
Collecting Actual Use Events from

Browser-based User Interface - Model

and Implementation

Pekka Partanen

May 30th, 2003

Master’s Thesis

Helsinki University of Technology

Department of Computer Science and Engineering

Usability School

HELSINKI UNIVERSITY ABSTRACT OF

OF TECHNOLOGY MASTER’S THESIS

Author: Pekka Partanen

Title: Collecting Actual Use Events from Browser-based User

Interface - Model and Implementation

Date: May 30th, 2003 Number of Pages: 107

Department: Department of Computer Science and Engineering

Professorship: Tik-121 User-centered Product Development

Supervisor: Prof. Marko Nieminen Instructor: M.Sc. Seppo Tolonen

In this thesis actual use logging from a graphical user interface is studied. For

this purpose, a model and a software implementation for collecting the actual

use logging events from a generic browser-based user interface are developed.

The model utilises the logging features of the web server so that the studied

software need not be changed.

By collecting the user activatable elements from the user interface description,

it is possible to form a hierarchical map of the interface. The intentional user

actions are filtered from the collected and abstracted weblog by combining it

into the hierarchical map. This thesis presents three analyses, which process the

single user interface events and transform them to semantically rich information.

The user interface events provide an interesting insight into the user in the

application context, and the aim of this thesis is to demonstrate how these events

may be collected and analysed. The collection model presented in this thesis

may make it easier to collect the user interface events so that they can contribute

to the user interface design process. Within this thesis, the software implemen-

tation is published under the GNU GPL license.

Keywords:

actual use logging, GUI, usability

TEKNILLINEN DIPLOMITYÖN

KORKEAKOULU TIIVISTELMÄ

Tekijä: Pekka Partanen

Otsikko: Käyttäjän toimintojen kerääminen selainpohjaisesta

käyttöliittymästä - malli ja toteutus

Päivämäärä: 30. toukokuuta 2003 Sivumäärä: 107

Osasto: Tietotekniikan osasto

Professuuri: Tik-121 Käyttäjäkeskeinen tuotekehitys

Valvoja: Prof. Marko Nieminen Ohjaaja: FM Seppo Tolonen

Tässä diplomityössä tarkastellaan graafisesta käyttöliittymästä tehtävää käyttä-

jän toimenpiteiden keräämistä ja analysointia. Tätä varten kehitetään malli ja

siihen perustuva ohjelmistototeutus, joka mahdollistaa toimenpiteiden keräämi-

sen ja analysoinnin yleisestä selainpohjaisesta käyttöliittymästä. Malli hyödyn-

tää verkkopalvelimen lokitoimintoja, jolloin keräystoiminnot eivät vaadi tutkit-

tavan ohjelmiston muuttamista.

Keräämällä sovelluksen käyttöliittymäkuvauksesta käyttäjän aktivoitavat ele-

mentit voidaan käyttöliittymästä muodostaa hierarkkinen kartta, jossa sivut liit-

tyvät linkkien avulla toisiinsa. Yhdistämällä kartta verkkopalvelimen kerää-

mään ja abstraktoituun pyyntölokiin saadaan käyttäjän tekemät käyttöliittymä-

toiminnot suodatettua esille muista lokimerkinnöistä. Tässä työssä esitetään kol-

me analyysiä, joilla yksittäiset käyttöliittymätoiminnot saadaan muutettua se-

manttisesti rikkaaksi informaatioksi.

Käyttöliittymätoiminnot tarjoavat mielenkiintoisen näkymän käyttäjään sovel-

luksen kontekstissa. Tämän diplomityön tarkoitus on osoittaa, kuinka näitä toi-

mintoja voidaan kerätä ja analysoida ja saada näin uutta tietoa sovelluksen käy-

töstä. Tässä työssä esitetty keräysmalli voi osaltaan helpottaa toimintojen kerää-

mistä ja näiden aktiivista mukaanottoa osaksi käyttöliittymäsuunnitteluproses-

sia. Toteutuksen lähdekoodi julkaistaan GNU GPL lisenssillä.

Avainsanat:

käyttöliittymätoimintojen kerääminen, GUI, käytettävyys

Acknowledgements

This thesis was written in Comptel Corporation and it concludes my studies for a

Master’s Degree at Helsinki University of Technology. Since the beginning of this

research, many people have made direct or indirect contributions to it, but only

those with direct influence are mentioned here.

I would like to thank my thesis supervisor, Professor Marko Nieminen, for his

optimism towards the possibilities of the actual use logging approach and my work.

I would like to thank my thesis instructor, Seppo Tolonen, M.Sc., for his guidance

and comments. I would also like to thank my colleague Roni Hursti, B.Eng., for

his contagious enthusiasm towards free software and software development. I am

also thankful to my helpful office mates, past and present.

Finally, I am very grateful to my parents Asta and Keijo in so many ways, as

well as to my sister Eeva for her support. Without your reminding me about this

thesis, I would have lost between my other interests.

Helsinki, May 30th, 2003.

Pekka Partanen

4

Contents

1 Introduction 1

1.1 Background . 1

1.2 Goals . 2

2 Literature Review of Actual Use Logging 4

2.1 Actual Use Logging Approaches 4

2.2 Contextuality of User Interface Events 5

2.3 Abstraction Levels in Analysis 7

2.4 Interpreting Actual Use Logging Events 9

2.4.1 Synchronisation and Searching 10

2.4.2 Transformation . 11

2.4.3 Counts and Summary Statistics 12

2.4.4 Sequence Detection . 14

2.4.5 Sequence Comparison 15

2.4.6 Sequence Characterisation 16

2.4.7 Visualisation . 17

2.4.8 Integrated Support . 18

3 Task Frequency tool 20

3.1 Technical Construction Elements and Boundaries for Collection . 20

3.1.1 Client-Server Model of Interaction 21

3.1.2 Hypertext Transfer Protocol 21

3.1.3 Web Server in Collection 23

3.1.4 Mediator Requirements 24

3.2 Model for Collection . 25

3.2.1 Filtering the Collected Usage Data 25

3.2.2 Acquiring the User Interface Structure 25

3.2.3 Processing the Dynamic Content 27

i

3.3 Design Model for Analyses . 29

3.3.1 Analyses Scenario . 29

3.3.2 Visualisation of User Selection 30

3.3.3 User Action Sequence Frequencies 31

3.3.4 User Interface Transition Steps with Measured Probabilities 31

3.4 Implementation of Task Frequency Tool 32

3.4.1 Software Platform . 32

3.4.2 Software Architecture 32

3.4.3 Configuration . 35

3.4.4 Use of Task Frequency Tool 36

4 Subscriber Administration System 38

4.1 Mediator Software in Telecommunications Network 38

4.2 MDS/SAS 5.0 . 39

4.2.1 Graphical User Interface 41

4.2.2 Users . 42

5 Applying Task Frequency Tool for MDS/SAS 5.0 45

5.1 Collection Environment . 45

5.2 Configuring TFT for MDS/SAS 5.0 46

5.3 Collected Data . 47

5.4 Analyses . 49

5.4.1 Visualisation of User Selection 49

5.4.2 User Action Sequence Frequencies 50

5.4.3 User Interface Transition Steps with Measured Probabilities 53

6 Conclusions 58

6.1 Summary . 58

6.2 Discussions . 59

6.3 Future Work . 60

Bibliography 64

A Task Frequency Tool Source Code 65

B Link Structure of MDS/SAS 5.0 96

C Weblog Excerpt 104

ii

List of Figures

2.1 The abstraction levels of the user interface events 8

2.2 Synchronisation and searching 10

2.3 Transformation, filtering . 11

2.4 Transformation, abstraction . 12

2.5 Counts and Summary Statistics 13

2.6 Sequence Detection . 14

2.7 Sequence Comparison . 16

2.8 Sequence Characterisation . 17

3.1 HTTP messages in Server-Client Interaction Model 22

3.2 HTML in HTTP requests . 23

3.3 HTML page with link information set in bold face 26

3.4 HTML page . 27

3.5 Class diagram of TFT . 33

4.1 Gate between the concrete and abstract levels in telecommunica-

tions networks . 40

4.2 Main page of MDS/SAS . 41

4.3 Hierarchical GUI description . 43

5.1 Visualisation of user selections on the main panel 50

5.2 State chart of the usage of MDS/SAS 5.0 55

5.3 State transition from Monitoring to Maintenance 55

5.4 Adjusted state chart of the usage of MDS/SAS 5.0 56

iii

List of Tables

2.1 Visualisation of user interface event data 18

5.1 State transition matrix of MDS/SAS 5.0 54

5.2 Adjusted state transition matrix of MDS/SAS 5.0 56

iv

Glossary

Accelerator Key The accelerator key is a shortcut to some function or feature in

the user interface. Usually it is a keyboard combination that accelerates the

use of a particular function.

