An XML-based Framework for Developing Usable and Reusable
User Interfaces for Multi-channel Applications

Report - 2002 -

Helsinki, 3rd May 2002

Pro Gradu Thesis

Department of Computer Science
UNIVERSITY OF HELSINKI

An XML-based Framework for Devel oping Usable and Reusable
User Interfaces for Multi-channel Environments

Antti Martikainen

Pro Gradu thesis, Report - 2002 -
Department of Computer Science
UNIVERSITY OF HEL SINKI

Helsinki, 3rd May 2002, 91 pages

Supervisors:

PhD Jukka Paakki, University of Helsinki

PhD Pekka K&hkipuro, SysOpen Pic

Lic.Sc. (Tech.) Marko Nieminen, Helsinki University of Technology

Abstract
User interface languages are struggling to meet the requirements for supporting universal
usability in multi-channel environments. Significant problems relate to achieving a systematic
user interface modelling process that is flexible enough to satisfy device specific usability
requirements. The difficulties commonly result in laborious application maintenance and large
development costs, or in bad usability. This thesis introduces a subset of RDIXML, an XML-
based device independent user interface language. RDIXML is a task-based language that
addresses device specific requirements for task sequences. While device specific functionality is
alowed, the language effectively reuses the device independent task elements. A framework is
sketched to interact with devices and to dynamically transform RDIXML descriptions to device

specific user interfaces. An example application is used to simulate the framework's functionality.

Computing Reviews Categories: D.2.13, H.5.2, K.6.3

Keywords: User interfaces, User-centered design, User interface management systems (UIMS),
Reuse models, Software maintenance

Additional keywords: Task modelling, Universal usability, Device-based navigation, Automatic

user interface generation, Multi-channel architectures, XML, WWW

Contents

I 111 [F 1 o o PSP 1
2 USaDility FOUNAELION..........ciieiiiie ettt re e 5
2.1 Task-DASEA DESIGNocuieiecice ettt st sa e ere e re e 5
2.2 UNIVersal USBDITITYccooviieiceie et ene e 8
2.3 Context-senSitivVe NaVIGatiON.coceiiriereseerie e seeas 10
3 Device Independent Ul Languages and MOdEIScccovveiiiiceve e 13
3.1 Device Independent User Interface Languagescccevveeeveerieceeviie e 13
3.2 User Interface MOAE NGcoouiiiieiiciceecee e 18
4 The RDIXML LANQUBOEccceiuiieiiieeiieiiesieeie sttt e e ste et sre e ste e ssesre s e resneesneenes 26
4.1 Objectives for the LAaNQUAGEcooereerieriieiesieee e 26
4.2 MOdels Of the LanQUAGE.........coeereiiriiieeeesie ettt 28
G|V oo (= Y=o o] o SR 40
5The RDIXML FrameWOrKccoeiiiiiniiieies et e ens 44
5.1 An Introduction to Multi-channel ArchiteCtures...........cocvvevveveninien e 44
5.2 Objectives for the FrameWOrK...........ccooveiiiiiieieieese e 45
5.3 Technological FOUNTAIONS.........ccoiiiirieieriesie et e a7
5.4 Run-time ApPliCatioN LOGICccveveieieieieiieisesie sttt 51
5.5 The RDIXML ENQINE.....ciiiiiiieiieeiesieeite st ste st eeae e s b be e e sreeneaneesreas 53
5.6 Specializing the FrameworK............ccveiiiieiicece e 60
6 E-Shop - AN EXaMPIE USE CBSE.......ceeeciiriiiesieeeeee et s 64
8.1 ODJECLIVESciiiitieieiee ettt sttt et s se et e be et e sbe et e nbesneeeenreas 64
6.2 The Use Case iN GENEIal.........ccoviiieieiieie sttt ettt nreas 65
ORGS0V = 1 o o OO RTUSPRRSR 67
T ANBIYSIS. ..ttt e e et e e e te e Re et e nbeeae e beeRe e reereeteereenenren 78
8 ConClUSIONS aNd FULUIE WOTK.......cc.ciueriirieriiniesie ettt 81
REFEIENCES......cee ettt s b et e st e e be e besbeenbesaeeneennens 34
A Grammar of RDIXML task MOGEcccoeriiiiiiereeeeeeee e 92
B E-shop — Task Model SOUrCe COUE..........c.ecuiiiirieieiierie sttt 9%

C E-shop — Presentation for PDA EVICE........cccveieiiiiese ettt 100

List of figures

FIGURE 1. COMPLETING A TASK THROUGH DIVERSE SEQUENCES OF ACTIONS.ecvveeeeennns 12
FIGURE 2: AN ABSTRACT Ul DESCRIPTION CAN BE TRANSFORMED FOR VARIOUSTARGET

PLATFORMS. ..eiiittteeeeitteeeeeteeeessateeesetteeassaseeasaaseeeesasseeesaasseeesassseeesanteesssnssneesanseesssnsenes 14
FIGURE 3. GOLF RESULTSVIEWED BY A PALM VII DEVICE.cociiviiiiecieee et 16
FIGURE4: SCROLLING VIOLATESUSABILITY. .eeitieeteeeeteeeireeeireesree eesseesssesssesssessseessessneas 16
FIGURES: THE MAPPING PROBLEM. ...ccutiiieiitiieeeiiteeeesiteeeesseeessssseesssssesssassessssnssessssasesensns 24
FIGURE 6. VIEWS COMBINE SUBVIEWSBY MAPPING THEM TO LAYOUT STRUCTURES. 32
FIGURE 7. PRESENTATION STRUCTURE FOR A SINGLE ATTRIBUTE.veiviiieeeiieeeernieeeene s 33
FIGURE 8. A SKETCH OF A DOMAIN OBJECT DESCRIPTION IN RDIXML FORMAT. 35
FIGURE9: RDIXML MODELSDEVICESIN A HIERARCHICAL TREE STRUCTURE.c.veu.... 37
FIGURE 10: ACCESSLEVEL 2 ISREQUIRED FOR ACCESSING TASK “BUY_ITEM”ccccvvenene 39

FIGURE 11: APPLICATIONS COMPRISE OF TASK, DOMAIN, USER, DIALOGUE AND

PRESENTATION ELEMENTS. ..eetteiteeiteeteesteesteesseesaessssesssesseessessseessessssssnsesssesssesssessnnenn 40
FIGURE12: MAPPINGS BETWEEN RDIXML MODELS......ccccivieitieeeieeecreeeeireesree e envee s 41
FIGURE 13: THE RDIXML ARCHITECTURE.cccuttiieiciiieeeesrieeesseeeetteeeeessnaeessennnneesssnneennns 50
FIGURE 14: A SINGLE TASK PRINTED ASACTIVE (ABOVE) AND ASINACTIVE (BELOW)....... 55
FIGURE 15 THE LOGICAL RENDERING PROCESS.uveieiuieeiireesreeeiseeessseesseesssesssssesssessses 58
FIGURE 16: TASK FLOW FOR WWW/-BROWSERS.cccoiitiiieinieeesireeeeenrteeessnreeessnnneessnssneasas 66
FIGURE 17: TASK FLOW FOR PDA DEVICESuttiiiitiieeiitieeesitteeessteeeesssteesssnneeesssnseesssnseesas 67
FIGURE 18: COMMUNICATOR = VIEW STRUCTUREcccoiitieeiitreeeireeesst sessrneeessnreesssnssesensns 68
FIGURE 19: COMMUNICATOR - STARTING POINT OF THE SERVICE.veeeictveeeireeeennreeesinecnns 68
FIGURE 20: COMMUNICATOR - LAYOUT STRUCTURE FOR THEVIEWccoveeeeeeeeeeeeeeeeennns 68
FIGURE 21: ENTERING A SERVICE. ..ccctttiiiteieiitteeesteeesssesssreessssseesssesessssessss sesssseesssnssesessns 70

FIGURE 22: WEB BROWSER - A FLASH ADVERTISEMENT IS THE USER SROUTE TO THE

SERVICE. ..uuttieeeitteeeeeteeeesatteeessteeeesataeeasaateeae s saeeesasseeeesseeeesasseeesansseeesanseeesssnsaneassnssnnns 71
FIGURE 23: WEB BROWSER - STARTING POINT OF THE SERVICE.eecoiivveeeiitreeeeireeeeesaneeeens 72
FIGURE 24: WEB BROWSER - LAYOUT STRUCTURE FOR THE VIEW.veeevtieeireeereeecneeeenneae 72
FIGURE 25. COMMUNICATOR - SEARCH RESULTS. ...uttieiiieeeeiteeeesneee st sesnnneeessnseesssnnsenensns 73
FIGURE 26. COMMUNICATOR - AN INSTRUMENT IS ADDED TO THE SHOPPING CART. 73

FIGURE 27. SEQUENCE CHART OF HANDLING THE “ADD_TO_CART” ACTION. ..ccvvvrverennen. 75

FIGURE 28 COMMUNICATOR - ORDERACCEPTED.ceteiiiiieeiiteeeessneeeeennreesssnnseeesssseseasns 76
FIGURE 29: WEB BROWSER - THE CONTENTS OF THE CART. c.vvtteiiiieeeirreeesereeeesnnreeesnnreeeens 76
FIGURE 30: WEB BROWSER - THE CHECK OUT PHASE. ...vvtiiiiieeeiiieeeeestreeessreeessnneessnsneeenns 76
FIGURE 31: WEB BROWSER — ORDER ACCEPTED.ccciititeeitieeesireeeeensteesssnsesessnsesessnssneanas 77

List of tables

TABLE 1. VARIANCE OF DISPLAY RESOLUTION BETWEEN VARIOUS INTERNET DEVICES....... 9

TABLE 2 VARIOUS INTERNET DEVICESAND THE Ul LANGUAGES THEY USE.....c.ccccveeeennee. 10
TABLE 3: ESSENTIAL MODELSOF UIM SYSTEMS. ...uviiiiiiiiiee e cceeee ettt e e 22
TABLE 4. SOME OF THE POSSIBLE MAPPINGS BETWEEN UIM MODELS.ccccoevveeeveeeinveenns 25
TABLE5: KEY ELEMENTSOF RDIXML TASK MODEL ...ccccuvieeiieeeieeeeireeeveeeeseeessseesveesssneens 29

TABLE 6: DESIGN TIME MAPPING POSSIBILITIES BETWEEN RDIXML MODELS.ueeeee... 42

1 Introduction

Increasing number of mobile devices has led to a significant growthin the number of
variety of contexts that user interface software must support [EisO0]. As new standards
evolve and some devices deviate from them, the equipment used to browse the Internet
varies more than in the past. In addition, new user groups with diverse educational and
cultural backgrounds are discovering the Web [Shn01]. This heterogeneity atogether
forms a huge design challenge and serving the users of the World Wide Web is getting

more and more complicated.

These days enterprises typically deliver content to one or more channelsin the World
Wide Web. Existing separate channels, such as Web and voice, are typically not
integrated [LunO01]. As enterprises are striving to support universal usability, they must
provide multi -channel content, i.e. their Web-based services should be available for
various user groups with various browsing equipment. Even though application server
technologies do exist to enable faster and more robust Web application devel opment,
delivering multi-channel content is difficult. Many companies have trouble with their
Web development and are in need for design methods, formalisms, languages and tools

for enhancing the existing technology, even more so in the future [Bon99].

Maintai ning separate software processes for separate deliverables will prove cost
prohibitive over time [Lun01]. It is certainly not beneficial to describe each user interface
separately for various devices, such as Web browsers, WAP phones and a choice of PDA
devices. It isdesirable to describe bi-directional interactions between the client and
application server in a device independent manner. These abstract interactions can then
be converted to meet device specific requirements by using systematic modelling

principles.

Providing services to multiple types of user agents requires Ul systems that concentrate
on tasks, rather than on exploiting the capabilities of some specific Ul environment

[Ban0Q]. In the age of voice-based devices and variable visual Ul environments, effective

adaptation to various devices cannot be based on estimations on the visual properties of
the devices used, as that does not support the goals of pervasive computing. Little
information exists of the requirements for a task-based user interface framework’s
functionality. The possble implications need scrutiny especially in terms of usability of
such frameworks from the developer’ s point of view, the amount of source code used for

the Ul description, runtime Ul management, and usability of the resulting applications.

Today’ s standards do not provide a comprehensive solution that enables long-term
investments for distributing content for many channels in a consistent and systematic
way. Integrating small-scale technologies that only partly cover the problem field, such as
CC/PP [W3CO00a], requires additional effort and expertise. Today, enterprises must create
application development mechanisms of their own based on various smaller technologies.
Changesin small technology standards cause incompatibilities and maintaining these

kinds of solutionsis often tedious and difficult.

A user interface model (UIM) is adeclarative specification of auser interface (Ul),
including its appearance, the connections between its elements or how it interacts with
the underlying application functionality. It represents all the relevant aspects of a user
interface in some type of interface modelling language [Pue99a). UIM systems are
generally task-oriented and use formality and higher abstraction levels to achieve device
independence and Ul description reuse. Abstract Ul descriptions are dynamically
transformed into device specific target format. However, immature mechanismsin
combining the abstract model elements to concrete ones have made even most successful
models applicable to only very narrow target specific areas [Pue99a]. In addition, UIM
systems are typically not based on standards, which makes their adoption difficult.

XML isatext-based, structural mechanism, which can be used for partially describing the
functionality of the computer programs that process them [W3COO0b]. It is also well
supported by industry and techniques for transforming XML-documents to other textual
formats are mature. XML is thus concerned to be well suited for describing user

interfaces for multi-channel environments [Ml01a]. A DTD (Document Type

Description) is used to compose a grammar that the ones implementing XM L-based user

interfaces must follow.

A subset of an XML-based device independent user interface language, RDIXML
(Reusable Device independent Interaction XML), isintroduced in thisthesis. The
language strives for usability and comprehensive device independence by founding the
Ul development process on users tasks and noticing the device dependent requirements
on this matter. The task-oriented nature of the language requires a task-oriented
framework to implement the language; this work should provide an insight to the
functionality of the RDIXML framework and its feasibility with existing technology.
Today’ s application devel opment technologies typically do not support usability
objectives. Hence, amajor objective for the framework isto provide a usability-oriented
UIM system in a package that is acceptable for today’ s enterprises seeking for systematic
application development models. A credible multi-channel application development
environment must combine qualities of efficiency, usability, pervasiveness and ease of

maintenance. The design of the RDIXML framework should notice these requirements.

The scope of thisthesis covers implementing the RDIXML task model grammar in DTD
format and providing an overall picture of related language models. A general level
design for the RDIXML framework is presented. Based on presented design solutions and
the ssmulation, the language and the framework are analysed to reveal the benefits and
drawbacks of achieved solutions; the analysis emphasizes the significance of task-
oriented Ul development model concerning usability, as well asthe overall feasibility of
this kind of task-based multi -channelled Ul framework. The functionality of the
framework is ssimulated with a use case. No usability evaluation is done for the resulted

user interfaces, yet the usability power of the framework is generally discussed.

The rest of the work is organised as follows. Usability issues in multi-channel
environments are discussed in chapter 2. Chapter 3 discusses user interfacesin terms of
languages and UIM systems. The core of the RDIXML language is presented in chapter
4. The RDIXML framework is presented in chapter 5, where existing knowledge of

multi-channel architecturesis also briefly discussed. A use case to simulate the
functionality of the framework is presented in chapter 6. Chapter 7 provides an analysis
of the work and discusses the used methods. Finally, chapter 8 concludes the thesis by

providing a summary and requirements for future work.

2 Usability Foundation

This chapter discusses some usability research areas that have significantly motivated this
thesis. First, some arguments for task-based design are made. Secondly, the main
difficulties in supporting universal usability are presented. Finally, requirements for
providing different kinds of navigationa structures in multi-channel environments are
discussed.

2.1 Task-based Design

The practice of designing products in terms of the needs of their usersis called user-
centered design [Nor86]. Producing usable user interfaces, i.e. doing user-centered
design, requires a thorough understanding of the underlying goals of the users. The Ul
design should be done with the goals in mind, which essentially means that the Ul
developers should possess the knowledge of how they are effectively achieved. Within
the HCI (Human-Computer Interaction) community, task analysisis considered to make
an important contribution to the design of interactive applications [Sch98]. Thisis dueto
the fact that it fundamentally is about designing user interfaces by first communicating

the knowledge of user’ s tasks between domain experts and Ul developers.

Describing user interfaces has traditionally started by describing the static visual
interfaces with certain structure and controls, often called widgets [Van93, Sti98].
However, it has widely been suggested that thisis a faulty starting point. Designers must
think in terms of functionality [Bir98]. Starting the design by specifically thinking about
the users task and especially the steps (subtasks) that the user must take in order to get the
task completed is considered to better support the idea of user-centered design [Nor86]. If
the flow of the task and its subtasksis clear, it is then easier to choose the right layout and
widgets to give the user concrete tools to complete the task [Bir98]. Providing highly task

specific interactive applications that allow people to focus on the actual task domain,

rather than having to map that domain to the domain of computation, is the underlying
idea of task-based user interface design [Sch98].

Typicaly, task analysis as amethod is only used in the beginning of the design process
and the usage of its output is unclear in the actual Ul implementation process. The output
isusually presented with natural or pseudo languages and thus cannot be included in the
computerized Ul implementation process. As Uls are built with tools that are based on
screen and element structures, rather than user’ stasks, it is very easy to create user
interfaces that are seemingly acceptable, but do not in fact possess the flow of the original
task description. When using traditional kinds of tools and techniques, there remains a
gap to befilled by the builder of the actual interface; the separately described task flow
offers support often too vague for a successful implementation of the actual user

interface.

Use cases have commonly been used for describing the requirements to satisfy the needs
of the user. Y et, the definition for a use case (Jacobson) is commonly considered vague.
Cockburn has found more than 18 definitions for a use case; this strongly suggests that no
true consensus about use cases exist [Coc97]. This ambiguity may also be one of the
reasons for the success of use cases; the fact that the definition can be interpreted in many
ways satisfies different kinds of people [For99]. Partly due to thisimprecise definition
and the confusion of the intended purpose of the use case concept, many use cases
intermingle analysis and design, business rules and design objectives, internals and
interface descriptions, combined with unessential remarks [Con01]. Hence, use cases as
the output of the task analysis do not necessarily capture the essence of user’s task flow.

A stronger means to describe the users needs, and only them, is needed.

Prototyping is an iterative method through which the user interface is achieved by
mending the faults of previous designs. A satisfactory level of usability is usually reached
after anumber of usability tests and redesigns. But, isn’t the user interface design in the
form of prototyping really a part of the solution description rather than the problem

definition? Isn’t there away to achieve a better design right at the beginning? A common

response is that usability cannot be captured by general specifications, and that usability
is essentially implemented case-by-case. Initialy, this seems acceptable. However,
formal and task-based Ul languages, capturing the user’ s case-by-case task model, have
the potential for providing the best of both worlds. Being formal, they provide a direct
basis for a computerized Ul implementation process and, being task-based, they directly
aim for producing usable user interfaces.

The Rationa Unified Process (RUP) is a widespread application development model by
Rationa Software Corporation [Rat02]. RUP provides a development model for large-
scale applications by defining best practices for the guidance of team devel opment
activities. The RUP advices development teams to use prototyping and use cases as key
Ul development methods. Hence, it does not seem to promote best practices for effective

development of usable user interfaces for multi-channelled applications.

Hackos and Redish present a development model where the output of task analysisis
used asthe basis for textual scenarios, which present the task flow in its execution
environment [Hac98, p. 346]. This description is then used to proceed towards the actual
Ul. Scenariosfreely describe the user’s natural movements between screens and as well
describe the relevant elements in the screen during an execution of atask Based on the
verbally expressed scenarios, presentation and interaction elements can be constructed to
implement the user’ s task sequences. Even though scenarios are clearly a useful method
when proceeding from abstract tasks towards concrete Uls, there remains a gap to be
filled by the Ul designer. Today’s Ul languages do not provide task-based concepts that
could be used as the starting point for the development process. Implementing the given

task flow in practice is still difficult.

A precise modelling mechanism would help the designer to maintain the task flow in
building concrete user interfaces. The full exploitation of task analysi s requires its
implementation to a formal task model, i.e. there should exist a systematic transition from
task identification to user interface construction [Bom98]. Importantly, it would seem that

aformal task model as the basis for the Ul development could reduce the number of

redesigns required when using prototyping as the primary development method. Task
formalisms described by the designer could |ead to a more effective Ul design process

directly aimed at producing usable user interfaces.

