

usability or task-based design. When dealing with limited display sizes and UI

functionality, achieving effective business activity may require optimizations in the

 11

navigation model [Jus01, Sch01]. In terms of task-based design: the required sub-tasks in

order to complete a task may vary depending on the device used. In addition, a rich UI

environment with a big display promotes providing the user more than one route to

complete a task, whereas in a more restricted environment, additional content could

distract the user. For the more limited devices, quick and simple access to content is what

counts, mainly due to low navigability and, in some cases, high connection prices and

low connection speeds.

In figure 1, a regular Web browser has a four-phase sequence of actions for the

completion of the task A. After completing the first action, the user may choose from

three alternative sequences of actions to complete task A. The user of a PDA device with

limited functionality and screen space is offered a single path for the execution of the

task. The user has exactly one possible sequence of actions, through which the task can

be completed. Since the action sequence only has three phases, it can be assumed that the

output of the task is somewhat more limited, compared to that of the Web browser, while

the task can however be completed.

It seems that in multi-channel environments, constructing a single task model based on

task analysis is not sufficient. The device and context set their own constraints, which

must be noticed in order to provide the user a usable sequence of actions. While it is

rational to use task analysis to extract the main features of the task in order to form a

general task model, this general model may require adjusting; some types of devices

require a task model of their own. An inflexible task modelling mechanism in multi -

channel environments results in bad usability, at least for some user groups of particular

devices. For the rest of this work, this problem field is referred to as the “device-task

problem”.

 12

WEB BROWSER

1.

PDA DEVICE

2.

3.

task A completed

1.

2.

3.

4.

task A completed

Figure 1: Completing a task through diverse sequences of actions.

It is possible to try to automatically fragment the information that is sent to a small screen

device into several small pages while providing a navigational structure with a link to

each of the pages [Eis00]. This usually does not eliminate the navigational problem

however, but only increases it by easily disorienting the user [Sch01]. For a small screen

device, the essential content must be accessible without additional “machine reasoned”

hierarchy in the navigational structures. It clearly seems that the used UI development

mechanism should free the designer to describe the task flow in a device specific manner.

 13

3 Device Independent UI Languages and Models

Developing user interfaces is expensive and laborious. In systems with graphical UIs,

nearly 50% of the source code and development time can be related to the UI [Mye92]. In

systems where multiple types of user agents interact with the server, the problem is

bigger and may become overwhelming. For enterprises, it is financially and maintenance-

wise almost unbearable to provide multi-channelled services by using ad hoc methods.

3.1 Device Independent User Interface Languages

In near future, the growing variety of Internet devices makes enterprises more reliant on

device independent user interface languages. With these languages, content can be

delivered by using a single user interface description, which is automatically transformed

into appropriate formats for the various types of devices, as is shown in figure 2. A

transformation module must be associated with each language to provide interpretation

for the abstract UI description, and to transform it to other devices accordingly. Because

of the advantages discussed earlier, XML has already been used as the basic technology

for some UI languages. In the following sections, a number of these languages are briefly

presented.

XUL

XUL (XML-based User Interface Language) [XUL99] can be used to describe most of

the elements that are found in contemporary user interfaces, such as buttons, toolbar-

components and popup-menus. The language was originally developed to facilitate

building the user interface for Mozilla browser. XUL does not address reactions to user

interface events, such as user pressing a button. In addition, no abstraction considering

user interface elements is available [Mül01b], thus XUL is essentially a device dependent

language.

 14

Device independent UI
description

Transformation
module

HTML XHTMLWML

Figure 2: An abstract UI description can be transformed for various target platforms.

UIML

UIML (User Interface Markup Language) enables user interface descriptions in a level

similar to XUL, but its elements have abstraction, which makes UIML interfaces

essentially device independent. UIML also contains an event-handling mechanism to

address communicational issues between user interface and the underlying software. A

separate rendering module is required for each target device that uses the UIML-based

application. This is considered a major problem [Mül01b], because the true functionality

of the UIML-based user interfaces is always dependent on the implementation of this

module, called renderer. An equally important flaw is that selecting target specific

features is limited due to the lack of appropriate mapping concept [Mül01b] (see chapter

3.2). This suggests that achieving true device independence with UIML might be

impossible.

MAXML

MAXML (Multi-Channel Access XML) is a language developed by Curious Networks

[MAX01]. It distinguishes from previously introduced languages in that it is specifically

designed for use with a user interface engine called Continuum. The Continuum engine is

 15

capable of converting the MAXML-based UI descriptions into various target languages.

In addition, the engine is capable of handling the actions triggered by a user agent. A

demonstration presented by Curious Networks, shows how a simple user interface

description is transformed for a number of devices, including a Web browser, Web-

enabled phone, Windows CE device, voice browser and a Palm VII device [Cur01]. The

UI is rendered for all these devices from a single MAXML description, which is not

presented here because of its length.

Figure 3 shows an example of how the Continuum engine views golf results for a Palm

VII device. The view is automatically split in half: the column "player", which is

specifically marked to be a searchable column (a mechanism provided by the grammar),

is automatically transformed into link, as the framework notices that the browser is a

Palm VII. Through player links, the user is given the possibility to view each players

results.

Figure 4 presents the same view rendered for a Windows CE-device. Importantly, the

target device seems to have an impact on the way that the engine produces the

navigational structure of the UI. The information that is divided between two screens for

the Palm device is now viewed in a single screen. For some reason the UI engine still

presents the player names as links although the rest of the data is shown already. It is not

explained what happens if the user clicks the player name, but it can be assumed that

information similar to figure 3b is presented. The Continuum engine seems to contain

hard-coded logic for making navigational decisions on behalf of the designer. To some of

these decisions the designer cannot affect, even when that would be necessary.

Consequently, the usability of the resulting user interfaces may not always be acceptable.

 16

a) Players are links to results b) Result view

Figure 3: Golf results viewed by a Palm VII device.

Figure 4: Scrolling violates usability.

Figure 4 shows a usability problem in

the rendering of the use case for the

Windows CE-device: the user is forced

to horizontally scroll the interface to be

able to see the data. This particular

problem may not be a significant one, at

least not for all users, but it does bring to

mind considerations about further

usability problems. The use case that is

shown here is a simple one. It can be

assumed that when applications get more

complicated, more severe usability

problems can occur.

 17

pXML

pXML has been designed as part of OpenPort framework development at SysOpen Plc

[Sys01]. Of the three languages discussed earlier, pXML bears closest resemblance to

UIML due to similar abstraction level and the visual-oriented starting point. In this

section, we discuss the motivation for launching the OpenPort project and along that,

development of the pXML language. Discussion of the more specific features of pXML

is tied to presentation of the RDIXML language in chapter 4.

Modern Web applications are strongly data-oriented and therefore a means to describe

the flow of the data between the UI and the server is needed. In order to achieve a

satisfactory system wide solution, the user interface definition mechanism must provide a

comprehensive solution to tie the UI functionality to the rest of the architecture.

Otherwise, the UI remains an element too separate from others, and does not offer a

satisfactory communication interface towards the rest of the system. Failing to address

this issue easily leads to bad overall solutions that especially might result in bad

performance. It is an important part of the UI functionality to describe the interactions

with the client and the user. For example, the required information includes describing

operation flow, parameters, and data retrieval mechanisms.

Script languages such as JSP and ASP have been developed to cover these kinds of

requirements. Use of these technologies comes at a price, however. Using them requires

additional knowledge on how to divide work among developers. It is tempting to build

UIs by intermingling UI design with technological details. Successful use of these

technologies relies on awareness of best practices and common design solutions [Alu01,

p. 30]. In addition, device independence is not built into these technologies, although

technical remedies for this problem have been suggested [Sun01]. If device independence

is the goal, a device independent user interface language is needed independently of the

platform technology used. Both JSP and ASP are essentially template-based technologies,

meaning that a separate user interface implementation is required of each specific device.

 18

Both technologies require combining device specific markup with traditional

programming.

The data-oriented problems mentioned above together with the need for an effective

mechanism for developing device independent applications were the essential reasons for

launching the OpenPort project. The pXML language directly integrates to the underlying

OpenPort framework by providing means to describe communication with deployed

application objects. For example, pXML lets the designer model the data management

objects including their operations and attributes. The data elements work directly as a

basis for the functionality of the data management module of the framework, i.e. names

and types of database fields are not hard-coded into the EJB-bean source code. High-level

data retrieval and processing can be managed by using elements of the pXML language.

Although pXML reuses elements in both data and UI descriptions, it embeds the

interaction descriptions between the client and the server into presentation descriptions.

Some tests have been made, where the same pXML-based UI description has without

modifications worked for both Web and WAP browsers. However, successful usage of a

similar presentation structure for these two types of devices is rare. Although the

OpenPort framework supports adapting content to different kinds of devices, this may

require separate pXML implementation for almost the entire UI. Binding interaction

descriptions to presentation elements decreases the level of code reuse between device

specific user interfaces.

3.2 User Interface Modelling

Various XML-based languages have been proposed as suitable for device independent

user interface development. It seems, however, that these languages operate in an abstract

level too high for the successful producing of UIs for different kinds of devices. None of

the languages mentioned in chapter 3.1 notices the differences in navigational

requirements between various devices. The pXML language allows the designer to adapt

content to device specific requirements, but this decreases the level of UI code reuse.

 19

Importantly, most of the languages are not task-based and hence do not support

transforming content to voice-based browsers, thus failing to meet the requirements of

pervasive computing (see chapter 5.2). The faulty starting point and the lack of

appropriate mapping mechanisms and modelling structures makes it difficult, and

sometimes impossible, to successfully implement device independent user interfaces.

However, because of the high demand for multi-channel content delivery and the benefits

related to higher abstraction, many enterprises are eager to use device independent UI

languages. If the expressive power of these kind of abstract languages is insufficient for

producing usable interfaces, many Internet applications will in future end up not being

all-inclusively usable.

User interface modelling (UIM) systems provide an alternative solution to UI

development; UIM languages consist of models for expressing the various properties of

the user interface. UIM technologies aim to provide an environment, where UI

development and implementation is easier and happens in a more professional and

systematic way compared to traditional UI development tools. To achieve this goal, user

interfaces are described by using declarative models. Typically, model-based systems are

clearly task-oriented, i.e. modelling the tasks of the user is the basis for the development

of the other models.

An example UIM system is TEALLACH, which is developed specifically for work with

object databases [Gri99]. TEALLACH divides the various elements of UI into task,

domain and presentation models. The domain model is used for modelling structural and

behavioural features of application objects. The task model is used for modelling user

tasks, as well as associating domain elements into tasks. An abstract presentation model

is used to give the tasks and domain elements a general presentation, which can be

specialized with environment specific UI elements. TEALLACH does not aim to

contribute in the area of individual models of UIMs, rather it emphasizes facilitating

combining the various UI elements in an effective and systematic way. A model-based

user interface development environment (MB-IDE) is presented to facilitate combining

the three essential UIM models to achieve concrete user interfaces.

 20

Defining a modelling structure for a language results in three major advantages listed

below [Sil00]:

1. User interfaces can be described in a more abstract manner

2. Models facilitate developing methods for more systematic design and

implementation of user interfaces, because they provide potential for

a. modelling user interfaces by using various abstraction levels,

b. incremental development of the models and reuse of the user interface

descriptions.

3. Models provide the foundation for the automation of the tasks related to design

and implementation of user interfaces

UIMs are expressed in some kinds of formal languages, which address the various issues

of the UI by defining a grammar for the conceptual model structure and elements of the

UI. By putting emphasis on structure, UIM languages enable separation of abstract UI

elements from concrete ones. Typically, UIMs also introduce information that is not

present in traditional UI languages, such as capabilities of various user devices. The clear

separation of conceptual models at syntax level makes it also possible to dynamically

provide interpretation and mapping for the various elements of the UIM in a more

profound level, i.e. the run-time adaptability of the user interfaces improves. In addition,

model structured languages suggest new development strategies; for example, a specific

visual part of a user interface is usually not written out in one consecutive set of lines.

Rather, the development process is carried out by filling the elements of separate models,

which are then dynamically mapped together at run-time.

The languages presented in chapter 3.1 do not have a clear model structure. Even though

the pXML language, for example, does clearly separate models at some level, the

separation is not consistent. The potentially abstract elements of the UI are mixed with

concrete ones and thus it is not possible to separate the UI elements that are common for

all devices from those that are not. This results in lack of ability to successfully reuse

 21

elements of a single UI description for devices that are significantly different from each

other.

The UIM systems and their notations often prove to be complex especially when it comes

to learning and using them [Sil00]. Various case tools have been developed to help

overcoming these complexities [Pue99a], focusing mainly on describing model data and

combining the models to each other. These tools are not in the scope of this thesis,

however.

Components of User Interface Modelling

UIMs consist of several declarative models describing the various aspects of the UI. Each

aspect partly affects the dynamic process of producing concrete user interfaces. Some

essential models are presented in table 3. The used models vary according to each UIM

and the ones presented in the table are collected from various sources. Each model is only

given a superficial glance, as especially modelling tasks and devices form research areas

of their own and are far too extensive to be well covered in this thesis.

Model name Description

Task model A task model describes how users do their tasks in a certain application. It

contains the task structure, and the order and division of interactions

between user and system [Pue99b]. It can be said that a task model

describes the static and dynamic organisation of the work.

Dialogue model Dialogue models contain such information as to which objects exist in the

user interface and what are their possible states. The actions that the user

may initiate through the user interface, as well as the reactions that the

application may execute via those elements, are represented [Pue99a].

Some models combine tasks and dialogues into one model, which is

usually called a task-dialogue model [Sil00]. Dialogue model can be seen

as a more concrete approach to task model.

Domain model A domain model defines the underlying objects that the user can indirectly

see and manipulate through the user interface. In addition to application’s

data model, it is also intended to explicitly represent the attributes of the

 22

object and to express the connections between various objects [Pue99a].

User model A user model defines the attributes and roles of users and it can be used to

provide a way to model UI preferences for specific users or roles [Pue99a].

However, user models are described vaguely in literature and are present

in very few UIMs.

Presentation model Presentation model represents the visual, haptic, and auditory elements

provided to the user by the user interface. The presentation model is

basically just a static collection of sensory elements [Pue99a], but

attaching stylistic properties, such as colours and font size, to the user

interface is also considered to be a part of this model.

Device model Device model presents the capabilities, such as the used UI language,

connection speeds and other properties of the device [Mül01a]. CC/PP

(Composite Capabilies/Preference Profiles) is an existing standard to do

exactly this [W3C00a].

Table 3: Essential models of UIM systems.

Levels of Abstraction

User interface models are twofold in nature. On one hand, fully abstract elements such as

user tasks are always present. On the other hand, some elements are concrete and hence

can be only in some specific UI environment. An example of a task, i.e. an abstract

element, is paying a bill. This task consists of a group of subtasks, which when executed

in certain order, complete it. These kind of abstract elements of the UIM, which are often

called abstract interaction objects [Van93], use implementation that is not dependent of

any platform’s application source code. In addition, they are not executable in any

platform and do not restrict further implementation, and are thus completely portable

[Pue98, Mül01a, Mül01b]. For instance, task and domain models are usually thought of

as being this kind of abstract elements of any UIM [Pue99a]. Their implementation is

dependent on the mappings that combine them to concrete elements of each UIM.

The visual and auditory elements that the user can see or hear and manipulate on the user

interface (e.g. menus and pushbuttons) are concrete elements, which have to be defined

 23

unambiguously. At least presentation and dialogue models are usually classified as being

models that are concrete in nature [Pue99a].

According to Puerta and Eisenstein [Pue99a], there commonly exists a mismatch of

abstraction levels in the developed UIMs. Because the UIMs have both abstract and

concrete elements, certain properties and attributes have to be defined in the abstract

models in order to map them with the concrete models. Failing to address the necessary

mappings results in an inflexible UI development environment. This problem, which

relates to bridging the gap between the abstract and concrete elements of the UIM, is

called the mapping problem [Pue99a].

Many UIMs restrict setting mappings and use automated processes to combine relatively

simple structures. This seems to restrict freedom in design, and UIM techniques have

been criticized for their inability to enable expressing personal taste and richness in user

interface design [Pue99a]. Each UIM should serve the needs of enterprises and designers

to show innovation and creativity in the user interfaces of their applications, as no user

interface modelling system aims to force each user interface to function and look alike

[Sti98].

First generation UIMs did not contain abstract user interface elements. Concrete

elements, such as layout and widget customisations were involved right at the beginning

of the development work of each UI [Sil00]. This was a major obstacle to generating

device independent user interfaces. Second generation UIMs, such as TADEUS [Elw95]

and MOBI-D [Pue97] enable user interface description in a higher level of abstraction.

Still, a concrete proof of UIMs with mappings flexible enough and feasible as well as

comprehensible has been missing, although research has been done in this area [Pue99,

Mül01a].