API Application Programming Interface. A set of services that a system is pro-

viding for applications.

AUL Actual Use Logging. Refers to collecting user actions through the user in-

terface.

BSS Business Support System. A system deployed by a service provider to sup-

port business operations.

CSS Cascading Style Sheet. A technique used in WWW, which allows authors

and users to attach style, e.g. fonts, colors and spacing, to HTML docu-

ments.

DB Database.

GSM Groupe Spécial Mobile. An open digital technology that uses time division

multiple access transmission methods. Used in mobile networks.

GUI Graphical User Interface. Refers to techniques of using graphics, keyboard,

and mouse to provide an easy-to-use, user interface to an application.

HTML Hypertext Markup Language. A publishing language for global distribu-

tion.

HTTP Hypertext Transfer Protocol. Application-level protocol for hypermedia

information systems.

v

IP Internet Protocol. A protocol by which data is sent from one computer to an-

other on the Internet. Each computer has at least one IP address that uniquely

identifies it from the other computers on the Internet.

IT Information Technology

Javadoc A software by Sun Microsystems for generating application program-

ming interface documentation in HTML format from a specific javadoc com-

ments in source code.

MDS/SAS Mediation Device Solutions - Subscriber Administration System. A

software product of Comptel Corporation for managing the data on sub-

scribers and their services in a communications network.

Mediation The process of collecting, modifying, correlating and rating event

records and delivering them to the BSS systems.

Provisioning Setting up a telecommunications service for a particular subscriber

in a switch.

UI The combination of menus, screens, keyboard commands, mouse clicks, and

command language that defines how a user interacts with a software appli-

cation.

URI Universal Resource Identifier. Specifies an abstract or physical resource (e.g.

a web page). Includes URL or URN.

URL Universal Resource Locator. A subset of URI that identifies a resource

through its primary access mechanism (e.g. its network location) rather than

by name.

URN Universal Resource Name. A subset of URI. Must remain globally unique

and persistent even when the resource becomes unavailable.

WWW World Wide Web. A network of information resources.

vi

Chapter 1

Introduction

1.1 Background

The development of software should be based on real information about users’

needs and on their key interests in the current software products. For example,

information about the most frequently used application features can suggest which

features to optimise and how to focus product development in the near future.

(Hilbert & Redmiles 1998)

User interface (UI) events are generated as products of the user operations in the

computer systems. They provide a good insight into the user’s behaviour in a

real environment, when the user is doing his actual work (Nielsen 1993). User

interface events can be collected automatically and they can be used in different

statistical analyses. Typically, the collected information contains data about the

UI events so that the frequency with which each user has used different features

in the program is possible to calculate. Furthermore, the frequency with which

various special events (such as online help accesses) have occurred might also

be included in the collected information. That kind of information can be used

to make analyses e.g. about the software features that most and least frequently

need online-help. Usability of software can be improved by optimising the most

frequently used tasks and prioritising the usability problems of different tasks by

basing prioritisation on task frequency analysis. A good advance in usability is

achieved by improving the most frequently used features.

1

CHAPTER 1. INTRODUCTION 2

Actual use logging (AUL) approach has been described as a fruitful source for

usability evaluation at least since 1982 (Buxton, Lamb, Sherman & Smith 1983).

However, little empirical work has been performed to evaluate different actual use

logging approaches’ strengths and limitations. (Hilbert & Redmiles 2000)

The AUL approach does not remove the need for qualitative usability research

methods like user interviews. AUL provides quantitative approach to usability and

gives street credible data for the user interface developers. But before AUL can

be applied, it needs an already existing software system. So, the best advance

from AUL is gained by integrating it to the qualitative usability methods without

thinking it as a competing “new school” approach.

This thesis started as a usability research project to Comptel Corporation. The

company wanted to get profound information of the usage of one of their software

products; there was no information about how the users use the software in real life.

The company did not set the method for solving the usage, and the decision of the

methodology was left for the thesis writer. After studying usability literature and

the company’s software product, AUL approach was chosen to be applied. Even

though the thesis is centred on developing a model and implementation of AUL

software tool, the basis of the original project was built on the company’s real life

problem.

Comptel Corporation is a Finnish company, established in 1986. The company

provides mediation and provisioning software for telephone operators and service

providers. Comptel’s products offer connections from business support system

(BSS) to network elements. One of the main products is Mediation Device Solu-

tions - Subscriber Administration System (hereafter referred to as MDS/SAS).

1.2 Goals

The goal of the thesis is to study different AUL approaches and provide a model

and an implementation for a generic AUL collector and analyser tool for the

browser-based user interface. The analyses are derived to give insight about how

to focus software development efforts in the near future. For example, information

about the most and least used user interface parts gives valuable knowledge of the

CHAPTER 1. INTRODUCTION 3

user behaviour in an application. The information is based on real use situations

where the user’s actions in the user interface are analysed.

This thesis concentrates on developing a working model for collecting and analys-

ing AUL information for the needs of graphical user interface designers who want

to have “hands-on” information of their systems. Effort is made to provide a

highly configurable and extendable implementation, which can be used as a gen-

eral tool in the user interface development projects. The application environment,

MDS/SAS 5.0, acts as a case study in where the idea of the model and the actual

implementation are tested.

According to the idea of AUL, this thesis does not give usability improvement

suggestions for MDS/SAS 5.0. They would require qualitative research of the use

cases and the software, which are not in the scope of the thesis. The user interface

designers have knowledge about those issues, and they know how to integrate the

results of the analyses to the software.

Chapter 2

Literature Review of Actual Use

Logging

This chapter provides theoretical background for the following chapters. At first, a

high-level separation of different methods is described. Then follows sections for

the contextuality and the abstraction levels and, finally, an introduction to different

interpretation techniques.

2.1 Actual Use Logging Approaches

In principle, there are two main approaches to do actual use logging, as described

in Nielsen (1993). One way is to collect data with generic data collection software

e.g. CHIME (Badre 1980). These kinds of software log fairly low-level user

actions like button presses and mouse traces without any semantic information

about what was being clicked or selected (Guzdial, Santos, Badre, Hudson & Gray

1994). At the same time, the volume of collected data might be great depending

on the data collection period. The approach is generic so that the data collection

software can be used to study the use of any software without any modifications to

the studied software.

The other way to perform the collection is to modify the software of interest. The

advantage of this approach is that the semantics of user actions can be included in

4

CHAPTER 2. LITERATURE REVIEW OF ACTUAL USE LOGGING 5

the collected information. In general, all interesting information can be collected

for further analysis. In contrast, this method still has some disadvantages. First, the

method requires access to the source code, which might be impossible to achieve.

The second disadvantage is that it is difficult to decide the level of detail the UI

events should be collected at. If the level is too low, the volume of data gets easily

too large but if the level is too high, the desired data might not be available at the

time of the analysis.

2.2 Contextuality of User Interface Events

Problematic issues arise when attempting to interpret the significance of the UI

events based only on the information that the events carry by themselves. The con-

text of the event is important because substantial contextual cues are often spread

across the interface. This problem is analogous to natural language conversations.

To illustrate the problem more generally, an analogous problem of interpreting

the significance of utterances in natural language conversation is described. The

example is from the study by Hilbert & Redmiles (2000).

There was a conversation between persons A and B at a car show. The task is to

identify A’s favourite cars based on the utterances in his expressions.

Example 1:”The Lamborghini is one of my favourite cars”.

In this case, all information that is needed to determine one of A’s favourite cars is

contained in a single statement.

Example 2: ”The Lamborghini”.

Here, access to prior context is needed before determining anything. It is most

likely that A is responding to a question posed by B. The information carried in

the question is critical in interpreting the response. The question might have been

like ”what is your least favourite car?” or ”what car does your rich uncle drive?”.

Example 3: ”That is one of my favourite cars”.

In this case, the needed information was available to the interlocutors at the time of

the utterance. The term ”that” points to the needed information and de-reference

CHAPTER 2. LITERATURE REVIEW OF ACTUAL USE LOGGING 6

to that information is required.