2.2 Universal Usability

Universal usability is ayoung discipline, which aimsto provide universal access for
existing Internet services and data for as wide range of users as possible. According to
Shneider, when 90 percent of potential users are successful users of a service, the criteria
for universal usability can be seen as fulfilled [Shn00]. As new technical devicesfor
browsing the Internet are introduced regularly, it is important for the enterprises to

devel op software that can be used from various devices. The diversity of user's cultural
backgrounds and differences in skills and knowledge set further requirements. a user
interface must adapt to the needs of different kinds of users. Mainly two fields of interest,
disability access and mobile computing, have been the driving forces behind the recent
interest in universal usability [VanQ0].

Universal usability can be divided into three branches of research [Shn0Q]:
Technological variance - Aims to provide access to Web-based services for all,
regardless of the browsing device used.

Diversity of users - Strives for enabling use of servicesfor al potential users not
considering their knowledge and skills, cultural background, gender, disabilities or age.
Gapsin user knowledge - Bridging the gap between what users know and what they
need to know.

Thisthesisis motivated by the technological variance of Internet devices and therefore
the research areas concerning diversity of users and gaps in users knowledge are not
further examined in this thesis. The emphasis of the work is on the variance in
technological devices and especialy on the requirements that the variance sets for
producing user interfaces. The rest of the chapter presents some of the main problemsin

supporting the technological variance of the Internet.

Screen Size and Connection Speed

Perhaps the most significant factor in multi-channel content delivery isthe variance of
display resolution, which can vary from wall-sized flat screen to asmall screen of a
cellular phone [Eis00]. Examples of display resolutions are presented in table 1.

Device Display resolution
Computers 1024x768

Hand- held devices 256x364

Cdlular phones 48x48

Table 1: Variance of display resolution between various Internet devices

The exact resolutions of course vary according to specific manufacturers and models; the
above table however gives an overal picture of the variance. To have similar content
adjusted to fit the various sizes, while still keeping the user interface usable, requires
substantial effort. The size of the content should fit the window as well as possible;
forcing the user to scroll in search for content, especially in horizontal direction, is
considered bad usability [Co095]. The small size of the screen usually also affects the use
of pictures. Pictures may not have to be altogether abandoned, but dynamic changesin
the size of pictures may be a requirement. In addition, the use of frames and multiple
columns may not be feasible [NokO1b]. A slow connection speed also severely restricts
the size of the content, i.e. use of pictures result in slow rendering of the user interface.
The use of multi-media aso becomes questionable and may have to be abandoned
altogether.

Various User Interface Environments

Various Ul-environments run user interfaces based on different kinds of user interface

languages. Idiosyncratic implementations of language standards present further

challenges. In addition, Ul-environments present various restrictions on the functionality
of the user interfaces, as some are not able to present pictures, for example.

All this richness causes severe problems in trying to adapt the actual content to the
requirements of each device' s Ul-environment. Table 2 presents some examples of

existing user interface languages used by Internet devices.

Devicetype Language

WWW browsers HyperText Markup Language (HTML)
[W3C99q

WAP browsers Wireless Markup Language (WML)
[WAP9g]

V oice-based browsers Voice Extensible Markup Language
(VoiceXML) [Vai00]

Future WWW browsers Extensible HyperText Markup Language
(XHTML) [W3C00d]

Table 2 Various Internet devices and the Ul languages they use.

The table above does not provide a comprehensive lit, as that would not be meaningful
in the scope of thisthesis. It does however list Ul languages that differ from each other
considerably. For example, users of avoice-based browser do not see any Ul e ements
and therefore cannot be expected to handle very complex navigational structures asthey
may proveto be overly difficult considering people’s cognitive abilities [W3C99b]. The
functional and presentational capabilities of the languages differ so much that content

must be notably adapted to achieve usable Ul solutions.

2.3 Context-sensitive Navigation

Supporting the technological variance of universal usability presents many challenges, of
which not all seem to be very clearly presented in the literature concerning universal
usability or task-based design. When dealing with limited display sizes and Ul

functionality, achieving effective business activity may require optimizationsin the

10

navigation model [JusO1, Sch01]. In terms of task-based design: the required sub-tasksin
order to complete atask may vary depending on the device used. In addition, arich Ul
environment with a big display promotes providing the user more than one route to
complete atask, whereasin a more restricted environment, additional content could
distract the user. For the more limited devices, quick and simple access to content is what
counts, mainly due to low navigability and, in some cases, high connection prices and

low connection speeds.

Infigure 1, aregular Web browser has a four-phase sequence of actions for the
completion of the task A. After completing the first action, the user may choose from
three aternative sequences of actionsto complete task A. The user of a PDA device with
limited functionality and screen space is offered a single path for the execution of the
task. The user has exactly one possible sequence of actions, through which the task can
be completed. Since the action sequence only has three phases, it can be assumed that the
output of the task is somewhat more limited, compared to that of the Web browser, while
the task can however be completed.

It seems that in multi-channel environments, constructing a single task model based on
task analysisis not sufficient. The device and context set their own constraints, which
must be noticed in order to provide the user a usable sequence of actions. Whileit is
rational to use task analysis to extract the main features of the task in order to form a
general task model, this genera model may require adjusting; some types of devices
require atask model of their own. An inflexible task modelling mechanism in multi -
channel environments resultsin bad usability, at least for some user groups of particular
devices. For the rest of thiswork, this problem field is referred to as the * device-task

problem”.

11

WEB BROWSER

NS
AN
N
N \\
\. ~
\ ~ /\
N
NG
N ~
N
AN AN [CTTTTTTTTTTTTTTTTT
N N, 1 1
o ~_! !
2. A 1 |
<A :
N\, i !
\\ B Gt ¥
N /
/
/
\\ 7
Ny
S
PN
S N
Y
/
/
3 /
){::i>
/
/
/
RS —
|
S
T\ 7
L
4 AN
gue Ay
4 bom—— =~

task A completed

Figure 1. Completing atask through diverse sequences of actions.

PDA DEVICE

Y
VA

task A completed

It is possible to try to automatically fragment the information that is sent to a small screen

device into several small pages while providing a navigational structure with alink to

each of the pages [Eis00]. This usually does not eliminate the navigational problem

however, but only increases it by easily disorienting the user [SchO1]. For asmall screen

device, the essential content must be accessible without additional “ machine reasoned”

hierarchy in the navigational structures. It clearly seemsthat the used Ul development

mechanism should free the designer to describe the task flow ina device specific manner.

12

3 Device Independent Ul Languages and Models

Developing user interfaces is expensive and laborious. In systems with graphical Uls,
nearly 50% of the source code and development time can be related to the Ul [Mye92]. In
systems where multiple types of user agents interact with the server, the problem is
bigger and may become overwhelming. For enterprises, it is financially and maintenance-

wise aimost unbearable to provide multi-channelled services by using ad hoc methods.

3.1 Device Independent User Interface Languages

In near future, the growing variety of Internet devices makes enterprises more reliant on
device independent user interface languages. With these languages, content can be
delivered by using a single user interface description, which is automatically transformed
into appropriate formats for the various types of devices, asis showninfigure2. A
transformation module must be associated with each language to provide interpretation
for the abstract Ul description, and to transform it to other devices accordingly. Because
of the advantages discussed earlier, XML has already been used as the basic technol ogy
for some Ul languages. In the following sections, a number of these languages are briefly

presented.

XUL
XUL (XML-based User Interface Language) [XUL99] can be used to describe most of

the elements that are found in contemporary user interfaces, such as buttons, toolbar-
components and popup-menus. The language was originally developed to facilitate
building the user interface for Mozilla browser. XUL does not address reactions to user
interface events, such as user pressing a button. In addition, no abstraction considering
user interface elementsis available [MUl01b], thus XUL is essentially a device dependent

language.

13

HTML WML XHTML

Transformation
module

Device independent Ul
description

Figure 2: An abstract Ul description can be transformed for various target platforms.

UIML

UIML (User Interface Markup Language) enables user interface descriptionsin alevel
similar to XUL, but its elements have abstraction, which makes UIML interfaces
essentially device independent. UIML also contains an event- handling mechanism to
address communicational issues between user interface and the underlying software. A
separate rendering module is required for each target device that uses the UIML-based
application. Thisis considered amajor problem [Ml01b], because the true functionality
of the UIML-based user interfaces is always dependent on the implementation of this
module, called renderer. An equally important flaw is that selecting target specific
featuresis limited due to the lack of appropriate mapping concept [MUl01b] (see chapter
3.2). This suggests that achieving true device independence with UIML might be

impossible.

MAXML

MAXML (Multi-Channel Access XML) is alanguage developed by Curious Networks
[MAXO01]. It distinguishes from previously introduced languagesin that it is specifically

designed for use with a user interface engine called Continuum. The Continuum engineis

14

capable of converting the MAXML-based Ul descriptions into various target languages.
In addition, the engine is capable of handling the actions triggered by a user agent. A
demonstration presented by Curious Networks, shows how a simple user interface
description is transformed for a number of devices, including a Web browser, Web-
enabled phone, Windows CE device, voice browser and aPalm VI device [Cur01]. The
Ul isrendered for all these devices from asingle MAXML description, which is not

presented here because of its length.

Figure 3 shows an example of how the Continuum engine views golf results for aPalm
VIl device. The view isautomaticaly split in half: the column "player”, which is
specifically marked to be a searchable column (a mechanism provided by the grammar),
is automatically transformed into link, as the framework notices that the browser isa
Pam V1. Through player links, the user is given the possibility to view each players

results.

Figure 4 presents the same view rendered for a Windows CE-device. Importantly, the
target device seems to have an impact on the way that the engine produces the
navigational structure of the Ul. The information that is divided between two screens for
the Palm device is now viewed in a single screen. For some reason the Ul engine still
presents the player names as links although the rest of the datais shown already. It is not
explained what happens if the user clicks the player name, but it can be assumed that
information similar to figure 3b is presented. The Continuum engine seems to contain
hard-coded logic for making navigational decisions on behalf of the designer. To some of
these decisions the designer cannot affect, even when that would be necessary.

Consequently, the usability of the resulting user interfaces may not always be acceptable.

15

PalmV1i PalmVIi

a) Players are links to results b) Result view

Figure 3. Golf results viewed by aPalm VI device.

Figure 4 shows a usability problemin

Ei] Internet Explorer the rendering of the use case for the

http fftest. curiousnetwiorks.comyfa v

Touwrnarnent Round R . .
Score 1 2 to horizontally scroll the interface to be

Windows CE-device: the user isforced

16 under 70 ableto see the data. This particular

Seovid Duval | 14 urdler 1 problem may not be a significant one, at

Bhil least not for all users, but it does bring to
Mickelson 13 under 67 . . .
[E— mind considerations about further
[T

Calcavecchia

10 under 72

usability problems. The use casethat is

Toshilzawa | 10 undler shown hereis asimple one. It can be
<] I __—
View Tools & [2] 7} assumed that when applications get more

complicated, more severe usability

problems can occur.

Figure 4. Scrolling violates usability.

16

pXML

pXML has been designed as part of OpenPort framework development at SysOpen Pic
[Sys01]. Of the three languages discussed earlier, pXML bears closest resemblance to
UIML due to similar abstraction level and the visual-oriented starting point. In this
section, we discuss the mativation for launching the OpenPort project and along that,
development of the pXML language. Discussion of the more specific features of pXML
istied to presentation of the RDIXML language in chapter 4.

Modern Web applications are strongly data-oriented and therefore a means to describe
the flow of the data between the Ul and the server is needed. In order to achieve a
satisfactory system wide solution, the user interface definition mechanism must provide a
comprehensive solution to tie the Ul functionality to the rest of the architecture.
Otherwise, the Ul remains an element too separate from others, and does not offer a
satisfactory communication interface towards the rest of the system. Failing to address
thisissue easily leads to bad overall solutions that especially might result in bad
performance. It is an important part of the Ul functionality to describe the interactions
with the client and the user. For example, the required information includes describing

operation flow, parameters, and data retrieval mechanisms.

Script languages such as JSP and A SP have been devel oped to cover these kinds of
requirements. Use of these technologies comes at a price, however. Using them requires
additional knowledge on how to divide work among developers. It istempting to build
Uls by intermingling Ul design with technological details. Successful use of these
technologies relies on awareness of best practices and common design solutions [Alu01,
p. 30]. In addition, device independence is not built into these technologies, although
technical remedies for this problem have been suggested [Sun01]. If device independence
is the goal, a device independent user interface language is needed independently of the
platform technology used. Both JSP and ASP are essentially template-based technologies,

meaning that a separate user interface implementation is required of each specific device.

17

Both technol ogies require combining device specific markup with traditional

programming.

The data-oriented problems mentioned above together with the need for an effective
mechanism for developing device independent applications were the essential reasons for
launching the OpenPort project. The pXML language directly integrates to the underlying
OpenPort framework by providing means to describe communication with deployed
application objects. For example, pXML lets the designer model the data management
objectsincluding their operations and attributes. The data elements work directly asa
basis for the functionality of the data management module of the framework, i.e. names
and types of database fields are not hard-coded into the EJB-bean source code. High-level
data retrieval and processing can be managed by using elements of the pXML language.

Although pXML reuses elements in both data and Ul descriptions, it embeds the
interaction descriptions between the client and the server into presentation descriptions.
Some tests have been made, where the same pXML-based Ul description has without
modifications worked for both Web and WAP browsers. However, successful usage of a
similar presentation structure for these two types of devicesis rare. Although the
OpenPort framework supports adapting content to different kinds of devices, this may
require separate pX ML implementation for almost the entire Ul. Binding interaction
descriptions to presentation elements decreases the level of code reuse between device

specific user interfaces.

3.2 User Interface Modelling

Various XM L-based languages have been proposed as suitable for device independent
user interface development. It seems, however, that these languages operate in an abstract
level too high for the successful producing of Ulsfor different kinds of devices. None of
the languages mentioned in chapter 3.1 notices the differences in navigationa
reguirements between various devices. The pXML language allows the designer to adapt

content to device specific requirements, but this decreases the level of Ul code reuse.

18

Importantly, most of the languages are not task-based and hence do not support
transforming content to voice-based browsers, thus failing to meet the requirements of
pervasive computing (see chapter 5.2). The faulty starting point and the lack of
appropriate mapping mechanisms and modelling structures makes it difficult, and
sometimes impossible, to successfully implement device independent user interfaces.
However, because of the high demand for multi-channel content delivery and the benefits
related to higher abstraction, many enterprises are eager to use device independent Ul
languages. If the expressive power of these kind of abstract languages is insufficient for
producing usable interfaces, many Internet applications will in future end up not being
al-inclusively usable.

User interface modelling (UIM) systems provide an aternative solution to Ul
development; UIM languages consist of models for expressing the various properties of
the user interface. UIM technologies aim to provide an environment, where Ul
development and implementation is easier and happens in amore professional and
systematic way compared to traditional Ul development tools. To achieve this goal, user
interfaces are described by using declarative models. Typically, model-based systems are
clearly task-oriented, i.e. modelling the tasks of the user is the basis for the development

of the other models.

An example UIM system is TEALLACH, which is developed specifically for work with
object databases [Gri99]. TEALLACH divides the various elements of Ul into task,
domain and presentation models. The domain model is used for modelling structural and
behavioural features of application objects. The task model is used for modelling user
tasks, as well as associating domain elements into tasks. An abstract presentation model
is used to give the tasks and domain elements a genera presentation, which can be
specialized with environment specific Ul elements. TEALLACH does not aim to
contribute in the area of individual models of UIMSs, rather it emphasizes facilitating
combining the various Ul elementsin an effective and systematic way. A model-based
user interface development environment (MB-IDE) is presented to facilitate combining

the three essential UIM models to achieve concrete user interfaces.

19

Defining a modelling structure for a language results in three major advantages listed
below [Sil0Q]:

User interfaces can be described in a more abstract manner
2. Models facilitate developing methods for more systematic design and
implementation of user interfaces, because they provide potential for
a. modelling user interfaces by using various abstraction levels,
b. incrementa development of the models and reuse of the user interface
descriptions.
3. Models provide the foundation for the automation of the tasks related to design
and implementation of user interfaces

UIMs are expressed in some kinds of formal languages, which address the various issues
of the Ul by defining agrammar for the conceptual model structure and elements of the
Ul. By putting emphasis on structure, UIM languages enabl e separation of abstract Ul
elements from concrete ones. Typically, UIMs aso introduce information that is not
present in traditional Ul languages, such as capabilities of various user devices. The clear
separation of conceptual models at syntax level makesit also possible to dynamically
provide interpretation and mapping for the various elements of the UIM in amore
profound level, i.e the run-time adaptability of the user interfaces improves. In addition,
model structured languages suggest new devel opment strategies; for example, a specific
visual part of auser interface isusually not written out in one consecutive set of lines.
Rather, the development processis carried out by filling the elements of separate models,

which are then dynamically mapped together at run-time.

The languages presented in chapter 3.1 do not have a clear model structure. Even though
the pXML language, for example, does clearly separate models at some level, the
separation is not consistent. The potentially abstract elements of the Ul are mixed with
concrete ones and thus it is not possible to separate the Ul elements that are common for

all devicesfrom those that are not. This resultsin lack of ability to successfully reuse

20

elements of asingle Ul description for devices that are significantly different from each

other.

The UIM systems and their notations often prove to be complex especially when it comes
to learning and using them [Sil00]. Various case tools have been developed to help
overcoming these complexities [Pue99a], focusing mainly on describing model data and
combining the models to each other. These tools are not in the scope of thisthesis,

however.

Components of User Interface Modelling

UIMs consist of several declarative models describing the various aspects of the Ul. Each
aspect partly affects the dynamic process of producing concrete user interfaces. Some
essential models are presented intable 3. The used models vary according to each UIM
and the ones presented in the table are collected from various sources. Each model is only
given asuperficial glance, as especially modelling tasks and devices form research areas

of their own and are far too extensive to be well covered in this thesis.

Moaodel name Description

Task model A task model describes how users do their tasks in a certain application. It
contains the task structure, and the order and division of interactions
between user and system [Pue99b]. It can be said that atask model

describes the static and dynamic organisation of the work.

Diaogue model Dialogue models contain such information as to which objects exist in the
user interface and what are their possible states. The actions that the user
may initiate through the user interface, as well asthe reactionsthat the
application may execute viathose elements, are represented [Pue99a.
Some models combine tasks and dialogues into one model, whichis
usually called atask-didogue model [Sil00]. Dialogue model can be seen
as amore concrete approach to task model.

Domain model A domain model defines the underlying objects that the user can indirectly
see and manipulate through the user interface. In addition to application’s
datamodel, it isaso intended to explicitly represent the attributes of the

21

object and to express the connections between various objects [Pue99a.

User model A user model defines the attributes and roles of usersand it can be used to
provide away to model Ul preferencesfor specific usersor roles [Pue99a].
However, user models are described vaguely in literature and are present
invery few UIMs.

Presentation model Presentation model represents the visual, haptic, and auditory elements
provided to the user by the user interface. The presentation model is
basicaly just a static collection of sensory elements [Pue99q], but
attaching stylistic properties, such as colours and font size, to the user
interface is also considered to be a part of thismodel.

Device model Device model presents the capabilities, such as the used Ul language,
connection speeds and other properties of the device [Ml01a]. CC/PP
(Composite Capabilies/Preference Profiles) is an existing standard to do
exactly this[W3C00a].

Table 3: Essential models of UIM systems.

L evelsof Abstraction

User interface models are twofold in nature. On one hand, fully abstract elements such as
user tasks are aways present. On the other hand, some elements are concrete and hence
can be only in some specific Ul environment. An example of atask, i.e. an abstract
element, is paying abill. Thistask consists of a group of subtasks, which when executed
in certain order, complete it. These kind of abstract elements of the UIM, which are often
called abstract interaction objects [Van93], use implementation that is not dependent of
any platform’s application source code. In addition, they are not executable in any
platform and do not restrict further implementation, and are thus compl etely portable
[Pued8, Miil01a, Mil01b]. For instance, task and domain models are usually thought of
as being thiskind of abstract elements of any UIM [Pue99a). Their implementation is

dependent on the mappings that combine them to concrete elements of each UIM.