 24

Combining the Model Components

As Puerta and Eisenstein state: “if for a given user interface design it is potentially

meaningful to map any abstract interface model element to any concrete one, then we

would probably be facing a nearly insurmountable computational problem” [Pue99a]. It

is thus important to try to discover the most intrinsic and beneficial mappings, through

which it would be possible to proceed to desirable kinds of user interfaces in an effective

and systematic manner. Figure 5 presents the problem domain: it is hard to know, which

models should be combined and how.

Task model

User modelDialogue model

Device model

Domain model

Presentation model

?

??

??
?

?

?

?

?

?

??

?

Figure 5: The mapping problem.

Examples of mappings that are considered important between models are briefly

presented in table 4. The mappings are mainly described as presented by Puerta and

Eisenstein [Pue99a] and do not cover all possible cases. For example, the mappings

between task and device models are not presented, but are covered later in chapter 4.

 25

Mapping Description

Task-Dialogue Task models describe the static and dynamic organization of the user’s

work. For instance, conditions on the flow of the work might be presented.

Dialogue models define conversational activity between the user and the

interface in a more concrete manner and thus enable or disable certain user

interface functionality. This leads to parallelism between the models and

naturally motivates mappings between them.

Task-Presentation Users accomplish tasks through a user interface. As tasks in task models

are expressed in an abstract format, it is natural that defined tasks should

be mapped with some sort of visual or auditory presentation that enables

users to execute given tasks.

Task-User One task may need to be executed differently based on user requirements.

It may therefore be important to map user data to the task being carried out

in order to provide user-centered task flow.

Task-Domain Performing a task involves manipulating domain specific objects. Mapping

the workflow of the task model with contents of domain model makes

user's tasks meaningful.

Domain-Presentation Domain model elements contain attributes that affect the object

presentation. Naturally, the presentation of pictures must differentiate from

presentation of text. Therefore, it is natural to map a domain object to a

presentation model based on its characteristics.

Presentation-Dialogue In order to specify a running user interface, the elements described in

presentation and dialogue models must be linked. The presentation model

describes the actual components, which give user the tools to communicate

with the software as presented by the dialogue model.

Table 4: Some of the possible mappings between UIM models.

Mappings can be done in two ways. The UIM language can provide the designer tools for

the mappings, but it is also possible for the run-time engine of the UIM system to do the

mappings automatically. Preferably the language should provide possibilities for a wide

range of mappings, and the run-time engine should then automatically do only those

obligatory mappings that were left undefined at design time. This kind of strategy gives

design power for the designer, as well as eases development in cases where advanced

design is not necessary.

 26

4 The RDIXML Language

This chapter presents the objectives for the RDIXML language, as well as discusses the

solutions, i.e. the models and mappings between them, in a conceptual level. The actual

DTD-based grammar of the task model is presented in appendix A.

4.1 Objectives for the Language

There are some very general objectives that should be recognized in the development of

any UI language. Following the objectives set by Eisenstein et al. [Eis01], the RDIXML

language should be

?? Declarative

?? Comprehensible to humans

?? Formal so that it can be understood and analysed by computer systems

?? Platform independent

To get over some major difficulties in multi-channelled application development,

additional objectives are set. These are expressed in the next few paragraphs.

Device independence – RDIXML is built for use in multi-channel environments.

Therefore, the language must provide means to build UIs without direct integration to any

specific UI environment. This objective should not conceal the fact that some devices

require specific implementation details. The language must be capable of expressing

device specific features, but these expressions must not be expressed with device specific

markup.

Adaptation to device specific requirements - The objective of making applications

universally usable imposes recognizing the differences between various UI environments.

The presentational aspects of the UI must be adapted to meet the device specific

 27

requirements. The same applies for the dialogue and domain elements. In addition, it is

now clear that the steps that must be taken in order to complete a task are not always

equal between diverse devices. Providing possibilities to alter the flow of actions is the

key for all-inclusive usability in multi-channel environments.

Task element reuse – Device independent user interface languages are piquant since

they enable content distribution for many different channels based on a single UI

description. Yet, the functionality of some devices is so different that clearly some

elements of the UI require device dependent implementation. This is the case even with

user’s tasks, which in the UIM literature are ubiquitously regarded as being directly

portable between devices and hence reusable. From solving the device-task problem, it

follows that the language must be carefully structured to reuse common task elements.

Direct integration to the underlying framework - A user interface bridges humans and

machines by allowing the exchange of information [San01]. Not fully following the spirit

of this definition, UIM systems have rarely been associated with database environments

[Gri99]. In general, it is considered easier to create new services based on existing

components of the framework, if the language directly bridges UIs to existing

technologies, such as various data services. RDIXML aims to directly integrate to the

underlying architecture, i.e. its elements should work in parallel with the functionality of

the RDIXML framework (see chapter 5). This allows direct communication with various

databases, as well as use of other services provided by the framework. This is important

in the sense that as software management gets more and more complicated, there’s an

urgent need to utilize pre-existing services, through which application functionality is

mainly achieved by specializing the framework and not by modifying the core of existing

program code [Voa98].

The key for fulfilling the set objectives is clearly first to find the necessary models and

model them in an appropriate way, and then solve the mapping problem between the

chosen models. For the rest of the work, the single word RDIXML always refers to the

developed language and the word framework is used to refer to the RDIXML framework.

 28

4.2 Models of the Language

RDIXML has a modelling structure consisting of task, domain, user, dialogue,

presentation, device and application models. These models do not cover all issues related

to UIs in the Internet world, such as user’s location and personalization. However, they

suffice to sketch the basis for the language; additional models and functionality can be

added in the future. Each model is discussed in terms of its functionality and main

characteristics, including a brief example. Further examples are given in chapter 6. The

model structure of the language and the ways that the models relate to each other

unavoidably predetermine the interpreting requirements for the RDIXML framework.

Hence, some architectural points of view are considered already in this chapter. The task

model, being the cornerstone of the language, is given wider attention compared to other

models.

Except for the task and device models, the pXML language has clearly affected the

structure and elements of RDIXML. However, RDIXML is essentially task based and

thus the “emulated” elements in many ways have a different character. The focus in

presenting the models of the language is on the most interesting task-related elements. In

the scope of this work, none of the models of the RDIXML language is fully completed.

Task model

The task model is a key construct in the RDIXML model structure and clearly the starting

point for the design of other model elements. Indeed, the success in the task model

construction no less than directly affects the success in fulfilling the objectives of this

thesis. However, task modelling is a difficult issue in model-based user interface design,

and not all aspects of it can be addressed in the scope of this thesis. For example, defining

relations between tasks, especially for multi -channelled applications, is a complex issue.

The RDIXML task model is a simplified one leaving many generally important

modelling aspects without attention. The focus is on finding ways to reuse the task model

 29

code, while allowing device dependent task descriptions. Table 5 presents the central

elements of the model.

Element/attribute Description

Task Identifies the user’s high-level goal.

subtask Subtasks are used to describe the user’s lower level goals, i.e. the phases of

actions that must be completed in order to reach the higher-level goal.

Precondition Preconditions define the tasks that must be finished before the task in

question is enabled.

Postcondition Postconditions define conditions and actions that are triggered at the

realization of the condition. Through postconditions a task may invoke or

disable a number of other tasks.

Systemaction Systemactions describe the data management actions that the system must

take in order to be able to present the user data related to the task.

Systemactions exploit operations modelled in the domain model.

Useraction Useractions are used to describe the management of actions that users

trigger from the UI. Useractions exploit operations modelled in the domain

model.

Fieldreference Fieldreferences refer to domain model attributes that are associated with

the task. The fieldreference elements abstractly define whether the

attribute should be given a value by the user (input) or should just be

viewed to the user (read-only). A similar concept is used by Müller et al. in

[Mül01a].

Navigation The navigation element forces the designer to define navigational

properties to the dialogue model. This functionality is connected to the

framework’s validation system (see chapter 5.4), i.e. the validation system

will raise an error if the navigation is not provided.

Tasknavigation The tasknavigation elements allow postconditions to force dialogue level

navigation to some other task. Hence, the element forces the presentation

designer to maintain task flow at presentation level.

Systemtask This element i s used to define reusable systemactions, which can be

referred to from within separate tasks.

Table 5: Key elements of RDIXML task model

Chapter 2 showed that device specifically designed task flow is sometimes a prerequisite

for a usable UI solution. Now, considering the task description reuse, this has serious

 30

implications: the preconditions and postconditions that are related to a task inevitably

become device dependent. For example, if a user completes task A with a regular Web

browser, this might lead to invocation of two alternative ways to proceed with the task,

i.e. the postcondition of the task defines that two tasks must be invoked. Completing the

same task with a more restricted device might lead to invocation of one single subtask

that the user is allowed to execute. Hence, the postconditions for a single task can be

device dependent. Following similar logic, the same applies for preconditions.

Quantitatively, the largest part of task modelling consists of those elements that are

mapped to domain model. These consist of fieldreference, systemaction, and useraction

elements. It would seem that these elements are more commonly portable compared to

condition elements. Even if the task flow might change, it is often the case that same

business operations and attributes can be used. This is not always the case, however. The

workers at SysOpen plc have recognized that business methods are sometimes more

manageable if they are called device dependently, i.e. a separate method is reserved for

each device type. The device can affect the amount of data sent to the user interface, as

well as other properties of the functionality. Hence, the domain related task elements are

in some cases device dependent, especially concerning operations. This, together with the

discussion considering task conditions, suggests that rather than tasks as whole, some

parts of them are device dependent.

While most UIM systems do not seem to address device specific task management,

Eisenstein et al. suggest that mapping tasks to devices can solve the device-task problem

[Eis00]. Their mechanism separates task flow into device dependent entities, while it

does not address the consequences considering task reuse. We claim that simply mapping

tasks to devices severely decreases the level of UI code reuse as it imposes completely

separate task implementations for differently behaving devices. Separate task

implementation suggests copying the common task elements between device specific task

versions. Obviously, reusing smaller task entities enhances the UI implementation

process, as it does not force the designer to work in a “copy-paste” design environment.

A more fine-grained mapping mechanism is required between tasks and devices.

 31

Previous paragraphs show that separate task model elements may have relations to

various devices independently of each other. RDIXML addresses this problem by

categorizing separate task elements according to device groups. Essentially, this means

that although the common elements of the tasks remain portable, several elements inside

a task description can be device dependent. For example, considering an otherwise

portable task, some specific device could set a different precondition for activation of the

task. The rest of the work refers to this concept as the device categorized task model

(DCTM) of RDIXML. For a more detailed view, see appendix A.

Presentation model

The presentation model defines the layout for the UI and comprises of three elementary

elements: views, subviews, and layout structures. Subviews define autonomous entities of

a user interface. For example, a single subview might contain a website’s navigational

structure, which might be reused in combinations of several different subviews. Layout

structures define the view layout, i.e. the size and division of layout elements, as well as

their relative positions. Views define combinations of subviews by mapping them to

specific slots in a layout structure. Figure 6 visually presents these elementary

components and their relations.

Each subview potentially contains a number of tasks. Subviews define presentation for

the tasks, i.e. for the attributes and actions related to tasks, as well as their positioning at

the screen. A sketch of a possible RDIXML syntax for such presentation is presented in

figure 7. In the example, a domain attribute “name” is given a label. The actual name is to

be printed in an “editbox”, which is an abstract presentation type definition. The type

suggests that the user may edit the value of the name. Hence, the corresponding task

element must have defined the attribute name being of type “input” (see “task model”).

A device dependent rendering module must transform the abstract presentation type

“editbox” into a suitable markup. For a regular HTML browser, the output of the attribute

could be ‘<input type="text" name="name" value="x"/>’.

 32

Figure 6: Views combine subviews by mapping them to layout structures.

A general notion related to abstract UI languages is that describing UIs with device

dependent languages, such as HTML, allows direct expressions of platform specific

presentation details. This is not possible when using abstract languages such as

RDIXML. The transformation from abstract UI elements into device specific markup is

based on programmatically predefined interpretation model, to which the UI designer can

affect only so much. Thus information concerning small details, such as exact locations

of objects, or producing stylistic layouts by using complicated table structures, may

sometimes prove to be impossible to express with abstract level languages. Usage of

device specific style sheets, such as cascading style sheets (CSS), can sometimes help to

overcome appearing problems. However, this may result in troubles with the style sheet

handling capabilities of various browsers. On one hand, extending the RDIXML grammar

to support additional features could help answering to device specific needs. On the other

hand, this would probably severely hamper the overall intelligibility of the language. The

problem is important and interesting, but too extensive for the scope of this thesis. Hence,

we content ourselves with proceeding with general requirements.

LAYOUTSTRUCTURE
SUBVIEWS

VIEW

First
Second
Third
fourth

First
Second
Third
fourth

 33

<fieldproperty reference="name" label="Name">
 <UIcomponent type="editbox"/>
</fieldproperty>

Figure 7: Presentation structure for a single attribute.

The expressive power of the presentation model must suffice to define common

presentation formats and components. For example, radiobuttons and checkboxes are

used practically in every UI environment. Another example of a general need is that

alignment requirements are commonly satisfied by embedding the content into some kind

of a table structure. Hence, RDIXML should be capable of unambiguously expressing

these kinds of presentations. The language must be accurate enough to enable

transformation modules to make a satisfactory transformation into device specific

markup. Yet, the expressions must be abstract enough not to blur the transformation logic

for devices with limited capabilities.

An example of presentation implementation is given in appendix C. The example relates

to the simulation presented in chapter 6.

Dialogue model

A significant starting point for the design of the language has been to define a clear role

differentiation between task and dialogue models. The two models describe the

interactions between the user and the server, but in different abstraction levels. As

Bomsdorf and Szwillus state, the division of elements between these models is indeed a

difficult separation to make [Bom98]. Task models should describe the interactions in

those parts that clearly relate to users goal, whereas the dialogue model refines the

interaction to meet device specific requirements in technical sense.

A business rule saying that users must be authenticated before accepting their orders is

clearly a rule that must be obeyed independently of the device used. This kind of a rule

clearly has to do with general application requirements and should be implemented with

elements of task model. On the other hand, if a device supports scripting, form input can

 34

be validated at the browser environment, whereas in the case of non-scripting UI

environment, the validation is left for the server. In the latter case, the server does the

validation and it must return the form in case of faulty input. The script usage presents a

technical difference in the interaction model between two devices, this having nothing to

do with the user’s task. The problem with the validation, namely whether to use scripting

or not, is exactly what dialogue modelling is aimed at: describing interactions for the sake

of technical differences. Obligatory technical changes in the interaction model motivate

the existence of the dialogue model.

To enable technical interaction enhancements, the dialogue elements must be able to

override subtasks descriptions of task elements. Sometimes, the overriding could happen

by using scripting functionality. Importantly, scripts must commonly be activated when

the user interacts with the UI and thus they must be attached to certain presentation

elements of the UI. For example, some HTML-based devices can effectively combine

usage of framesets and javascript, i.e. they define the view functionality by combining

presentation and dialogue elements. The presentation and dialogue models are very

closely tied together and, for this reason, we suggest merging these two models. In most

cases, it can be assumed that if the presentation changes, so does the scripting

functionality. This solution may on some occasions decrease UI code reuse, but in most

cases is a more comprehensible solution. The presentation model in appendix C contains

some notes on how dialogue model elements could be used related to that specific

presentation.

Domain model

The domain model publishes fields and operations of domain objects, i.e. it reflects the

properties and capabilities of objects in the data management tier. By defining object

attributes and their data types as part of the language, a checking mechanism for the

integrity between the presentation and task elements, which relate to the domain

elements, can be built. In addition, by using advanced programming techniques, namely

reflective features of programming languages, data objects can directly use the XML-

 35

based domain definitions as their attribute definitions (see chapter 5.3). Hence, there is no

need to hard-code attribute names with programming languages; a more maintenance

friendly solution is to describe them as part of the domain model. OpenPort framework

has successfully used this technique (see chapter 3.1).

An example of the possible syntax for the definition of a domain object is presented in

figure 8. The element domainobject defines a domain object with attributes, operations

and keywords. The basis for automatic rendering of domain elements is given by

publishing the data types of domain objects. For example, if the data type of an element is

picture, the automatic adaptation functionality of the framework will by no means try to

embed the picture into a text field.

The example expresses the importance of an attribute with a reserved word “obligatory”.

For a device with limited screen space, unnecessary attributes can thus automatically be

left out. Similarly, would the run-time environment of the RDIXML framework be

capable of detecting changes in user’s connection speed, unimportant attributes could be

dropped out in case of low bandwidth. The keyword elements are used to match operation

results with task postconditions (see “task management” in chapter 5.5).

 <domainobject domainobject_id="orderBean">
 <fields>
 <field field_id="orderBean_productname" obligatory="false"/>
 <field field_id="orderBean_productid" obligatory="false"/>
 </fields>
 <operations>
 <operation operation_id="getOrder"/>
 <operation operation_id="submit_to_cart"/>
 </operations>
 <keywords>
 <keyword keyword_id="insufficient_credit_limit"/>
 <keyword keyword_id="success"/>
 </operations>
 </domainobject>

Figure 8: A sketch of a domain object description in RDIXML format.