Example 4: ”That is another one”.

This case requires access to prior context and the ability to de-reference the item

to which the term ”that” is pointing.

All examples above are analogous to interpretations of UI events. The following

examples illustrate the situations:

Example 1: PrintToolbarButtonPressed

There is enough information within the event itself so that it indicates the action

the user has performed accurately.

Example 2: CancelButtonPressed

This event does not describe what the cancelled action was. Analogously to the

Example 2 above, this event indicates a response to some prior event, e.g. a prior

SaveFileAs and cannot be interpreted by itself.

Example 3: ErrorDialogActivated

The interpretation of this event needs information that may have been available

in prior events. More direct way to interpret it would be to query the mentioned

dialog for its error message. Specifically, this is similar to de-referencing the term

”that”, if we think that the error dialog is pointing to the error message that does

not appear in the event stream.

Example 4: ErrorDialogActivated

It also might be possible that the error message was due to an ”illegal command”.

In this case, the needed information is not found by de-referencing the indexical

but must be combined with the information available in prior events.

The fundamental observation in these examples is that sometimes a UI event does

not carry enough information to interpret its significance accurately. The needed

information might be available in other events or it was available at the time when

the event occurred. This has to be remembered when designing an event collection

software. It has to be capable of solving or skipping the events that it considers as

CHAPTER 2. LITERATURE REVIEW OF ACTUAL USE LOGGING 7

being ambiguous.

2.3 Abstraction Levels in Analysis

User interface events can be analysed at different abstraction levels depending on

the usability issues that are in the research focus. One may wish to analyse low-

level physical things like mouse movements while the other may focus on higher-

level task solving steps taken by the user. An example of a high-level task is an

online settlement paying.

Low-level events have meaning only as quantitative data. High-level events can

be thought to be qualitative data, because usually they are derived from quantita-

tive data by some deduction rules. These rules require human intuition about the

user and the tasks that he/she is performing. However, high-level events’ repre-

sention is quantitative even though they are qualitative in the respect of user in-

terfaces. Sometimes, high-level events have simple representations in single low-

level events as described in the following paragraphs. In those cases, high-level

events differ from low-level events only semantically.

It is noticeable that the lower the abstraction level is, the more objective it is. If we

have to interpret the user’s needs and goals based on his user interface activities, we

have to assume a great deal about the decisions that he made, because we cannot

collect all prior information. In other words, we have to add our own intuition to

the objective data by giving a meaning to the event stream. For example, the actual

use logging system has collected the following event stream:

AddSubscriberToDB SubscriberName = "Jack Smith"

AddSubscriberToDB SubscriberName = "Bruce Smith"

DeleteSubscriberFromDB SubscriberName = "Jack Smith"

When we interpret the stream above, we have to assume something about the in-

tentions of the user. It might be possible that the user made a mistake in writing

the user’s name as “Jack” instead of “Bruce” and noticed the mistake after it oc-

curred and removed the name from the database. On the other hand, it might be

possible that the user received a message that “Jack Smith” closed his account after

CHAPTER 2. LITERATURE REVIEW OF ACTUAL USE LOGGING 8

the user added “Bruce Smith” to the database and there was no error in the user’s

actions. All in all, there is always a compromise between the number of collected

and available data. Even if user interface designers considered the different use

cases and the user actions that relate to them, the users might find new ways to use

software that the designers did not even consider are possible (Nielsen 1993).

Six different abstraction levels are assumed (Hilbert & Redmiles 2000). They are

described in Figure 2.1. In addition to the abstraction levels, the level of intuition

is described in the figure as well.

6

?

Goal/Problem-Related
(e.g. paying a settlement)

Domain/Task-Related
(e.g. proving address information)

Abstract Interaction Level
(e.g. proving values in input fields)

UI Events
(e.g. shifts in input focus)

Input Device Events
(e.g. hardware generated keyboard interrupts)

Physical Events
(e.g. fingers pressing keys)

H
ig

h
D

eg
re

e
of

in
tu

it
io

n
L

ow

Figure 2.1: The abstraction levels of the user interface events.

Events that are low in the figure need little interpretation and, there-

fore, little intuition from the interpreter. The higher the level, the

more intuition the interpreter has to add to the pure information.

At the lowest level are physical events that could be e.g. key pressings or mouse

movings. Input device events are generated by the hardware in response to physical

events. These events could contain e.g. keyboard or mouse interrupts. UI events

associate screen and other interface objects with input device events. Events at this

level include e.g. focus shifts and radio-button selections.

CHAPTER 2. LITERATURE REVIEW OF ACTUAL USE LOGGING 9

Abstract interaction events are not directly generated by the UI system, but they

may be deduced from UI events. The events themselves are typically indicated by

idiomatic events. For example, when a user wants to edit a textbox, which is the

last box in a group of text-boxes, he has to press tabulator repeatedly to change the

focus to the right text-box. In terms of UI events, the focus shifted several times

between the first and the last text box. In terms of abstract interaction events, the

focus shifted directly from the top of the page to the right text-box.

Domain/task-related and goal/problem-related events are the highest level events.

While the other levels consider the UI as the object of actions, these two highest

levels take the user’s tasks and goals as objects. Sometimes it is easy to infer these

events from lower level events. For example, wizards in WinZip software guide

users through a sequence of steps in a predefined task and the user’s progress can

be recognized in terms of simple UI events, such as button presses on the ’Next’

-button. In some other cases, indicating the events from simple events may require

more complicated composite event detection. For example, the goal of paying

a settlement requires the task of providing information about the receiver of the

settlement. This task can be recognized in terms of abstract interaction events

(providing a value) occurring within each of the required fields in the receiver

section of the form.

2.4 Interpreting Actual Use Logging Events

After the UI events have been collected, they have to be interpreted. The common

nominator for the different interpretation techniques is that they allow interesting

issues emerge from the “noise”. Depending on the event collection period, there

might be hundreds of thousands of events that need to be used as material for

analysis. There has to be a method to automatically analyse the data.

The goal in the UI event analysis is to provide information from a great amount

of material that is impossible to deduce from single observations. The following

chapters describe the characteristics of different techniques that are synchronisa-

tion and searching, transformation, counts and summary statistics, sequence detec-

tion, sequence comparison, sequence characterisation, visualisation and integrated

support (Hilbert & Redmiles 2000).

CHAPTER 2. LITERATURE REVIEW OF ACTUAL USE LOGGING 10

UI Events Video Observations

Figure 2.2: UI events are synchronised with video and observations.

Investigator can do a search in one medium to locate the same event

in other medium.

2.4.1 Synchronisation and Searching

These techniques are based on synchronisation and cross-indexing with UI events

and other sources of data such as video and coded observations. The connec-

tions between elements are described in Figure 2.2. An interesting observation

in one medium can be located and studied in another medium. Synchronisation

and searching approach is the middle course between quantitative and qualitative

usability evaluation. In addition to UI event collection, it uses observational evalu-

ation to give more insight about the contextual information that is simply missing

from the event stream.

The UI events are synchronised with video or coded observations so that if the

investigator wants to review all segments of a video in which the user invokes a

particular command, he does not have to do it manually. He can search through the

user interface log for particular events of interest and use the timestamps, which

are associated to the events, to jump to the right segment of the video recording.

This is the most simple technique but still powerful. There are many big IT com-

panies (Apple, Microsoft, SunSoft) that have reported the use of tools that provide

synch and search capabilities (Weiler 1993).

The strength of this approach is also its weakness. Observations need the pres-

ence of one or more observers or at least the presence of video equipment. The

CHAPTER 2. LITERATURE REVIEW OF ACTUAL USE LOGGING 11

UI Events Filtered Events

Figure 2.3: Filtering is one of the transforma-

tion techniques. It operates by selecting only

the events that fulfill a described criteria.

situation becomes more laboratory like and it might affect the users performance.

Furthermore, video analysis tends to produce a huge amount of data that takes lots

of time to analyse. The ratio of the time spent in analysis versus the duration of the

analysed sessions can easily be 10:1, as described in Sweeney, Maguire & Shackel

(1993).

2.4.2 Transformation

This approach is actually a collection of different techniques. It combines filtering,

abstraction and recoding to transform event streams for different purposes, such as

comparison and characterisation. In characterisation, event streams can be cate-

gorised to various classes and compared to each other. Transformation is done in

real time with the collection.