The visual and auditory elements that the user can see or hear and manipulate on the user

interface (e.g. menus and pushbuttons) are concrete elements, which have to be defined

22

unambiguously. At least presentation and dialogue models are usually classified as being
models that are concrete in nature [Pue99a].

According to Puerta and Eisenstein [Pue99a], there commonly exists a mismatch of
abstraction levels in the developed UIMs. Because the UIMs have both abstract and
concrete elements, certain properties and attributes have to be defined in the abstract
modelsin order to map them with the concrete models. Failing to address the necessary
mappings resultsin an inflexible Ul development environment. This problem, which
relates to bridging the gap between the abstract and concrete elements of the UIM, is
called the mapping problem [Pue99a].

Many UIMs restrict setting mappings and use automated processes to combine relatively
simple structures. This seems to restrict freedom in design, and UIM techniques have
been criticized for their inability to enable expressing personal taste and richnessin user
interface design [Pue99a). Each UIM should serve the needs of enterprises and designers
to show innovation and creativity in the user interfaces of their applications, as no user
interface modelling system aims to force each user interface to function and look alike
[Sti98].

First generation UIMs did not contain abstract user interface elements. Concrete

el ements, such as layout and widget customisations were involved right at the beginning
of the development work of each Ul [Sil00]. Thiswas a major obstacle to generating
device independent user interfaces. Second generation UIMs, such as TADEUS [Elw95]
and MOBI-D [Pue97] enable user interface description in a higher level of abstraction.
Still, a concrete proof of UIMs with mappings flexible enough and feasible as well as
comprehensible has been missing, although research has been done in this area [Pue99,
Mil01a).

23

Combining the M odel Components

As Puerta and Eisenstein state: “if for a given user interface design it is potentially
meaningful to map any abstract interface model element to any concrete one, then we
would probably be facing a nearly insurmountable computational problem” [Pue99a). It
is thus important to try to discover the most intrinsic and beneficial mappings, through
which it would be possible to proceed to desirable kinds of user interfacesin an effective
and systematic manner. Figure 5 presents the problem domain: it is hard to know, which

model s should be combined and how.

| Presentation model |

?/??\

?

| Task model o) | Device model |

?
‘ ? :
| Dialogue model | ¢ '/1 User model |

| Domain model |

Figure 5: The mapping problem.

Examples of mappings that are considered important between models are briefly
presented in table 4. The mappings are mainly described as presented by Puerta and
Eisenstein [Pue99a] and do not cover all possible cases. For example, the mappings

between task and device modelsare not presented, but are covered later in chapter 4.

24

Mapping

Description

Task-Dialogue

Task models describe the static and dynamic organization of the user's
work. For instance, conditions on the flow of the work might be presented.
Dialogue models define conversational activity between the user and the
interface in amore concrete manner and thus enable or disable certain user
interface functionality. Thisleadsto parallelism between the models and
naturally motivates mappings between them.

Task-Presentation

Users accomplish tasks through a user interface. Astasksin task models
are expressed in an abstract format, it is natural that defined tasks should
be mapped with some sort of visual or auditory presentation that enables

usersto execute given tasks.

Task-User Onetask may need to be executed differently based on user requirements.
It may therefore be important to map user datato the task being carried out
in order to provide user-centered task flow.

Task-Domain Performing atask involves manipulating domain specific objects. Mapping

the workflow of the task model with contents of domain model makes
user'stasks meaningful.

Domain-Presentation

Domain model elements contain attributes that affect the object
presentation. Naturally, the presentation of pictures must differentiate from
presentation of text. Therefore, it is natural to map adomain object to a
presentation model based on its characteristics.

Presentation-Dialogue

In order to specify arunning user interface, the elements described in
presentation and dialogue models must be linked. The presentation model
describes the actual components, which give user the tools to communicate
with the software as presented by the dialogue model.

Table 4: Some of the possible mappings between UIM models.

Mappings can be done in two ways. The UIM language can provide the designer tools for

the mappings, but it is also possible for the run-time engine of the UIM system to do the

mappings automatically. Preferably the language should provide possibilities for awide

range of mappings, and the run-time engine should then automatically do only those

obligatory mappings that were left undefined at design time. This kind of strategy gives

design power for the designer, as well as eases development in cases where advanced

design is not necessary.

25

4 The RDIXML Language

This chapter presents the objectives for the RDIXML language, as well as discusses the
solutions, i.e. the models and mappings between them, in a conceptual level. The actud
DTD-based grammar of the task model is presented in appendix A.

4.1 Objectives for the Language

There are some very general objectives that should be recognized in the development of
any Ul language. Following the objectives set by Eisenstein et al. [EisO1], the RDIXML
language should be

?? Declarative
?? Comprehensibleto humans
?? Formal so that it can be understood and analysed by computer systems

?? Platform independent

To get over some major difficulties in multi -channelled application development,
additional objectives are set. These are expressed in the next few paragraphs.

Device independence— RDIXML is built for use in multi-channel environments.
Therefore, the language must provide means to build Uls without direct integration to any
specific Ul environment. This objective should not conceal the fact that some devices
require specific implementation details. The language must be capable of expressing
device specific features, but these expressions must not be expressed with device specific

markup.

Adaptation to device specific requirements - The objective of making applications
universally usable imposes recognizing the differences between various Ul environments.

The presentational aspects of the Ul must be adapted to meet the device specific

26

requirements. The same applies for the dialogue and domain elements. In addition, itis
now clear that the steps that must be taken in order to complete a task are not always
equal between diverse devices. Providing possibilities to alter the flow of actionsisthe

key for al-inclusive usability in multi-channel environments.

Task element reuse— Device independent user interface languages are piquant since
they enable content distribution for many different channels based on a single Ul
description. Yet, the functionality of some devicesis so different that clearly some
elements of the UI require device dependent implementation. Thisis the case even with
user’ s tasks, which in the UIM literature are ubiquitously regarded as being directly
portable between devices and hence reusable. From solving the device-task problem, it

follows that the language must be carefully structured to reuse common task € ements.

Direct integration to the underlying framework - A user interface bridges humans and
machines by alowing the exchange of information [San01]. Not fully following the spirit
of thisdefinition, UIM systems have rarely been associated with database environments
[Gri99]. In generdl, it is considered easier to create new services based on existing
comporents of the framework, if the language directly bridges Uls to existing
technologies, such as various data services. RDIXML aimsto directly integrate to the
underlying architecture, i.e. its elements should work in parallel with the functionality of
the RDIXML framework (see chapter 5). This allows direct communication with various
databases, as well as use of other services provided by the framework. Thisisimportant
in the sense that as software management gets more and more complicated, there's an
urgent need to utilize pre-existing services, through which application functionality is
mainly achieved by specializing the framework and not by modifying the core of existing
program code [V0a98].

The key for fulfilling the set objectivesis clearly first to find the necessary models and
model them in an appropriate way, and then solve the mapping problem between the
chosen models. For the rest of the work, the single word RDIXML always refers to the
developed language and the word framework is used to refer to the RDIXML framework.

27

4.2 Models of the Language

RDIXML has a modelling structure consisting of task, domain, user, dialogue,
presentation, device and application models. These models do not cover al issues related
to Ulsin the Internet world, such as user’s location and personalization. However, they
suffice to sketch the basis for the language; additional models and functionality can be
added in the future. Each model is discussed in terms of its functionality and main
characteristics, including a brief example. Further examples are given in chapter 6. The
model structure of the language and the ways that the models relate to each other
unavoidably predetermine the interpreting requirements for the RDIXML framework.
Hence, some architectural points of view are considered already in this chapter. The task
model, being the cornerstone of the language, is given wider attention compared to other

models.

Except for the task and device models, the pXML language has clearly affected the
structure and elements of RDIXML. However, RDIXML is essentialy task based and
thus the “emulated” elements in many ways have a different character. The focusin
presenting the models of the language is on the most interesting task-related elements. In
the scope of this work, none of the models of the RDIXML language is fully completed.

Task model

The task moddl is a key construct in the RDIXML model structure and clearly the starting
point for the design of other model elements. Indeed, the success in the task model
construction no less than directly affects the success in fulfilling the objectives of this
thesis. However, task modelling is a difficult issue in model-based user interface design,
and not all aspects of it can be addressed in the scope of thisthesis. For example, defining
relations between tasks, especialy for multi -channelled applications, is a complex issue.
The RDIXML task model isasimplified one leaving many generally important
modelling aspects without attention. The focusis on finding ways to reuse the task model

28

code, while allowing device dependent task descriptions. Table 5 presents the central

elements of the moded!.

Element/attribute Description

Task Identifies the user’ s high-level goal.

subtask Subtasks are used to describe the user’s lower level goals, i.e. the phases of
actionsthat must be completed in order to reach the higher-level goal.

Precondition Preconditions define the tasks that must be finished before the task in

question isenabled.

Postcondition

Postconditions define conditions and actions that are triggered at the
reaization of the condition. Through postconditions atask may invoke or
disable a number of other tasks.

Systemaction Systemactions describe the data management actions that the system must
takein order to be able to present the user data related to the task.
Systemactions exploit operations modelled in the domain model.

Useraction Useractions are used to describe the management of actionsthat users

trigger from the Ul. Useractions exploit operations modelled in the domain
model.

Fieldreference

Fieldreferencesrefer to domain model attributes that are associated with
the task. The fieldreference elements abstractly define whether the
attribute should be given avalue by the user (input) or should just be
viewed to the user (read-only). A similar concept isused by Miller et al. in
[MUlO14].

Navigation

The navigation element forces the designer to define navigational
properties to the dialogue model. This functionality is connected to the
framework’ s validation system (see chapter 5.4), i.e. thevalidation system
will raise an error if the navigation is not provided.

Tasknavigation

The tasknavigation elements allow postconditions to force dialogue level
navigation to some other task. Hence, the element forces the presentation
designer to maintain task flow at presentation level.

Systemtask

Thiselement i s used to define reusable systemactions, which can be
referred to from within separate tasks.

Table 5: Key elements of RDIXML task model

Chapter 2 showed that device specifically designed task flow is sometimes a prerequisite

for ausable Ul solution. Now, considering the task description reuse, this has serious

29

implications. the preconditions and postconditions that are related to atask inevitably
become device dependent. For example, if auser completestask A with aregular Web
browser, this might lead to invocation of two alternative ways to proceed with the task,
i.e. the postcondition of the task defines that two tasks must be invoked. Completing the
same task with a more restricted device might lead to invocation of one single subtask
that the user is allowed to execute. Hence, the postconditions for a single task can be

device dependent. Following similar logic, the same applies for preconditions.

Quantitatively, the largest part of task modelling consists of those elements that are
mapped to domain model. These consist of fieldreference, systemaction, and useraction
elements. It would seem that these elements are more commonly portable compared to
condition elements. Even if the task flow might change, it is often the case that same
business operations and attributes can be used. Thisis not aways the case, however. The
workers at SysOpen plc have recognized that business methods are sometimes more
manageable if they are called device dependently, i.e. a separate method is reserved for
each device type. The device can affect the amount of data sent to the user interface, as
well as other properties of the functionality. Hence, the domain related task elements are
in some cases device dependent, especially concerning operations. This, together with the
discussion considering task conditions, suggests that rather than tasks as whole, some

parts of them are device dependent.

While most UIM systems do not seem to address device specific task management,
Eisenstein et a. suggest that mapping tasks to devices can solve the device-task problem
[Eis00]. Their mechanism separates task flow into device dependent entities, while it
does not address the consequences considering task reuse. We claim that simply mapping
tasks to devices severely decreases the level of Ul code reuse as it imposes compl etely
separate task implementations for differently behaving devices. Separate task
implementation suggests copying the common task el ements between device specific task
versions. Obviously, reusing smaller task entities enhances the Ul implementation
process, as it does not force the designer to work in a*copy-paste” design environment.

A more fine-grained mapping mechanism is required between tasks and devices.

30

Previous paragraphs show that separate task model elements may have relations to
various devices independently of each other. RDIXML addresses this problem by
categorizing separate task elements according to device groups. Essentially, this means
that although the common elements of the tasks remain portable, several elementsinside
atask description can be device dependent. For example, considering an otherwise
portable task, some specific device could set a different precondition for activation of the
task. The rest of the work refers to this concept as the device categorized task model
(DCTM) of RDIXML. For amore detailed view, see appendix A.

Presentation model

The presentation model defines the layout for the Ul and comprises of three elementary
elements: views, subviews, and layout structures. Subviews define autonomous entities of
auser interface. For example, a single subview might contain awebsite' s navigational
structure, which might be reused in combinations of several different subviews. Layout
structures define the view layout, i.e. the size and division of layout elements, aswell as
thelr relative positions. Views define combinations of subviews by mapping them to
specific dotsin alayout structure. Figure 6 visually presents these elementary

components and their relations.

Each subview potentially contains a number of tasks. Subviews define presentation for
the tasks, i.e. for the attributes and actions related to tasks, as well astheir positioning at
the screen. A sketch of a possible RDIXML syntax for such presentation is presented in
figure 7. In the example, adomain attribute “name” is given alabel. The actual nameisto
be printed in an “editbox”, which is an abstract presentation type definition. The type
suggests that the user may edit the value of the name. Hence, the corresponding task
element must have defined the attribute name being of type “input” (see “task model”).

A device dependent rendering module must transform the abstract presentation type
“editbox” into a suitable markup. For aregular HTML browser, the output of the attribute

could be ‘<input type="text" name="name" vaue="x"/>".

31

LAYOUTSTRUCTURE

SUBVIEWS

Figure 6: Views combine subviews by mapping them to layout structures.

A general notion related to abstract Ul languages is that describing Ulswith device
dependent languages, such as HTML, allows direct expressions of platform specific
presentation details. Thisis not possible when using abstract languages such as
RDIXML. The transformation from abstract Ul elementsinto device specific markup is
based on programmatically predefined interpretation model, to which the Ul designer can
affect only so much. Thus information concerning small details, such as exact locations
of objects, or producing stylistic layouts by using complicated table structures, may
sometimes prove to beimpossible to express with abstract level languages. Usage of
device specific style sheets, such as cascading style sheets (CSS), can sometimes help to
overcome appearing problems. However, this may result in troubles with the style sheet
handling capabilities of various browsers. On one hand, extending the RDIXML grammar
to support additional features could help answering to device specific needs. On the other
hand, this would probably severely hamper the overall intelligibility of the language. The
problem is important and interesting, but too extensive for the scope of thisthesis. Hence,

we content ourselves with proceeding with general requirements.

32

<fieldproperty reference="name" label="Name">
<Ulcomponent type="editbox"/>
</fieldproperty>

Figure 7: Presentation structure for a single attribute.

The expressive power of the presentation model must suffice to define common
presentation formats and components. For example, radiobuttons and checkboxes are
used practically in every Ul environment. Another example of agenera need is that
alignment requirements are commonly satisfied by embedding the content into some kind
of atable structure. Hence, RDIXML should be capable of unambiguously expressing
these kinds of presentations. The language must be accurate enough to enable
transformation modules to make a satisfactory transformation into device specific
markup. Y et, the expressions must be abstract enough not to blur the transformation logic

for devices with limited capabilities.

An example of presentation implementation is given in appendix C. The example relates

to the simulation presented in chapter 6.

Dialogue model

A significant starting point for the design of the language has been to define a clear role
differentiation between task and dialogue models. The two models describe the
interactions between the user and the server, but in different abstraction levels. As
Bomsdorf and Szwillus state, the division of elements between these modelsisindeed a
difficult separation to make [Bom98]. Task models should describe the interactionsin
those parts that clearly relate to users goal, whereas the dialogue model refines the

interaction to meet device specific requirements in technical sense.

A business rule saying that users must be authenticated before accepting their ordersis
clearly arule that must be obeyed independently of the device used. Thiskind of arule
clearly has to do with general application requirements and should be implemented with

elements of task model. On the other hand, if a device supports scripting, form input can

33

be validated at the browser environment, whereas in the case of non scripting Ul
environment, the validation is left for the server. In the latter case, the server does the
validation and it must return the form in case of faulty input. The script usage presents a
technical difference in the interaction model between two devices, this having nothing to
do with the user’ stask. The problem with the validation, namely whether to use scripting
or not, is exactly what dialogue modelling isaimed at: describing interactions for the sake
of technical differences. Obligatory technical changesin the interaction model motivate

the existence of the dialogue model.

To enable technical interaction enhancements, the dialogue elements must be able to
override subtasks descriptions of task elements. Sometimes, the overriding could happen
by using scripting functionality. Importantly, scripts must commonly be activated when
the user interacts with the Ul and thus they must be attached to certain presentation
elements of the Ul. For example, some HTML-based devices can effectively combine
usage of framesets and javascript, i.e. they define the view functionality by combining
presentation and dialogue elements. The presentation and dialogue models are very
closdly tied together and, for this reason, we suggest merging these two models. In most
cases, it can be assumed that if the presentation changes, so does the scripting
functionality. This solution may on some occasions decrease Ul code reuse, but in most
cases is amore comprehensible solution. The presentation model in appendix C contains
some notes on how dialogue model elements could be used related to that specific

presentation.

Domain model

The domain model publishes fields and operations of domain objects, i.e. it reflects the
properties and capabilities of objects in the data management tier. By defining object
attributes and their data types as part of the language, a checking mechanism for the
integrity between the presentation and task elements, which relate to the domain
elements, can be built. In addition, by using advanced programming techniques, namely

reflective features of programming languages, data objects can directly use the XML-

34

based domain definitions as their attribute definitions (see chapter 5.3). Hence, thereis no
need to hard-code attribute names with programming languages; a more maintenance
friendly solution is to describe them as part of the domain model. OpenPort framework
has successfully used this technique (see chapter 3.1).

An example of the possible syntax for the definition of adomain object is presented in
figure 8. The element domainobject defines a domain object with attributes, operations
and keywords. The basis for automatic rendering of domain elementsis given by
publishing the data types of domain objects. For example, if the data type of an element is
picture, the automatic adaptation functionality of the framework will by no meanstry to

embed the picture into atext field.

The exampl e expresses the importance of an attribute with a reserved word “ obligatory”.
For adevice with limited screen space, unnecessary attributes can thus automatically be
left out. Similarly, woul d the run-time environment of the RDIXML framework be
capable of detecting changes in user’s connection speed, unimportant attributes could be
dropped out in case of low bandwidth. The keyword elements are used to match operation
results with task postconditions (see “task management” in chapter 5.5).

<domainobject domainobject_id="orderBean">
<fields>
<field field_id="orderBean_productname" obligatory="false"/>
<field field_id="orderBean_productid" obligatory="false"/>
</fields>
<operations>
<operation operation_id="getOrder"/>
<operation operation_id="submit_to_cart'/>
</operations>
<keywords>
<keyword keyword id="insufficient_credit_limit'/>
<keyword keyword_id="success"/>
</operations>
</domainobject>

Figure 8. A sketch of adomain object description in RDIXML format.

35

Device model

The purpose of a device model isto describe properties of various devices to enable
adaptation of required content to meet device specific requirements. W3C has devel oped
astandard, CC/PP, for modelling device properties and user preferences [W3C00a]. A
speciaized CC/PP profile can be used to guide the adaptation of content presented to that
device. CC/PP is a meta-language that can be used to build vocabularies that can present
the properties and capabilities of a certain device. Not many public applications of CC/PP
exist, but an example isthe WAP user agent profile (UAPROF) [WAGO01].

As CC/PPisapart of awider application, it doesn’t cover al the issues that may be
necessary for a given architecture [W3C00c]. For example, the CC/PP framework does
not define the actions that Ul systems should make to adapt the content to given device
properties. Hence, the standard does not directly serve the needs of the RDIXML
framework (see “automatic adaptation” in chapter 5.5). Thiswork does not suggest how
CC/PP should, or could, be combined with RDIXML to form a more comprehensive and
useful device model. Instead, common device model properties that serve the needs of the

RDIXML framework are presented.

RDIXML attaches domain attributes to tasks in an abstract format to achieve code reuse
and device independence. Designers may sometimes wish to use the automatic mapping
properties of the RDIXML framework instead of specifically defining presentation for
these attributes (see chapter 5.5). Hence, it is important that the device model maps the
abstract formats to concrete Ul counterparts. For example, for each specific markup
language, the device model gives a default correspondence for an abstract presentation
type “input”. At run-time, the Ul engine can then map the given abstract data type to the
default input widget. For example, for aregular HTML browser, the abstract data type

“input” could be replaced with markup ‘<input type="text" ...”/>".