 36

Device model

The purpose of a device model is to describe properties of various devices to enable

adaptation of required content to meet device specific requirements. W3C has developed

a standard, CC/PP, for modelling device properties and user preferences [W3C00a]. A

specialized CC/PP profile can be used to guide the adaptation of content presented to that

device. CC/PP is a meta-language that can be used to build vocabularies that can present

the properties and capabilities of a certain device. Not many public applications of CC/PP

exist, but an example is the WAP user agent profile (UAPROF) [WAG01].

As CC/PP is a part of a wider application, it doesn’t cover all the issues that may be

necessary for a given architecture [W3C00c]. For example, the CC/PP framework does

not define the actions that UI systems should make to adapt the content to given device

properties. Hence, the standard does not directly serve the needs of the RDIXML

framework (see “automatic adaptation” in chapter 5.5). This work does not suggest how

CC/PP should, or could, be combined with RDIXML to form a more comprehensive and

useful device model. Instead, common device model properties that serve the needs of the

RDIXML framework are presented.

RDIXML attaches domain attributes to tasks in an abstract format to achieve code reuse

and device independence. Designers may sometimes wish to use the automatic mapping

properties of the RDIXML framework instead of specifically defining presentation for

these attributes (see chapter 5.5). Hence, it is important that the device model maps the

abstract formats to concrete UI counterparts. For example, for each specific markup

language, the device model gives a default correspondence for an abstract presentation

type “input”. At run-time, the UI engine can then map the given abstract data type to the

default input widget. For example, for a regular HTML browser, the abstract data type

“input” could be replaced with markup ‘<input type="text" …”/>’.

Importantly, browser manufacturers provide idiosyncratic implementations of language

standards. It has traditionally been the case that browsers of Netscape and Microsoft have

rendered the same HTML document in two different ways. For example, alignment of

 37

graphics has commonly resulted in browser specific rendering, i.e. the result often looks

different on different browsers [Nie00, pp. 39-41]. It is not only the devices that need be

modelled, but also the browsers and especially the differences between them.

It seems rational to think that for example two PDA devices with similar kinds of screen

resolutions, user interface environments and connection speeds could use the same task

descriptions, whereas a WAP browser perhaps should use another. Similarly, two PDA

devices with similar kinds of screen resolutions could use the same presentation model,

whereas a Web browser would most probably use another. For these reasons, it is

important to model devices as a hierarchical tree, where devices inherit properties from

upper levels of the hierarchy and are able to override them as necessary. This strategy

supports property reuse, while it at the same time allows addressing minor deviations of

idiosyncratic implementations. This strategy allows other RDIXML models to map to

larger groups of devices at once, instead of separately mentioning each device. Figure 9

presents the overall structure of the RDIXML device model.

p r o p e r t y 1 p r o p e r t y 1

C o m m u n i c a t o r

W A P

W e b O p e r a

IE 6 N e t s c a p e

c o m m o n
p r o p e r t i e s

c o m m o n
p r o p e r t i e s

p r o p e r t y 1

P D A
c o m m o n

p r o p e r t i e s

p r o p e r t y 1

Figure 9: RDIXML models devices in a hierarchical tree structure.

The hierarchical device model would seem to provide a good basis for coping with the

variance between markup language implementations. A good starting point would be to

 38

provide possibilities to simply model the usage of different tags or attributes to achieve

the same functionality. For example, for some specific browser, tag <font-size> could be

used instead of tag , to express the font type. In more complicated cases, it would

be of help if more complicated rendering rules could be applied device specifically.

Specific device properties, such as screen resolution, are briefly discussed in chapter 5.5

(see “automatic adaptation”).

User model

A common requirement for an enterprise application is the provision of user or role

specific content. Clearly, some tasks are shared by different user groups, whereas some

are restricted to the more privileged users. On a more fine-grained level: the user’s role

can affect the level of information viewed to the user, the visualization of the user

interface, and the tasks that the user is allowed to perform. Some domain elements may

not be viewed to the user and the ones that are might have a different kind of presentation

and relate to another task.

As user privileges change often, publishing user and role information as part of text-

based application logic, i.e. RDIXML descriptions, would not be a satisfactory solution.

This would mean that the system administrator would then have to maintain user rights

by changing the text-based RDIXML descriptions. Mechanisms that are more dynamic,

such as LDAP (Lightweight Directory Access Protocol) [Wah97], are a better option for

maintaining information about users and roles. Various enterprises use role names of their

own and these roles have various hierarchical relationships to each other. Hence, the

RDIXML grammar must define a mechanism to restrict and grant access rights to

services in an abstract manner, without directly referring to any specific user or role

names.

Because the RDIXML user model limits resource use with abstract constraints, the

RDIXML framework must retrieve concrete user information from any service that might

provide it. We do not specify how this should happen. Since the role maintenance

 39

information is not implemented with RDIXML, the principal task of the user model is to

restrict the use of various other elements of the language. The elements of user model are

thus embedded among elements of other models of the language. Figure 10 presents a

simplified sketch of how task elements could be restricted. This matter is further

discussed in relation to mappings between models in chapter 4.3.

<task task_id="buy_item">
 <userrule accesslevel="2"/>
</task>

Figure 10: Access level 2 is required for accessing task “buy_item”.

The RDIXML user model is essentially similar to the one of pXML language (see chapter

3.1). However, since RDIXML is a task-based language, the user model is also embedded

as part of the task model.

Application Model

The application model ties model elements together to form a complete application; all

elements of any file must unavoidably belong to some application. If many applications

are parsed to RDIXML engine’s memory at the same time, the separately described

model elements of the same application are bound to a single application namespace

containing all resources of that application. The model must also define meta-data

concerning various aspects of the application, such as starting points for the application

for each device type. In addition, the model must list the files that applications comprise

of. An example of application model contents is given in figure 11. Each RDIXML file

must by definition start with element application. Apart from the other models, device

model implementations are application independent and are maintained separately from

other models of the language.

<application application_id=”test_app”>
 <defaultviews>
 <defaultview devicegroup="PDA" view="PDA_buy_item"/>
 <defaultview devicegroup="WWW" view="WWW_buy_item"/>
 </defaultviews>

 40

 <tasks application_id=”test_app”/> <!-- placed in another file -->
 <views application_id=”test_app”/> <!-- placed in another file -->
 etc…
</application>

Figure 11: Applications comprise of elements of several language models.

4.3 Model Mappings

The previous chapter already discussed mappings between models at some level. This

chapter completes the picture by presenting all mapping relations that a designer may use

to bind various model components together. There are no theoretical foundations to

define the exact mappings between model elements [Pue98] and therefore applying them

is more or less dependent of the capabilities of the designer and the objectives for the

language. What is important for the UIM designer to keep in mind, though, is that several

systems that fully embed the mappings into the programmatic code of the framework

provide an inflexible UI design process. In these kinds of systems, the users of the

framework cannot reach and affect the inner functionality of the framework [Pue98].

It is important to carefully divide the responsibilities of the model mappings between

RDIXML and its programmatic interpreter, the RDIXML framework. In other words, the

language should grant the designer tools to set necessary mappings manually, and the

framework should be programmed to automatically make mappings left undefined by the

designer. Hence, the RDIXLM mappings provide a tool for the UI designer to create

accurate and personal design. Yet, a designer seeking for effective default solutions may

leave some mappings for the responsibility of the framework. The automatic mapping

process provided by the framework is further discussed in chapter 5.5. The RDIXML

models and mappings between them are presented in figure 12. The application model is

not presented in the picture, since elements of all models, except for the device model,

are always mapped to the application model.

The figure clearly shows that the task model is the centerpiece, to which all other models

relate. The upper part of the figure consists of several abstract level presentations

 41

(possibly containing dialogue elements), which are used according to the device detected.

It is important to grasp the idea that the PDA view, for example, is an abstract

description. This means that the view addresses aspects of the physical properties of the

device, but is not bound to any specific markup. Hence, this view could be transformed to

any markup (and thus reused), if the device in question would otherwise fit the properties

of the view.

U s e r r o l e s

A b s t r a c t d e v i c e s p e c i f i c p r e s e n t a t i o n e l e m e n t s

P D A W e b b r o w s e r W A P b r o w s e r

V i e w

S u b v i e w 1

S u b v i e w 2

V i e w

S u b v i e w 1

S u b v i e w 2

V i e w

S u b v i e w 1

S u b v i e w 2

S u b v i e w 3

T a s k e l e m e n t s

T a s k

S u b t a s k 2

S u b t a s k 3

S u b t a s k 1

p r e c o n d 1

p r e c o n d 2

p o s t c o n d 1

p o s t c o n d 2

D e v i c e g r o u p s

W W W

P D A

W A P

D o m a i n e l e m e n t s

D o m a i n o b j e c t 1 D o m a i n o b j e c t 2

A t t r i b u t e 1

A t t r i b u t e 2

O p e r a t i o n 1

A t t r i b u t e 1

A t t r i b u t e 2

O p e r a t i o n 1

R o l e 1

R o l e 2

Figure 12: Mappings between RDIXML models

Table 6 lists each RDIXML design-level mapping. As every model of the language

(except for the device model) must provide a mapping to some application, the

application model mappings are excluded.

 42

Mapping Description

Task-Device Task flow must sometimes be device dependent. At the same time, task element

reuse is considered important. For these reasons, subtasks (as a whole),

preconditions, postconditions, operations, and fieldreferences can be mapped to

devices.

Task-User Tasks can be user (or role) dependent as well as device dependent. The

preconditions and postconditions of tasks must be mapped to users or/and roles.

The user elements are directly embedded as part of the condition elements.

Task-Domain Tasks provide a reusable way to describe bi-directional interactions between the

client and server. To achieve comprehensively reusable UI descriptions, it is

natural to map domain elements, namely operations and attributes, to tasks.

Presentation-task The designers must have the power to define presentation for tasks. Hence, tasks

are mapped inside presentation elements.

Presentation-Device Tasks (and its subtasks) can be presented in many ways, because they can be

executed by using various devices. This imposes a need to link presentations not

only to tasks, but also to devices.

Presentation-

Dialogue

Scripts must be attached to presentation components in a detailed level. In

addition, it is often the case that when the presentation changes, so does the

scripting. For these reasons, RDIXML presents a combined model for presentation

and dialogue elements to provide a clear visual mapping to benefit the designer.

Presentation-User Some presentation elements, namely views and subviews, can be user (or role)

dependent. User elements are directly embedded as part of presentation elements.

Dialogue-Domain Dialogue elements can override some definitions, namely operations, expressed in

task models. Hence, there exists a natural mapping between the dialogue and

domain models.

Domain-User Some domain elements can be user (or role) dependent. Hence, the attributes and

operations of a domain object can be user specific. The user elements are directly

embedded as part of domain elements.

Application-Device Complex applications may include functionality that is impossible to adapt to

devices with limited capabilities. In these cases, applications must exclude certain

devices or device groups. For example, an application that necessarily requires

multi-media streaming functionality could not be used with a WAP device. It is

thus necessary to specify applications in terms of their requirements [Ban00].

Table 6: Design time mapping possibilities between RDIXML models.

 43

Chapter 3.2 presented three major advantages that result from dividing a user interface

language into separate models. We state that RDIXML realizes language abstraction by

being an XML-based language not directly relating to any specific UI environment. The

second advantage (a more systematic UI developing method) is based on the various

abstraction levels of the language models. The UI development is systematically based on

reusing the abstract elements of the UI, namely the task and domain elements. The

various mapping mechanisms and especially the device model properties realize

advantage number three, i.e. foundation for automatic UI generation (see “automatic

adaptation” in chapter 5.5).

 44

5 The RDIXML Framework

The RDIXML language provides a basis for creating multi-channelled Web services.

However, the language does not have an interpretation before it is provided by a software

module that is programmed to tackle the grammatical presentations of RDIXML.

Architectural components capable of interpreting the RDIXML language form a generic

part of the RDIXML framework, which does not require changes on implementing new

application services.

Proper comparison between various possible implementation strategies for this kind of a

generic framework would be a huge effort. As the emphasis of this work is simply to

prove the concept feasible, this chapter sketches one possible design and other

possibilities are mainly left without attention. Chapter 5.1 generally introduces multi-

channel architectures. Chapters 5.2 - 5.5 present different aspects of the generic

framework particularly from the point of run-time functionality. Finally, chapter 5.6

discusses how the framework is specialized for application specific functionality.

5.1 An Introduction to Multi-channel Architectures

Software architectures describe the division of functional parts of application systems, as

well as the predetermined co-operation of these parts. Good architectural design should

produce systems that are efficient, interoperable, changeable, reusable, testable, and

reliable [Bus96, p. 404]. A three-tier architecture model that is in wide use today

comprises of presentation, application and data management tiers. The presentation tier is

responsible for communicating with various devices; the tier handles requests from user

agents and generates an appropriate presentation for the data presented to the agent. The

application tier defines the application logic. The data management tier is responsible of

managing application data in a stable manner. The two-tier model, still in wide use,

merges the presentation and application tiers. Compared to the two-tier model, the three-

 45

tier model provides clear advantages; the most significant of these is the separation of

data from its presentation.

Content is the valuable power source that makes communities, enterprises and individuals

communicate via Internet. Dealing with the proliferation of various kinds of Internet

devices requires new kinds of Web-architectures that can dynamically map the content to

user interfaces that run on many different computing platforms. Most enterprises use

independent systems for providing content for each separate channel [Lun01].

Economically and maintenance-wise, this is not a long-span way to act. Business

processes should be streamlined to automatically provide content to and interact with

many different channels, such as Web, voice, e-documents and digital television.

“Enterprises that leverage the power of multi-channel content delivery will gain a

competitive advantage over those that do not” [Lun01].

In multi-channel architectures, the role of the presentation tier is superior compared to

single channel architectures. The tier must be able to detect various kinds of browser

types, communicate with them with appropriate network protocols, and adapt the content

to match the constraints of the device in question. As the presentation tier directly

communicates with various kinds of devices, it must dynamically re-organize the UI

components to adapt the content for various devices. The adapted content must be

merged into a presentation format that suits for the target device; for example, the same

content could be delivered in either HTML or WML formats. Equally, two HTML-based

devices might require the same content with different kinds of presentation. This process

may involve resizing UI elements and perhaps dropping out some non-obligatory

elements of presentation. In addition, interaction sequences between the client and server

may vary according to the device used.

5.2 Objectives for the Framework

The next paragraphs express the essential objectives for the RDIXML framework.

 46

Multi-channel presentation tier - The framework must provide a run-time engine for

managing the bi-directional communication with various user agents. The engine must be

able to dynamically produce UIs for many different devices based on given RDIXML

descriptions. Content must be adapted to meet the device constraints.

Task orientation - RDIXML is a task-oriented language and the framework must follow

this premise. Founding application development on tasks, rather that assuming visual

aspects of applications, is important considering goals of pervasive applications, such as

enabling users to change the device on the fly [Ban00]. For example, returning to the

office from the field, an employee might want to stop using the PDA device for an airline

booking and rather finish it with the desktop computer. The graphics would change and

maybe some alternative ways to finish the job would emerge, but the execution of the

task would continue from the same point, provided that the devices could share session

status. A task-based framework model very naturally seems to support this need:

considering pervasive computing, it is important for the UI system to know at which state

of task execution, not user interface, the user is [Ban00]. The remaining steps required for

completing a task are what count, not the visual components (that are obviously not the

same between devices). Importantly, a task-oriented system provides support for both

visual and auditory devices. This kind of an approach enables saving the user’s

comprehensive task status on disconnecting. On returning to the service, the user could

continue the service from exactly the same point where it was left. Task-based multi-

channelled frameworks seem to open up new possibilities compared to traditional visual-

oriented solutions.

Automatic adaptation – The framework should act as a complementary element to the

RDIXML language and thus facilitate the UI development process. The framework

should automatically provide mappings to help adapting content to meet device specific

requirements. For example, if the designer does not define a presentation to a task

attribute, the framework should automatically transform the attribute’s abstract data type

to some device specific presentation format.

 47

Application independence - The framework’s core must be a comprehensive solution

neither requiring changes, nor new implementation for individual software projects.

Achieving this objective requires a generic presentation module that is de facto reusable

through every application project. Application specific UIs must be constructed by using

the RDIXML language only, not by programming. Components of the presentation tier

are generic in nature and cannot contain any application logic whatsoever.

In addition to these elementary objectives, common goals for application frameworks

exist. Examples of such objectives are performance issues and support for application

design. These issues are too extensive to be covered in this thesis, but are briefly

discussed in chapters 5 and 7.

5.3 Technological Foundations

Building a fully functional application framework from scratch is an enormous effort.

Today’s enterprise applications set strong requirements for concurrency management,

security, scalability, robustness, and efficiency. The framework must provide basic

services related to these issues, but tackling them successfully is difficult and tedious.

Middleware technologies that alleviate the burden of implementing these services from

scratch exist. Examples of these kinds of technologies are Microsoft’s .NET [Mic02] and

Sun Microsystems’ J2EE (Java 2 Enterprise Edition) [Sun99]. J2EE is generally

recognized as a competitive and mature technology and it is used as the elementary

technology for the OpenPort framework discussed in chapter 3. For these reasons, the

RDIXML framework is designed to function on any J2EE compatible application server.