Filtering operates by describing a mask for wanted or unwanted UI events (Figure

2.3). One may filter out all events associated with mouse movements in order

to focus on higher-level actions such as menu selections. Another way to apply

filtering is to filter out information from user interface events that distinguish them

from each other. For example, one may wish to filter out mouse coordinate values

associated with button presses if they distinguish button presses within the same

button.

Abstraction operates by combining new events based on lower-level events (Figure

CHAPTER 2. LITERATURE REVIEW OF ACTUAL USE LOGGING 12

UI Events Abstracted Events

Figure 2.4: Abstraction is one of the trans-

formation techniques. Abstraction operates by

generating new events from existing events.

Low-level events can be abstracted to higher-

level events.

2.4). For example, events that indicate the opening of a pull-down menu, setting of

the focus on a function and button press on the function might indicate the abstract

event ’FunctionSelected’.

Recoding operates by producing new event streams based on filtering and abstrac-

tion. Different low-level events may activate the same higher-level event and after

abstraction they can be recoded to be the same events. For example, printing can

be activated either by selecting ’File’ menu and selecting ’Print’ from it or by

pressing the accelerator key (e.g. ’Ctrl-P’). After abstraction and recoding, both

printing methods can be identified to be the same.

Transformation techniques limit the volume of collected data, which is usually a

necessity for the collection. On the other hand, it is a limitation because of the risk

of throwing away data that might have been useful in analysis.

2.4.3 Counts and Summary Statistics

After user interface events have been captured, there are a number of counts and

summary statistics that can be applied to the data. These statistics contain feature

use counts, error frequencies and use of the help system. It is possible to rely on

general purpose analysis programs such as spreadsheets in analysing the collected

CHAPTER 2. LITERATURE REVIEW OF ACTUAL USE LOGGING 13

UI Events

13 File->Save

17 Print

68 Secs/Session

7 Errors/Task

Counts and Statistics

Figure 2.5: Counts and Summary Statistics are

numeric values, which are generated from user

interface events to characterise user behaviour.

data but more sophisticated systems are also available. The approach is described

in Figure 2.5.

The MIKE user interface system provides built-in facitilies for calculating and

reporting metrics (Olsen & Redmiles 1998). MIKE’s operation is based on de-

scribed user interface and application command abstractions. MIKE monitors UI

events and associates them with interface components and application commands.

Metrics that MIKE can report include the following:

• Performance time measures the time that was used in completing a certain

task.

• Mouse travel indicates the distance between UI elements. The mouse travel

should be low in relation to the number of elements.

• Command frequency describes the numbers of activated commands.

• Command pair frequency is related to commands that are used adjacently

with some other command. Frequently used command pairs are better to be

combined.

• Cancel and undo describes the commands that are frequently cancelled and

undone.

• Physical device swapping indicates the switches between keyboard and

mouse.

CHAPTER 2. LITERATURE REVIEW OF ACTUAL USE LOGGING 14

Target Source

Figure 2.6: In sequence detection, concretely

or abstractly defined target sequences are de-

tected from source sequences.

The strength of this approach is that it provides a quantitative insight to user in-

terface events. This reduces the possibility of misinterpretations. The limitation is

that the approach does not use information that might be included in the context of

a single event such as prior events.

2.4.4 Sequence Detection

This approach is used for detecting subsequences (target) from user interface event

sequences (source). Subsequences can be abstractly or concretely defined. Ab-

stractly defined sequences are supplied by the developers of the techniques (e.g.

Fisher’s cycles (Fisher 1991) and lag sequential analysis (Faraone & Dorfman

1987)), whereas concretely defined sequences are supplied by the investigators

using the techniques (e.g. TOP/G (Hoppe 1988)). Figure 2.6 describes the ap-

proach.

Fisher’s cycles are all subsequences that have common beginning and ending events

defined by the investigator. The subsequences are identified automatically from the

source sequence and their frequencies are reported. For example, the investigator

might want to study what takes place when the user has activated the Print window

and before he actually prints the page. In this case, the investigator defines the

activation of the printing feature as a beginning event and the pressing of the OK

button as an ending event. Fisher’s cycles are all different event combinations that

CHAPTER 2. LITERATURE REVIEW OF ACTUAL USE LOGGING 15

take place in a real use situation between the defined events.

TOP/G is a command line parser that tries to infer higher level tasks that are being

performed. Low-level commands are compared to task-action grammar, which is

represented in a Prolog DB as rewrite and production rules. The rules are defined

hiearchically in terms of elementary tasks. Keystroke level events are mapped into

the tasks.

The strength of this approach is the ability to detect patterns of interest in events

and not just perform analysis on isolated events. Combining sequence detection

and transformation can produce “abstract” events from event streams. The limita-

tion is that defining the patterns of interest might take time and limit the collected

material so that new interesting patterns are not observed.

2.4.5 Sequence Comparison

These techniques try to find partial matches between the event stream and the

abstractly or concretely defined target sequences. Some techniques attempt to de-

tect the difference between a concrete target sequence produced e.g. by an expert

user and a source sequence produced by some other user (e.g. ADAM (Finlay &

Wolf 1995)). Points of deviation between the target and source sequences is still

a common technique to find possible critical incidents (e.g. EMA (Balbo 1996)).

The purpose in the sequence comparison approach is to compare the actual usage

against some “ideal” or expected usage to identify potential usability problems.

Figure 2.7 describes the approach.

The strength of this approach lies in its ability to analyse a specified part of a

user interface. Only a small part of an interface can be modelled to a system,

which causes the fact that only the events close to the model are “matched” and

compared.

All these techniques are based on two assumptions that turn out to be limitations.

The first assumption is that all interaction can be split to small segments and com-

pared segment by segment. The second assumption is that interaction sequences

are somehow similar between different users. If these assumptions are considered

to be wrong, then the whole approach is questionable. In addition to the limitations

CHAPTER 2. LITERATURE REVIEW OF ACTUAL USE LOGGING 16

Target Source

Figure 2.7: Sequence Comparison is comparison be-

tween the defined target sequences and source sequences.

Sequences can be abstractly or concretely defined.

based on the assumptions, an expert interpreter is needed to determine whether the

sequences are interestingly similar or different.

2.4.6 Sequence Characterisation

These techniques construct abstract models from user interface event sequences to

summarise or characterise interesting features of the sequences. Some techniques

construct a transition model with probabilities associated to transitions (e.g. Hawk

(Guzdial 1996)), while others construct models that characterise the grammatical

structure of the input event sequence. The approach is depicted in Figure 2.8.

Hawk system is based to Markov Chain analysis that can be used to produce pro-

cess models with probabilities assigned to transitions between different states. A

state of a system is considered to depend on the previous r-states in which case the

system is called an rth-order Markovian system (Chen 1993). At first, the states of

the system are defined. All events in the user interface event sequence are mapped

to appropriate states. After that, they are abstracted and recoded to replace low-

level events with abstract states. The transition probabilities are then calculated

based on the UI event sequences. When the transition matrix is acquired, “one

could use various existing techniques of Markov analysis to study the homogene-

ity of the distribution of probabilities, the symmetry of the transition matrix, the

distribution of the process in a long-run, and the difference of the matrices under

CHAPTER 2. LITERATURE REVIEW OF ACTUAL USE LOGGING 17

Source Model

Figure 2.8: Sequence characterisation is for analysing the

source events and generating abstract models for charac-

terising the nature of the source events’ sequential struc-

ture.

different experimental conditions” (Chen 1993).

The strength of sequence characterisation techniques is that they provide an insight

into sequential structure of user interface event sequences. The limitation in the

Markovian models is that it is based on a simple assumption that the current state is

depending of the r previous state. However, Markovian models have been reported

to provide useful information to investigators (Hilbert & Redmiles 2000).

2.4.7 Visualisation

These techniques allow human investigators to use their innate visual capabilities

to order and to find relations in visually presented actual use log data. This ap-

proach is very informative when results are graphically linked with the interface.

The previously described approaches can be applied with visualisation so that the

data is first e.g. transformed and abstracted and the results are presented graphi-

cally. For example, MacSHAPA (Sanderson, Scott, Johnston, Mainzer, Watanabe

& James 1994) visualises the abstraction and transformation of low-level events

to higher level abstract interaction events and task-related events in a spreadsheet.

The visualisation is presented in Table 2.1.