Importantly, browser manufacturers provide idiosyncratic implementations of language
standards. It has traditionally been the case that browsers of Netscape and Microsoft have

rendered the same HTML document in two different ways. For example, alignment of

36

graphics has commonly resulted in browser specific rendering, i.e. the result often looks
different on different browsers [Nie00, pp. 39-41]. It is not only the devices that need be

modelled, but also the browsers and especialy the differences between them.

It seemsrational to think that for example two PDA devices with similar kinds of screen
resolutions, user interface environments and connection speeds could use the same task
descriptions, whereas a WAP browser perhaps should use another. Similarly, two PDA
devices with similar kinds of screen resolutions could use the same presentation model,
whereas a Web browser would most probably use another. For these reasons, it is
important to model devices as a hierarchical tree, where devices inherit properties from
upper levels of the hierarchy and are able to override them as necessary. This strategy
supports property reuse, while it at the same time allows addressing minor deviations of
idiosyncratic implementations. This strategy alows other RDIXML models to map to
larger groups of devices at once, instead of separately mentioning each device. Figure 9

presents the overall structure of the RDIXML device model.

WAP - l.com mon
properties

common .
PDA [- '~':\'\:: """"""""" Commu:nlcator

properties ;

l common
properties

IE 6 Netscape
property T

Figure 9: RDIXML models devicesin a hierarchical tree structure.

The hierarchical device model would seem to provide a good basis for coping with the

variance between markup language implementations. A good starting point would be to

37

provide possibilities to smply model the usage of different tags or attributes to achieve
the same functionality. For example, for some specific browser, tag <font-size> could be
used instead of tag , to express the font type. In more complicated cases, it would
be of help if more complicated rendering rules could be applied device specifically.
Specific device properties, such as screen resolution, are briefly discussed in chapter 5.5

(see “automatic adaptation”).

User model

A common requirement for an enterprise application is the provision of user or role
specific content. Clearly, some tasks are shared by different user groups, whereas some
are restricted to the more privileged users. On amore fine-grained level: the user’srole
can affect the level of information viewed to the user, the visualization of the user
interface, and the tasks that the user is allowed to perform. Some domain elements may
not be viewed to the user and the ones that are might have a different kind of presentation
and relate to another task.

As user privileges change often, publishing user and role information as part of text-
based application logic, i.e. RDIXML descriptions, would not be a satisfactory solution.
This would mean that the system administrator would then have to maintain user rights
by changing the text-based RDIXML descriptions. M echanisms that are more dynamic,
such as LDAP (Lightweight Directory Access Protocol) [Wah97], are a better option for
maintaining information about users and roles. Various enterprises use role names of their
own and these roles have various hierarchical relationships to each other. Hence, the
RDIXML grammar must define a mechanism to restrict and grant access rights to
services in an abstract manner, without directly referring to any specific user or role

names.
Because the RDIXML user model limits resource use with abstract constraints, the

RDIXML framework must retrieve concrete user information from any service that might

provideit. We do not specify how this should happen. Since the role maintenance

38

information is not implemented with RDIXML, the principal task of the user model isto
restrict the use of various other elements of the language. The elements of user model are
thus embedded among elements of other models of the language. Figure 10 presents a
simplified sketch of how task elements could be restricted. This matter is further
discussed in relation to mappings between models in chapter 4.3.

<task task_id="buy_item">
<userrule accesslevel="2"/>
<[task>

Figure 10: Accesslevel 2 isrequired for accessing task “buy_item”.

The RDIXML user model is essentially similar to the one of pXML language (see chapter
3.1). However, since RDIXML is atask-based language, the user model is also embedded
as part of the task model.

Application Model

The application model ties model elements together to form a complete application; all
elements of any file must unavoidably belong to some application. If many applications
are parsed to RDIXML engine's memory at the same time, the separately described
model elements of the same application are bound to a single application namespace
containing all resources of that application. The model must also define meta-data
concerning various aspects of the application, such as starting points for the application
for each device type. In addition, the model must list the files that applications comprise
of. An example of application model contentsis givenin figure 11. Each RDIXML file
must by definition start with element application. Apart from the other models, device
model implementations are application independent and are maintained separately from

other models of the language.

<application application_id="test_app”>
<defaultviews>
<defaultview devicegroup="PDA" view="PDA_buy_item"/>
<defaultview devicegroup="WWW" view="WWW _buy_item"/>
</defaultviews>

39

<tasks application_id="test_app”/> <!- placed in another file -->
<views application_id="test_app”/> <!-- placed in another file -->
etc...

</application>

Figure 11: Applications comprise of elements of several language models.

4.3 Model Mappings

The previous chapter already discussed mappings between models at some level. This
chapter compl etes the picture by presenting all mapping relations that a designer may use
to bind various model components together. There are no theoretical foundations to
define the exact mappings between model elements [Pue98] and therefore applying them
ismore or less dependent of the capabilities of the designer and the objectives for the
language. What is important for the UIM designer to keep in mind, though, is that several
systems that fully embed the mappings into the programmatic code of the framework
provide an inflexible Ul design process. In these kinds of systems, the users of the

framework cannot reach and affect the inner functionality of the framework [Pue98].

It isimportant to carefully divide the responsibilities of the model mappings between
RDIXML and its programmatic interpreter, the RDIXML framework. In other words, the
language should grant the designer tools to set necessary mappings manually, and the
framework should be programmed to automatically make mappings left undefined by the
designer. Hence, the RDIXLM mappings provide atool for the Ul designer to create
accurate and persona design. Yet, a designer seeking for effective default solutions may
leave some mappings for the responsibility of the framework. The automatic mapping
process provided by the framework is further discussed in chapter 5.5. The RDIXML
models and mappings between them are presented in figure 12. The application model is
not presented in the picture, since elements of all models, except for the device model,

are always mapped to the application model.

The figure clearly shows that the task model is the centerpiece, to which all other models

relate. The upper part of the figure consists of several abstract level presentations

40

(possibly containing dialogue elements), which are used according to the device detected.
It isimportant to grasp the idea that the PDA view, for example, is an abstract

description. This means that the view addresses aspects of the physical properties of the
device, but is not bound to any specific markup. Hence, this view could be transformed to

any markup (and thus reused), if the device in question would otherwise fit the properties

of the view.

Abstract device specific presentation elements

PDA Web browser WAP browser
View View

z - z -
e T
z - z -
e

Task elements \

Task

N\

Device groups
Subtask 1
L W w
> precond 2 <\/—>
WA P
DA

User roles

\|

Role 1]
Role 2 j
P

Subtask 2
\ Subtask 3

Domain elements

\|

ﬁ/\ﬁ

Domain object 1 Domain object 2
z 7 T 00000 7
Attribute 2 j Attribute 2 z
|Opera(|on1 Iﬁ |Operal\on1 ﬁ

Figure 12: Mappings between RDIXML models
Table 6 listseach RDIXML design-level mapping. As every model of the language

(except for the device model) must provide a mapping to some application, the
application model mappings are excluded.

41

Mapping

Description

Task-Device

Task flow must sometimes be device dependent. At the sametime, task element
reuse is considered important. For these reasons, subtasks (asawhole),
preconditions, postconditions, operations, and fieldreferences can be mapped to
devices.

Task-User

Tasks can be user (or role) dependent as well as device dependent. The
preconditions and postconditions of tasks must be mapped to users or/and roles.

The user elements are directly embedded as part of the condition elements.

Task-Domain

Tasks provide a reusable way to describe bi-directional interactions between the
client and server. To achieve comprehensively reusable Ul descriptions, itis

natural to map domain elements, namely operations and attribut es, to tasks.

Presentation-task

The designers must have the power to define presentation for tasks. Hence, tasks
are mapped inside presentation elements.

Presentation-Device

Tasks (and its subtasks) can be presented in many ways, because they can be
executed by using various devices. Thisimposes aneed to link presentations not
only to tasks, but also to devices.

Presentation
Dialogue

Scripts must be attached to presentation componentsin adetailed level. In
addition, it is often the case that when the presentation changes, so does the
scripting. For these reasons, RDIXML presents a combined model for presentation
and dialogue elements to provide a clear visua mapping to benefit the designer.

Presentation-User

Some presentation elements, namely viewsand subviews, can be user (or role)
dependent. User elements are directly embedded as part of presentation elements.

Dialogue-Domain

DomainUser

Diaogue elements can override some definitions, namely operations, expressed in
task models. Hence, there exists anaturd mapping between the dialogue and
domain models.

Some domain elements can be user (or role) dependent. Hence, the attributes and
operations of adomain object can be user specific. The user elements are directly
embedded as part of domain elements.

Application-Device

Complex applications may include functionality that isimpossible to adapt to
devices with limited capabilities. In these cases, applications must exclude certain
devices or device groups. For example, an application that necessarily requires
multi-media streaming functiondity could not be used with aWAP device. Itis
thus necessary to specify applicationsin terms of their requirements [BanQ0].

Table 6: Design time mapping possibilities between RDIXML models.

42

Chapter 3.2 presented three major advantages that result from dividing a user interface
language into separate models. We state that RDIXML realizes language abstraction by
being an XML-based language not directly relating to any specific Ul environment. The
second advantage (a more systematic Ul developing method) is based on the various
abstraction levels of the language models. The Ul development is systematically based on
reusing the abstract elements of the Ul, namely the task and domain elements. The
various mapping mechanisms and especially the device model propertiesrealize
advantage number three, i.e. foundation for automatic Ul generation (see “automatic

adaptation” in chapter 5.5).

43

5 The RDIXML Framework

The RDIXML language provides a basis for creating multi -channelled Web services.
However, the language does not have an interpretation before it is provided by a software
module that is programmed to tackle the grammatical presentations of RDIXML.
Architectural components capable of interpreting the RDIXML language form a generic
part of the RDIXML framework, which does not require changes on implementing new

application services.

Proper comparison between various possible implementation strategies for thiskind of a
generic framework would be a huge effort. Asthe emphasis of thiswork is simply to
prove the concept feasible, this chapter sketches one possible design and other
possibilities are mainly left without attention. Chapter 5.1 generally introduces multi-
channel architectures. Chapters 5.2 - 5.5 present different aspects of the generic
framework particularly from the point of run-time functionality. Finaly, chapter 5.6

discusses how the framework is specialized for application specific functionality.

5.1 An Introduction to Multi-channel Architectures

Software architectures describe the division of functional parts of application systems, as
well as the predetermined co-operation of these parts. Good architectural design should
produce systems that are efficient, interoperable, changeable, reusable, testable, and
reliable [Bus96, p. 404]. A three-tier architecture model that isin wide use today
comprises of presentation, application and data management tiers. The presentation tier is
responsible for communicating with various devices; the tier handles requests from user
agents and generates an appropriate presentation for the data presented to the agent. The
application tier defines the application logic. The data management tier is responsible of
managing application data in a stable manner. The two-tier model, till in wide use,

merges the presentation and application tiers. Compared to the two-tier model, the three-

tier model provides clear advantages; the most significant of these is the separation of

datafrom its presentation.

Content is the valuable power source that makes communities, enterprises and individuals
communicate via Internet. Dealing with the proliferation of various kinds of Internet
devices requires new kinds of Web-architectures that can dynamically map the content to
user interfaces that run on many different computing platforms. Most enterprises use
independent systems for providing content for each separate channel [Lun01].
Economically and maintenance-wise, thisis not along-span way to act. Business
processes should be streamlined to automatically provide content to and interact with
many different channels, such as Web, voice, e-documents and digital television.
“Enterprises that leverage the power of multi-channel content delivery will gain a

competiti ve advantage over those that do not” [Lun01].

In multi-channel architectures, the role of the presentation tier is superior compared to
single channel architectures. The tier must be able to detect various kinds of browser
types, communicate with them with appropriate network protocols, and adapt the content
to match the constraints of the device in question. As the presentation tier directly
communicates with various kinds of devices, it must dynamically re-organize the Ul
components to adapt the content for various devices. The adapted content must be
merged into a presentation format that suits for the target device; for example, the same
content could be delivered in either HTML or WML formats. Equally, two HTML-based
devices might require the same content with different kinds of presentation. This process
may involve resizing Ul elements and perhaps dropping out some non-obligatory
elements of presentation. In addition, interaction sequences between the client and server

may vary according to the device used.

5.2 Objectives for the Framework

The next paragraphs express the essential objectives for the RDIXML framework.

45

Multi-channel presentation tier - The framework must provide a run-time engine for
managing the bi-directional communication with various user agents. The engine must be
able to dynamically produce Uls for many different devices based on given RDIXML

descriptions. Content must be adapted to meet the device constraints.

Task orientation- RDIXML is atask-oriented language and the framework must follow
this premise. Founding application development on tasks, rather that assuming visual
aspects of applications, isimportant considering goals of pervasive applications, such as
enabling users to change the device on the fly [Ban0Q]. For example, returning to the
office from the field, an employee might want to stop using the PDA device for anairline
booking and rather finish it with the desktop computer. The graphics would change and
maybe some alternative ways to finish the job would emerge, but the execution of the
task would continue from the same point, provided that the devices could share session
status. A task-based framework model very naturally seems to support this need:
considering pervasive computing, it isimportant for the Ul system to know at which state
of task execution, not user interface, the user is[Ban00]. The remaining steps required for
completing atask are what count, not the visual components (that are obviously not the
same between devices). Importantly, a task-oriented system provides support for both
visua and auditory devices. Thiskind of an approach enables saving the user’s
comprehensive task status on disconnecting. On returning to the service, the user could
continue the service from exactly the same point where it was left. Task-based multi -
channelled frameworks seem to open up new possibilities compared to traditional visual-

oriented solutions.

Automatic adaptation — The framework should act as a complementary element to the
RDIXML language and thus facilitate the Ul development process. The framework
should automatically provide mappings to help adapting content to meet device specific
requirements. For example, if the designer does not define a presentation to a task
attribute, the framework should automatically transform the attribute’ s abstract data type
to some device specific presentation format.

46

Application independence - The framework’s core must be a comprehensive solution
neither requiring changes, nor new implementation for individual software projects.
Achieving this objective requires a generic presentation module that is de facto reusable
through every application project. Application specific Uls must be constructed by using
the RDIXML language only, not by programming. Components of the presentation tier
are generic in nature and cannot contain any application logic whatsoever.

In addition to these elementary objectives, common goals for application frameworks
exist. Examples of such objectives are performance issues and support for application
design. These issues are too extensive to be covered in thisthesis, but are briefly
discussed in chapters 5 and 7.

5.3 Technological Foundations

Building afully functional application framework from scratch is an enormous effort.
Today’ s enterprise applications set strong requirements for concurrency management,
security, scalability, robustness, and efficiency. The framework must provide basic
services related to these issues, but tackling them successfully is difficult and tedious.
Middleware technologies that aleviate the burden of implementing these services from
scratch exist. Examples of these kinds of technologies are Microsoft’s .NET [Mic02] and
Sun Microsystems J2EE (Java 2 Enterprise Edition) [Sun99]. J2EE is generally
recognized as a competitive and mature technology and it is used as the elementary
technology for the OpenPort framework discussed in chapter 3. For these reasons, the
RDIXML framework is designed to function on any J2EE compatible application server.

The usage of particular J2EE technologiesis not further discussed in thisthesis, as that
would not be interesting considering the goals of this thesis. However, efficient use of
J2EE (or any) technology requires profound understanding of how it should be used. It is
not just using good technologies that make up a good application or framework; other
insights are required for success [Alu01, p. 30]. As Krueger states, it is more difficult to
develop reusable solutions than to develop a solution for a specific application as the

47

reusable one is more complex [Kru92]. The design of the framework should be based on

firm and recognized design principles in the chosen technological environment.

A design pattern addresses a recurring design problem and provides a solution to it.
Design patterns can be used to document architectural designs. Presenting design ideas
with patterns hel ps the ones implementing the architecture to avoid violating given design
ideas [Bus96, p. 6]. In[Alu01], Alur et a. present design patterns that are found to solve
common design problems of J2EE-based applications. The next few sections present a set
of J2EE patterns that document the key points of the RDIXML architecture, focusing
especially on the presentation tier.

I nter cepting filter [Alu01, pp. 152-171] — This pattern defines usage of pluggable filters
that pre-process and post-process general level basic services concerning requests and
responses. The pattern can be used to decorate the main process with filters for example
for security, logging, and debugging. The filter mechanism enables adding other services
without disturbing the main process. Other duties might include validating user’ s session

and detecting the user’ s device.

Serviceto Worker [Alu01, pp. 216-230] — This macro pattern combines several other
patterns to document the combination of a controller and dispatcher that control views
and additional helper classes. The pattern consists of front controller, dispatcher and view
helper patterns. The front controller isin charge of invoking system objects based on user
request parameters. Dispatcher is responsible of invoking choosing an appropriate
(markup specific) view helper for managing the Ul processing. The view helper strategy,
related to this framework, is further discussed in chapter 5.5.

Composite view [Alu01, pp. 203-215] — Views consist of autonomous subviews, which
produce the content for a specific layout section of the view. This pattern exists already at
the RDIXML language level (in the combination of view, subview, and layoutstructure
elements); the framework makes the language level concept concrete by using subview

manager objects to complement the view helper pattern.

48

Business Delegate[Alu01, pp. 248-260] — This pattern provides a single access point to
data management tier. It provides an abstraction for and thus hides the implementation of
abusiness service. Hence, it reduces coupling between the presentation tier and the data

management tier and thus enhances manageability.

Value Object Assembler [Alu0l, p. 339-352] — This pattern is used to compose generic
data objects (value objects) from various data sources, i.e. the pattern defines acommon
mechanism for the communication between the presentation and data management tiers.
By forcing each application specific data management object to implement the same
interface, the pattern provides an application independent means to deliver datato the

presentation tier.

Figure 13 presents the framework’ s architectural structurein five tiers. The client tier
presents the application users that make requests with various kinds of devices. The
application logic tier consists of the RDIXML models that are used to build new services.
The presentation tier forms the generic part of the framework, which gets its application
specific functionality by interpreting the language elements. The data management tier
mainly consists of domain objects (EJB beans) that are used to process application
specific transactions. The framework tier consists of the J2EE application server, on
which the framework is built, and the meta-data that is used to control the technical
functionality of the RDIXML framework. The figure also presents the four hot spots that
are used to specialize the framework for application specific purposes (see chapter 5.6).
Chapter 5.5 provides additional views on the usage of the presented modules and design
patterns.

49

T ods J0H

Client tier g
Presentation tier Application logic tier
Intercepting filter Device manager /I
! Device model I/'
’ 4
Front controller| User manager i :
1 User model I/
I I
Dispatcher View helpes Presentation/dialogue
\ View
\,
N Iﬂ
H AN "i Subviews
Subview manager| X
7
'{Layoutstructure IJ
H
Business delegate L—4Task manager (4 /I
i Task model I/’
Data management tier | - !
- ; Domain_model |
Value object assembler Domain manager P 7 |
J
Hot spot 2-- Eields Lo
s | |
J)
Operations I’__, /
. z |
Framework tier |
= Framework meta-data |
L_| |J2EE application server e ————————— I
- Hot spot 3 Hot spot 4 e | |
Lparameters ____ - /

Figure 13: The RDIXML architecture.

The architecture assigns a manager for each of the models of the RDIXML language.
Thisisthe key in achieving a generic (application independent) presentation tier, as none
of the managers contain any application logic. Each manager is capable of interpreting
specific parts of run-time application logic following the RDIXML grammar. For
example, view helpers and subview managers dynamically manage the Ul by following

the instructions given in the presentation/dialogue mode.

Due to the task-oriented nature of the framework, design patterns for covering all
elementary parts of design do not exist. Hence, the core of the framework cannot purely
rely on existing design knowledge. Hence, the adequacy of the given solutions is justified
by simulating the functionality of the framework in chapter 6.

50

5.4 Run-time Application Logic

This chapter gives an overview of issues that relate to constructing run-time data
structures from static RDIXML-files and the kind of meta-data that is involved with the
generation process. In addition, the techniques and mechanisms used in this process are
discussed.