The usage of particular J2EE technologies is not further discussed in this thesis, as that

would not be interesting considering the goals of this thesis. However, efficient use of

J2EE (or any) technology requires profound understanding of how it should be used. It is

not just using good technologies that make up a good application or framework; other

insights are required for success [Alu01, p. 30]. As Krueger states, it is more difficult to

develop reusable solutions than to develop a solution for a specific application as the

 48

reusable one is more complex [Kru92]. The design of the framework should be based on

firm and recognized design principles in the chosen technological environment.

A design pattern addresses a recurring design problem and provides a solution to it.

Design patterns can be used to document architectural designs. Presenting design ideas

with patterns helps the ones implementing the architecture to avoid violating given design

ideas [Bus96, p. 6]. In [Alu01], Alur et al. present design patterns that are found to solve

common design problems of J2EE-based applications. The next few sections present a set

of J2EE patterns that document the key points of the RDIXML architecture, focusing

especially on the presentation tier.

Intercepting filter [Alu01, pp. 152-171] – This pattern defines usage of pluggable filters

that pre-process and post-process general level basic services concerning requests and

responses. The pattern can be used to decorate the main process with filters for example

for security, logging, and debugging. The filter mechanism enables adding other services

without disturbing the main process. Other duties might include validating user’s session

and detecting the user’s device.

Service to Worker [Alu01, pp. 216-230] – This macro pattern combines several other

patterns to document the combination of a controller and dispatcher that control views

and additional helper classes. The pattern consists of front controller, dispatcher and view

helper patterns. The front controller is in charge of invoking system objects based on user

request parameters. Dispatcher is responsible of invoking choosing an appropriate

(markup specific) view helper for managing the UI processing. The view helper strategy,

related to this framework, is further discussed in chapter 5.5.

Composite view [Alu01, pp. 203-215] – Views consist of autonomous subviews, which

produce the content for a specific layout section of the view. This pattern exists already at

the RDIXML language level (in the combination of view, subview, and layoutstructure

elements); the framework makes the language level concept concrete by using subview

manager objects to complement the view helper pattern.

 49

Business Delegate [Alu01, pp. 248-260] – This pattern provides a single access point to

data management tier. It provides an abstraction for and thus hides the implementation of

a business service. Hence, it reduces coupling between the presentation tier and the data

management tier and thus enhances manageability.

Value Object Assembler [Alu01, p. 339-352] – This pattern is used to compose generic

data objects (value objects) from various data sources, i.e. the pattern defines a common

mechanism for the communication between the presentation and data management tiers.

By forcing each application specific data management object to implement the same

interface, the pattern provides an application independent means to deliver data to the

presentation tier.

Figure 13 presents the framework’s architectural structure in five tiers. The client tier

presents the application users that make requests with various kinds of devices. The

application logic tier consists of the RDIXML models that are used to build new services.

The presentation tier forms the generic part of the framework, which gets its application

specific functionality by interpreting the language elements. The data management tier

mainly consists of domain objects (EJB beans) that are used to process application

specific transactions. The framework tier consists of the J2EE application server, on

which the framework is built, and the meta-data that is used to control the technical

functionality of the RDIXML framework. The figure also presents the four hot spots that

are used to specialize the framework for application specific purposes (see chapter 5.6).

Chapter 5.5 provides additional views on the usage of the presented modules and design

patterns.

 50

Data management t ier

Application logic tier

Presentation/dialogue

Framework t ier

Presentat ion t ier

V i e w

S u b v i e w s

Layoutstructure

Task model

Domain model

Fields

Opera t ions

H
ot spot 1

Intercepting f i l ter

V i e w h e l p e r

Front control ler

Dispatcher

S u b v i e w m a n a g e r

Task manager

D o m a i n m a n a g e r

D e v i c e m a n a g e r

User manager

Business delegate

Device model

V a l u e o b j e c t a s s e m b l e r

Hot spot 2

Framework meta-data
Hot spot 4

p a r a m e t e r s

J2EE appl icat ion server

Client t ier

User model

Hot spot 3

Figure 13: The RDIXML architecture.

The architecture assigns a manager for each of the models of the RDIXML language.

This is the key in achieving a generic (application independent) presentation tier, as none

of the managers contain any application logic. Each manager is capable of interpreting

specific parts of run-time application logic following the RDIXML grammar. For

example, view helpers and subview managers dynamically manage the UI by following

the instructions given in the presentation/dialogue model.

Due to the task-oriented nature of the framework, design patterns for covering all

elementary parts of design do not exist. Hence, the core of the framework cannot purely

rely on existing design knowledge. Hence, the adequacy of the given solutions is justified

by simulating the functionality of the framework in chapter 6.

 51

5.4 Run-time Application Logic

This chapter gives an overview of issues that relate to constructing run-time data

structures from static RDIXML-files and the kind of meta-data that is involved with the

generation process. In addition, the techniques and mechanisms used in this process are

discussed.

Parsing XML Documents

An XML parser is a software module that is used for reading XML-documents and

providing various applications access to their contents and structure [Mar00, pp. 62-64].

The document handling processor can either parse a document in its entirety to a tree

structure (that follows the document structure) into computers memory using the DOM

parsing model [W3C98], or read the document element by element according to the SAX

parsing model [SAX98]. In the latter case, the application that uses the parser has an

event driven interface, through which it can apply actions to the elements and attributes

of the document as they are being processed. The SAX model enables the programmer to

reorganize the parsed elements when necessary. SAX requires less resources compared to

DOM, but the application programmer must specifically determine the processing of each

element. The DOM model provides a strong tree handling functionality, but may not be

the best solution for the manipulation of large XML files [Mar00, p. 183].

Experiences of working with the OpenPort framework (see chapter 3.1) have shown that

it is natural to divide application elements to many separate XML-files. It can be assumed

that RDIXML applications usually comprise of several files, which all contain partial

aspects of the application and share the same application id. This strategy divides the

possibly huge amount application data in to smaller units that are easier to control. Many

possibilities for the division of elements between files exist. For example, the contents of

a single view might be used as a unit for file division. Because several files exist and all

of them are not necessarily valid, some kind of meta-data structure is required to tell the

system the files to be parsed. The loading order of files might also prove to be important,

as some files might contain meta-data of how the following files should be parsed.

 52

An XML-parser is used to load the separate RDIXML-files into a single run-time

application logic entity, which is interpreted by other tiers of the framework. Additional

research is required to find out, whether this run-time application logic could be

optimized to enhance the performance of the framework. Optimizing the model elements

of the language for effective access, while still keeping the structures from getting overly

redundant, could reduce the required run-time UI adaptation. This would most likely

result in better performance, thus enhancing usability. A generally acceptable response

time for a user request is 1 seconds. Nielsen states that if the response time exceeds 10

seconds, the user gets frustrated and nearly always moves over to a new site or page

[Nie93, Nie97]. For this reason, organizing the run-time application logic matters. Every

optimization that can be done to help the dynamic UI creation process will enhance the

responsiveness of the server.

For example, a designer might not define presentation for a task, relating to some device

group. In this case, the parsing logic could optimize the run-time UI structure by

providing a ready-made mapping between UI component types and task attributes.

Because there exists several device types, the optimization might require many such

mappings. Careful estimations are required concerning performance costs against

memory costs in order to find out proper solutions for the run-time structure. If the run-

time structure should be reorganized to meet the set requirements, the SAX parsing

model should be used instead of DOM, because it provides the means for event-driven

element handling. Otherwise, the DOM model might be an appropriate solution, provided

that the me mory costs would not exceed critical limits.

Validation

An XML parser can automatically check the validity of parsed XML documents

referencing a DTD [Mar00, p. 71]. The parser will discard invalid documents and give

appropriate error messages accordingly. A DTD is not however a strong enough

mechanism for describing the construction rules for all XML applications [Sep02]. For

 53

example, ID references cannot be typed. By this, we mean that it is not possible to specify

that from inside element “fieldreference”, only to IDs inside elements of type ”field”, can

be referred to. In addition, IDs inside a single document are unique independently of their

hierarchical element location. Work with the pXML language has proved that this makes

it difficult to use rational naming conventions. For these reasons, the RDIXML grammar

in appendix A is defined without using XML IDs. The lack of expressive power in DTDs

easily leads to situations, where the application is valid on the point of view of the XML

parser, but in reality, the application is faulty and useless. Erroneous application logic

results in run-time errors, which especially in bigger applications are hard to mend.

In order to guarantee an error free system start-up, the RDIXML engine must provide a

separate error management mechanism. The mechanism should be able to detect and

report invalid mappings within RDIXML documents. XSLT technology can be used to

validate XML-based applications [Sep02]. Another and a more traditional alternative for

achieving the required functionality would be to implement a validation module with

some programming language. The latter mechanism in combination with additional meta-

data information has been used with the OpenPort framework.

The RDIXML language could be implemented with the XML Schema to cover some of

the problems concerning application validation. As schema tools are not yet very mature

and use of schemas would not solve all mentioned problems [Sep02], schemas are not

further discussed in this thesis.

5.5 The RDIXML engine

This chapter presents the fundamental run-time modules of the presentation tier.

Technical details, such as session management or device detection, are not discussed;

chapter 6 does, however, give an overview of how and when these are managed.

 54

View Management

The UI creation process always happens through view helpers that control the overall

layout management of the UI by controlling the content creation and positioning of

subviews (see figure 13). On each request, a view helper invokes a subview manager to

manage content creation for each of the subviews attached to the view. As a subview

manager returns the content, the view helper positions it, renders the structure to device

specific markup, and finally outputs the UI.

Each subview manager is responsible of presenting a certain number of tasks and

subtasks according to given RDIXML instructions. Each manager thus embeds given

task-related content to required UI markup. Subview managers co-operate closely with

the task engine to achieve awareness of task states and to get the domain data related to

the task (see next section). At a specific moment, some tasks are active, and some are

inactive. For the active tasks, subview managers render the task attributes and generate

controls through which users can execute actions (defined by “useraction” elements).

Rendering static content, such as headings for pages, is also a responsibility of a subview

manager.

Subview elements may contain navigational instructions that define new content to be

loaded to some part of the view, i.e. the navigational instructions have a reference and a

target. The reference defines the content, i.e. what is loaded (which subview), and the

target defines the part of the layout into where the content is loaded. A view helper is thus

responsible for commanding subview managers to change their content according to

dynamically received navigation instructions. According to given layout target, the view

helper chooses a subview manager and commands it to replace its content. For example, a

subview manager might be commanded to replace “subview A” (current content) with

“subview B”. Frankly, a single user action may cause several subviews to be replaced by

other subviews. In addition, a view can be loaded to a specific part of the layout. Hence, a

view may contain another view, i.e. a view helper may contain another view helper. In

 55

these cases, the topmost view helper is responsible of the overall layout management. As

the overall layout of the UI changes dynamically, view helpers are responsible of not only

managing the UI layout, but also of storing the state of the view as a whole in between

user requests.

Task Management

Task management is the basis for nearly all interactivity between the UI engine and user

agents. Only static navigational interactions that lead to other services or views are

outside the control of the task management system. Task managers control the

interactions to both directions thus being decisive elements in the functionality of the UI

engine. The overall task status defines the dynamic content shown to the user, even

though subview managers function as wrappers for the tasks.

Task manager (see figure 13) maintains each user’s comprehensive task status in a user

specific task container. The task status predetermines the visibility of data and interaction

controls, as subview managers (by default) render only active tasks. Subview managers

get the status and content for each of the tasks they contain from the task manager and the

output of each task is dependent of its status. On special occasions, a subview definition

may define a task to be rendered even if inactive. In these cases, the task is rendered as

disabled, i.e. the user sees the task, but is not able to trigger it (see figure 14). By default,

inactive tasks are not printed.

T a s k c o n t a i n e r
a c t i v e

a c t i v e

i n a c t i v e

Figure 14: A single task printed as active (above) and as inactive (below).

 56

Completing a task often affects its status. For example, submitting an order is usually a

task that the user is only allowed to do once. In addition, completion of a task usually

leads to changes in the status of other tasks. Other tasks may be enabled, while others are

being disabled. A task may become enabled because some completed task makes a

precondition for the disabled task go off. Managing preconditions of tasks seems to

require brute force in the sense that all tasks of the application must now be checked for

possible enabling. This duty is eased by the hierarchical structure of tasks. Completion of

a subtask can only enable subtasks within the on going task. In addition, other

comprehensive tasks can be enabled.

A completed task may enable or disable a number of tasks by defining one or more

postconditions that can be attached to domain specific keywords. The task engine

dynamically matches the keywords returned by the application specific EJB beans to the

ones defined by the task description. Each matching keyword triggers a postcondition. In

addition to task state changes, postconditions may force the designer to define navigation

to another service or task. Due to possible changes, a new comprehensive task status must

be computed on the completion of each task. This new task status defines the content to

be returned to the user, i.e. the data and interaction possibilities that are rendered to the

UI.

From changes in the comprehensive task status it may follow that some subview no

longer contains active tasks and if so defined, it will no longer produce output. Subviews

that earlier were invisible may now have tasks to present. In addition, navigational

instructions may cause new subviews to replace existing ones. Thus it is critical that the

designer comprehends managing the overall layout of the UI and provides rational

mappings between tasks and presentation. The overall task status must remain such that

the layout remains consistent and does not vary in a disturbing manner. Leaving the user

without active tasks naturally prevents all interaction.

A task cannot define its execution environment (subview) and thus enabling a task does

not necessarily mean that it is presented to the user. If a task is not defined by any of the

 57

currently present subviews, a task may be active, but remain invisible. Tasks that are not

defined by any of the current subviews can be displayed through navigational

instructions. The task model elements can force presentation designers to provide

necessary navigational instructions to preserve task flow (see “task model” in chapter

4.2).

User Interface Rendering

Run-time application logic describes applications and their UIs in an abstract format.

Once a device makes a request, content must first be adapted according to the device used

and the abstract UI definitions must then be transformed into device specific format, to

which the content must be embedded. The first phase, i.e. the adaptation functionality, is

done by combining the design-time mappings provided by the designer with the dynamic

adaptation based on the device profiles (see section “automatic adaptation”). The second

phase, i.e. the transformation process, and content embedding, is managed by markup

specific transformation modules.

The architecture defines a transformation module for each specific markup language,

such as HTML and WML. Each transformation module is aware of the correlation

between the abstract UI element and the corresponding markup. Each module is divided

into entities capable of constructing markup correlating to given RDIXML eleme nts.

Some of these entities must be capable of embedding dynamic values into the markup.

For example, a rendering module capable of constructing HTML markup might contain

an inner module capable of transforming a text field into HTML format. This inner

module uses its reference to a generic data structure (see “value object assembler” in

chapter 5.3), extracts the values, and correspondingly outputs ‘<input type="text"

name ="name" value="x"/>’. Non-standard browser implementations, especially

concerning some specific UI elements, are modelled with device model elements (see

“device model” in chapter 4.2). Hence, some transformation entities must consult the

device manager for possible deviations from standards.

 58

Due to the generic nature of the tier, the system must use a generic invocation mechanism

for the markup specific modules. The invocation targets cannot be hard-coded, since the

module to be invoked is dependent on the device detected. Reflection pattern helps

changing software’s structure and behaviour dynamically [Bus96, p. 193]. Hence, the

architecture uses the reflective features of the Java language to dynamically invoke UI

environment specific objects according to the device detected.

Figure 15 presents the logical UI rendering process in a very general level. The user’s

device is the starting point for the rendering process, as it predetermines the process.

First, the engine combines the models explicitly mapped by the UI designer. In the

absence of design time mappings, the automated mapping mechanism is used (see next

section). After that, the device specific transformation module is invoked and given the

dynamically retrieved application data. Especially small-scale issues, such as style and

size of UI elements, may be affected by the device properties and the module may

automatically adapt the presentation according to device requirements. The device

specific module transforms the abstract UI into device specific markup, into which it

embeds the dynamically retrieved data. Finally, the user interface is sent to the remote

device, which uses its rendering capabilities to present a concrete user interface for the

user.

Application
data &
mapped

abstract UI

task model

presentation
model

dialogue model

device model

user model

domain model

Adapted
device

specific
markup

RDIXML
engine

Device
specific

rendering
module

HTTP

Figure 15: The logical rendering process.

 59

Automatic Adaptation

Designers manage high-level mappings between RDIXML models. By high-level

mappings we relate to those mappings that require understanding of the goals considering

the application and its usability. For example, it is impossible to automatically define

mappings between the task and domain elements. The designer knows what attributes to

attach to a specific task and algorithms whatsoever cannot resolve the business specific

dependencies. The same applies to what kind of presentation exactly the designer wants

to attach to a certain task. For the best end result, the designer must be allowed to rule the

overall design process.

There are many things that the system can automatically do, however, to enhance the UI

generation process. This automatic adaptation must follow specific rules and guidelines

defined by device and markup properties. The simplest prerequisites for automation are

the explicitly written abstract-concrete correlations expressed by the device model

elements. For example, a designer may choose not to map presentation for task attributes.