Counts and summary statistics are commonly presented in the context of the actual

CHAPTER 2. LITERATURE REVIEW OF ACTUAL USE LOGGING 18

UI Events Abs.Interaction Events Task-Related Events

GotFocus(Name)

Key(Name, ’T’) GotEdit(Name) AddressSectionStarted()

Key(Name, ’e’)

Key(Name, ’x’)

LostFocus(Name)

GotFocus(Street)

LostEdit(Name)

Key(Street, ’3’) GotEdit(Street)

ValueProvided(Name, "Tex") NameProvided("Tex")

Key(Street, ’1’)

Key(Street, ’4’)

Table 2.1: Visualisation of the correspondence between user interface events at

different abstraction levels

user interface. For example, a graph of mouse clicks can be presented on top

of the interface so that the activity of different interface elements can be seen

in relation to the other elements on the same page. Sequence characterisation

can be combined with visualisation as well. For example, Hawk (Guzdial et al.

1994) presents a process model with nodes representing transition steps and arcs

indicating the measured probability between process states.

2.4.8 Integrated Support

This approach is a combination of the previously described approaches. Different

approaches are combined to make up an environment that enables composition

of various transformation, analysis and visualisation capabilities. Only a single

tool is needed to analyse very different types of information relating to actual use

logging.

There are several different environments, which provide integrated support fea-

tures like MacSHAPA (Sanderson et al. 1994), DRUM (Macleod & Rengger 1993)

and Hawk (Guzdial et al. 1994). For example, MacSHAPA is a comprehensive en-

vironment designed to support several actual use data analysis. These features

CHAPTER 2. LITERATURE REVIEW OF ACTUAL USE LOGGING 19

include the following:

• data import and export

• video and coded observation synch and search

• user interface event filtering, abstraction and recoding

• built-in counts and summary statistics

• sequence detection, comparison and characterisation

• a number of visualisations and reports

The strength of integrated support approach is in its ability to handle the collec-

tion of usability information from the user interface and provide the analysis tools

as well. This significantly reduces the data management and possible incompat-

ibilities in data transfer between different programs. All integrated support envi-

ronments have their own limitations. For example, MacSHAPA is not specifically

designed for event analysis. Therefore, it requires a lot of human intervention and

interpretation to extract useful information.

Chapter 3

Task Frequency tool

The practical part of this thesis is to develop a model and finally an implementation

for both collecting and analysing the user actions in browser-based user interfaces.

Attention is paid to design and implement a generic tool, which can be used in

analysing different user interfaces.

Task Frequency Tool (TFT) is separated to two different parts, which are the col-

lection and the analysis. The collection stores the user actions and provides them

as input to the analysis. The model and the implementation are tested against a

real software product in Chapter 4.

3.1 Technical Construction Elements and Bounda-

ries for Collection

The problem in collecting the user actions from graphical UIs has been that the

collection mechanisms have had to be implemented in the source code of appli-

cations in different log writing routines as in Emile (Guzdial 1996). Information

about the user actions have not been available outside the applications for external

collection. There simply has been no room for a generic user action analysis tool.

The following sections provide information of the technical construction elements

and boundaries that are centric to the collector model. The model is presented in

20

CHAPTER 3. TASK FREQUENCY TOOL 21

Chapter 3.2.

3.1.1 Client-Server Model of Interaction

The primary pattern in the interaction between the cooperating applications is

known as the client-server paradigm (e.g. Comer 1995). A general term server

can be applied to any program that offers a service, which can be reached over a

network. The server receives and accepts a request over the network, performs its

service, and returns the result as a response to the requester. An example of the

server is a web server. It receives requests for web pages and returns an appropri-

ate page as a response. The web server could contain an application that processes

the request’s information and forms a page dynamically and returns it to the client.

A program becomes a client when it sends the request to the server and starts to

wait for a response. In fact, the client-server model is an extension of interprocess

communication on a single host. Thus, it is a natural and easy model to build

programs to networked environments. An example of the client is a web browser.

It sends requests of web pages to the server according to the user actions.

3.1.2 Hypertext Transfer Protocol

The user interfaces are transferred from the server to the client by using Hypertext

Transfer Protocol (HTTP), which is an application-level protocol for hypermedia

information systems (Net 1999). It has been in use in WWW since 1990. HTTP

messages consist of requests from the client to the server and responses from the

server to the client. An example of the server-client interaction model in the case

of Internet browsing is depicted in Figure 3.1.

Selection of a hypertext link generates a ’GET’ type request, which means “re-

trieve whatever information is identified by the identifier” (Net 1999). The re-

source identifier is a Uniform Resource Identifier (URI) that defines e.g. a web

page. Therefore, a HTTP-request could be like the following:

GET http://www.foo.bar/pub/html/foo.html HTTP/1.1

CHAPTER 3. TASK FREQUENCY TOOL 22

Server

The heatwave
in Helsinki

<prev next>

Client

The UI page in HTML1.

2.

Request3.

Figure 3.1: Server-Client interaction model in WWW-browsing.

Server sends a UI page to client’s web browser in HTML. The user

clicks a link on the page, which generates a request for a new page

to the server. The numbers indicate the order of steps.

The resource could be a web page that is a response to the user’s selection in the

UI. Also, it could be a servlet that reads parameters from the URI and returns a

web page depending on the parameters. The parameter part of the URI is called a

query-part and an example of the request containing a query is the following:

GET http://www.foo.bar/pub/servlet/user?id=ann&age=21 HTTP/1.1

The user does not have to know anything about the URIs that the application is

generating from his actions in the UI. In HTML, the anchor element combines the

user understandable text to URI. The meaning of the anchor tag is that it links

the different documents, e.g. UI pages, together. The syntax of the anchor tag is

following:

Anchor text

The anchor text represents the text that is shown in the UI as a link and of which

the user can choose by clicking it with a mouse. When the user clicks the link

text, the Internet browser takes the target text and sends it in an HTTP request’s

query-part to the server. An example of the procedure is depicted in Figure 3.2.

CHAPTER 3. TASK FREQUENCY TOOL 23

Server

www.foo.bar

The heatwave
in Helsinki

<prev next>

Client
The heatwave in Helsinki..<a h
ref=”http://www.foo.bar/weat

her?page=next”>

1.

2.

GET http://www.foo.bar/weather
?page=next3.

Figure 3.2: HTML in HTTP requests. Server sends a UI page

to client’s web browser in HTML. The user clicks a link on the

page, which generates an HTTP request to the server. The numbers

indicate the order of steps.

3.1.3 Web Server in Collection

When the user clicks a link in the user interface, the browser sends an HTTP

request to the web server. The type of the requests is ’GET’, which causes that the

parameters are included to the URI.

Web servers have built-in functionalities for logging the requests that the clients are

sending. They can be configured to write a log file entry for each HTTP request.

Regarding the collection, the most important information in a log file is the query

part of the URI.

Web servers support two standard-like log file formats, which are known as Com-

mon Log File and Extended Log File formats. They both provide the logging of

the URI’s query-parts and therefore only the Common Log File is presented here.

The Common Log File format is the following (W3C 1995):

remotehost rfc931 authuser [date] "request" status bytes

remotehost Remote hostname

rfc931 The remote logname of the user

authuser The username as which the user has authenticated himself

[date] Date and time of the request

CHAPTER 3. TASK FREQUENCY TOOL 24

"request" The request line exactly as it came from the client

status The HTTP status code returned to the client

bytes The content-length of the document transferred

A limitation in the web server log collection is that it does not provide features

to log data that was sent with POST method. The limitation is that the content of

POST information cannot be logged and therefore analysed later.

3.1.4 Mediator Requirements

In the case of mediator software (see Chapter 4), it is important that there are no in-

terruptions while the system is in production use. The functionality of the software

has to be such that the total throughput of BSS requests is as great as possible. If

the requests are queuing in the mediator, it causes overload to the operator’s system

because the system waits an anknowledgement to each sent request.

The criticality of the system, as described above, implies two basic requirements

for the user action collection. The first requirement is the fact that the total through-

put of requests in the mediator has to be maximized. After all, the collection is only

an extra feature and it should not affect the main task of the mediator in any way.

The second requirement is indirect. It says that there cannot be any extra modules

in the mediator because a malfunctioning module could be very threatening for

the stability of the teleoperator’s network. At least, the extra module, which is the

collector in this case, would have to be tested thoroughly in each system that it is

going to be used.