Parsing XML Documents

An XML parser is a software module that is used for reading XM L-documents and
providing various applications access to their contents and structure [Mar00, pp. 62-64].
The document handling processor can either parse a document in its entirety to atree
structure (that follows the document structure) into computers memory using the DOM
parsing model [W3C98], or read the document element by element according to the SAX
parsing model [SAX98]. In the latter case, the application that uses the parser has an
event driven interface, through which it can apply actions to the elements and attributes
of the document as they are being processed. The SAX model enables the programmer to
reorganize the parsed elements when necessary. SAX requires less resources compared to
DOM, but the application programmer must specifically determine the processing of each
element. The DOM model provides a strong tree handling functionality, but may not be
the best solution for the manipulation of large XML files [MarQ0, p. 183].

Experiences of working with the OpenPort framework (see chapter 3.1) have shown that
it is natural to divide application elements to many separate XML-files. It can be assumed
that RDIXML applications usually comprise of several files, which al contain partial
aspects of the application and share the same application id. This strategy divides the
possibly huge amount application datain to smaller units that are easier to control. Many
possibilities for the division of elements between files exist. For example, the contents of
asingle view might be used as a unit for file division. Because severa files exist and al
of them are not necessarily valid, some kind of meta-data structure is required to tell the
system the files to be parsed. The loading order of files might also prove to be important,
as some files might contain meta-data of how the following files should be parsed.

51

An XML-parser is used to load the separate RDIXML-filesinto asingle run-time
application logic entity, which isinterpreted by other tiers of the framework. Additional
research is required to find out, whether this run-time application logic could be
optimized to enhance the performance of the framework. Optimizing the model elements
of the language for effective access, while still keeping the structures from getting overly
redundant, could reduce the required run-time Ul adaptation. This would most likely
result in better performance, thus enhancing usability. A generally acceptable response
time for a user request is 1 seconds. Nielsen states that if the response time exceeds 10
seconds, the user gets frustrated and rearly always moves over to a new site or page
[Nie93, Nie9Q7]. For this reason, organizing the run-time application logic matters. Every
optimization that can be done to help the dynamic Ul creation process will enhance the

responsiveness of the server.

For example, adesigner might not define presentation for atask, relating to some device
group. In this case, the parsing logic could optimize the run-time Ul structure by
providing a ready-made mapping between Ul component types and task attributes.
Because there exists severa device types, the optimization might require many such
mappings. Careful estimations are required concerning performance costs against
memory costs in order to find out proper solutions for the run-time structure. If the run-
time structure should be reorganized to meet the set requirements, the SAX parsing

model should be used instead of DOM, because it provides the means for event-driven
element handling. Otherwise, the DOM model might be an appropriate solution, provided
that the memory costs would not exceed critical limits.

Validation

An XML parser can automatically check the validity of parsed XML documents
referencing aDTD [MarQ0, p. 71]. The parser will discard invalid documents and give
appropriate error messages accordingly. A DTD is not however a strong enough
mechanism for describing the construction rules for all XML applications [Sep02]. For

52

example, 1D references cannot be typed. By this, we mean that it is not possible to specify
that from inside element “fieldreference”, only to IDs inside elements of type "field”, can
be referred to. In addition, IDs inside a single document are unique independently of their
hierarchical element location. Work with the pXML language has proved that this makes
it difficult to use rational naming conventions. For these reasons, the RDIXML grammar
in appendix A is defined without using XML IDs. The lack of expressive power in DTDs
easily leads to situations, where the application is valid on the point of view of the XML
parser, but in reality, the application is faulty and useless. Erroneous application logic

resultsin run-time errors, which especially in bigger applications are hard to mend.

In order to guarantee an error free system start-up, the RDIXML engine must provide a
separate error management mechanism. The mechanism should be able to detect and
report invalid mappings within RDIXML documents. XSLT technology can be used to
validate XM L-based applications [Sep02]. Another and a more traditional alternative for
achieving the requi red functionality would be to implement a validation module with
some programming language. The latter mechanism in combination with additional meta-

data information has been used with the OpenPort framework.

The RDIXML language could be implemented with the XML Schemato cover some of
the problems concerning application validation. As schematools are not yet very mature
and use of schemas would not solve all mentioned problems [Sep02], schemas are not
further discussed in this thesis.

5.5 The RDIXML engine

This chapter presents the fundamental run-time modules of the presentation tier.
Technical details, such as session management or device detection, are not discussed,

chapter 6 does, however, give an overview of how and when these are managed.

53

View Management

The Ul creation process aways happens through view helpers that control the overall
layout management of the Ul by controlling the content creation and positioning of
subviews (see figure 13). On each request, a view helper invokes a subview maneger to
manage content creation for each of the subviews attached to the view. As a subview
manager returns the content, the view helper positionsit, renders the structure to device
specific markup, and finaly outputs the Ul.

Each subview manager is responsible of presenting a certain number of tasks and
subtasks according to given RDIXML instructions. Each manager thus embeds given
task-related content to required Ul markup. Subview managers co-operate closely with
the task engine to achieve awareness of task states and to get the domain data related to
the task (see next section). At a specific moment, some tasks are active, and some are
inactive. For the active tasks, subview managers render the task attributes and generate
controls through which users can execute actions (defined by “useraction” elements).
Rendering static content, such as headings for pages, is also aresponsibility of a subview

manager.

Subview elements may contain navigational instructions that define new content to be
loaded to some part of the view, i.e. the navigational instructions have areference and a
target. The reference defines the content, i.e. what isloaded (which subview), and the
target defines the part of the layout into where the content is loaded. A view helper isthus
responsible for commanding subview managers to change their content according to
dynamically received navigation instructions. According to given layout target, the view
helper chooses a subview manager and commands it to replace its content. For exanple, a
subview manager might be commanded to replace “subview A” (current content) with
“subview B”. Frankly, asingle user action may cause several subviews to be replaced by
other subviews. In addition, aview can be loaded to a specific part of the layout. Hence, a

view may contain another view, i.e. aview helper may contain another view helper. In

54

these cases, the topmost view helper is responsible of the overall layout management. As
the overal layout of the Ul changes dynamically, view helpers are responsible of not only
managing the Ul layout, but also of storing the state of the view as awhole in between

user requests.

Task Management

Task management is the basis for nearly al interactivity between the Ul engine and user
agents. Only static navigational interactions that lead to other services or views are
outside the control of the task management system. Task managers control the
interactions to both directions thus being decisive elements in the functionality of the Ul
engine. The overall task status defines the dynamic content shown to the user, even

though subview managers function as wrappers for the tasks.

Task manager (see figure 13) maintains each user’s comprehensive task statusin a user
specific task container. The task status predetermines the visibility of data and interaction
controls, as subview managers (by default) render only active tasks. Subview managers
get the status and content for each of the tasks they contain from the task manager and the
output of each task is dependent of its status. On special occasions, a subview definition
may define atask to be rendered even if inactive. In these cases, the task is rendered as
disabled, i.e. the user sees the task, but is not able to trigger it (see figure 14). By defaullt,

inactive tasks are not printed.

E-shop
Task container
Buy items! Proceecd = active in active \\I
I ~ > V:‘,_——_ o
e SaNS. S
_— /07/—\’\ - aebive-—,
_________ L LD (e |
T e = == 3 ./
E-shop | (> T
_________ N N = —_/
Dy wweans! Drocesdl -

Figure 14: A single task printed as active (above) and as inactive (below).

55

Completing atask often affectsits status. For example, submitting an order isusualy a
task that the user is only allowed to do once. In addition, completion of atask usually
leads to changes in the status of other tasks. Other tasks may be enabled, while others are
being disabled. A task may become enabled because some completed task makes a
precondition for the disabled task go off. Managing preconditions of tasks seems to
require brute force in the sense that al tasks of the application must now be checked for
possible enabling. This duty is eased by the hierarchical structure of tasks. Completion of
a subtask can only enable subtasks within the on going task. In addition, other

comprehensive tasks can be enabled.

A completed task may enable or disable a number of tasks by defining one or more
postconditions that can be attached to domain specific keywords. The task engine
dynamically matches the keywords returned by the application specific EJB beans to the
ones defined by the task description. Each matching keyword triggers a postcondition. In
addition to task state changes, postconditions may force the designer to define navigation
to another service or task. Due to possible changes, a new comprehensive task status must
be computed on the completion of each task. This new task status defines the content to
be returned to the user, i.e. the data and interaction possibilities that are rendered to the
ul.

From changes in the comprehensive task status it may follow that some subview no
longer contains active tasks and if so defined, it will no longer produce output. Subviews
that earlier were invisible may now have tasks to present. In addition, navigational
instructions may cause new subviews to replace existing ones. Thusit iscritical that the
designer comprehends managing the overall layout of the Ul and provides rational
mappings between tasks and presentation. The overall task status must remain such that
the layout remains consistent and does not vary in a disturbing manner. Leaving the user

without active tasks naturally prevents all interaction.

A task cannot define its execution environment (subview) and thus enabling atask does

not necessarily mean that it is presented to the user. If atask is not defined by any of the

56

currently present subviews, atask may be active, but remain invisible. Tasks that are not
defined by any of the current subviews can be displayed through navigational
instructions. The task model elements can force presentation designers to provide
necessary havigational instructions to preserve task flow (see “task model” in chapter
4.2).

User Interface Rendering

Run-time application logic describes applications and their Ulsin an abstract format.
Once a device makes a reguest, content must first be adapted according to the device used
and the abstract Ul definitions must then be transformed into device specific format, to
which the content must be embedded. The first phase, i.e. the adaptation functionality, is
done by combining the design-time mappings provided by the designer with the dynamic
adaptation based on the device profiles (see section “automatic adaptation”). The second
phase, i.e. the transformation process, and content embedding, is managed by markup

specific transformation modules.

The architecture defines a transformation module for each specific markup language,
such asHTML and WML. Each transformation module is aware of the correlation
between the abstract Ul element and the corresponding markup. Each module is divided
into entities capable of constructing markup correlating to given RDIXML elements.
Some of these entities must be capable of embedding dynamic values into the markup.
For example, arendering module capable of constructing HTML markup might contain
an inner module capable of transforming atext field into HTML format. This inner
module uses its reference to a generic data structure (see “value object assembler” in
chapter 5.3), extracts the values, and correspondingly outputs ‘ <input type="text"
name="name" value="x"/>". Nonstandard browser implementations, especially
concerning some specific Ul elements, are modelled with device model elements (see
“device model” in chapter 4.2). Hence, some transformation entities must consult the

device manager for possible deviations from standards.

57

Due to the generic nature of the tier, the system must use a generic invocation mechanism
for the markup specific modules. The invocation targets cannot be hard-coded, since the
module to be invoked is dependent on the device detected. Reflection pattern helps
changing software’ s structure and behaviour dynamically [Bus96, p. 193]. Hence, the
architecture uses the reflective features of the Java language to dynamically invoke Ul

environment specific objects according to the device detected.

Figure 15 presents the logical Ul rendering processin avery general level. The user’s
device is the starting point for the rendering process, as it predetermines the process.
First, the engine combines the models explicitly mapped by the Ul designer. In the
absence of design time mappings, the automated mapping mechanism is used (see next
section). After that, the device specific transformation module is invoked and given the
dynamically retrieved application data. Especially small-scale issues, such as style and
size of Ul elements, may be affected by the device properties and the module may
automatically adapt the presentation according to device requirements. The device
specific module transforms the abstract Ul into device specific markup, into which it
embeds the dynamically retrieved data. Finally, the user interface is sent to the remote
device, which usesits rendering capabilities to present a concrete user interface for the

user.

task model

G
domain model :-_
-
Adapted /K
device

markup ‘\ O
[al
presentation E

model

device model Application Device
RDIXML data & specific

engine mapped rendering specific
abstract Ul module

dialogue model

user model

Figure 15: The logical rendering process.

58

Automatic Adaptation

Designers manage high-level mappings between RDIXML models. By high-level
mappings we relate to those mappings that require understanding of the goals considering
the application and its usability. For example, it isimpossible to automatically define
mappings between the task and domain elements. The designer knows what attributes to
attach to a specific task and algorithms whatsoever cannot resolve the business specific
dependencies. The same appliesto what kind of presentation exactly the designer wants
to attach to a certain task. For the best end result, the designer must be allowed to rule the

overall design process.

There are many things that the system can automatically do, however, to enhance the Ul
generation process. This automatic adaptation must follow specific rules and guidelines
defined by device and markup properties. The simplest prerequisites for automation are
the explicitly written abstract-concrete correlations expressed by the device model
elements. For example, a designer may choose not to map presentation for task attributes.
In this case, the engine can pick the presentation by checking the correlation between the

abstract datatype and the device type.

On the other hand, the system can use the device properties to infer usage of other model
elements. For example, for a device with limited capabilities, the device model may
declare that it does not want to use non-obligatory fields. Now, some domain object may
define that some attribute is not obligatory, i.e. the value of that attribute is not necessary
for the transaction. In this case, the engine can by using these two pieces of information

decide to leave those specific attributes out.

The problem in expanding the adaptation functionality is that there are not device specific
specifications on how a Ul system should react to the device properties. It is not enough
to model the properties of the device. It is equally important to describe how the

properties of this specific device should be interpreted. Thisis an obvious problem with

59

the current CC/PP standard, as it does not define such behaviour. In [EIS0Q], Eisenstein

et al. have presented a hierarchical model for describing relations between device
properties and possible device specific interaction objects. This could be an interesting
way for extending the framework’ s device model, as their model clearly opens up views
on how Ul systems could automatically react to device properties, such as screen
resolution. For example, the device model might state that for a certain device with
240x180 resol ution the system should use font size 8 and present Boolean values with a
checkbox instead of two radiobuttons. However, usability guidelines of this accuracy do
not exist and creating them is not atrivial quest. Today’ s transformation solutions that are

solely based on automation do not provide a credible solution.

There exists another form of mapping in between mappings made by designer and
mappings made by the system; we call this fuzzy mapping. By this we mean that
designers can suggest possible dynamic high-level mappings. An example of thiskind of
mapping is the case when the designer defines some comprehensive presentation
definition (namely the “view” element) as being “default”. In this case, the system maps
this presentation for those devices that are not specifically provided one. By making
fuzzy mappings, the designer forces the engine to use specific mappings in vague
situations. By exploiting the various forms of automatic adaptation, a designer might

build ssmple Uls by implementing the task and domain properties only.

5.6 Specializing the Framework

Frameworks provide ready-made services that can directly be utilized in application
development. The users of a framework should never be forced to change the source code
of the framework; applications are to be realized by specializing the framework either by
combining and configuring existing framework components, or by creating new ones. A
framework usually has several specidization points, often called “hot spots’, which are
specific to individua applications [Kru96, s. 397]. A framework should clearly define
and document the possible specialization mechanisms to avoid alearning curve too steep,

thus achieving a higher production level.

60

On application developers point of view, the RDIXML framework defines four
specialization points (see figure 13):

The RDIXML language elements
EJB beans

Application server configuration

A W DN

Framework meta-data

First, severa RDIXML files must be written to define all necessary elements of the
application and especially the user interface. Secondly, application specific EJB-beans
are usually required to implement application specific data processing. Thirdly, the
underlying application server technology requires declarations for things like database
connections, deployed servlets and EJB-beans, to mention afew. Finaly, XML-based
meta-data files are used configure the functionality of the RDIXML framework.
Examples of meta-data usage are means to control the functionality of the framework’s
rurrtime engine, as well as defining relations between language elements for validation

purposes.

It would seem that arational starting point for the Ul development isto first define the
abstract elements of the Ul. Ready- made task and domain implementations provide a
solid basis for refining the Ul for various devices. Concerning development roles, a
domain specialist should see that the database implementation matches the structure of
the domain model elements. In addition, the same person should have an understanding
of the EJB paradigm. A task analyst could provide initial sketches for task models. Later,
co-operation with platform analysts and usability analysts could lead to specializing task
flow concerning some devices. In this phase domain and task analysts should work
together in order to achieve good quality device specific task models with a good level of
domain element reuse. After these preliminary phases, graphical designers together with

Ul designers can proceed to implement the visual presentation.

61

User interface languages such as RDIXML or pXML blur the boundaries between
architectural layers. These languages at least partly cover issues concerning al three
layers of the traditional three-tier architecture model. Hence, new methods for organizing
the work and responsibilities are unavoidable. Experience will show how easily new
working mechanisms are found and how effectively they can be applied. An example of
the difficulties in dividing devel oper roles relates to presentation: when constructing Ul
for aregular Web browser, construction of CSS style sheets has commonly been done by
graphical designers. However, many PDA devices cannot deal with CSS (e.g. Nokia
Communicator). For these kinds of devices, the stylistic issues must be embedded into the
RDIXML code.

The objectives of RDIXML, namely related to reuse and adaptability, giverise to its
complex modelling structure compared to many other Ul languages. It is clear that
RDIXML isnot as comprehensible to humans, as are some Ul languages of more
traditional character. This clearly has to do with the use of abstract model elements,
which require mappings to separately described Ul elements. The complex structure
hampers the intelligibility of the Ul constructions and directly seems to affect the
usability of the RDIXML framework by imposing aneed for atool that would facilitate
the Ul development process. Editing Ul descriptions with regular text editors, or even

with XML tools of today’ slevel, is error-prone and time consuming.

A tool should guide the development process and hide unnecessary details from the
designer. First, it should ease the task modelling process. Secondly, it should provide the
designer away to attach domain elements to tasks. After these basic steps, the tool should
let the designer see what kind of a default presentation the engine would generate for a
given task. Hence, the presentation engine should be integrated with the tool. The
designer should be able to browse through device specific views for each task. A working
view would alow the designer to map presentation elements to task components. A
preview mode would show how that task would be rendered by this certain device

according to the current design. Thiskind of functionality would require that the output

62

of the device specific rendering modules would serve as an input for external user agent

simulators.

Despite the above-mentioned problems, interesting possibilities seem to arise from the
strict modelling structure of UIM languages, such as RDIXML. As Faulkner and Culwin
state, HCI people and software people lack a common vocabulary [Fau00]. Now, UIM
languages divide the Ul elementsinto several separate models. Thus, one big topicis
divided into several narrower discussion channels with limited context. Instead of having
to exchange usability knowledge concerning the whole user interface (which undoubtedly
still remains an issue), specific models of the Ul can be discussed. This might facilitate
achieving consensus of smaller-scale usability guidelines, thus supporting devel opment

of usable end-products.

63

6 E-shop - An Example Use Case

In this chapter, the functionality of the RDIXML framework is put under scrutiny by
presenting a use case simulation. During the simulation, the run-time functionality of the
framework is examned. At specific points, elements of other models, such as
presentation and device, are discussed and sketched. These examples are not provided a
grammar. The presented user interfaces have not been designed with aesthetics in mind,

rather they are left simple to stress the functional points.

The idea behind the exampleis to use the framework to realize a single use case for two
different devices. A Nokia 9210 Communicator [NokO1a] is chosen to represent a PDA
device with asmall screen. A regular Web browser (such as Internet explorer or
Netscape) used with a high-resolution screen is chosen to represent the average user. In
the following chapters, the word “Web browser” always refersto this latter device. The
use case is deliberately such that providing both devices asimilar flow of actions would
not effectively serve the PDA user’s needs, i.e. would not provide a usable solution.
Hence, the two devices must have diverse sequences of task actions. Different kinds of
user interfaces are required in other parts as well, although both devices can render
HTML.

6.1 Objectives

The simulation should prove that the RDIXML framework is capable of solving the
problems presented in chapter 2.3, i.e. that the framework in practice can produce device
dependent task action sequences. To provide a credible ssimulation, the inner workings of
the language and the framework, to some extent, are be presented. Hence, the simulation
should reveal any significant weaknesses left unnoticed at the design. Clearly, the
simulation should shed some light on what is it like to build applications with the
RDIXML framework.

64

6.2 The Use Case in General

A music wholesaler has an e-shop, through which music-dealers can place orders. Music-
dealers can order instruments either by searchi ng or browsing instruments by category.
All real world issues that would in practice have to be dealt with are not addressed here.
For example, user authorization is not covered. In addition, the users are assumed to have
provided necessary billing information earlier. The use case is built around users
activities in buying a product from the shop. The direct flow from the starting point of the

service until finishing the order is presented.