In this case, the engine can pick the presentation by checking the correlation between the

abstract data type and the device type.

On the other hand, the system can use the device properties to infer usage of other model

elements. For example, for a device with limited capabilities, the device model may

declare that it does not want to use non-obligatory fields. Now, some domain object may

define that some attribute is not obligatory, i.e. the value of that attribute is not necessary

for the transaction. In this case, the engine can by using these two pieces of information

decide to leave those specific attributes out.

The problem in expanding the adaptation functionality is that there are not device specific

specifications on how a UI system should react to the device properties. It is not enough

to model the properties of the device. It is equally important to describe how the

properties of this specific device should be interpreted. This is an obvious problem with

 60

the current CC/PP standard, as it does not define such behaviour. In [EIS00], Eisenstein

et al. have presented a hierarchical model for describing relations between device

properties and possible device specific interaction objects. This could be an interesting

way for extending the framework’s device model, as their model clearly opens up views

on how UI systems could automatically react to device properties, such as screen

resolution. For example, the device model might state that for a certain device with

240x180 resolution the system should use font size 8 and present Boolean values with a

checkbox instead of two radiobuttons. However, usability guidelines of this accuracy do

not exist and creating them is not a trivial quest. Today’s transformation solutions that are

solely based on automation do not provide a credible solution.

There exists another form of mapping in between mappings made by designer and

mappings made by the system; we call this fuzzy mapping. By this we mean that

designers can suggest possible dynamic high-level mappings. An example of this kind of

mapping is the case when the designer defines some comprehensive presentation

definition (namely the “view” element) as being “default”. In this case, the system maps

this presentation for those devices that are not specifically provided one. By making

fuzzy mappings, the designer forces the engine to use specific mappings in vague

situations. By exploiting the various forms of automatic adaptation, a designer might

build simple UIs by implementing the task and domain properties only.

5.6 Specializing the Framework

Frameworks provide ready-made services that can directly be utilized in application

development. The users of a framework should never be forced to change the source code

of the framework; applications are to be realized by specializing the framework either by

combining and configuring existing framework components, or by creating new ones. A

framework usually has several specialization points, often called “hot spots”, which are

specific to individual applications [Kru96, s. 397]. A framework should clearly define

and document the possible specialization mechanisms to avoid a learning curve too steep,

thus achieving a higher production level.

 61

On application developers point of view, the RDIXML framework defines four

specialization points (see figure 13):

1. The RDIXML language elements

2. EJB beans

3. Application server configuration

4. Framework meta-data

First, several RDIXML files must be written to define all necessary elements of the

application and especially the user interface. Secondly, application specific EJB-beans

are usually required to implement application specific data processing. Thirdly, the

underlying application server technology requires declarations for things like database

connections, deployed servlets and EJB-beans, to mention a few. Finally, XML-based

meta-data files are used configure the functionality of the RDIXML framework.

Examples of meta-data usage are means to control the functionality of the framework’s

run-time engine, as well as defining relations between language elements for validation

purposes.

It would seem that a rational starting point for the UI development is to first define the

abstract elements of the UI. Ready-made task and domain implementations provide a

solid basis for refining the UI for various devices. Concerning development roles, a

domain specialist should see that the database implementation matches the structure of

the domain model elements. In addition, the same person should have an understanding

of the EJB paradigm. A task analyst could provide initial sketches for task models. Later,

co-operation with platform analysts and usability analysts could lead to specializing task

flow concerning some devices. In this phase domain and task analysts should work

together in order to achieve good quality device specific task models with a good level of

domain element reuse. After these preliminary phases, graphical designers together with

UI designers can proceed to implement the visual presentation.

 62

User interface languages such as RDIXML or pXML blur the boundaries between

architectural layers. These languages at least partly cover issues concerning all three

layers of the traditional three-tier architecture model. Hence, new methods for organizing

the work and responsibilities are unavoidable. Experience will show how easily new

working mechanisms are found and how effectively they can be applied. An example of

the difficulties in dividing developer roles relates to presentation: when constructing UI

for a regular Web browser, construction of CSS style sheets has commonly been done by

graphical designers. However, many PDA devices cannot deal with CSS (e.g. Nokia

Communicator). For these kinds of devices, the stylistic issues must be embedded into the

RDIXML code.

The objectives of RDIXML, namely related to reuse and adaptability, give rise to its

complex modelling structure compared to many other UI languages. It is clear that

RDIXML is not as comprehensible to humans, as are some UI languages of more

traditional character. This clearly has to do with the use of abstract model elements,

which require mappings to separately described UI elements. The complex structure

hampers the intelligibility of the UI constructions and directly seems to affect the

usability of the RDIXML framework by imposing a need for a tool that would facilitate

the UI development process. Editing UI descriptions with regular text editors, or even

with XML tools of today’s level, is error-prone and time consuming.

A tool should guide the development process and hide unnecessary details from the

designer. First, it should ease the task modelling process. Secondly, it should provide the

designer a way to attach domain elements to tasks. After these basic steps, the tool should

let the designer see what kind of a default presentation the engine would generate for a

given task. Hence, the presentation engine should be integrated with the tool. The

designer should be able to browse through device specific views for each task. A working

view would allow the designer to map presentation elements to task components. A

preview mode would show how that task would be rendered by this certain device

according to the current design. This kind of functionality would require that the output

 63

of the device specific rendering modules would serve as an input for external user agent

simulators.

Despite the above-mentioned problems, interesting possibilities seem to arise from the

strict modelling structure of UIM languages, such as RDIXML. As Faulkner and Culwin

state, HCI people and software people lack a common vocabulary [Fau00]. Now, UIM

languages divide the UI elements into several separate models. Thus, one big topic is

divided into several narrower discussion channels with limited context. Instead of having

to exchange usability knowledge concerning the whole user interface (which undoubtedly

still remains an issue), specific models of the UI can be discussed. This might facilitate

achieving consensus of smaller-scale usability guidelines, thus supporting development

of usable end-products.

 64

6 E-shop - An Example Use Case

In this chapter, the functionality of the RDIXML framework is put under scrutiny by

presenting a use case simulation. During the simulation, the run-time functionality of the

framework is examined. At specific points, elements of other models, such as

presentation and device, are discussed and sketched. These examples are not provided a

grammar. The presented user interfaces have not been designed with aesthetics in mind,

rather they are left simple to stress the functional points.

The idea behind the example is to use the framework to realize a single use case for two

different devices. A Nokia 9210 Communicator [Nok01a] is chosen to represent a PDA

device with a small screen. A regular Web browser (such as Internet explorer or

Netscape) used with a high-resolution screen is chosen to represent the average user. In

the following chapters, the word “Web browser” always refers to this latter device. The

use case is deliberately such that providing both devices a similar flow of actions would

not effectively serve the PDA user’s needs, i.e. would not provide a usable solution.

Hence, the two devices must have diverse sequences of task actions. Different kinds of

user interfaces are required in other parts as well, although both devices can render

HTML.

6.1 Objectives

The simulation should prove that the RDIXML framework is capable of solving the

problems presented in chapter 2.3, i.e. that the framework in practice can produce device

dependent task action sequences. To provide a credible simulation, the inner workings of

the language and the framework, to some extent, are be presented. Hence, the simulation

should reveal any significant weaknesses left unnoticed at the design. Clearly, the

simulation should shed some light on what is it like to build applications with the

RDIXML framework.

 65

6.2 The Use Case in General

A music wholesaler has an e-shop, through which music-dealers can place orders. Music-

dealers can order instruments either by searching or browsing instruments by category.

All real world issues that would in practice have to be dealt with are not addressed here.

For example, user authorization is not covered. In addition, the users are assumed to have

provided necessary billing informa tion earlier. The use case is built around users’

activities in buying a product from the shop. The direct flow from the starting point of the

service until finishing the order is presented.

Task Model for the Web browser User

Figure 16 presents the task flow of the use case for the user of a regular Web browser.

Initially, the user can choose to either hierarchically browse products or to enter a search

string. In both cases, if instruments are found, the user can directly add them to shopping

cart or browse for remaining search results. After adding products to cart, the user may

choose to again browse or search, or may proceed to check out. In the check out phase,

the user is viewed the details of the order. From this phase, the user can either accept the

order or return for more products.

Task Model for Nokia 9210 Communicator User

The style guide for the Nokia 9210 specifically advises not to use “doormat” pages for

this device; it’s better to go directly to the service [Nok01b]. The Communicator user

pays for the connection all the time, thus speed and efficiency counts and additional

browsing should be left for software and equipment that are more sophisticated. Through

user interviews, the wholesaler has realized that it is commonly the case that when using

a PDA, the user usually just wants to place an order of a certain product and do that

quickly. Thus, the service must be optimized for effective ordering.

 66

W E B B R O W S E R

p roceed_ to_s i t e

b r o w s e p r o d u c t s

c h o o s e _ i n s t r u m e n t
_ g r o u p

a d d _ t o _ c a r t

" b u y _ i n s t r u m e n t "
c o m p l e t e d

s e a r c h
i n s t r u m e n t s

b r o w s e _ r e m a i n i n g
_ resu l t s

c h e c k _ o u t

a c c e p t _ o r d e r

o p t i o n a l

Figure 16: Task flow for WWW-browsers.

The task flow for PDA devices is restricted to one possible route of actions, as can be

seen from figure 17. The user can execute a search to find instruments. If instruments are

found, the user can either add them to cart or browse for remaining results. If items exist

in the cart, the user can directly accept the order. This ought to ease making orders “on

the road”. However, the user is provided a possibility to cancel the order within one hour

of submitting it. The cancelling process is not described in this use case.

To make the case more realistic, the screen shots in the chapter 6.3 contain some task

elements that are neither present in figures 16 and 17, nor in the task model

implementation in appendix B.

 67

a d d _ t o _ c a r t

s e a r c h i n s t r u m e n t

b r o w s e _ r e m a i n i n g
_ i n s t r u m e n t s

" b u y _ i n s t r u m e n t "
c o m p l e t e d

a c c e p t _ o r d e r c a n c e l _ o r d e r

o p t i o n a l

o p t i o n a l

Figure 17: Task flow for PDA devices

6.3 Simulation

This simulation follows the task description presented in previous chapter. The

RDIXML-based task model for both devices is presented in appendix B. Concerning a

single subview, the presentation elements for the PDA device are roughly sketched in

appendix C. Both appendixes are commented and provide detailed insights to various

phases of the simulation.

W3C has published a device independence principle, which states that the URI for a

specific service should be the same for all devices [W3C01]. Following this guideline, the

framework allows both devices entering the e-shop service by using the same URI. We

assume that the RDIXML application model maps the URI to a default view called

“shop_view”. As the devices do not share a single starting point for the service, two

views named “shop_view” must be implemented, one for the PDA and another for

regular Web browsers. Figure 18 outlines the view for the PDA device, where attribute

“excludeddevices” excludes Web browsers from this view. Thus, the UI engine is capable

of choosing this view for this service each time a PDA device is detected. The view

 68

contains two subviews, defined with two “subviewreference” elements. The upper

subview contains the welcome text. The lower one, containing the search task, also

contains accept order and cancel order tasks, which are both initially disabled.

<view view_ID="shop_view" layoutstructure="basic_layout" construction="astable" title="E-shop"

excludeddevices="WWW">

 <subviewreference reference="welcome_subview"/>

 <subviewreference reference="search_subview"/>

</view>

Figure 18: Communicator - View structure.

Figure 19 presents the starting point for the PDA users. Since “search_products” is the

only task without preconditions, it is the only active task and thus the only one presented.

Figure 19: Communicator - Starting point of the service.

Figure 20 presents the layout structure for the view. Attribute “division” is used to define

that the subviews are to be set from top to bottom, i.e. that subview “welcome_subview”

will be rendered on top of subview ”search_subview”.

<layoutstructure layoutstructure_ID="basic_layout" division="vertical" excludeddevices="PDA">

 <frame frame_ID="upper_frame" size="20" dimensiontype="percentage"/>

 <frame frame_ID="lower_frame" size="80" dimensiontype="percentage"/>

</layoutstructure>

Figure 20: Communicator - Layout structure for the view.

 69

The sequence diagram presented in figure 21 roughly presents the inner functionality of

the framework at the time of the initial request for a service. First, the client makes a

request (1). At this stage, the system uses the intercepting filter pattern to tackle several

issues related to the request, such as extracting the service name from the URI, detecting

the user’s device and software, creating an internal (server side) session for the user, and

retrieving the name of the default view for the service (2). Relevant parameters, such as

the used device and the name of the view name, are now inserted into a parameter

structure, which is passed along subsequent calls. This assures that all system objects are

able to adapt their output to the request. The intercepting filter now invokes the front

controller to delegate control according to the request type (3). The view dispatcher is

invoked in (4). Since the Communicator uses the service as a Web browser, an HTML

capable view helper is invoked (5).

Following the run-time view presentation, the view helper now invokes two HTML

capable subview managers (6) to generate content for both of the RDIXML subview

definitions. The subview managers use the task manager to get the status and possible

data for both of the tasks that they contain (7). The upper subview definition only

contains static text, and thus communication with the task manager is not required. The

“search_subview” contains three tasks. Two of them, “accept_order” and “cancel_order”

are inactive and not printed. However, the third task, “search_instruments”, is active, and

thus printed.

At this point, the subview manager does not know the attributes to be rendered, since the

subview does not define them. Hence, the task manager must return a list of associated

attributes and operations (domain objects mapped to the subtask). Properties such as

attribute values and attribute headings are mapped to each attribute in the list. Concerning

the search task, the task manager simply returns the abstract data type and label for the

search field, and the name and label for the “search” action. The subview manager must

now use the automatic mapping process to build the presentation. Hence, the subview

manager invokes the device manager to retrieve the presentation type for the attribute and

 70

the action (8). Naturally, the device manager needs the current device type and the

abstract data types as parameters to be capable of achieving this. As the subview manager

receives the presentation types, it can invoke appropriate transformation objects to do

final work consisting of creating the markup and embedding the dynamic values into it

(9). At this phase, necessary parameters must be bound to the “search” action. As the user

triggers the search, the request must then contain information adequate parameters, such

as the name of the action and the name of the object that is capable of handling the

request. In other words, necessary attributes concerning the RDIXML-based action

description must be attached to the user request. At phase (10), the view embeds subview

markups into the view markup. Finally, the UI is returned to the client (11).

Client Task manager

1. request()

Intercepting Filter

4. Choose view()

2. mandatory tasks()

view manager subview manager

5. print()

7. get_task_status_and_data()

10. map_subviews_to_structure()

9. rendering()

Front controller Dispatcher

6. print()

()

3. Delegate control()

Device manager

8. getDefaultPresentation()
()

()

11. UI is returned()

Figure 21: Entering a service.

 71

Users of regular Web browsers enter the service through a flash presentation, which

advertises an instrument (see figure 22). This functionality is strictly a part of a business

deal made between the wholesaler and instrument manufacturers and has essentially

nothing to do with users tasks. Hence, this step is not modelled as part of the task model.

This functionality is thus described by using dialogue model elements to provide a link to

another view. The “proceed to e-shop” is simply a static link targeted to another view that

contains the tasks in question.

Figure 22: Web browser - A flash advertisement is the user’s route to the service.

Figure 23 presents the starting point of the actual instrument service for the Web browser

user. The view initially contains many active subtasks. By default, the user sees the bids

of the moment and thus the navigation bar does not show this option as an active link,

unlike the others. Other available choices are Browse products, My orders and Search

products. Each today’s bid can directly be added to shopping cart. To find items of

particular interest, the user can either browse instruments or execute a search.

 72

Figure 23: Web browser - Starting point of the service.

The view definition for the Web browser is similar to the one of the PDA. The only

differences are that the view refers to different subviews and that it uses a different layout

structure. Figure 24 shows that the Web browser layout divides the two subviews

vertically, i.e. subviews are presented from left to right.

<layoutstructure frameset_ID="shop_layout" division="vertical" excludeddevices="PDA" >

 <frame frame_ID="navigation_frame" size="20" dimensiontype="percentage"/>

 <frame frame_ID="main_frame" size="80" dimensiontype="percentage"/>

</layoutstructure>

Figure 24: Web browser - Layout structure for the view.

To proceed the comparison with device interaction, we get back to the PDA user.

Following the scenario, the user now enters a search string “korg” and submits the query.

At this stage, the task manager executes the query and caches the results to user’s session.

The UI engine now follows the navigation properties defined by the occurring

postcondition and replaces the “header_subview” with the “add_to_cart_subview”. The

“add_to_cart” subtask defines that it uses the data that was cached by the search

operation. Figure 25 presents the search results combined with the “add_to_cart” action.

The user may now proceed either by submitting a new search, or by adding a certain

amount of either item into the shopping cart.

 73

Figure 25: Communicator - Search results.

The user now triggers the “Add to cart” action. As a result, a product is added to the

shopping cart, which is then showed to the user as the result of enabling the

“accept_order” task. In figure 26, the user is presented the contents of the cart. While still

being able to search for other instruments, the user can now also directly submit the

order.