After all, the risk of threatening the stability of the system and the amount of work

in testing an extra module suggests that the collection should be done in some

other way than with a module to the software core. Also, an extra module in the

mediator would naturally decrease the throughput of the requests.

CHAPTER 3. TASK FREQUENCY TOOL 25

3.2 Model for Collection

As a result of getting familiar with the web-application environment and the Inter-

net protocols, it was possible to draw a general model for collection. Even though

the mediator requirements for collection were strict, they could also be overcome,

but with a limitation to the collectable elements. It was decided to collect only the

link information. The result is that the user navigation paths are raised into focus.

At the same time, the model remains generic and does not need any extra features

to the web server.

3.2.1 Filtering the Collected Usage Data

According to the HTTP protocol, a separate request is needed for each file that

is wanted to be downloaded from the server to the client. As a result, the user’s

request to view a particular page generates requests for graphics and scripts in ad-

dition to an HTML file (Cooley, Mobasher & Srivastava 1999). All these requests

generate a new entry to the web server log so that the intentional user action is

concealed by the extra log entries.

Before the logged user actions can be used efficiently in computation, they have

to be filtered from the data. This method was described in Section 2.4.2. Here,

the filtering cannot be performed in real time because the collection is done on the

web server. After the web server has collected a weblog for a desired period of

time, the filtering can be started.

In order to do the filtering, the information of the user interface elements have to

be known. Then, the insignificant weblog entries can be discarded and an analysis

of the real user actions started.

3.2.2 Acquiring the User Interface Structure

Each HTML element type has its own description in HTML so that it can be recog-

nized from the textual web page. The link structure of a web page can be acquired

by parsing the anchor elements from the web page’s HTML file. Both the anchor

CHAPTER 3. TASK FREQUENCY TOOL 26

and target texts have to be parsed from inside the anchor tag. Figure 3.3 shows

in bold face the parts of the HTML page that have to be parsed from a web page

snippet in Figure 3.4 for link analysis.

Figure 3.3: A web page snippet of Figure 3.4. The link information is

set in bold face type.

The user interface consists of web pages that are hierarchically connected to each

other. The pages are connected with a link so that adjacent pages can be reached

by clicking a link. Therefore, the user interface can be considered as a tree that

branches every time the user navigates further in the application.

The hierarchical structure of the user interface is acquired by starting the link pars-

ing from the main page and following the links to the child pages until there is no

child pages left. The information of adjacent pages is stored with the link infor-

mation so that they form a hierarchical presentation of the UI.

Acquiring the UI structure is possible to automate. Starting from the main page,

the search can be executed exhaustively by parsing the anchor tags from the HTML

CHAPTER 3. TASK FREQUENCY TOOL 27

Figure 3.4: The page is stylised with Cascading Style Sheet

(CCS) but the structure is similar than in pure HTML.

description and sending a new HTTP request with each anchor element’s target

text to the web server. During the search, the information of adjacent pages is

collected. If some link points to an already requested page, the request is not sent

but the link information is stored.

This is an efficient method for collecting the UI structure if the pages are not

branching to external applications. It is easy to understand that if there is one link

pointing to an external page, it might explode the whole search.

3.2.3 Processing the Dynamic Content

Collecting and transforming the static UI pages is straightforward, because the

weblog can be compared to the user interface description. In that case, only the

information of interest can be filtered for analyses. If a user interface page con-

tains anchor elements whose contents change in time, it will cause discrepancy

between the user interface description and the logged user actions. The changing

UI description causes the problem.

There are two solutions to this problem. The first one is to update the description

every time the content of the UI changes. This is a heavy operation and it should

CHAPTER 3. TASK FREQUENCY TOOL 28

be avoided, especially if the dynamic content changes frequently. The second

solution is hidden in the concept of the list.

Information in a list has the same kind of information structure. In other words, list

entries have the same information frame in where only the information makes each

entry individual. By abstracting the information and remaining only the frame, the

entries can be handled as a whole. Notice the difference between the use of the

term abstraction here and in Chapter 2.4.2.

Following the idea, different dynamic contents can be handled, if there is some

regularity in their structure. Depending on the level of dynamics on a page, ab-

straction causes different amount of information loss in the collection. If the whole

structure of a page is dynamic, the abstraction misses all information that is more

detailed than “a page”. But if the page’s dynamic is on the level of lists, then only

the list content is abstracted. In the scope of this thesis, only the list structures are

handled.

Depending on the application, navigation activities to single list entries have dif-

ferent levels of interest. Single entries are meaningful only in special cases and

they cannot be recognized from the others. Conversely, the list entries as a whole

represent an interesting part of the user interface. The user actions relating to them

provide a good insight to the user navigation in the application.

Here is an example of the query parts of URIs from the weblog. The parameter

values are different, while the structure is the same:

GET /sas5/network_servlet/showConnectionDetails?conId=

mds1_hlr2&sourceNe=mds1&targetNe=hlr2 HTTP/1.1

GET /sas5/network_servlet/showConnectionDetails?conId=

sms5_sms4&sourceNe=sms5&targetNe=sms4 HTTP/1.1

After abstraction, these entries are the following:

GET /sas5/network_servlet/showConnectionDetails?conId=

FFF&sourceNe=FFF&targetNe=FFF HTTP/1.1

GET /sas5/network_servlet/showConnectionDetails?conId=

FFF&sourceNe=FFF&targetNe=FFF HTTP/1.1

CHAPTER 3. TASK FREQUENCY TOOL 29

The result is that both entries are counted as the same. They loose their meaning

as single elements and come meaningful only as instances of an abstracted class

of the entries.

3.3 Design Model for Analyses

There is no single rule how the analysis should be constructed. Each application

has features, which require special analysis to thoroughly study their nature. This

thesis provides a general analysis methodology that can be used in web-based ap-

plications in general. The methodology is a combination of the actual use logging

approaches as described in Chapter 2.4.

In the end, the analyses do not provide straight answers to the development of the

user interface. Neither do they give straight answers to the usability of an appli-

cation. Merely, they are like tools for the interface designers to better understand

the user’s behaviour in the application. All analyses need an interpretation from a

person who knows the application and the user interface before they can be fully

utilized.

The selection of analysis methods is based more on intuition than on any describ-

able method. As said above, the analyses are like tools and they have a special

area in which they work in the best way. The provided methodology is a toolbox

to which a purposeful set of tools was selected so that the box is useful in different

kinds of situations.

3.3.1 Analyses Scenario

At first, the UI designer needs a good overview of the application usage. He wants

to have a clear picture of the parts that the users are navigating the most. Based

on that information, the development can be focused to the most frequently used

sections of the user interface in where the improvements have the best effect. This

need can be fulfilled with the Visualisation of User Selection analysis, which is

presented in the next chapter.

CHAPTER 3. TASK FREQUENCY TOOL 30

When the designer has a good view of the user navigation, the next step is to

analyse the particular interests of the user. The focus is set on the single actions,

or a sequence of them. When the user is browsing the interface, he is usually

performing a task. A way to study the frequency of tasks is to follow the frequency

of different user action sequences. By varying the length of analysed sequences,

the tasks can be seen through the noise of unmeaningful actions. This analysis is

called User Action Sequence Frequencies.

The last analysis is for finding the dependencies of the user interface sections.

The tasks might have an order so that certain tasks are following each other. This

analysis gives insight to the diffusion of the tasks in the user interface. If the

diffusion is great, the user changes the user interface section often and does not do

many selections in one section. This analysis is called User Interface Transition

Steps with Measured Probabilities.

3.3.2 Visualisation of User Selection

The idea of this analysis is to show the distribution of user selections graphically

on a user interface page. In short, the user navigation activities are collected and

they are shown with column presentations on top of the actual user interface page

to which they belong.

This analysis gives a good insight into the distribution of user selections on e.g.

menu pages, which are the branching points of the user interface. The basic func-

tionality is to show the user clicks on a single page, but also the clicks on the

underlying pages of a single link can be added to the graph. By doing so, the total

number of user activities in the different application sections are easy to under-

stand.

The strength of this analysis it that it provides a quick view to the user interface

sections in which the users are navigating the most. The graph is easy to under-

stand and it can be shown to people who do not necessarily know much about the

application or even the graphical user interfaces.