Task Moddl for the Web browser User

Figure 16 presents the task flow of the use case for the user of aregular Web browser.
Initially, the user can choose to either hierarchically browse products or to enter a search
string. In both cases, if instruments are found, the user can directly add them to shopping
cart or browse for remaining search results. After adding products to cart, the user may
choose to again browse or search, or may proceed to check out. In the check out phase,
the user is viewed the details of the order. From this phase, the user can either accept the

order or return for more products.

Task Modd for Nokia 9210 Communicator User

The style guide for the Nokia 9210 specifically advises not to use “doormat” pages for
this device; it’s better to go directly to the service [Nok01b]. The Communicator user
pays for the connection al the time, thus speed and efficiency counts and additional
browsing should be left for software and equipment that are more sophisticated. Through
user interviews, the wholesaler has realized that it is commonly the case that when using
aPDA, the user usually just wants to place an order of a certainproduct and do that

quickly. Thus, the service must be optimized for effective ordering.

65

Pis

WEB BROWSER

proceed_to_site

A browse products

Figure 16: Task flow for WWW-browsers.

A

search
instruments

add_to_cart

Y

check_out

7

| accept_order |

"buy_insﬁment"

completed

browse_remaining
_results

optional

The task flow for PDA devices s restricted to one possible route of actions, as can be

seen from figure 17. The user can execute a search to find instruments. If instruments are

found, the user can either add them to cart or browse for remaining results. If items exist

in the cart, the user can directly accept the order. This ought to ease making orders “on

the road”. However, the user is provided a possibility to cancel the order within one hour

of submitting it. The cancelling process is not described in this use case.

To make the case more realistic, the screen shotsin the chapter 6.3 contain some task

elements that are neither present in figures 16 and 17, nor in the task model

implementation in appendix B.

66

A

search instrument

Y

‘browse_remaining !

add_to_cart . ; .
|__instruments [e—> optional
T T

accept_order —» cancel_order | optional

"buy_instrument”
completed

Figure 17: Task flow for PDA devices

6.3 Simulation

This simulation follows the task description presented in previous chapter. The
RDIXML-based task model for both devicesis presented in appendix B. Concerning a
single subview, the presentation elements for the PDA device are roughly sketched in
appendix C. Both appendixes are commented and provide detailed insights to various

phases of the smulation.

W3C has published a device independence principle, which states that the URI for a
specific service should be the same for all devices [W3CO01]. Following this guideline, the
framework allows both devices entering the e-shop service by using the same URI. We
assume that the RDIXML application model maps the URI to a default view called
“shop_view”. Asthe devices do not share a single starting point for the service, two
views named “shop_view” must be implemented, one for the PDA and another for

regular Web browsers. Figure 18 outlines the view for the PDA device, where attribute
“excludeddevices’ excludes Web browsers from this view. Thus, the Ul engine is capable

of choosing this view for this service each time a PDA device is detected. The view

67

contains two subviews, defined with two “subviewreference” elements. The upper
subview contains the welcome text. The lower one, containing the search task, aso

contains accept order and cancel order tasks, which are both initially disabled.

<view view_|D="shop_view" layoutstructure="basic_layout" construction="astable" title="E-shop"
excludeddevices="WWW">

<subviewreference reference="welcome_subview'/>

<subviewreference reference="search_subview'/>

</view>

Figure 18: Communicator - View structure.

Figure 19 presents the starting point for the PDA users. Since “search_products’ isthe

only task without preconditions, it is the only active task and thus the only one presented.

The mobile instrument shop!

Please enter a search string,

| Search

Figure 19: Communicator - Starting point of the service.

Figure 20 presents the layout structure for the view. Attribute “division” is used to define
that the subviews are to be set from top to bottom, i.e. that subview “welcome_subview”

will be rendered on top of subview ”search_subview”.

<layoutstructure layoutstructure_ID="basic_layout" division="vertical" excludeddevices="PDA">
<frame frame_ID="upper_frame" size="20" dimensiontype="percentage"/>
<frame frame_ID="lower_frame" size="80" dimensiontype="percentage"/>

</layoutstructure>

Figure 20: Communicator - Layout structure for the view.

68

The sequence diagram presented in figure 21 roughly presents the inner functionality of
the framework at the time of the initial request for a service. First, the client makes a
request (1). At this stage, the system uses the intercepting filter pattern to tackle several
issues related to the request, such as extracting the service name from the URI, detecting
the user’ s device and software, creating an internal (server side) session for the user, and
retrieving the name of the default view for the service (2). Relevant parameters, such as
the used device and the name of the view name, are now inserted into a parameter
structure, which is passed along subsequent calls. This assuresthat all system objects are
able to adapt their output to the request. The intercepting filter now invokes the front
controller to delegate control according to the request type (3). The view dispatcher is
invoked in (4). Since the Communicator uses the service as a Web browser, an HTML

capable view helper isinvoked (5).

Following the run-time view presentation, the view helper now invokes two HTML
capable subview managers (6) to generate content for both of the RDIXML subview
definitions. The subview managers use the task manager to get the status and possible
data for both of the tasks that they contain (7). The upper subview definition only
contains static text, and thus communication with the task manager is not required. The
“search_subview” contains three tasks. Two of them, “accept_order” and “cancel _order”
areinactive and not printed. However, the third task, “ search_instruments’, is active, and
thus printed.

At this point, the subview manager does not know the attributes to be rendered, since the
subview does not define them. Hence, the task manager must return a list of associated
attributes and operations (domain objects mapped to the subtask). Properties such as
attribute values and attribute headings are mapped to each attribute in the list. Concerning
the search task, the task manager simply returns the abstract data type and label for the
search field, and the name and |abel for the “search” action. The subview manager must
now use the automatic mapping process to build the presentation. Hence, the subview

manager invokes the device manager to retrieve the presentation type for the attribute and

69

the action (8). Naturally, the device manager needs the current device type and the

abstract data types as parameters to be capable of achieving this. As the subview manager

receives the presentation types, it can invoke appropriate transformation objects to do

final work consisting of creating the markup and embedding the dynamic valuesinto it

(9). At this phase, necessary parameters must be bound to the “search” action. As the user

triggers the search, the request must then contain information adequate parameters, such

as the name of the action and the name of the object that is capable of handling the

request. In other words, necessary attributes concerning the RDIXML-based action

description must be attached to the user request. At phase (10), the view embeds subview

markups into the view markup. Finally, the Ul is returned to the client (11).

Figure 21: Entering a service.

70

Client Intercepting Filter | Frant controller || Dispatcher. | view manager. | subview manager | Task manager | Device manager
1. request()
| -
Ll
\\:) 2. man#atory tasks()
<
3. Delegate control(
|-
Ll
4. Choose view()
|-
5. print()
|-
6. print()
---------- »>
7. get_task_status_and_data()
R 0——
8. getDefaultPresentation()
(>
dl
-
\:) 9. rendering()
P
0
dl
-
\N:jx 10. map_subviews_to_structure()
A g
11. Ul is returned()
N

Users of regular Web browsers enter the service through a flash presentation, which
advertises an instrument (see figure 22). This functionality is strictly a part of abusiness
deal made between the wholesaler and instrument manufacturers and has essentially
nothing to do with users tasks. Hence, this step is not modelled as part of the task model.
This functionality is thus described by using dialogue model elements to provide alink to
another view. The “proceed to e-shop” is simply a static link targeted to another view that
contains the tasks in question.

Figure 22: Web browser - A flash advertisement is the user’s route to the service.

Figure 23 presents the starting point of the actual instrument service for the Web browser
user. The view initialy contains many active subtasks. By default, the user sees the bids
of the moment and thus the navigation bar does not show this option as an active link,
unlike the others. Other available choices are Browse products, My orders and Search
products. Each today’ s bid can directly be added to shopping cart. To find items of

particular interest, the user can either browse instruments or execute a search.

71

Cinrent bads

Eorg -1 svathesizer only LOO0 €11 - Add to shopping cart 1 Add |
Browee produucts
Ly orders Premier Sizmia dimmset only 1500 €F - Add to shopping cat |1 ﬂ”

Search products

Search |

Figure 23: Web browser - Starting point of the service.

The view definition for the Web browser is similar to the one of the PDA. The only
differences are that the view refers to different subviews and that it uses a different layout
structure. Figure 24 shows that the Web browser layout divides the two subviews

vertically, i.e. subviews are presented from left to right.

<layoutstructure frameset_ID="shop_layout" division="vertical" excludeddevices="PDA" >
<frame frame_ID="navigation_frame" size="20" dimensiontype="percentage"/>
<frame frame_ID="main_frame" size="80" dimensiontype="percentage"/>

</layoutstructure>

Figure 24: Web browser - Layout structure for the view.

To proceed the compari son with device interaction, we get back to the PDA user.
Following the scenario, the user now enters a search string “korg” and submits the query.
At this stage, the task manager executes the query and caches the results to user’s session.
The Ul engine now follows the navigation properties defined by the occurring
postcondition and replaces the “header_subview” with the “add_to_cart_subview”. The
“add_to_cart” subtask definesthat it uses the data that was cached by the search
operation. Figure 25 presents the search results combined with the “add_to_cart” action.
The user may now proceed either by submitting a new search, or by adding a certain

amount of either item into the shopping cart.

72

Product

Korg M-1 gyvnthesizer

Korg XP-1000 syvnthezizer

Price Add to cart

1000€ | Add|
1500€ [q Add

Search products

| Search

Figure 25: Communicator - Search results.

The user now triggers the “Add to cart” action. As aresult, a product is added to the
shopping cart, which is then showed to the user as the result of enabling the
“accept_order” task. In figure 26, the user is presented the contents of the cart. While still

being able to search for other instruments, the user can now also directly submit the

order.
Korg M-1 synthesizer only 1000 €!! - Add to shopping cart |1 Add
Korg XP-1000 synthesizer only 1500 €! - Add to shopping cart |1 Add

——) Search products
=1 1 item(s) in cart
Total 63 € |
Submit your order

Search

Figure 26: Communicator - An instrument is added to the shopping cart.

Figure 27 presents the functionality of the framework in handling the “add_to_cart”
action. First, the user triggers the action from the Ul (1). The intercepting filter, front
controller, and dispatcher patterns are not included in the figure, but they are assumed to
function according to their responsibilities. After these basic obligations, the control is
delegated to the view helper, which passes the control to the subview manager (2). The

73

subview manager checks if some parts of the referred action description are overridden

by the dialogue model and del egates control to the task manager (3).

The task manager executes the task through the business delegate (4). Business delegate
uses location services to invoke the “order_handler” EJB bean to complete the task (5).
The " session fagade” entity presented in the figureisa part of the “value object
assembler” design pattern (see figure 13). The name of the business object, as well asthe
method to be used and the names of the attributes to be retrieved are given to business
delegate as call parameters. The EJB bean executes the task and returns a keyword
indicating the result of the action. In this case, the operation succeeds and keyword
“success’ isreturned (6). The control now returns to the task manager, which enables
task “accept_order” based on the returned keyword (7). Hence, the comprehensive task

status of this user changes.

The task manager now returns control to the subview manager, which isinformed that the
“accept_order” task has been activated. Subview manager returns control to the view

hel per and based on the given navigational instruction, it informs the view that the
“accept_order” task must be rendered by “search_subview”. In phase (8), the view helper
ensures that the “search_subview” is among currently active subviews. Since the dialogue
model defines that the “accept_order” subtask is to be rendered by the “search_subview”,
no subview replacements are required. Since the view helper is not aware of all possible
changes in the user’ s task status, it now commands each subview manager to refresh their

content (9).

In phase (10), subview managers inform the task manager of the tasks (and their status)
that they contain. The task manager discoversthat the “search_subview” has an inactive
task “accept_order”, which has now turned active. It thereby invokes the business
delegate to retrieve data as described by the system action “view_cart_data” (11). The
business delegate invokes the operation in (12). The subview manager renders the

retrieved content (13), as was described in figure 21, and returns the markup to the view

74

helper. Since the view structure does not change, the view need not be refreshed. Finally,
the Ul is delivered to the user (14).

After submitting the order (figure 28), the PDA user is viewed a confirmation. The user is

also given right to cancel the order within one hour of submitting the order.

We now get back to the Web browser simulation. Figure 29 presents the Web users’ Ul
after adding items to the shopping cart. Except for the additional possibilities provided
for the Web user, the options to proceed are essentially the same than those of the PDA
user. A distinctive feature is, however, that the Web user cannot directly submit the order,
but is provided an option to view the contents of the cart by choosing the check out

action.

i [
Client view manager subview manaqerl Task _manager | Business delegate (Session facade

1. add_to_cart()

-

3. pass control()
-
-

_____________ > 4. add_to_cart()
5. add_to_cart()
-
6. result()
] N
“—_‘__\) 7. compute task status()
“«———
results()
results() ~

_~‘\) 8. solve_navigation()

9. refresh_content()

-
Lt

10. getfl_task_status_an

data()

]
11. execute systemactions()
!
-

12. get_cart_data()
-

results()

results() ~

results()

14. Ul is returned()

Figure 27: Sequence chart of handling the “add _to_cart” action.

75

Your order has been accepted

Product Items Price
Korg M-1 synthesizer 1 1000 €

A confirmation of your order has been sent to you by e-mail. You have the
right to cancel the order today before 2.34 PM. Thanks for doing business
with us!

Cancel your order

Cancel Search products | Search

Figure 28: Communicator - Order accepted.

et et Fore M-1 evthesizer anly 1000 €11 - Add to shopping cart | Auld
Browse products

‘ |
e d Premper Signia dioomzet only 1500 €1 - Add do shopping cart |1 Add |

Search thie eite

Search

= 1 itemie) n cart
Total 65 €

Figure 29: Web browser - The contents of the cart.

The user now chooses the check out option and is after this presented the contents of the

cart and is provided a possibility to remove items from the cart (figure 30).

I H Your shopping cart
Buowse prodncts
My ordere Product Teemns Price

Bieanch prodnct Eore M-1 synthesizer 1 1000 £ R

S8 Submit vour order

Subimit

K= 1 itemis} in cart
Tatal 55 €

i Tieck ||:.|.5

Figure 30: Web browser - The check out phase.

76

The user now accepts the order and is thus viewed a confirmation (figure 31). The Web
browser user is not provided a possibility to cancel the order.

i Your order has been accepted
Browse prochectz
Bl arders Praduact Items Price
——— Foorg M-1 eyutlsesizen 1 Lon €
' ' A confimantion of voumr order has been sent to vou ley e-mail. Thonk= for

domg bnsmess with ns!
el] Back to the mun page

Figure 31: Web browser — Order accepted.

7

7 Analysis

Four main objectives were set for the RDIXML language in chapter 4.1. The first
objective, device independence, is satisfied by the characteristics of the language.
RDIXML isan abstract language, which does not directly relate to any specific Ul

environment.

The second objective, adaptation to device specific requirements, is made possible by
providing possibilities to map language models to specific devices. The designer has the
possibility to design device specific adaptation concerning task, domain, presentation,
and dialogue elements. The mappings provide the means to alter the interaction model,
domain elements, and the visual or auditory presentation, according to the device

detected.

The third objective, task element reuse, is achieved by introducing the concept of DCTM
(Device Categorized Task Model), which provides a more fine-grained mapping
mechanism between tasks and devices. The concept enables mapping the preconditions,
postconditions, and domain elements of tasks to device groups. In addition, reusable
interaction descriptions can be referred to from within many separate tasks. These
solutions enable devices to reuse common task elements even when some parts of the

task are device dependent.

The final objective was to provide a direct integration to the underlying architecture. The
language integrates to the underlying RDIXML framework by providing meansto
describe communication with deployed application objects, i.e. the language lets the
designer define attributes and operations that are used to manipulate them. This objective
isrealized in the OpenPort framework and the RDIXML framework provides an
essentially similar concept. In addition, the RDIXML language defines the activation ard
disabling of tasks that define the interactions between the user and the framework. Both
languages move the focus in application development from traditional programming to

the use of an abstract level XM L-based application language.

78

In chapter 5.2, fou main objectives were set for the RDIXML framework. The first
objective, multi-channelled presentation tier is achieved by combing several factors. First,
the tier provides a device detection mechanism, which is a prerequisite for content
adaptation. Secondly, the tier contains transformation modules for transforming the
RDIXML-based Ul descriptions to various kinds of target languages, such asHTML.
Because RDIXML applications are based on tasks, content can be equally well be
transformed to visual and voice-based devices. Finally, the tier uses the reflection pattern
for providing a general invocation mechanism, by which device specific functionality can
be invoked dynamically. The extent of the tier’s communication abilitiesis dependent of

rendering modules, which have to be implemented separately for each markup language.

The second objective, task orientation, was set to provide a fundamentally usability-
oriented Ul framework and to support goals of pervasive computing. This objectiveis
achieved by binding the visibility of Ul content, including interaction possihilities, to the
users comprehensive task status. Designers are enabled to design navigation between
tasks and subtasks in away that forces the engine to maintain a straightforward flow in

the task execution.

Third objective, automatic adaptation, is satisfied by exploiting the properties defined by
device profiles. First, the abstract-concrete correlations enabl e the framework to
automatically present abstract task elements. Secondly, device properties can be used to
infer usage of other model elements. This functionality isin practice difficult to
implement because we lack accurate usability guidelines concerning various devices.
Thirdly, designers can use fuzzy mappings to force the engine to use specific mappingsin

vague run-time situations.

Finally, the objective for application independence is achieved by designing a
presentation tier such that application logic iswholly defined in another tier. Application
development does not require changes in the presentation tier, which gainsits

functionality by interpreting the run-time application logic.

79

RDIXML distinguishes from existing UIM languages by introducing the concept of
device categorized task model (DCTM). The DCTM solves the dilemmathat originates
from the notion that device specific requirements in task execution must be addressed in
order to achieve usable Ul solutions. In other words, task models are not directly portable
between devices. Mapping tasks as awhole to certain device groups would significantly
reduce the level of Ul code reuse. In addition, maintaining information concerning the
same task in many locations would provide an error-prone design environment. To
achieve abetter level of Ul code reuse and thus a more systematic devel opment process,
the DCTM introduces a fine-grained mapping mechanism between tasks and devices. In

essence, DCTM promotes Ul code reuse while it still addresses the device-task problem.

The framework’ s automatic mapping properties support efficient Ul development for
straightforward cases that do not require additional design. Y et, the automation of the
framework does not disarm designers, as the automatic adaptation never overrides
definitions made by the designer. The ideology behind the design of thisframework
specifically stresses the concept of giving the designers the power to design and letting
the automatic features provide help without interfering with existing manual design. With
its combined properties, the framework strives towards effective development of usable
multi-channelled Ul solutions without hampering the maintenance of the resulting

applications or requiring overly thorough design contribution.

Distinguishing from the rather abstract level academic UIM studies published so far, the
RDIXML framework provides a comprehensive usability-oriented concept that uses
commercially available standardized technology. Exploiting existing standards is
important considering enterprises that are seeking for credible application development
models. The academic studies have not presented feasible architectural solutions for task-
based multi-channelled application framework; nor have they simulated the functionality

of such aframework.

80

8 Conclusions and Future Work

A subset of RDIXML has been developed as part of thisthesis. RDIXML isamodel -
based user interface language, which sets user’ s tasks as the starting point for Ul
development. The language is essentially designed for producing usable multi-channelled
applicationsin a systematic manner. A framework has been presented to implement the
RDIXML language. Existing technology has been used in the design, as it was considered
important to gain knowledge of the functionality and feasibility of a task-based Ul
framework. The framework provides functionality to automatically adapt Uls for
different kinds of devices and focuses on Ul code reuse to support consistent and efficient
Ul development. The functionality of the framework was successfully simulated in

chapter 6.

The main objectives set for the RDIXML language were device independence, adaptation
to device specific requirements, task element reuse, and direct integration to the
underlying architecture (see chapter 4.1). The main objectives for the RDIXML
framework were multi-channelled presentation tier, task orientation, automatic
adaptation, and application independence (see chapter 5.2). All objectivesfor the
language and the framework were achieved. An analysis concerning the used

mechani sms and observed deficiencies concerning the solutions was given in chapter 7.