Figure 26: Communicator - An instrument is added to the shopping cart.

Figure 27 presents the functionality of the framework in handling the “add_to_cart”

action. First, the user triggers the action from the UI (1). The intercepting filter, front

controller, and dispatcher patterns are not included in the figure, but they are assumed to

function according to their responsibilities. After these basic obligations, the control is

delegated to the view helper, which passes the control to the subview manager (2). The

 74

subview manager checks if some parts of the referred action description are overridden

by the dialogue model and delegates control to the task manager (3).

The task manager executes the task through the business delegate (4). Business delegate

uses location services to invoke the “order_handler” EJB bean to complete the task (5).

The “session façade” entity presented in the figure is a part of the “value object

assembler” design pattern (see figure 13). The name of the business object, as well as the

method to be used and the names of the attributes to be retrieved are given to business

delegate as call parameters. The EJB bean executes the task and returns a keyword

indicating the result of the action. In this case, the operation succeeds and keyword

“success” is returned (6). The control now returns to the task manager, which enables

task “accept_order” based on the returned keyword (7). Hence, the comprehensive task

status of this user changes.

The task manager now returns control to the subview manager, which is informed that the

“accept_order” task has been activated. Subview manager returns control to the view

helper and based on the given navigational instruction, it informs the view that the

“accept_order” task must be rendered by “search_subview”. In phase (8), the view helper

ensures that the “search_subview” is among currently active subviews. Since the dialogue

model defines that the “accept_order” subtask is to be rendered by the “search_subview”,

no subview replacements are required. Since the view helper is not aware of all possible

changes in the user’s task status, it now commands each subview manager to refresh their

content (9).

In phase (10), subview managers inform the task manager of the tasks (and their status)

that they contain. The task manager discovers that the “search_subview” has an inactive

task “accept_order”, which has now turned active. It thereby invokes the business

delegate to retrieve data as described by the system action “view_cart_data” (11). The

business delegate invokes the operation in (12). The subview manager renders the

retrieved content (13), as was described in figure 21, and returns the markup to the view

 75

helper. Since the view structure does not change, the view need not be refreshed. Finally,

the UI is delivered to the user (14).

After submitting the order (figure 28), the PDA user is viewed a confirmation. The user is

also given right to cancel the order within one hour of submitting the order.

We now get back to the Web browser simulation. Figure 29 presents the Web users’ UI

after adding items to the shopping cart. Except for the additional possibilities provided

for the Web user, the options to proceed are essentially the same than those of the PDA

user. A distinctive feature is, however, that the Web user cannot directly submit the order,

but is provided an option to view the contents of the cart by choosing the check out

action.

C l i e n t T a s k m a n a g e r S e s s i o n f a c a d eB u s i n e s s d e l e g a t e

6 . r e s u l t ()

7 . c o m p u t e t a s k s t a t u s ()

1 0 . g e t _ t a s k _ s t a t u s _ a n d _ d a t a ()

r e s u l t s ()

1 . a d d _ t o _ c a r t ()

v i e w m a n a g e r s u b v i e w m a n a g e r

4 . a d d _ t o _ c a r t ()

5 . a d d _ t o _ c a r t ()

()

1 1 . e x e c u t e s y s t e m a c t i o n s ()

r e s u l t s ()

3 . p a s s c o n t r o l ()

3 . e x e c u t e _ t a s k ()

r e s u l t s ()

8 . s o l v e _ n a v i g a t i o n ()

9 . r e f r e s h _ c o n t e n t ()

r e s u l t s ()

1 2 . g e t _ c a r t _ d a t a ()

r e s u l t s ()

1 3 . r e n d e r i n g ()

()

1 4 . U I i s r e t u r n e d ()

Figure 27: Sequence chart of handling the “add_to_cart” action.

 76

Figure 28: Communicator - Order accepted.

Figure 29: Web browser - The contents of the cart.

The user now chooses the check out option and is after this presented the contents of the

cart and is provided a possibility to remove items from the cart (figure 30).

Figure 30: Web browser - The check out phase.

 77

The user now accepts the order and is thus viewed a confirmation (figure 31). The Web

browser user is not provided a possibility to cancel the order.

Figure 31: Web browser – Order accepted.

 78

7 Analysis

Four main objectives were set for the RDIXML language in chapter 4.1. The first

objective, device independence, is satisfied by the characteristics of the language.

RDIXML is an abstract language, which does not directly relate to any specific UI

environment.

The second objective, adaptation to device specific requirements, is made possible by

providing possibilities to map language models to specific devices. The designer has the

possibility to design device specific adaptation concerning task, domain, presentation,

and dialogue elements. The mappings provide the means to alter the interaction model,

domain elements, and the visual or auditory presentation, according to the device

detected.

The third objective, task element reuse, is achieved by introducing the concept of DCTM

(Device Categorized Task Model), which provides a more fine-grained mapping

mechanism between tasks and devices. The concept enables mapping the preconditions,

postconditions, and domain elements of tasks to device groups. In addition, reusable

interaction descriptions can be referred to from within many separate tasks. These

solutions enable devices to reuse common task elements even when some parts of the

task are device dependent.

The final objective was to provide a direct integration to the underlying architecture. The

language integrates to the underlying RDIXML framework by providing means to

describe communication with deployed application objects, i.e. the language lets the

designer define attributes and operations that are used to manipulate them. This objective

is realized in the OpenPort framework and the RDIXML framework provides an

essentially similar concept. In addition, the RDIXML language defines the activation and

disabling of tasks that define the interactions between the user and the framework. Both

languages move the focus in application development from traditional programming to

the use of an abstract level XML-based application language.

 79

In chapter 5.2, four main objectives were set for the RDIXML framework. The first

objective, multi-channelled presentation tier is achieved by combing several factors. First,

the tier provides a device detection mechanism, which is a prerequisite for content

adaptation. Secondly, the tier contains transformation modules for transforming the

RDIXML-based UI descriptions to various kinds of target languages, such as HTML.

Because RDIXML applications are based on tasks, content can be equally well be

transformed to visual and voice-based devices. Finally, the tier uses the reflection pattern

for providing a general invocation mechanism, by which device specific functionality can

be invoked dynamically. The extent of the tier’s communication abilities is dependent of

rendering modules, which have to be implemented separately for each markup language.

The second objective, task orientation, was set to provide a fundamentally usability-

oriented UI framework and to support goals of pervasive computing. This objective is

achieved by binding the visibility of UI content, including interaction possibilities, to the

users’ comprehensive task status. Designers are enabled to design navigation between

tasks and subtasks in a way that forces the engine to maintain a straightforward flow in

the task execution.

Third objective, automatic adaptation, is satisfied by exploiting the properties defined by

device profiles. First, the abstract-concrete correlations enable the framework to

automatically present abstract task elements. Secondly, device properties can be used to

infer usage of other model elements. This functionality is in practice difficult to

implement because we lack accurate usability guidelines concerning various devices.

Thirdly, designers can use fuzzy mappings to force the engine to use specific mappings in

vague run-time situations.

Finally, the objective for application independence is achieved by designing a

presentation tier such that application logic is wholly defined in another tier. Application

development does not require changes in the presentation tier, which gains its

functionality by interpreting the run-time application logic.

 80

RDIXML distinguishes from existing UIM languages by introducing the concept of

device categorized task model (DCTM). The DCTM solves the dilemma that originates

from the notion that device specific requirements in task execution must be addressed in

order to achieve usable UI solutions. In other words, task models are not directly portable

between devices. Mapping tasks as a whole to certain device groups would significantly

reduce the level of UI code reuse. In addition, maintaining information concerning the

same task in many locations would provide an error-prone design environment. To

achieve a better level of UI code reuse and thus a more systematic development process,

the DCTM introduces a fine-grained mapping mechanism between tasks and devices. In

essence, DCTM promotes UI code reuse while it still addresses the device-task problem.

The framework’s automatic mapping properties support efficient UI development for

straightforward cases that do not require additional design. Yet, the automation of the

framework does not disarm designers, as the automatic adaptation never overrides

definitions made by the designer. The ideology behind the design of this framework

specifically stresses the concept of giving the designers the power to design and letting

the automatic features provide help without interfering with existing manual design. With

its combined properties, the framework strives towards effective development of usable

multi-channelled UI solutions without hampering the maintenance of the resulting

applications or requiring overly thorough design contribution.

Distinguishing from the rather abstract level academic UIM studies published so far, the

RDIXML framework provides a comprehensive usability-oriented concept that uses

commercially available standardized technology. Exploiting existing standards is

important considering enterprises that are seeking for credible application development

models. The academic studies have not presented feasible architectural solutions for task-

based multi-channelled application framework; nor have they simulated the functionality

of such a framework.

 81

8 Conclusions and Future Work

A subset of RDIXML has been developed as part of this thesis. RDIXML is a model-

based user interface language, which sets user’s tasks as the starting point for UI

development. The language is essentially designed for producing usable multi-channelled

applications in a systematic manner. A framework has been presented to implement the

RDIXML language. Existing technology has been used in the design, as it was considered

important to gain knowledge of the functionality and feasibility of a task-based UI

framework. The framework provides functionality to automatically adapt UIs for

different kinds of devices and focuses on UI code reuse to support consistent and efficient

UI development. The functionality of the framework was successfully simulated in

chapter 6.

The main objectives set for the RDIXML language were device independence, adaptation

to device specific requirements, task element reuse, and direct integration to the

underlying architecture (see chapter 4.1). The main objectives for the RDIXML

framework were multi-channelled presentation tier, task orientation, automatic

adaptation, and application independence (see chapter 5.2). All objectives for the

language and the framework were achieved. An analysis concerning the used

mechanisms and observed deficiencies concerning the solutions was given in chapter 7.

A constructive method was used in order to reach given objectives. Detailed knowledge

of functional aspects, not to mention design details, of task-based multi-channel UI

frameworks has not been published. It would have been very difficult to grasp the related

concepts and present a concrete picture of the subject by merely combining existing

research material. A better understanding of the overall requirements for a task-based

framework was achieved by partially implementing the elements of the language and by

simulating the functionality of the framework.

Two paths to proceed from this stage exist. First, the OpenPort framework could be

enhanced with the ideas presented in this work. For example, the structure of the pXML

 82

language could be clarified. In addition, possibilities for automatic UI generation could

be examined based on the thoughts presented in this work. An alternative path is to start

developing the RDIXML framework. Although the development would start from

scratch, lessons from the OpenPort development provide a technological implementation

path from start to finish. Existing pXML language elements, as well as technical parts of

the OpenPort framework could be used in the process. The model hierarchy of the

language and the task-based approach are the biggest differences that separate the

RDIXML framework from OpenPort.

A subset of the RDIXML language has been modelled and principles for the

implementation of the other models have been presented. The task model requires some

refinement especially concerning relations between tasks. The final form of the device

model is unclear mainly due to confusion in benefiting from the CC/PP device model.

The rest of the models are merely sketched, but finishing them should be relatively easy.

The architecture is now designed in a general level. We estimate that, by reusing portions

of the OpenPort framework, a small but skillful team could complete the first version of

the RDIXML language and implement a working prototype of the framework within six

months. The prototype would include but one device specific rendering module.

However, it must be noticed that this thesis does not answer all questions concerning the

task model and it is hard to estimate the required work related to open issues.

According to our view, development of the language and the framework should be started

in parallel, because the language structures have a significant affect on the functional

requirements for the framework. It is difficult to achieve optimal language syntax without

practical experiments of its computerized interpretation. A good starting point for the

framework development would be to develop prototype implementations of the task and

domain models, and the modules for their ma nagement. This point being achieved, issues

concerning other models and their management should be easier to tackle. During the

development, intensive work should be done considering the various aspects of especially

task and device models. Especially relations between tasks are an important issue and

explicit rules on how they are expressed must exist. Standardization work done by W3C

 83

and other notable instances should be followed, especially concerning the CC/PP

standard.

At this stage, setting final goals for the RDIXML framework is not possible, as many

aspects of pervasive computing are still developing. New devices and standards keep

setting new requirements for the framework, even though the task-based core of the

framework can be assumed to remain s table. For example, it is not clear how UIM

systems should react to given device model properties. In addition, pervasive computing

sets requirements for distributed services. For example, various application servers

should be able to exchange information of available services concerning a given device

[Ban01].

It is clear that a tool to facilitate the framework usage is necessary. Developing a

productivity tool for the system is a difficult and laborious engagement, as the tool should

support the UI building process in different phases (see chapter 5.6). Requirements for

the productivity tool are numerous and estimations concerning them and the required

workload are not provided in this thesis. An example of a rather limited UIM

development tool is presented in [Pue98]. An additional aspect that cannot be discussed

in the scope of this work, relates to the change of methodology in UI design: how easily

will the UI designer community adopt task-based design and the usage of new kinds of

user interface languages and models?

We now lack a standardized mechanism to develop usable multi-channel applications.

There is a need for a standard that defines an abstract user interface development

language with models considering all necessary aspects of a multi-channelled application.

The standard would have to include a definition for the functionality of a framework

capable of running applications built with the standardized language. This would enable

commercial implementations of this standard to free enterprises from the burden of

constructing their own frameworks based on several smaller technology standards, such

as CC/PP. As such a standard is not being developed, it seems important that the

RDIXML framework uses existing standardized technology, such as XML. There are

 84

good chances that RDIXML could get advantage from future XML-based smaller

standards, as it today it seems probable that if UIM-related standards are published, they

will be XML-based.

Finally, it seems that the field of human-computer interaction (HCI) still puts very little

effort on research concerning tools and mechanisms that would better support developing

usable systems. This work is largely motivated by discussion suggesting that usability

research has too much to do with post-evaluation, i.e. that usability research mainly

consists of evaluating systems when they are halfway finished. Usability heuristics,

which is the main method used for usability evaluation, certainly has its place and value,

but usability research excessively emphasizes its usage. Too little emphasis is put on UI

languages, methodologies and tools to facilitate systematic development towards usable

systems. This is largely due to the lack of both exact definitions for usability and

interdisciplinary research between the HCI and software engineering community [Fau00].

This study among others of the similar kind, done with greater consistency and work

investment, aimed to show that there are things that can be done.

References

[Alu01] Alur, D., Crupi, J., Malks, D., Core J2EE Patterns – Best Practices and

Design Strategies, Prentice Hall, www.phpth.com, [06.03.2002].

[Ban00] Banavar, G. et al., Challenges: An Application Model for Pervasive

Computing, In Proceedings of MOBICOM 2000: the 6th Annual

International Conference on Mobile Computing and Networking, August

6-11, 2000, Boston, MA USA, pp. 266-274.

[Bir98] Birnbaum, L., R. Bareiss, T. Hinrichs, and C. Johnson. 1998. Interface

Design Based on Standardized Task Models. In Proceedings of the 1998

International Conference on Intelligent User Interfaces. San Francisco,

CA: Association for Computing Machinery, pp. 65-72, ACM 1998.

 85

[Bom98] Bomsdorf, B., Szwillus, G., From Task to Dialogue: Task-Based User

Interface Design, A CHI’98 Workshop, 1998, call for partition, www.uni-

paderborn.de/fachbereich/AG/szwillus/chi99/ws/sigchi.html [06.03.2002].

[Bon99] Bongio, A., Ceri, Stefano, Fraternali, P., Web Modeling Language

(WebML): a modeling language for designing Web sites,

Proc. 9th International World Wide Web Conference, Available at

http://www9.org/w9cdrom/177/177.html, Amsterdam, 2000, [06.03.2002].

[Bun01] Buneman, P. et al., Keys for XML, In Proceedings of 10th International

World Wide Web Conference (WWW’10), 2001, Available at

http://db.cis.upenn.edu/DL/xmlkeys.pdf, [06.03.2002].

[Bus96] Buschmann, F. et al., Pattern-oriented Software Architecture: A System of

Patterns, John Wiley and Sons, 1996.

[But01] Butler, M., Current Technologies for Device Independence (External

Technical Report HPL-2001-83), Hewlett Packard Laboratories Bristol,

http://www.hpl.hp.co.uk/people/marbut/currTechDevInd.htm,

[09.03.2002].

[Chu98] Chung-Man Tam, R., Maulsby, D., Puerta, A., U-TEL: A Tool for

Eliciting User Task Models from Domain Experts, In Proceedings of

IUI’98, International Conference on Intelligent User Interfaces, January

6-9, 1998, San Francisco, California, USA.

[Coc97] Cockburn, A., Structuring Use Cases with Goals, JOOP, Vol. 8, No. 6/7

1997, http://members.aol.com/acockburn/papers/usecases.htm,

[27.04.2002].

[Con01] Constantine, L., Lockwood, L., Object-modeling and User Interface

Design, p. 2, Addison-Wesley, 2001.

[Coo95] Cooper, A., About Face: The Essentials of User Interface Design, p. 389,

IDG Books Worldwide, Inc., 1995.

[Cur01] Curious Networks homepage, http://www.curiousnetworks.com,

[06.03.2002].