The graph of user selection analysis applies to the counts and summary statistics

(Section 2.4.3) and visualisation (Section 2.4.7) approaches. In this thesis, the vi-

CHAPTER 3. TASK FREQUENCY TOOL 31

sualisation is done manually by using external programs. Automated visualisation

is not in the scope of this thesis. However, the results can be used as an input to

some external software that handles the visualisation.

3.3.3 User Action Sequence Frequencies

The user’s navigation paths provide a good view on the activities that the user has

to perform before reaching a certain, desirable, action. If some frequently used

action requires a long navigation path, it could be moved closer to the main page.

This analysis gives visibility to the paths that the user is following.

This analysis applies to the abstraction (see Section 2.4.2) and the counts and

summary (see Section 2.4.3) approaches. The user activities are abstracted to be

meaningful only as members of sequences. After they are abstracted, the counts

and summary methods are applied to count the frequency of different sequences.

When the analysis is executed, the sequences are disassembled and single activities

can be studied.

3.3.4 User Interface Transition Steps with Measured Probabil-

ities

The user interface can be divided into segments that are relevant with the tasks that

the application was built for. Accordingly, the segments also represent the parts

of the user interface in which the user does a complete task or a subtask. These

parts can be chosen according to different premises but a good starting point is to

choose the sections basing to the main menu structure.

In order to divide the collected user actions to different segments, the data has to

be transferred first (see Section 2.4.2). The menu categories form the abstraction

levels. Each menu category forms its own abstraction level so that all underlying

user interface elements of a certain menu item are first abstracted and then recoded

to be the same. This abstraction is relevant if the user interface does not have

feedback links among the menu trees.

The user interface segments form the states of the user interface. The user’s nav-

CHAPTER 3. TASK FREQUENCY TOOL 32

igation enters him either to a new state or remains him in the same state. Transi-

tions between these states are counted and their probabilities are calculated. Even

though the idea of handling the user interface as a state machine is rather general,

at least Guzdial (1996) has introduced it in his study.

3.4 Implementation of Task Frequency Tool

TFT was implemented to be as open as possible. It is a stand-alone software,

which means that it is not dependent of any external software products. The idea

was to develope a package that can easily be extended if needed. For example, the

collection and the analysis parts of TFT are extendable with other implementations

or vice versa. The source code is provided in Appendix A.

3.4.1 Software Platform

In order to provide hardware independent implementation, it was decided to pro-

gram TFT with Java. In the beginning of the implementation, the used Java version

was 1.3.1. After finding out that 1.3.1 does not support regular expressions and a

few other useful features, the Java version was updated to 1.4.1.

3.4.2 Software Architecture

The class selection is based on the entities that are involved in TFT. The class

diagram of TFT is depicted in Figure 3.5.

According to a good Java programming practice, the source code is commented in

javadoc. So, the code contains an in-depth documentation of the classes and their

methods. Only a short description of the classes is provided in the following:

UIDescrHandler is built around the user interface description file. By separating

the UI description to a file, an external collector can be used for collecting the

elements to a file (see Section 3.2.2). All UI elements are described in a file from

which this class reads and provides them to other classes. The hierarchy between

CHAPTER 3. TASK FREQUENCY TOOL 33

ConfReader

- confFile : FileInputStream

- properties : Properties

+ getValue()

LogWriter

+ logger : Logger

+ setLogLevel()

Parameters

All classes

use these

Contains final

static variables

CommonTools

+ convertRequestLineToName()

UIDescrHandler

- keyTable : Hashtable

- valueTable : Hashtable

- keyAndPageMappingTable : Hashtable

+ isKeyUIElement()

+ getKeyValue()

+ getKeyName()

+ getKeyToLinkTextMapping()

+ getKeyToPageMapping()

+ getKeyToParentLinknameMapping()

UIAndWeblogMatcher

- filteredEntries : PrintWriter

+ matchUIAndWeblog()

WeblogHandler

- weblogFile : BufferedReader

- fileNames [] : File

- fileNameCounter : Integer

+ getLine()

TransitionStepAnalysis

- uiFile : BufferedReader

- rootPage : String

+ analyse()

Runner

+ main() FreqBitSet

- freq : Integer

- keyVector : Vector

+ freq()

+ keyVector()

+ keyVectorSize()

+ equals()

+ hashCode()

+ toString()

+ compareTo()

NumberOfHitAnalysis

+ runAnalysis()

+ orderKeysByFreqToArray()

+ printFreqs()

Comparable

Figure 3.5: The class diagram of TFT.

the elements is also included to the file. The syntax of the description file is the

following:

link -> {

query separator1 page separator1 separator2 link separator2

}

query Query part of the HTTP request

separator1 Page name separator (e.g. #)

page Name of the page in which the element is located

separator2 Link text separator (e.g. ”)

link The link text in the user interface

The separators, description file name and the description file parsing regular ex-

pression are configurable through the configuration file (see Section 3.4.3). If there

CHAPTER 3. TASK FREQUENCY TOOL 34

is dynamic content in the user interface, they have to be written in angle brackets.

There is an example of an actual description file in Appendix B.

WeblogHandler takes care of the weblog file that was collected in the web server.

It provides an interface to the weblog file that the other classes can use. A wide

variety of weblog formats can be used, because this class reads necessary informa-

tion from the weblog with a regular expression that is read from the configuration

file. For example, activities from a certain host can be analysed by giving the host’s

IP address in the configuration file. Also, the name of the weblog file is read from

the configuration file.

UIAndWeblogMatcher is a filter class that reduces the noise from the collected

weblog. It compares the weblog entries to the UI description through UIDescrHan-

dler class and writes the filtered user actions to the file. The entries in the file are

only the intentional user actions that generated a HTTP request to the server. The

entries are in a “key”-format, which means that the dynamic content of an entry

is abstracted to a static form. That is the same format in which UIDescrHandler

internally handles the entries.

TransitionStepAnalysis counts the transitions between the different segments -

states - in the UI. The class takes the first level of the menu structure as the base

of the segmentation. Then, each user action is abstracted and recoded to belong

to one of the states. Finally, the transitions between two adjacent user actions are

counted and they are outputted.

LogWriter wraps the Java API’s Logger class. Actually, LogWriter is a conve-

nience class for providing a static reference to the Logger.

Runner contains the main method and pulls all classes together. If there are some

new analysis implementations, this class should be extended by writing appropri-

ate calls to new analysis classes.

Parameters class provides the "hard-coded" values. They are e.g. the name of the

configuration file and the parameter names in it.

NumberOfHitAnalysis is an analysis class. The class counts the number of hits of

each user interface element and provides them on the screen. By giving a value to

’seqlgth’ variable in the configuration file, the length of the user action sequence

CHAPTER 3. TASK FREQUENCY TOOL 35

can be set. If the value is ’1’, the class counts the number of hits to each single

user interface element. Otherwise, the user actions are handled as sequences and

the number of each sequence is provided.

FreqBitSet implements Java API’s Comparable class. The purpose of FreqBitSet

is to provide a sortable data structure element for the analysis classes.

CommonTools is a storage class for tool methods that are common for several

classes.

ConfReader supplies methods for other classes to read values from the configura-

tion file. Actually, ConfReader uses Java API’s Properties class, which provides a

convenient way to read configuration values from a file.

3.4.3 Configuration

TFT is configured through a text file, whose name is tft.properties. Below, there is

an example of the file:

tftlogfile ~/tft/tft.log

weblogdir ~/logs/localhost_access_log.2002-09-06.txt

weblogregexp ^10\.20\.20\.212.*GET[](.*)[]HTTP.*

dbglevel FINE

seqlgth 3

uidscrpt ~/tft/uielements.txt

uidscrptregexp (.*) #.*LINK

uielemfile useracts.txt

pagenamedelimiter \#

linknamedelimiter ‘‘

rootpage Main

tftlogfile Name of the TFT’s log file

weblogfile Name of the weblog file

weblogregexp Regular expression for parsing the wanted lines from the weblog

CHAPTER 3. TASK FREQUENCY TOOL 36

dbglevel Debug level of TFT. One of the following: SEVERE, WARNING, INFO,

CONFIG, FINE, FINER, FINEST

seqlgth Length of the analysed user action sequences

uidescription Name of the UI description file

uidescriptionregexp Regular expression for parsing the link lines from the UI

description

uielemfile Name of the filtered user action file to which UIAndWeblogMatcher

class writes them

pagenamedelimiter Delimiter for page names in the UI description file

linknamedelimiter Delimiter for link names in the UI description file

rootpage The name of the root page in the UI description file

3.4.4 Use of Task Frequency Tool

Using TFT is rather simple. After setting the basic configuration to the configu-

ration file, the user interface description file and the collected weblog files have

to be be configured to the system. The UI description file location, the regular

expression for parsing, page and link name delimiters have to be set to appropriate

values. Finally, the weblog file location and the regular expression for parsing it

have to be set.