A constructive method was used in order to reach given objectives. Detailed knowledge
of functional aspects, not to mention design details, of task-based multi-channel Ul
frameworks has not been published. It would have been very difficult to grasp the related
concepts and present a concrete picture of the subject by merely combining existing
research material. A better understanding of the overall requirements for a task-based
framework was achieved by partially implementing the elements of the language and by
simulating the functionality of the framework.

Two paths to proceed from this stage exist. First, the OpenPort framework could be

enhanced with the ideas presented in this work. For example, the structure of the pXML

81

language could be clarified. In addition, possibilities for automatic Ul generation could
be examined based on the thoughts presented in thiswork. An alternative path isto start
developing the RDIXML framework. Although the development would start from
scratch, lessons from the OpenPort development provide atechnological implementation
path from start to finish. Existing pXML language elements, as well as technical parts of
the OpenPort framework could be used in the process. The model hierarchy of the
language and the task-based approach are the biggest differences that separate the
RDIXML framework from OpenPort.

A subset of the RDIXML language has been modelled and principles for the
implementation of the other models have been presented. The task model requires some
refinement especially concerning relations between tasks. The final form of the device
model is unclear mainly due to confusion in benefiting from the CC/PP device model.
The rest of the models are merely sketched, but finishing them should be relatively easy.
The architecture is now designed in a general level. We estimate that, by reusing portions
of the OpenPort framework, asmall but skillful team could complete the first version of
the RDIXML language and implement a working prototype of the framework within six
months. The prototype would include but one device specific rendering module.
However, it must be noticed that this thesis does not answer all questions concerning the
task model and it is hard to estimate the required work related to open issues.

According to our view, development of the language and the framework should be started
in parallel, because the language structures have a significant affect on the functional
requirements for the framework. It is difficult to achieve optimal language syntax without
practical experiments of its computerized interpretation. A good starting point for the
framework development would be to develop prototype implementations of the task and
domain models, and the modules for their management. This point being achieved, issues
concerning other models and their management should be easier to tackle. During the
development, intensive work should be done considering the various aspects of especialy
task and device models. Especialy relations between tasks are an important issue and

explicit rules on how they are expressed must exist. Standardization work done by W3C

82

and other notable instances should be followed, especially concerning the CC/PP
standard.

At this stage, setting final goals for the RDIXML framework is not possible, as many
aspects of pervasive computing are still developing. New devices and standards keep
setting new requirements for the framework, even though the task-based core of the
framework can be assumed to remain stable. For example, it is not clear how UIM
systems should react to given device model properties. In addition, pervasive computing
sets requirements for distributed services. For example, various application servers
should be able to exchange information of available services concerning a given device
[BanO1].

It isclear that atool to facilitate the framework usage is necessary. Developing a
productivity tool for the system is adifficult and laborious engagement, as the tool should
support the Ul building process in different phases (see chapter 5.6). Requirements for
the productivity tool are numerous and estimations concerning them and the required
workload are not provided in this thesis. An example of arather limited UIM
development tool is presented in [Pue98]. An additional aspect that cannot be discussed
in the scope of this work, relates to the change of methodology in Ul design: how easily
will the Ul designer community adopt task-based design and the usage of new kinds of

user interface languages and models?

We now lack a standardized mechanism to develop usable multi-channel applications.
Thereisaneed for a standard that defines an abstract user interface devel opment
language with models considering all necessary aspects of a multi-channelled application.
The standard would have to include a definition for the functionality of a framework
capable of running applications built with the standardized language. This would enable
commercia implementations of this standard to free enterprises from the burden of
constructing their own frameworks based on several smaller technology standards, such
as CC/PP. As such astandard is not being developed, it seems important that the

RDIXML framework uses existing standardized technology, such as XML. There are

83

good chances that RDIXML could get advantage from future XM L-based smaller
standards, as it today it seems probable that if UIM-related standards are published, they
will be XM L-based.

Finally, it seemsthat the field of human-computer interaction (HCI) still puts very little
effort on research concerning tools and mechanisms that would better support devel oping
usable systems. Thiswork is largely motivated by discussion suggesting that usability
research has too much to do with postevaluation, i.e. that usability research mainly
consists of evaluating systems when they are halfway finished. Usability heuristics,
which is the main method used for usability evaluation, certainly has its place and value,
but usability research excessively emphasizes its usage. Too little emphasisis put on Ul
languages, methodol ogies and tools to facilitate systematic development towards usable
systems. Thisislargely due to the lack of both exact definitions for usability and
interdisciplinary research between the HCI and software engineering community [Fau0Q].
This study among others of the similar kind, done with greater consistency and work

investment, aimed to show that there are things that can be done.

References

[Alu01] Alur, D., Crupi, J., Maks, D., Core J2EE Patterns — Best Practices and
Design Strategies, Prentice Hall, www.phpth.com, [06.03.2002].

[Ban00] Banavar, G. et d., Challenges. An Application Model for Pervasive

Computing, In Proceedings of MOBICOM 2000: the 6 Annual
International Conference on Maobile Computing and Networking, August
6-11, 2000, Boston, MA USA, pp. 266-274.

[Bir9g] Birnbaum, L., R. Bareiss, T. Hinrichs, and C. Johnson. 1998. Interface
Design Based on Standardized Task Models. In Proceedings of the 1998
International Conference on Intelligent User Interfaces. San Francisco,
CA: Association for Computing Machinery, pp. 65-72, ACM 1998.

84

[Bom9s]

[Bon99]

[Bun01]

[Bus96]

[ButO1]

[Chuos]

[Coc97]

[Con01]

[Co095]

[Cur01]

[EisO0]

Bomsdorf, B., Szwillus, G., From Task to Dialogue: Task-Based User
Interface Design, A CHI’ 98 Workshop, 1998, call for partition, www.uni-
paderborn.de/fachbereich/A G/szwillus/chi99/ws/sigchi.html [06.03.2002].
Bongio, A., Ceri, Stefano, Fraternali, P., Web Modeling Language

(WebML): amodeling language for designing Web sites,

Proc. 9th International World Wide Web Conference, Available at
http://www?9.org/w9cdrom/177/177.html, Amsterdam, 2000, [06.03.2002].
Buneman, P. et al., Keys for XML, In Proceedings of 10" International
World Wide Web Conference (VWWWV 10), 2001, Available at
http://db.cis.upenn.edu/DL /xmlkeys.pdf, [06.03.2002].

Buschmann, F. et a., Pattern-oriented Software Architecture: A System of
Patterns, John Wiley and Sons, 1996.

Butler, M., Current Technologies for Device Independence (External
Technical Report HPL-2001-83), Hewlett Packard Laboratories Bristol,
http://www.hpl.hp.co.uk/people/marbut/currTechDevind.htm,
[09.03.2002].

Chung-Man Tam, R., Maulsby, D., Puerta, A., U-TEL: A Tool for
Eliciting User Task Models from Domain Experts, In Proceedings of

IUI’ 98, International Conference on Intelligent User Interfaces, January
6-9, 1998, San Francisco, California, USA.

Cockburn, A., Structuring Use Cases with Goals, JOOP, Val. 8, No. 6/7
1997, http://members.aol .com/acockburn/papers/usecases.htm,
[27.04.2002].

Constantine, L., Lockwood, L., Object-modeling and User Interface
Design, p. 2, Addison-Wesley, 2001.

Cooper, A., About Face: The Essentials of User Interface Design, p. 389,
IDG Books Worldwide, Inc., 1995.

Curious Networks homepage, http://www.curiousnetworks.com
[06.03.2002].

Eisenstein, J., Vanderdonckt, J., Puerta, A., Adapting to Mobile Contexts
with User-Interface Modeling, In Proceedings of the Third IEEE

85

[Eis01]

[ElwOS]

[Fau00]

[For99]

[Gri99]

[Hacog]

[IBMOO]

[JusO1]

Workshop on Mobile Computing Systems and Applications (WMCSA' 00),
pp. 83-92, 2000.

Eisenstein, J., Vanderdonckt J., Puerta, A., Applying Model-Based
Techniques to the Development of Uls for Mobile Computers, In
Proceedings of the 2001 International Conference on Intelligent User
Interfaces, pp. 69-76, January 14-17, 2001, Santa Fe, NM, USA, ACM
2001.

Elwert, T., Schlungbaum, E., Modelling and Generation of Graphical User
Interfacesin the TADEUS Approach. In Proceedings of Designing ,
Soecification and Verification of Interactive Systems, pp. 193-208, Vienna,
1995. Springer.

Faulkner, X., Culwin, F., Enter the Usability Engineer: Integrating HCI
and Software Engineering, In Proceedings of 5" Annual S GCSE/SI GCUE
Conference on Innovation and Technology in Computer Science
Education, July 11-13, 2000, Helsinki, Finland.

Forbrig, P., Dittmar, A., Relations between Use Cases and Task Analysis,
In Proceedings of 13 th European Conference on Object-Oriented
Programming, 14-18 June, 1999, Lisbon, Portugal.

Griffiths, T. et d., Teallach: A Model-Based User Interface Development
Environment for Object Databases, In Proceedings of User Interfacesto
Data Intensive Systems (UID1S99), 5-6™ September, 1999, Edinburgh,
Scotland, pp. 86-96, |IEEE Computer Society Publishers, Norman W. Pator
and Tony Griffiths (eds.), 1999.

Hackos, J., Redish, J., User and Task Analysisfor Interface Design, Wiley
computer publishing, www.wiley.com/compbooks/, [09.03.2002].
Chuvan, C., et d., The XML Files: Using XML and XSL with IBM
WebSphere 3.0. Available at
http://www.redbooks.ibm.com/pubs/pdfs/redbooks/sg245479.pdf, IBM
Corporation, March, 2000.

Juslin, J., Navigation in WAP applications (in Finnish - Navigointi WAP-
sovelluksissa), Master's thesis, University of Helsinki, C-2001-35, 2001.

86

[Kru92]

[LunO1]

[Mar00]

[MAXO01]

[Mic02]
[Mil014]

[Miil01b]

[Mye92]

[Nie93]

[Nie97]

[Nie00]

[NokO1d]

[NokO1b]

Krueger, C. W., Software Reuse, ACM Computing Surveys. Vol.

24, No. 2, June 1992, p. 131-183.

Lundy, J., The Multichannel Content Delivery Opportunity, Research
Note, GartnerGroup, 2001.

Martin, D., et a., Professional XML , p. 71, www.wrox.com,
[07.03.2002].

Multi-Channel Access XML (MAXML). Available at
http://www.curiousnetworks.com/approach.html, Curious Networks, Inc.,
2001.

Microsoft .NET homepage, http://www.microsoft.com/net/, [07.03.2002].
Mdller, A., Mundt, T., Lindner, W., Using XML to Semi -automatically
Derive User Interfaces. In Proceedings of 2™ International Workshop on
User Interfaces to Data Intensive Systems, (UIDIS 2001), pp. 91-95, IEEE
Computer Society, 2001.

Mdller, A., Forbrig, P. and C. H. Cap, Model-Based User Interface Design
Using Markup Concepts, In Proceedings of the DSV-1S 2001, Design,

Soecification and Verification of Interactive Systems, p. 16 ff., Glasgow,
June 2001.

B. A. Myersand M. B. Rosson. Survey on user interface

programming. In Proceedings of SGCHI’92: Human Factorsin Comput-
ing Systems, May 1992.

Nielsen, J., Usability Engineering, Academic Press Inc., 1993.

Nielsen, J., The need for speed (online), Available at
http://www.useit.com/alertbox/9703a.html , [12.03.2002] .

Nielsen, J., Designing Web Usability: the Practice of Simplicity, p. 38-39,
New Riders, 2000.

The Nokia 9210 Communicator at glance, Available at
http://www.nokia.com/phones/9210/, [28.10.2001].

Nokia 9210 Communicator WWW Browser Style Guide, Version 2,
Available at

87

[Norgs]

[Pued7]

[Pue9s]

[Pue99d]

[Puegb]

[Rat02]

[San01]

[SAX 98]

[Schog]

com/files/disclaimer/1,14553,935,00.html , [04.11.2001].

Norman, D., Draper, S. (editors), User Centered System Design: New
Perspectives on Human-Computer Interaction, pp. 87-124, Lawrence
Erlbaum Associates Inc., 1986.

Puerta, A., Maulsby, D., Management of Interface Design Knowledge
with MOBI-D. In Proceedings of 1UI'97, International Conference on
Intelligent User Interfaces, pp. 249-252, Orlando, FL, January 1997.
Puerta, A., Eisenstein, J., Interactively Mapping Task Models to Interfaces
in MOBI-D, In Proceedings of DSV-1S 98, 5" International Eurographics
Workshop on Design, Specification and Verification of Interactive
Systems, pp. 261-273, Abingdon, UK, June 1998.

Puerta, A., Eisenstein, J., Towards a General Computational Framework
for Model-Based Interface Development Systems, In Proceedings of
IUI"99, International Conference on Intelligent User Interfaces, pp. 171-
178, ACM Press, 1999.

Puerta, A. et a., MOBILE: User-Centered Interface Building, in CHI99:
ACM Conference on Human Factors in Computing Systems. Pittsburgh,
May 1999, ACM press.

The Rationa Unified Process (RUP) homepage,

http://www.rational .com/products/rup/index.jsp, [07.03.2002].

Sandnes, F., Self-designing User Interfaces, In Proceedings of the 27"
EUROMICRO Conference: Workshop on Multimedia and
Telecommunications, Warsaw, Poland, IEEE Computer Society Press,
September, pp. 452-459, 2001.

SAX, the Simple API for XML 1.0,
http://www.megginson.com/SAX/SA X 1/index.html , [07.11.2000].
Schlungbaum, E., (Knowledge-based) Support of Task-based User
Interface Design in TADEUS, position paper in CHI’ 98 Workshop, From
Task to Dialogue: Task-based User Interface Design, ACM SIGCHI

88

[Scho1]

[Sep02]

[ShnOO]

[Shn01]

[Sil00]

[Sti98]

[Sun9g]

[Sun01]

Conference on Human Factors in Computing Systems, April 21-23, Los
Angeles, CA, USA, 1998.

Schilit, B. et a., mlinks: An Infrastructure for Very Small Internet
Devices. In Proceedings of the 7" Annual International Conference on
Mobile Computing and Networking 2001, pp. 122-131, July 16-21 2001,
Rome, Italy, ACM Press, 2001.

Seppé, A., Dynamic descriptions with XML (in Finnish — Dynaamisuuden
kuvaaminen XML:118), Master's thesis, University of Helsinki, not yet
published.

Shneiderman, B., Pushing Human-computer Interaction Research to
Empower Every Citizen, Unpublished Manuscript, University of Maryland
at College Park, Available at http://www.cs.umd.edu/~ben/p84-
shneiderman-May2000CA CMf.pdf, [29.04.2002] .

Shneiderman, B., Universal Usability as a Stimulus to Advanced Interface

Design, A Draft, to Appear in Behaviour & Information Technology 20 th
Anniversary Issue.

Silva, P., User Interface Declarative Models and Devel opment
Environments: A Survey, In Interactive Systems: Design, Specification
and Verification (7™ International Workshop on Design, Specification and
Verification of Interactive Systems), Limerick, Ireland. LNCS VVol. 1946,
pp. 207-226, Springer-Verlag, June 2000.

Stirewalt, K., Rugaber, S., Automating Ul Generation by Model
Composition, In Proceedings of Automated Software Engineering
(ASE'98), 13th IEEE International Conference, IEEE 1998.

Sun Microsystems, Java 2 Platform Enter prise Edition Specifi-

cation, v1.2, December 1999, Available at
http://java.sun.com/|2ee/download.html , [07.02.2002].

Sun Developer Connection, A Framework for Multilingual, Device-
Independent Web Sites, April 2001, Available at
http://wwws.sun.com/software/mxl/devel opers/xmlldijsp/framework.html ,
[29.04.2002].

89

[Sys01]

[Vang3]

[Van00]

[V0ags]

[V0i00]

[W3C98]

[W3C994]

[W3C990]

[W3C99¢]

[W3C00q]

[W3C00b]

[W3C00C]

SysOpen Plic, Developing Web and Wireless Applications with
OpenPort. SysOpen Plc, January, 2001, http://www.sysopen.fi.

Vanderdonckt, J., Bodart, F., Encapsulating Knowledge for Intelligent
Automatic Interaction Objects Selection, in ACM Annual conference on
Human Factorsin Computing Systems, pp. 424-429, 1993, ACM Press.
[2] Vanderheiden, G., Fundamental Principles and Priority Setting for
Universa Usability, In Proceedings of CUU 2000 - Conference on
Universal Usability, ACM SIGCHI, 2000.

Voas, J., Maintaining Component-Based Systems, |EEE Softwar e.

Voal. 15, No. 4, July/August 1998, p. 22-27.

VoiceXML Forum, Voice eXtensible Markup Language (\VVoiceXML)
version 1.0, May 2000, Available at http://www.w3.org/TR/2000/NOTE-
voicexml -20000505/, [07.03.2002].

DOM, Document Object Model, Version 1.0, W3C Recommendation 1
October 1998. http://www.w3.0rg/TR/REC-DOM-Level-1/, [27.04.2002].
W3C, HTML 4.01 Specification, December 1999, Available at
http://www.w3.0rg/TR/1999/REC-html401-19991224, [07.03.2002].
W3C, Web Content Accessibility Guidelines (WAI) 1.0, May 1999,
Available at http://www.w3.0rg/ TR/WAI-WEBCONTENT/, [07.03.2002].
Wa3C, XSL Transformations (XSLT) 1.0, November 1999, Available at
http://www.w3.0rg/TR/xdlt, [07.03.2002].

W3C, Composite Capabilities/Preference Profiles, (CC/PP):
Requirements and Architecture, July 2001, Available at
http://www.w3.0rg/TR/2000/WD- CCPP-ra-20000721/, [07.03.2002].
W3C, Extensible Markup Language (XML) 1.0 (Second Edition), October
2000, Available at http://www.w3.0rg/TR/2000/REC-xml-20001006,
[07.03.2002].

W3C, Composite Capabilities/Preference Profiles, (CC/PP): Structure
and Vocabularies (Working draft), March 2001, Available at
http://www.w3.0rg/TR/CCPP-struct-vocab/, [07.03.2002].

90

[W3C00d]

[W3C01]

[WAGO1]

[Waho7]

[WAP9g]

[XSL99]

[XUL99]

W3C, XHTML 1.0: The Extensible Hyper Text Markup Language, January
2000, Available at http://www.w3.0rg/TR/2000/REC-xhtml 1-20000126,
[07.03.2002].

W3C, Device independence Principles (Working draft 18 September
2001), DIP-2: Device independent Web page identifiers, Available at
http://www.w3.org/TR/di-princ/, [17.03.2002].

WAG UAProf, WAP User Agent Profile, Available at
http://www1.wapforum.org/tech/documents/WA P-248- UA Prof-
20010530-p.pdf, [27.04.2002].

Wahl, M., Howes, T., Killg, S., Lightweight Directory Access Protocol
(v3), IETF RFC 2251, December 1997, http://www.rfc-
editor.org/rfc/rfc2251.txt, [12.03.2002].

Wireless Application Protocol Forum, Wireless Application

Protocol Architecture Specification, April 1998, Available at
http://www1.wapforum.org/tech/terms.asp?doc=WAP-100-WA PArch-
19980430-a.pdf [07.03.2002] .

XSLT considered harmful,
http://www.xml.com/Ipt/a/1999/05/xsl/xslconsidered_1.html
[09.03.2002].

XUL (XML-based User Interface Language), Introduction to a XUL-
document, Available at
http://www.mozilla.org/xpfe/xptool kit/xulintro.html, [15.10.2001].

91

A Grammar of RDIXML task model

This appendix contains the commented Document Type Description (DTD) for the
RDIXML language.

<?xml version="1.0" encoding="UTF-8"?>

<l--

DTD FOR RDIXML TASK MODEL GRAMMAR
-—>

<!I-- A simple entity for a boolean condition -->
<IENTITY % boolean "(true | false)">

<!I-- abstract data types

input - basic input field

inputl-n - input field for multiple items

output - basic output field

outputl-n - output for multiple fields

>

<IENTITY % abstracttype "(input | inputl-n | output | outputl-n | session_data)">
<l-- ELEMENT DESCRIPTIONS START -->
<l--

ELEMENT application

defines a single application, which contains a number of tasks. In practice, elements from other models should be
included.