[Eis00] Eisenstein, J., Vanderdonckt, J., Puerta, A., Adapting to Mobile Contexts

with User-Interface Modeling, In Proceedings of the Third IEEE

 86

Workshop on Mobile Computing Systems and Applications (WMCSA’00),

pp. 83-92, 2000.

[Eis01] Eisenstein, J., Vanderdonckt J., Puerta, A., Applying Model-Based

Techniques to the Development of UIs for Mobile Computers, In

Proceedings of the 2001 International Conference on Intelligent User

Interfaces, pp. 69-76, January 14-17, 2001, Santa Fe, NM, USA, ACM

2001.

[Elw95] Elwert, T., Schlungbaum, E., Modelling and Generation of Graphical User

Interfaces in the TADEUS Approach. In Proceedings of Designing ,

Specification and Verification of Interactive Systems, pp. 193-208, Vienna,

1995. Springer.

[Fau00] Faulkner, X., Culwin, F., Enter the Usability Engineer: Integrating HCI

and Software Engineering, In Proceedings of 5th Annual SIGCSE/SIGCUE

Conference on Innovation and Technology in Computer Science

Education, July 11-13, 2000, Helsinki, Finland.

[For99] Forbrig, P., Dittmar, A., Relations between Use Cases and Task Analysis,

In Proceedings of 13 th European Conference on Object-Oriented

Programming, 14-18 June, 1999, Lisbon, Portugal.

[Gri99] Griffiths, T. et al., Teallach: A Model-Based User Interface Development

Environment for Object Databases, In Proceedings of User Interfaces to

Data Intensive Systems (UIDIS99), 5-6th September, 1999, Edinburgh,

Scotland, pp. 86-96, IEEE Computer Society Publishers, Norman W. Pator

and Tony Griffiths (eds.), 1999.

[Hac98] Hackos, J., Redish, J., User and Task Analysis for Interface Design, Wiley

computer publishing, www.wiley.com/compbooks/, [09.03.2002].

[IBM00] Chuvan, C., et al., The XML Files: Using XML and XSL with IBM

WebSphere 3.0. Available at

http://www.redbooks.ibm.com/pubs/pdfs/redbooks/sg245479.pdf, IBM

Corporation, March, 2000.

[Jus01] Juslin, J., Navigation in WAP applications (in Finnish - Navigointi WAP-

sovelluksissa), Master's thesis, University of Helsinki, C-2001-35, 2001.

 87

[Kru92] Krueger, C. W., Software Reuse, ACM Computing Surveys. Vol.

24, No. 2, June 1992, p. 131-183.

[Lun01] Lundy, J., The Multichannel Content Delivery Opportunity, Research

Note, GartnerGroup, 2001.

[Mar00] Martin, D., et al., Professional XML , p. 71, www.wrox.com,

[07.03.2002].

[MAX01] Multi-Channel Access XML (MAXML). Available at

http://www.curiousnetworks.com/approach.html, Curious Networks, Inc.,

2001.

[Mic02] Microsoft .NET homepage, http://www.microsoft.com/net/, [07.03.2002].

[Mül01a] Müller, A., Mundt, T., Lindner, W., Using XML to Semi-automatically

Derive User Interfaces. In Proceedings of 2nd International Workshop on

User Interfaces to Data Intensive Systems, (UIDIS 2001), pp. 91-95, IEEE

Computer Society, 2001.

[Mül01b] Müller, A., Forbrig, P. and C. H. Cap, Model-Based User Interface Design

Using Markup Concepts, In Proceedings of the DSV-IS 2001, Design,

Specification and Verification of Interactive Systems, p. 16 ff., Glasgow,

June 2001.

[Mye92] B. A. Myers and M. B. Rosson. Survey on user interface

programming. In Proceedings of SIGCHI’92: Human Factors in Comput-

ing Systems, May 1992.

[Nie93] Nielsen, J., Usability Engineering, Academic Press Inc., 1993.

[Nie97] Nielsen, J., The need for speed (online), Available at

http://www.useit.com/alertbox/9703a.html, [12.03.2002].

[Nie00] Nielsen, J., Designing Web Usability: the Practice of Simplicity, p. 38-39,

New Riders, 2000.

[Nok01a] The Nokia 9210 Communicator at glance, Available at

http://www.nokia.com/phones/9210/, [28.10.2001].

[Nok01b] Nokia 9210 Communicator WWW Browser Style Guide, Version 2,

Available at

 88

http://www.americas.forum.nokia.com/pointer.asp?url=http://forum.nokia.

com/files/disclaimer/1,14553,935,00.html, [04.11.2001].

[Nor86] Norman, D., Draper, S. (editors), User Centered System Design: New

Perspectives on Human-Computer Interaction, pp. 87-124, Lawrence

Erlbaum Associates Inc., 1986.

[Pue97] Puerta, A., Maulsby, D., Management of Interface Design Knowledge

with MOBI-D. In Proceedings of IUI'97, International Conference on

Intelligent User Interfaces, pp. 249-252, Orlando, FL, January 1997.

[Pue98] Puerta, A., Eisenstein, J., Interactively Mapping Task Models to Interfaces

in MOBI-D, In Proceedings of DSV-IS’98, 5th International Eurographics

Workshop on Design, Specification and Verification of Interactive

Systems, pp. 261-273, Abingdon, UK, June 1998.

[Pue99a] Puerta, A., Eisenstein, J., Towards a General Computational Framework

for Model-Based Interface Development Systems, In Proceedings of

IUI’99, International Conference on Intelligent User Interfaces, pp. 171-

178, ACM Press, 1999.

[Pue99b] Puerta, A. et al., MOBILE: User-Centered Interface Building, in CHI99:

ACM Conference on Human Factors in Computing Systems. Pittsburgh,

May 1999, ACM press.

[Rat02] The Rational Unified Process (RUP) homepage,

http://www.rational.com/products/rup/index.jsp, [07.03.2002].

[San01] Sandnes, F., Self-designing User Interfaces, In Proceedings of the 27th

EUROMICRO Conference: Workshop on Multimedia and

Telecommunications, Warsaw, Poland, IEEE Computer Society Press,

September, pp. 452-459, 2001.

[SAX98] SAX, the Simple API for XML 1.0,

http://www.megginson.com/SAX/SAX1/index.html, [07.11.2000].

[Sch98] Schlungbaum, E., (Knowledge-based) Support of Task-based User

Interface Design in TADEUS, position paper in CHI’98 Workshop, From

Task to Dialogue: Task-based User Interface Design, ACM SIGCHI

 89

Conference on Human Factors in Computing Systems, April 21-23, Los

Angeles, CA, USA, 1998.

[Sch01] Schilit, B. et al., m-links: An Infrastructure for Very Small Internet

Devices. In Proceedings of the 7th Annual International Conference on

Mobile Computing and Networking 2001, pp. 122-131, July 16-21 2001,

Rome, Italy, ACM Press, 2001.

[Sep02] Seppä, A., Dynamic descriptions with XML (in Finnish – Dynaamisuuden

kuvaaminen XML:llä), Master's thesis, University of Helsinki, not yet

published.

[Shn00] Shneiderman, B., Pushing Human-computer Interaction Research to

Empower Every Citizen, Unpublished Manuscript, University of Maryland

at College Park, Available at http://www.cs.umd.edu/~ben/p84-

shneiderman-May2000CACMf.pdf, [29.04.2002].

[Shn01] Shneiderman, B., Universal Usability as a Stimulus to Advanced Interface

Design, A Draft, to Appear in Behaviour & Information Technology 20 th

Anniversary Issue.

[Sil00] Silva, P., User Interface Declarative Models and Development

Environments: A Survey, In Interactive Systems: Design, Specification

and Verification (7 th International Workshop on Design, Specification and

Verification of Interactive Systems), Limerick, Ireland. LNCS Vol. 1946,

pp. 207-226, Springer-Verlag, June 2000.

[Sti98] Stirewalt, K., Rugaber, S., Automating UI Generation by Model

Composition, In Proceedings of Automated Software Engineering

(ASE'98), 13th IEEE International Conference, IEEE 1998.

[Sun99] Sun Microsystems, Java 2 Platform Enterprise Edition Specifi-

cation, v1.2, December 1999, Available at

http://java.sun.com/j2ee/download.html , [07.02.2002].

[Sun01] Sun Developer Connection, A Framework for Multilingual, Device-

Independent Web Sites, April 2001, Available at

http://wwws.sun.com/software/mxl/developers/xmlldijsp/framework.html ,

[29.04.2002].

 90

[Sys01] SysOpen Plc, Developing Web and Wireless Applications with

OpenPort. SysOpen Plc, January, 2001, http://www.sysopen.fi.

[Van93] Vanderdonckt, J., Bodart, F., Encapsulating Knowledge for Intelligent

Automatic Interaction Objects Selection, in ACM Annual conference on

Human Factors in Computing Systems, pp. 424-429, 1993, ACM Press.

[Van00] [2] Vanderheiden, G., Fundamental Principles and Priority Setting for

Universal Usability, In Proceedings of CUU 2000 - Conference on

Universal Usability, ACM SIGCHI, 2000.

[Voa98] Voas, J., Maintaining Component-Based Systems, IEEE Software.

Vol. 15, No. 4, July/August 1998, p. 22-27.

[Voi00] VoiceXML Forum, Voice eXtensible Markup Language (VoiceXML)

version 1.0, May 2000, Available at http://www.w3.org/TR/2000/NOTE-

voicexml -20000505/, [07.03.2002].

[W3C98] DOM, Document Object Model, Version 1.0, W3C Recommendation 1

October 1998. http://www.w3.org/TR/REC-DOM-Level-1/, [27.04.2002].

[W3C99a] W3C, HTML 4.01 Specification, December 1999, Available at

http://www.w3.org/TR/1999/REC-html401-19991224, [07.03.2002].

[W3C99b] W3C, Web Content Accessibility Guidelines (WAI) 1.0, May 1999,

Available at http://www.w3.org/TR/WAI-WEBCONTENT/, [07.03.2002].

[W3C99c] W3C, XSL Transformations (XSLT) 1.0, November 1999, Available at

http://www.w3.org/TR/xslt, [07.03.2002].

[W3C00a] W3C, Composite Capabilities/Preference Profiles, (CC/PP):

Requirements and Architecture, July 2001, Available at

http://www.w3.org/TR/2000/WD-CCPP-ra-20000721/, [07.03.2002].

[W3C00b] W3C, Extensible Markup Language (XML) 1.0 (Second Edition), October

2000, Available at http://www.w3.org/TR/2000/REC-xml-20001006,

[07.03.2002].

[W3C00c] W3C, Composite Capabilities/Preference Profiles, (CC/PP): Structure

and Vocabularies (Working draft), March 2001, Available at

http://www.w3.org/TR/CCPP-struct-vocab/, [07.03.2002].

 91

[W3C00d] W3C, XHTML 1.0: The Extensible HyperText Markup Language, January

2000, Available at http://www.w3.org/TR/2000/REC-xhtml1-20000126,

[07.03.2002].

[W3C01] W3C, Device independence Principles (Working draft 18 September

2001), DIP-2: Device independent Web page identifiers, Available at

http://www.w3.org/TR/di-princ/, [17.03.2002].

[WAG01] WAG UAProf, WAP User Agent Profile, Available at

http://www1.wapforum.org/tech/documents/WAP-248-UAProf-

20010530-p.pdf, [27.04.2002].

[Wah97] Wahl, M., Howes, T., Kille, S., Lightweight Directory Access Protocol

(v3), IETF RFC 2251, December 1997, http://www.rfc-

editor.org/rfc/rfc2251.txt, [12.03.2002].

[WAP98] Wireless Application Protocol Forum, Wireless Application

Protocol Architecture Specification, April 1998, Available at

http://www1.wapforum.org/tech/terms.asp?doc=WAP-100-WAPArch-

19980430-a.pdf [07.03.2002].

[XSL99] XSLT considered harmful,

http://www.xml.com/lpt/a/1999/05/xsl/xslconsidered_1.html,

[09.03.2002].

[XUL99] XUL (XML-based User Interface Language), Introduction to a XUL-
document, Available at
http://www.mozilla.org/xpfe/xptoolkit/xulintro.html, [15.10.2001].

 92

A Grammar of RDIXML task model

This appendix contains the commented Document Type Description (DTD) for the

RDIXML language.

<?xml version="1.0" encoding="UTF-8"?>
<!--
DTD FOR RDIXML TASK MODEL GRAMMAR
-->
<!-- A simple entity for a boolean condition -->
<!ENTITY % boolean "(true | false)">
<!-- abstract data types
input - basic input field
input1-n - input field for multiple items
output - basic output field
output1-n - output for multiple fields
-->
<!ENTITY % abstracttype "(input | input1-n | output | output1-n | session_data)">
<!-- ELEMENT DESCRIPTIONS START -->
<!--
ELEMENT application
defines a single application, which contains a number of tasks. In practice, elements from other models should be
included.
-->
<!ELEMENT application (tasks)>
<!--
ELEMENT tasks:
collects several task elements
-->
<!ELEMENT tasks (task+)>
<!--
ELEMENT task:
models a higher lever user goal.

ATTRIBUTES:
task_id - Identifies a task
constructor - a simplified model for describing relations between subtasks
-->
<!ELEMENT task (preconditions*, (subtask | systemtask)*)>
<!ATTLIST task
 task_id CDATA #REQUIRED
 constructor (sequential | repeatable | optional) "sequential"
>
<!--
ELEMENT subtask:
models actions required to complete the higher level task. Subtasks may divide into subtasks.

ATTRIBUTES:
subtask_id - identifies a subtask
constructor - a simplified model for describing relations between inner subtasks
excludeddevices - By default, a subtask is ment for all device types. This element allows excluding devices from the
hierarchical device groups. Reserved word "ALL" can be used to exclude all devices (so that just some devices can be
included)
includeddevices - If some group is excluded from a subtask, a device included in this hierarchical group can be "re -
included". NOTE: if only "includeddevices" is used, all other device types are excluded from the task!
-->
<!ELEMENT subtask (preconditions*, ((systemaction | systemtaskreference)?, fieldreferences?, useractions?), subtask*)>
<!ATTLIST subtask
 subtask_id CDATA #REQUIRED
 constructor (sequential | repeatable | optional) "sequential"
 excludeddevices CDATA #IMPLIED

 93

 includeddevices CDATA #IMPLIED
>
<!--
ELEMENT navigation
Is used to define places for navigation elements; forces a navigation element definition with dialogue elements -->
<!ELEMENT navigation EMPTY>
<!ATTLIST navigation
 target CDATA #REQUIRED
>
<!--
ELEMENT tasknavigation
Is used to force navigation to another task, i.e to some subview containing the referred task; forces a dialogue reference
to navigate to a subview containing the referred task -->
<!ELEMENT tasknavigation (taskref)>
<!--
ELEMENT preconditions:
Defines preconditions for a task.

ATTRIBUTES:
"excludeddevices" and "includeddevices" - as before
-->
<!ELEMENT preconditions (requiredtasks)>
<!ATTLIST preconditions
 excludeddevices CDATA #IMPLIED
 includeddevices CDATA #IMPLIED
>
<!--
ELEMENT requiredtasks
Defines the required tasks to fulfil a condition. Inner requiredtasks are allowed to specify additional operators (or | and)

ATTRIBUTES
operator - defines relations between required tasks (KUINKA NÄÄ SUHTAUTUU REPEATABLE YMS.. JUTTUIHIN?)
-->
<!ELEMENT requiredtasks (taskref+, requiredtasks?)>
<!ATTLIST requiredtasks
 operator (or | and) #IMPLIED
>
<!-- ELEMENT taskref
Is used to reference tasks
-->
<!ELEMENT taskref (#PCDATA)>
<!--
ELEMENT postconditions
Collects postcondition elements.
-->
<!ELEMENT postconditions (postcondition+)>
<!--
ELEMENT postcondition
Is used to define keywords that EJB objects are committed to use. Discovering that a task is finished is in many cases not
enough. It is important to find out exactly how the task was finished. The output of a task determines its consequences,
i.e. a task may have many implications according to how it was completed. Importantly, post conditions provide a
possibility to enable a task and force navigation to any subtask containing the enabled task.

ATTRIBUTES
keyword - a string returned by a business object must match to this
"excludeddevices" and "includeddevices" - as before
-->
<!ELEMENT postcondition (((enable | disable)?), operation?, (navigation | tasknavigation)?, error?)>
<!ATTLIST postcondition
 keyword CDATA #REQUIRED
 excludeddevices CDATA #IMPLIED
 includeddevices CDATA #IMPLIED
>
<!--
ELEMENT enable
Holds references to those tasks that are enabled due to the postcondition.

ATTRIBUTES
forcenavigation - defines whether the designer has to provide a navigational target for the task (for cases when the task is
not available in the same view

 94

-->
<!ELEMENT enable (taskref+)>
<!ATTLIST enable
 forcenavigation %boolean;
>
<!--
ELEMENT disable
Holds references to those tasks that are disabled due to the postcondition.
-->
<!ELEMENT disable (taskref+)>
<!--
ELEMENT operation
Describes the operation details by referring to existing domain data

ATTRIBUTES
class - refers to an EJB bean, which must be defined by the domain model
method - refers to an EJB bean's method, which must be defined by the domain model
cachealias - is used to cache retrieved data for later use by other tasks; in practice, other properties, such as time limit for
cache invalidation, would have to be provided.
"excludeddevices" and "includeddevices" - as before
-->
<!ELEMENT operation EMPTY>
<!ATTLIST operation
 class CDATA #REQUIRED
 method CDA TA #REQUIRED
 cachealias CDATA #IMPLIED
 excludeddevices CDATA #IMPLIED
 includeddevices CDATA #IMPLIED
>
<!--
ELEMENT error

ATTRIBUTES
type - static: a message defined by the presentation model; method_message: the message returned by the used
business method is used; validation_messages: xxx?
forcenavigation - a separate presentation can be appointed for the message
-->
<!ELEMENT error EMPTY>
<!ATTLIST error
 type (static | method_message | validation_messages) "static"
 forcenavigation %boolean; "false"
>
<!--
This element collects all useractions.
-->
<!ELEMENT useractions (useraction+)>
<!-- ELEMENT useraction:
This element is used to model the interaction flow concerning a triggered UI action. For example, when the user sends a
form to the system, the system most probably wants to pass the data to some business specific object. RDIXML considers
user actions as fully portable at task level. However, dialogue level elements may override task level useractions.

ATTRIBUTES:
useraction_id: The id of the user action is just a name to simply describe the action that the user must make, e.g.
"send_the_form".
-->
<!ELEMENT useraction (operationdescription | navigation | tasknavigation)>
<!ATTLIST useraction
 useraction_id CDATA #REQUIRED
>
<!-- ELEMENT operationdescription
Describes operation properties
-->
<!ELEMENT operationdescription ((operation+ | test), postconditions*)>
<!ELEMENT test EMPTY>
<!--
ELEMENT systemaction:
This element is used to model the actions that the system must do for data retrieval concerning a certain task. In essence,
actions
described inside this element are to be executed before the user actions, i.e. the data that is retrieved through this
information, is provided to the user as a part of the interaction possibility.

 95

-->
<!ELEMENT systemaction (operationdescription)>
<!--
ELEMENT systemtask
Systemtask provides a reusable way to define systemactions. Many separate subtasks can refer to the same
systemaction for data retrieval purposes.

ATTRIBUTES
systemtask_id - identifies a systemtask
-->
<!ELEMENT systemtask (systemaction?, fieldreferences?)>
<!ATTLIST systemtask
 systemtask_id CDATA #REQUIRED
>
<!-- ELEMENT systemtaskreference
Used by subsystem elements to refer to a systemtask
-->
<!ELEMENT systemtaskreference (#PCDATA)>
<!-- ELEMENT domainreference
Is used to refer to a domain object

ATTRIBUTES
reference - refers to a domain_id
-->
<!ELEMENT domainreference (fieldreference*)>
<!ATTLIST domainreference
 reference CDATA #REQUIRED
>
<!--
ELEMENT fieldreferences
Is used to map domain attributes to a task.

ATTRIBUTES
type - Defines whether the field is an input or an output field. This allows using the device model to automatically choose
default presentation.
 If no fieldreference-elements are found, all attributes of the domain object are printed (according to the role) and
the type is the one given here.
-->
<!ELEMENT fieldreferences (domainreference?)>
<!ATTLIST fieldreferences
 type %abstracttype;
>
<!--
ELEMENT fieldreference:

ATTRIBUTES:
reference - refers to domain model element FIELD
type - Defines whether the field is an input or an output field. This allows using the device model to automatically choose
default presentation.
"excludeddevices" and "includeddevices" - as before
-->
<!ELEMENT fieldreference EMPTY>
<!ATTLIS T fieldreference
 reference CDATA #REQUIRED
 type %abstracttype;
 excludeddevices CDATA #IMPLIED
 includeddevices CDATA #IMPLIED
>

 96

B E-shop – Task Model Source Code

This appendix contains the source code of the use case’s task model.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE tasks SYSTEM "C: \Opiskelu\Gradu\UIM\Task orientation\task.dtd">
<tasks>
 <task task_id="buy_items" constructor="sequential">
 <!-- all tasks are completed in order -->

<!-- BROWSE PRODUCTS - this task can be done continuosly, i.e. it is visible all the time. This task is not
discussed at the simulation and hence not implemented. -->

 <subtask subtask_id="browse_products" constructor="repeatable" excludeddevices="PDA, WAP"/>
 <!-- END OF BROWSE PRODUCTS -->

<!-- SEARCH_INSTRUMENTS - this task can be done continuosly, i.e. it is visible all the time. In addition, it is
available for all devices -->

 <subtask subtask_id="search_instruments" constructor="repeatable">
 <fieldreferences>
 <domainreference reference="product_manager">

 <!-- this field is empty when viewed for the user, so there's no need for "systemoperation" elements.
 -->

 <fieldreference reference="search_string"/>
 <!-- these rest of the attributes are initially not to be rendered, but they must be delivered to the EJB
bean. This way the handler of the search action is aware of which attributes to return of the found
items. -->

 <fieldreference reference="name" type="output"/>
 <fieldreference reference="price" type="output"/>
 <fieldreference reference="quantity" type="input"/>
 </domainreference>
 </fieldreferences>
 <useractions >
 <useraction useraction_id="search">
 <!-- this describes how the triggered "search" action is managed -->
 <operationdescription>

<!-- operation definition forces the engine to cache the received search results to be used by newly
invoked tasks -->

 <operation class="product_manager" method="search" cachealias="list_instruments"/>
 <postconditions>
 <postcondition keyword="items_found">
 <enable forcenavigation="true">

<!-- enable the "add_to_cart" task and force a high-level navigational mapping to the
task, i.e. force the designer to present the task immediately. -->

 <taskref>add_to_cart</taskref>
 </enable>
 </postcondition>

<!-- device model may restrict the amount of viewed result rows - this postcondition prepares
for that -->

 <postcondition keyword="cache_manager.items_left">
 <!-- if all items cannot be viewed at once -->
 <enable>
 <!-- Let the user browse for more results -->
 <taskref>browse_remaining_instruments</taskref>
 </enable>
 </postcondition>
 <postcondition keyword="no_items_found">
 <!-- the user is viewed an error message - the presentation model should define how -->
 <error type="method_message"/>
 </postcondition>
 </postconditions>
 </operationdescription>
 </useraction>
 </useractions >
 </subtask>
 <!-- END OF SEARCH_INSTRUMENTS -->
 <!-- ADD_TO_CART -->
 <subtask subtask_id="add_to_cart">

 97

 <preconditions>
 <requiredtasks operator="or">

 <!-- either one of given taskrefs suffice. This condition definition happens to match for both PDA and
WEB users -->

 <taskref>browse_produc ts</taskref>
 <taskref>search_instruments</taskref>
 </requiredtasks>
 </preconditions>
 <!-- This system action uses the results that were cached from the "search" method of task "search_items".
 -->
 <systemaction>
 <operationdescription>

<!-- note that this reference is user specific and the cache manager gets the data from current user's
session -->

 <operation class="cachemanager" method="list_instruments"/>
 </operationdescription>
 </systemaction>
 <fieldreferences>
 <domainreference reference="OrderBean">
 <fieldreference reference="name" type="output"/>
 <fieldreference reference="price" type="output"/>
 <fieldreference reference="quantity" type="input"/>
 </domainreference>
 </fieldreferences>
 <useractions >
 <useraction useraction_id="submit_to_cart">
 <operationdescription>
 <operation class="order_handler" method="insert"/>
 <postconditions>

<!-- on successful insertion, the PDA user is provided a possibility to accept the order, and the
Web user is allowed to proceed to check out. If the cart is already visible, it is refreshed to view
the correct data (see grammar on "enable"). -->

 <postcondition keyword="success" includeddevices="PDA">
 <enable forcenavigation="true">
 <taskref>accept_order</taskref>
 </enable>
 </postcondition>
 <postcondition keyword="success" includeddevices="WWW">
 <enable forcenavigation="true">
 <taskref>check_out</taskref>
 </enable>
 </postcondition>
 </postconditions>
 </operationdescription>
 </useraction>
 </useractions >

<!-- BROWSE REMAINING INSTRUMENTS - this is an inner subtask. Optional inner subtasks are disabled
by default -->

 <subtask subtask_id="browse_remaining_instruments" constructor="optional">
 <useractions>
 <useraction useraction_id="browse_remaining_instruments">
 <operationdescription>
 <!-- this is part of the engine's generic functionality -->
 <operation class="cachemanager" method="advance(list_instruments)"/>
 <postconditions>
 <postcondition keyword="items_left">
 <enable>
 <!-- This subtask may enable itself. -->
 <taskref>browse_remaining_instruments</taskref>
 </enable>
 </postcondition>
 <postcondition keyword="default">
 <!-- all other keywords match to this definition -->
 <disable>
 <taskref>browse_remaining_instruments</taskref>
 </disable>
 </postcondition>
 </postconditions >
 </operationdescription>
 </useraction>

 98

 </useractions>
 </subtask>
 </subtask>
 <!-- END OF ADD_TO_CART -->
 <!-- VIEW_CART_DATA - This is reused by multiple subtasks -->
 <systemtask systemtask_id="view_cart_data">
 <systemaction>
 <operationdescription>
 <operation class="order_handler" method="view_cart_data"/>
 </operationdescription>
 </systemaction>
 <fieldreferences>
 <domainreference reference="order_handler">
 <!-- picture of the cart -->
 <fieldreference reference="cart_picture" type="output"/>
 <fieldreference reference="name" type="output"/>
 <!-- item_count tells the amount of a single item in the order -->
 <fieldreference reference="item_count " type="output"/>
 <!-- items_total is presented beside the cart picture -->
 <fieldreference reference="items_total" type="output"/>
 <fieldreference reference="price" type="output"/>
 <fieldreference reference="total_price" type="output "/>
 </domainreference>
 </fieldreferences>
 </systemtask>
 <!-- CHECK OUT - not activated for the PDA users -->
 <subtask subtask_id="check_out" excludeddevices ="PDA">
 <preconditions>
 <requiredtasks>
 <taskref>add_to_cart</taskref>
 </requiredtasks>
 </preconditions>

<!-- This task reuses external systemaction. Since all fields are not needed, the presentation model can leave
some of them out -->

 <systemtaskreference>view_cart_data</systemtaskreference>
 <useractions >
 <useraction useraction_id="check_o ut">
 <!-- navigating instruction forces navigation and changes the status of the target task to enabled -->
 <tasknavigation>
 <taskref>accept_order</taskref>
 </tasknavigation>
 </useraction>
 </useractions >
 <subtask subtask_id="remove_from_cart">
 <!-- Items can be removed from the cart -->
 <useractions>
 <useraction useraction_id="submit_to_cart">
 <operationdescription>
 <operation class="order_handler" method="remove"/>
 <postconditions>
 <postcondition keyword="ok">

<!-- The dialogue model must refresh the current view (stored in the server side session) -->
 <navigation target="CURRENT_VIEW"/>
 </postcondition>
 </postconditions >
 </operationdescription>
 </useraction>
 </useractions>
 </subtask>
 </subtask>
 <!-- ACCEPT ORDER -->
 <subtask subtask_id="accept_order">
 <preconditions includeddevices="PDA">
 <requiredtasks>
 <taskref>add_to_cart</taskref>
 </requiredtasks>
 </preconditions>
 <preconditions includeddevices="WWW">
 <requiredtasks>
 <taskref>check_out</taskref>

 99

 </requiredtasks>
 </preconditions>
 <!-- External system action definition is reused -->
 <systemtaskreference>view_cart_data</systemtaskreference>
 <useractions >
 <useraction useraction_id="accept_order">
 <operationdescription>

 <!-- Although device type information reaches the order_handler object automatically, a different
operation is used to manage PDA orders -->

 <operation class="order_handler" method="accept_order" excludeddevices ="PDA"/>
 <operation class="order_handler" method="accept_order_with_delay"/>
 <postconditions>
 <postcondition keyword="error">
 <error type="method_message"/>
 </postcondition>
 <postcondition keyword="ok">
 <enable>
 <taskref>view_confirmation</taskref>
 <taskref>navigate_to_start</taskref>
 </enable>
 </postcondition>
 <!-- For a PDA device, the cancel actions is enabled as well -->
 <postcondition keyword="ok" excludeddevices="ALL" includeddevices="PDA">
 <enable>
 <taskref>cancel_order</taskref>
 </enable>
 </postcondition>
 </postconditions>
 </operationdescription>
 </useraction>
 </useractions >
 <!-- VIEW CONFIRMATION -->
 <subtask subtask_id="view_confirmation">
 <!-- At this point the framework uses its cache mechanism to retrieve this data -->
 <systemtaskreference>view_cart_data</systemtaskreference>
 <!-- Possibility to cancel for the PDA user -->
 <subtask subtask_id="cancel_order" constructor="optional" excludeddevices ="WWW">
 <useractions>
 <useraction useraction_id="cancel_order">
 <operationdescription>
 <operation class="order_handler" method="cancel_last_order"/>
 </operationdescription>
 </useraction>
 </useractions>
 </subtask>
 <subtask subtask_id="navigate_to_start" constructor="optional">
 <useractions>
 <!-- forces to present a navigation -->
 <useraction useraction_id="navigate_to_start">
 <!-- the target does not refer to specific view name -->
 <navigation target="default_view"/>
 </useraction>
 </useractions>
 </subtask>
 </subtask>
 </subtask>
 <!-- END OF ACCEPT ORDER -->
 </task>
 <!-- END OF BUY_ITEM TASK -->
</tasks>

 100

C E-shop –Presentation Model Source Code

This appendix sketches a presentation for the PDA device. The sketch does not cover all

tasks related to the use case.

<?xml version="1.0" encoding="UTF-8"?>
<application application_id="e-shop">
 <views>
 <view view_ID="shop_view" frameset ="single_frameset" construction="astable" defaultframetarget ="_top"
title="E-shop" devicegroup="PDA" layoutstructure="shop_layout" default="false">
 <subviewref erence reference="header_subview"/>
 <subviewreference reference="search_subview"/>
 </view>
 </views>
 <subviews>
 <subview subview_ID="header_subview">
 <!-- In the absence of CSS support, we define the text size here -->
 <text size="14">The mobile instrument shop!</text>
 </subview>
 <!-- This subview later replaces the "header_subview" -->
 <subview subview_ID="add_to_cart_subview">
 <heading>
 <title>add_to_cart_subview</title>

<!-- Communicator does not support Javascript - if it would, scripts (for validation, for example) could be
attached here -->

 </heading>
 <taskproperties>
 <taskproperty reference="buy_items">
 <subtaskproperties>
 <subtaskproperty reference="add_to_cart" printIfDisabled="false">

<!-- The task is put inside form; the framework generates the "action" attribute of the form at run -
time, i.e. forms the URL -->

 <form target="self">
 <!-- the new content replaces this subview -->
 <!-- the content is wrapped inside a table - all four components at the same row -->
 <table rowelements="4">
 <!-- Communicator does not support CSS, so styles must be specified here -->
 <tableheading bgcolor="yellow">
 <columnheader>Product</columnheader>
 <columnheader>Price</columnheader>
 <columnheader>Add to cart</columnheader>
 </tableheading>
 <!-- presentation for fieldproperties is not defined - automatic mapping is used -->
 <actionproperties>

<!-- For a Javascript supporting device, this action might trigger a validation script
(introduced at the heading section -->

 <actionproperty reference="submit_to_cart" label="Add">
 <UIcomponent type="submit"/>

<!-- the dialogue element below defines the subview that is used to present the
"accept_order" task. Note that the task model forces this definition. In this case
the search_subview already contains the accept_order task, so this would not be
necessary -->

 <tasknavigations>
<tasknavigation navigation_id="accept_order"
target="search_subview"/>

 </tasknavigations>
 </actionproperty>
 </actionproperties>
 </table>
 </form>
 </subtaskproperty>
 </subtaskproperties>
 </taskproperty>
 </taskproperties>

 101

 </subview>
 <subview subview_ID="search_subview">
 <heading>
 <title>search_subview</title>
 </heading>
 <!-- now the thing here is to find out whether to map to task model or to dialogue model, or to both models.
 -->
 <taskproperties>
 <taskproperty reference="buy_items">
 <subtaskproperties>

 <!-- Initially, the only enabled subtask is search_items. The subtasks are presented similar to the
"add_to_cart" subtask and are thus not sketched here. -->

 <subtaskproperty reference="search_instruments"/>
 <subtaskproperty reference="accept_order"/>
 <subtaskproperty reference="cancel_order"/>
 </subtaskproperties>
 </taskproperty>
 </taskproperties>
 </subview>
 </subviews>
 <layoutstructures>
 <layoutstructure layoutstructure_ID="basic_layout" division="vertical" devicegroup="PDA">
 <frame frame_ID="upper_frame" size="20" dimensiontype="percentage"/>
 <frame frame_ID="lower_frame" size="80" dimensiontype="percentage"/>
 </layoutstructure>
 </layoutstructures>
</application>