>

<IELEMENT application (tasks)>

<l--

ELEMENT tasks:

collects several task elements

>

<IELEMENT tasks (task+)>

<l--

ELEMENT task:

models a higher lever user goal.

ATTRIBUTES:
task_id - Identifies a task
constructor - a simplified model for describing relations between subtasks
->
<IELEMENT task (preconditions*, (subtask | systemtask)*)>
<IATTLIST task
task_id CDATA #REQUIRED
constructor (sequential | repeatable | optional) "sequential”
>
<l
ELEMENT subtask:
models actions required to complete the higher level task. Subtasks may divide into subtasks.

ATTRIBUTES:
subtask_id - identifies a subtask
constructor - a simplified model for describing relations between inner subtasks
excludeddevices - By default, a subtask is ment for all device types. This element allows excluding devices from the
hierarchical device groups. Reserved word "ALL" can be used to exclude all devices (so that just some devices can be
included)
includeddevices - If some group is excluded from a subtask, a device included in this hierarchical group can be "re-
included". NOTE: if only "includeddevices" is used, all other device types are excluded from the task!
>
<IELEMENT subtask (preconditions*, ((systemaction | systemtaskreference)?, fieldreferences?, useractions?), subtask*)>
<IATTLIST subtask

subtask_id CDATA #REQUIRED

constructor (sequential | repeatable | optional) "sequential”

excludeddevices CDATA #IMPLIED

92

includeddevices CDATA #IMPLIED
>
<l
ELEMENT navigation
Is used to define places for navigation elements; forces a navigation element definition with dialogue elements -->
<IELEMENT navigation EMPTY>
<IATTLIST navigation
target CDATA #REQUIRED
>
<l
ELEMENT tasknavigation
Is used to force navigation to another task, i.e to some subview containing the referred task; forces a dialogue reference
to navigate to a subview containing the referred task -->
<IELEMENT tasknavigation (taskref)>
<l--
ELEMENT preconditions:
Defines preconditions for a task.

ATTRIBUTES:
"excludeddevices" and "includeddevices" - as before
>
<IELEMENT preconditions (requiredtasks)>
<IATTLIST preconditions
excludeddevices CDATA #IMPLIED
includeddevices CDATA #IMPLIED
>
<l--
ELEMENT requiredtasks
Defines the required tasks to fulfil a condition. Inner requiredtasks are allowed to specify additional operators (or | and)

ATTRIBUTES
operator - defines relations between required tasks (KUINKA NAA SUHTAUTUU REPEATABLE YMS.. JUTTUIHIN?)
>
<IELEMENT requiredtasks (taskref+, requiredtasks?)>
<IATTLIST requiredtasks
operator (or | and) #IMPLIED
>
<I-- ELEMENT taskref
Is used to reference tasks
>
<IELEMENT taskref (#PCDATA)>
<l--
ELEMENT postconditions
Collects postcondition elements.
->
<IELEMENT postconditions (postcondition+)>
<l--
ELEMENT postcondition
Is used to define keywords that EJB objects are committed to use. Discovering that a task is finished is in many cases not
enough. It is important to find out exactly how the task was finished. The output of a task determines its consequences,
i.e. a task may have many implications according to how it was completed. Importantly, post conditions provide a
possibility to enable a task and force navigation to any subtask containing the enabled task.

ATTRIBUTES
keyword - a string returned by a business object must match to this
"excludeddevices" and "includeddevices" - as before
>
<IELEMENT postcondition (((enable | disable)?), operation?, (navigation | tasknavigation)?, error?)>
<IATTLIST postcondition
keyword CDATA #REQUIRED
excludeddevices CDATA #IMPLIED
includeddevices CDATA #IMPLIED
>
<l--
ELEMENT enable
Holds references to those tasks that are enabled due to the postcondition.

ATTRIBUTES

forcenavigation - defines whether the designer has to provide a navigational target for the task (for cases when the task is
not available in the same view

93

->
<IELEMENT enable (taskref+)>
<IATTLIST enable
forcenavigation %boolean;
>
<l--
ELEMENT disable
Holds references to those tasks that are disabled due to the postcondition.
->
<IELEMENT disable (taskref+)>
<l--
ELEMENT operation
Describes the operation details by referring to existing domain data

ATTRIBUTES
class - refers to an EJB bean, which must be defined by the domain model
method - refers to an EJB bean's method, which must be defined by the domain model
cachealias - is used to cache retrieved data for later use by other tasks; in practice, other properties, such as time limit for
cache invalidation, would have to be provided.
"excludeddevices" and "includeddevices" - as before
>
<IELEMENT operation EMPTY>
<IATTLIST operation
class CDATA #REQUIRED
method CDATA #REQUIRED
cachealias CDATA #IMPLIED
excludeddevices CDATA #IMPLIED
includeddevices CDATA #IMPLIED
>
<l
ELEMENT error

ATTRIBUTES
type - static: a message defined by the presentation model; method_message: the message returned by the used
business method is used; validation_messages: xxx?
forcenavigation - a separate presentation can be appointed for the message
->
<IELEMENT error EMPTY>
<IATTLIST error
type (static | method_message | validation_messages) "static"
forcenavigation %boolean; "false"
>
<l--
This element collects all useractions.
->
<IELEMENT useractions (useraction+)>
<l-- ELEMENT useraction:
This element is used to model the interaction flow concerning a triggered Ul action. For example, when the user sends a
form to the system, the system most probably wants to pass the data to some business specific object. RDIXML considers
user actions as fully portable at task level. However, dialogue level elements may override task level useractions.

ATTRIBUTES:
useraction_id: The id of the user action is just a name to simply describe the action that the user must make, e.g.
"send_the_form".
>
<IELEMENT useraction (operationdescription | navigation | tasknavigation)>
<IATTLIST useraction
useraction_id CDATA #REQUIRED
>
<l-- ELEMENT operationdescription
Describes operation properties
>
<IELEMENT operationdescription ((operation+ | test), postconditions*)>
<IELEMENT test EMPTY>
<l
ELEMENT systemaction:
This element is used to model the actions that the system must do for data retrieval concerning a certain task. In essence,
actions
described inside this element are to be executed before the user actions, i.e. the data that is retrieved through this
information, is provided to the user as a part of the interaction possibility.

94

->
<IELEMENT systemaction (operationdescription)>

<l

ELEMENT systemtask

Systemtask provides a reusable way to define systemactions. Many separate subtasks can refer to the same
systemaction for data retrieval purposes.

ATTRIBUTES
systemtask_id - identifies a systemtask
->
<IELEMENT systemtask (systemaction?, fieldreferences?)>
<IATTLIST systemtask
systemtask_id CDATA #REQUIRED
>
<!-- ELEMENT systemtaskreference
Used by subsystem elements to refer to a systemtask
>
<IELEMENT systemtaskreference (#PCDATA)>
<l-- ELEMENT domainreference
Is used to refer to a domain object

ATTRIBUTES
reference - refers to a domain_id
->
<IELEMENT domainreference (fieldreference*)>
<IATTLIST domainreference
reference CDATA #REQUIRED
>
<l
ELEMENT fieldreferences
Is used to map domain attributes to a task.

ATTRIBUTES
type - Defines whether the field is an input or an output field. This allows using the device model to automatically choose
default presentation.
If no fieldreference-elements are found, all attributes of the domain object are printed (according to the role) and
the type is the one given here.
>
<IELEMENT fieldreferences (domainreference?)>
<IATTLIST fieldreferences
type %abstracttype;
>
<l
ELEMENT fieldreference:

ATTRIBUTES:
reference - refers to domain model element FIELD
type - Defines whether the field is an input or an output field. This allows using the device model to automatically choose
default presentation.
"excludeddevices" and "includeddevices" - as before
>
<IELEMENT fieldreference EMPTY>
<IATTLIST fieldreference
reference CDATA #REQUIRED
type %abstracttype;
excludeddevices CDATA #IMPLIED
includeddevices CDATA #IMPLIED

95

B E-shop — Task Model Source Code

This appendix contains the source code of the use case' s task model.

<?xml version="1.0" encoding="UTF-8"?>
<IDOCTYPE tasks SYSTEM "C:\Opiskelu\Gradu\UIM\Task orientation\task.dtd">
<tasks>
<task task_id="buy_items" constructor="sequential">
<!I- all tasks are completed in order -->
<l- BROWSE PRODUCTS - this task can be done continuosly, i.e. it is visible all the time. This task is not
discussed at the simulation and hence not implemented. -->
<subtask subtask_id="browse_products" constructor="repeatable" excludeddevices="PDA, WAP"/>
<l- END OF BROWSE PRODUCTS -->
<l- SEARCH_INSTRUMENTS - this task can be done continuosly, i.e. it is visible all the time. In addition, it is
available for all devices -->
<subtask subtask_id="search_instruments" constructor="repeatable">
<fieldreferences>
<domainreference reference="product_manager'>
<!I-- this field is empty when viewed for the user, so there's no need for "systemoperation" elements.
>
<fieldreference reference="search_string"/>
<I-- these rest of the attributes are initially not to be rendered, but they must be delivered to the EJB
bean. This way the handler of the search action is aware of which attributes to return of the found
items. -->
<fieldreference reference="name" type="output"/>
<fieldreference reference="price" type="output"/>
<fieldreference reference="quantity" type="input"/>
</domainreference>
</fieldreferences>
<useractions >
<useraction useraction_id="search">
<I--this describes how the triggered "search" action is managed -->
<operationdescription>
<!I-- operation definition forces the engine to cache the received search results to be used by newly
invoked tasks -->
<operation class="product_manager" method="search" cachealias="list_instruments"/>
<postconditions>
<postcondition keyword="items_found">
<enable forcenavigation="true">
<l-- enable the "add to cart" task and force a high-level navigational mapping to the
task, i.e. force the designer to present the task immediately. -->
<taskref>add_to_cart</taskref>
</enable>
</postcondition>
<l-- device model may restrict the amount of viewed result rows - this postcondition prepares
for that —>
<postcondition keyword="cache_manager.items_left">
<!I-- if all items cannot be viewed at once -->
<enable>
<!I-- Let the user browse for more results -->
<taskref>browse_remaining_instruments</taskref>
</enable>
</postcondition>
<postcondition keyword="no_items_found">
<l-- the user is viewed an error message - the presentation model should define how —>
<error type="method_message"/>
</postcondition>
</postconditions>
</operationdescription>
</useraction>
</useractions >
</subtask>
<I- END OF SEARCH_INSTRUMENTS -->
<I- ADD TO CART ->
<subtask subtask_id="add_to_cart">

96

<preconditions>
<requiredtasks operator="or">
<!I-- either one of given taskrefs suffice. This condition definition happens to match for both PDA and
WEB users -->
<taskref>browse_products</taskref>
<taskref>search_instruments</taskref>
</requiredtasks>
</preconditions>
<l-- This system action uses the results that were cached from the "search" method of task "search_items".
->
<systemaction>
<operationdescription>
<l-- note that this reference is user specific and the cache manager gets the data from current user's
session -->
<operation class="cachemanager" method="list_instruments"/>
</operationdescription>
</systemaction>
<fieldreferences>
<domainreference reference="OrderBean'>
<fieldreference reference="name" type="output"/>
<fieldreference reference="price" type="output"/>
<fieldreference reference="quantity" type="input"/>
</domainreference>
</fieldreferences>
<useractions >
<useraction useraction_id="submit_to_cart">
<operationdescription>
<operation class="order_handler' method="insert"/>
<postconditions>
<l-- on successful insertion, the PDA user is provided a possibility to accept the order, and the
Web user is allowed to proceed to check out. If the cart is already visible, it is refreshed to view
the correct data (see grammar on "enable"). -->
<postcondition keyword="success" includeddevices="PDA">
<enable forcenavigation="true">
<taskref>accept_order</taskref>
</enable>
</postcondition>
<postcondition keyword="success" includeddevices="WWW">
<enable forcenavigation="true">
<taskref>check_out</taskref>

</enable>
</postcondition>
</postconditions>
</operationdescription>
</useraction>

</useractions >
<l-- BROWSE REMAINING INSTRUMENTS - this is an inner subtask. Optional inner subtasks are disabled
by default -->

<subtask subtask_id="browse_remaining_instruments" constructor="optional">
<useractions>
<useraction useraction id="browse_remaining_instruments">
<operationdescription>
<l-- this is part of the engine's generic functionality -->
<operation class="cachemanager" method="advance(list_instruments)"/>
<postconditions>
<postcondition keyword="items_left">
<enable>
<I- This subtask may enable itself. —=>
<taskref>browse_remaining_instruments</taskref>
</enable>
</postcondition>
<postcondition keyword="default">
<l-- all other keywords match to this definition -->
<disable>
<taskref>browse_remaining_instruments</taskref>
</disable>
</postcondition>
</postconditions >
</operationdescription>
</useraction>

97

</useractions>
</subtask>
</subtask>
<I- END OF ADD TO CART -->
<l- VIEW_CART_DATA - This is reused by multiple subtasks —>
<systemtask systemtask_id="view_cart_data">
<systemaction>
<operationdescription>
<operation class="order_handler* method="view_cart_data'/>
</operationdescription>
</systemaction>
<fieldreferences>
<domainreference reference="order_handler">
<!I-- picture of the cart ->
<fieldreference reference="cart_picture" type="output"/>
<fieldreference reference="name" type="output"/>
<!I--item_count tells the amount of a single item in the order -->
<fieldreference reference="item_count" type="output"/>
<l--items_total is presented beside the cart picture -->
<fieldreference reference="items_total" type="output"/>
<fieldreference reference="price" type="output"/>
<fieldreference reference="total_price' type="output"/>
</domainreference>
</fieldreferences>
</systemtask>
<I- CHECK OUT - not activated for the PDA users -->
<subtask subtask_id="check_out" excludeddevices ="PDA">
<preconditions>
<requiredtasks>
<taskref>add_to_cart</taskref>
</requiredtasks>
</preconditions>
<l-- This task reuses external systemaction. Since all fields are not needed, the presentation model can leave
some of them out -->
<systemtaskreference>view_cart_data</systemtaskreference>
<useractions >
<useraction useraction_id="check_out">
<!I-- navigating instruction forces navigation and changes the status of the target task to enabled -->
<tasknavigation>
<taskref>accept_order</taskref>
</tasknavigation>
</useraction>
</useractions >
<subtask subtask_id="remove_from_cart">
<l-- [tems can be removed from the cart —>
<useractions>
<useraction useraction_id="submit_to_cart">
<operationdescription>
<operation class="order_handler' method="remove"/>
<postconditions>
<postcondition keyword="ok">
<l-- The dialogue model must refresh the current view (stored in the server side session) —>
<navigation target="CURRENT_VIEW"/>
</postcondition>
</postconditions >
</operationdescription>
</useraction>
</useractions>
</subtask>
</subtask>
<I- ACCEPT ORDER -->
<subtask subtask_id="accept_order">
<preconditions includeddevices="PDA">
<requiredtasks>
<taskref>add_to_cart</taskref>
</requiredtasks>
</preconditions>
<preconditions includeddevices="WWW">
<requiredtasks>
<taskref>check_out</taskref>

98

</requiredtasks>
</preconditions>
<l-- External system action definition is reused -->
<systemtaskreference>view_cart_data</systemtaskreference>
<useractions >
<useraction useraction_id="accept_order'>
<operationdescription>
<!I-- Although device type information reaches the order_handler object automatically, a different
operation is used to manage PDA orders -->
<operation class="order_handler* method="accept_order" excludeddevices ="PDA"/>
<operation class="order_handler' method="accept_order_with_delay"/>
<postconditions>
<postcondition keyword="error">
<error type="method_message"/>
</postcondition>
<postcondition keyword="ok">
<enable>
<taskref>view_confirmation</taskref>
<taskref>navigate_to_start</taskref>
</enable>
</postcondition>
<l-- For a PDA device, the cancel actions is enabled as well -->
<postcondition keyword="ok" excludeddevices="ALL" includeddevices="PDA">
<enable>
<taskref>cancel_order</taskref>
</enable>
</postcondition>
</postconditions>
</operationdescription>
</useraction>
</useractions >
<l-- VIEW CONFIRMATION -->
<subtask subtask id="view confirmation">
<l-- At this point the framework uses its cache mechanism to retrieve this data -->
<systemtaskreference>view_cart_data</systemtaskreference>
<l-- Possibility to cancel for the PDA user -->
<subtask subtask_id="cancel_order" constructor="optional" excludeddevices ="WWW ">
<useractions>
<useraction useraction_id="cancel_order">
<operationdescriptiorn>
<operation class="order_handler" method="cancel_last_order'/>
</operationdescriptiorn>
</useraction>
</useractions>
</subtask>
<subtask subtask id="navigate_to_start" constructor="optional">
<useractions>
<I-- forces to present a navigation -->
<useraction useraction_id="navigate_to_start">
<l-- the target does not refer to specific view name -->
<navigation target="default_view'/>
</useraction>
</useractions>
</subtask>
</subtask>
</subtask>
<I- END OF ACCEPT ORDER -->
</task>
<l-- END OF BUY_ITEM TASK -->
</tasks>

99

C E-shop —Presentation Model Source Code

This appendix sketches a presentation for the PDA device. The sketch does not cover all
tasks related to the use case.

<?xml version="1.0" encoding="UTF-8"?>
<application application_id="e-shop">
<views>
<view view_ID="shop_view" frameset="single_frameset" construction="astable" defaultframetarget="_top"
title="E-shop" devicegroup="PDA" layoutstructure="shop layout" default="false">
<subviewreference reference="header subview"/>
<subviewreference reference="search_subview"/>
<Niew>
</views >
<subviews>
<subview subview |D="header subview'>
<l-- In the absence of CSS support, we define the text size here -->
<text size="14">The mobile instrument shop!</text>
</subview>
<I- This subview later replaces the "header_subview" -->
<subview subview_I|D="add_to_cart_subview">
<heading>
<title>add_to_cart_subview</title>
<l-- Communicator does not support Javascript - if it would, scripts (for validation, for example) could be
attached here -->
</heading>
<taskproperties>
<taskproperty reference="buy_items">
<subtaskproperties>
<subtaskproperty reference="add_to_cart" printlfDisabled="false">
<I-- The task is put inside form; the framework generates the "action" attribute of the form at run-
time, i.e. forms the URL -->
<form target="self'>
<I-- the new content replaces this subview -->
<l-- the content is wrapped inside a table - all four components at the same row -->
<table rowelements="4">
<l-- Communicator does not support CSS, so styles must be specified here -->
<tableheading bgcolor="yellow">
<columnheader>Product</columnheader>
<columnheader>Price</columnheader>
<columnheader>Add to cart</columnheader>
</tableheading>
<l-- presentation for fieldproperties is not defined - automatic mapping is used -->
<actionproperties>
<l-- For a Javascript supporting device, this action might trigger a validation script
(introduced at the heading section -->
<actionproperty reference="submit_to_cart" label="Add">
<Ulcomponent type="submit"/>
<!I-- the dialogue element below defines the subview that is used to present the
"accept order" task. Note that the task model forces this definition. In this case
the search_subview already contains the accept_order task, so this would not be
necessary -->
<tasknavigations>
<tasknavigation navigation_id="accept_order"
target="search_subview"/>
</tasknavigations>
</actionproperty>
</actionproperties>
</table>
</form>
</subtaskproperty>
</subtaskproperties>
</taskproperty>
</taskproperties>

100

</subview>
<subview subview_|D="search_subview">
<heading>
<title>search_subview</title>
</heading>
<l-- now the thing here is to find out whether to map to task model or to dialogue model, or to both models.
-—>
<taskproperties>
<taskproperty reference="buy_items">
<subtaskproperties>
<!I--Initially, the only enabled subtask is search_items. The subtasks are presented similar to the
"add to cart" subtask and are thus not sketched here. -->
<subtaskproperty reference="search_instruments"/>
<subtaskproperty reference="accept_order'/>
<subtaskproperty reference="cancel_order"/>
</subtaskproperties>
</taskproperty>
</taskproperties>
</subview>
</subviews>
<layoutstructures>
<layoutstructure layoutstructure ID="basic layout" division="vertical" devicegroup="PDA">
<frame frame_ID="upper_frame" size="20" dimensiontype="percentage"/>
<frame frame_ID="lower_frame" size="80" dimensiontype="percentage"/>
</layoutstructure>
</layoutstructures>
</application>

101