When the configuration is done, TFT analyses can be executed by running Java

virtual machine with the following command:

/usr/tools/java/bin/java Runner

If the size of the weblog files is great, the analysis might take some time to finish.

In that case, the progress of analysis can be followed from the TFT log file. When

the execution is ready, TFT prints the results on the screen.

Every time TFT is executed, it checks if the filtered user actions file already exists.

Because filtering takes some time, it is not necessary to do if the weblog data has

CHAPTER 3. TASK FREQUENCY TOOL 37

not changed. Therefore, it is up to the user of TFT if he wants to delete the user

action file and do filtering from the scratch.

Chapter 4

Subscriber Administration System

This chapter provides an introduction to the application environment, which is in

focus in the case study of this thesis. The first section describes what a mediator

software is and what its position in telecommunications network is. After that, a

real mediator software, MDS/SAS 5.0, is introduced.

4.1 Mediator Software in Telecommunications Net-

work

Mediator is a system through which a telecommunications network operator can

manage subscriber information in telecommunications network. Once the medi-

ator is configured to the operator’s system, it hides the underlying network and

provides an interface for a Business Support System (BSS) to send service re-

quests to. Therefore, the operators do not have to have profound knowledge about

the actual network. The operator can create, modify and delete subscribers and

perform data queries and service provisionings to them.

The basic model of MDS/SAS is simple. The following example illustrates how a

mediator is related to the telecommunications world:

Suzy, an active mobile phone user, has just heard of a new campaign

of PhoneWiz, which is a local teleoperator company. By contracting

38

CHAPTER 4. SUBSCRIBER ADMINISTRATION SYSTEM 39

them now, 50 euros worth of call time and a Homeline service is pro-

vided for free! This campaign she cannot resist.

Suzy walks eagerly to the branch office of PhoneWiz where Liz, an

energetic customer servicer, is welcoming her. Liz declares all condi-

tions to Suzy and because of her good mood, she includes VoiceMail

service to the contract for free! Suzy thinks Liz is very cool :).

Before Suzy’s new services can be used, Liz inserts new customer in-

formation to PhoneWiz’s BSS. Network element specific data is sent

to the mediator, which transforms it into a specific element dependent

commands and propagates them to the right elements. After the ser-

vices, e.g. phonering, are created, an acknowledgement is sent to the

mediator, which forwards it to BSS.

Suzy has just left the branch office and walks towards a university in

where her biology class will begin in 20 minutes. Suddenly, her phone

beeps in her pocket. It is a welcoming text message from PhoneWiz.

Suzy feels happy that changing the operator was so easy and quick.

She decides to call her boyfriend right after the class because now it’s

free, for the first 50 euros.

The mediator software can be thought to be a gate between the high-level seman-

tic and low-level syntactic data as depicted in Figure 4.1. The software receives

service requests, which BSS passes to it. They can be mapped to people’s needs

in their everyday life, e.g. “I keep missing my phonecalls all the time. I want

that people can leave me messages if they do not reach me”. The mediator dis-

assembles the service requests to low-level segments according to the configured

rules. The segments have a meaning only when they exist together. If one of the

segments is lost, the whole service request is lost.

4.2 MDS/SAS 5.0

MDS/SAS 5.0 is a web-based software, which means that it is used through a web

browser. The software itself is independent of the graphical user interface. Only

the configuration and system status check is done from the web browser. In the

CHAPTER 4. SUBSCRIBER ADMINISTRATION SYSTEM 40

high-level

low-level

activate
V

M

insertim
si1=57231765;

new
E

ntry(57231765,B
);

Z
M

IC
:,572,572,NP=E212;

BSS

NE1 NE2 NE3

MDS/SAS

Figure 4.1: The mediator functions as a gate between the

high- and low-level data in telecommunications network.

The service requests exist on high-level and they are disas-

sembled into abstract segments in the mediator. The abstract

segments are network element specific commands.

CHAPTER 4. SUBSCRIBER ADMINISTRATION SYSTEM 41

optimal case, MDS/SAS is configured to the operator’s system only once. After

the configuration, the software is used only for checking that everything is working

correctly and that no errors are reported.

4.2.1 Graphical User Interface

The GUI contains three different parts as can be seen in Figure 4.2. The top row

(1) contains links to the main functions and it always remains the same. Accord-

ing to the chosen main function, the left column provides a different set of links.

When the user selects a link in the left column (2), the middle part (3) is activated.

According to the chosen link, information and further options are shown in the

middle part of the screen.

PSfrag replacements

1.

2.

3.

Figure 4.2: The main page of MDS/SAS 5.0. The main menus are on the top (1).

The left part of the page (2) is reserved for the sub-menus that are activated after

the main menu is selected. After the user selects a link in the left part, the middle

part (3) activates.

The first two iterations of the wanted actions take place in the top and left parts of

the GUI. Then they continue in the middle part. The deepest iteration path contains

six levels. In simpler terms, the first two iterations fix the appearance of the top

CHAPTER 4. SUBSCRIBER ADMINISTRATION SYSTEM 42

and left parts of the GUI while the following iterations take place in the middle

part. An illustration of the GUI link structure is presented in Figure 4.3. The user

starts browsing the user interface from the Main page and continues to a desired

page via appropriate sub-menu links, which are Network, Monitoring, Operational

Configuration, Maintenance and User Maintenance. In addition to the sub-menu

links, there are three other links available on the main page, but they do not provide

underlying link structures.

Although the most parts of the GUI are static, there are a few pages that contain

some dynamic structures. They are the list pages where the number of list items

depends on the mediated requests from the BSS to the network elements. Also,

some list pages contain the initially configured teleoperator’s network elements,

whose number naturally varies between the operators.

4.2.2 Users

The users of MDS/SAS can be divided into two groups. The first group of users

are the employees of Comptel, who work at the customer site during the software

installation phase. In brief, they configure MDS/SAS to the customer’s network

elements and define how the service requests are disassembled to network element

specific commands. In addition, they do some basic testing for ensuring the correct

functioning of configurations.

The second group of users are the people in customer organizations who are in

charge of operating the system while it is in production. The operators’ task is

primarily to follow the error messages, or desirably, the absence of them. They

also configure MDS/SAS if the underlying network infrastructure changes after

the initial configuration.

There is a difference in MDS/SAS use experience between the user groups. Comp-

tel’s employees, who are working at the customer site, have a long time experience

in using the software whereas the customers’ users are usually dealing with the

software for the first time. It is probable that the customers’ users have technical

background.

Even though MDS/SAS is a special software focused to a limited user group, the

CHAPTER 4. SUBSCRIBER ADMINISTRATION SYSTEM 43

PSfrag replacements

Main

Network

Monitoring

Operational
Configuration

Maintenance

Maintenance

User

Figure 4.3: Hierarchical GUI description. The user starts

browsing MDS/SAS 5.0 from the Main page and continues

to a desired page via one of the five sub-menu links. Each

circle element represents a link in the GUI. The end of a

navigation path is a link that points to a page that does not

have any further links.

CHAPTER 4. SUBSCRIBER ADMINISTRATION SYSTEM 44

clarity of the UI is important. An incorrect system configuration could result to in-

terruptions in telephone connections or overloads and system crashes in telecom-

munications networks. Usually incorrect configurations also need a contact to the

help desk of Comptel for instructions. Because of the great number of installa-

tions around the world, the help desk could get overloaded and customer services

get congested, which would escalate the customers’ problems even more.

Chapter 5

Applying Task Frequency Tool for

MDS/SAS 5.0

This chapter describes the case study that I conducted for MDS/SAS 5.0. The goal

was to test the model and the implementation in a real life situation. First, the test

environment is described. Then, the collected data is presented and the results of

TFT analyses are reported. According to the policy of Comptel, only part of the

results of the analyses are reported in this thesis.

5.1 Collection Environment

Prerequesites for the test environment limited the number of Comptel’s customers

whose MDS/SAS 5.0 installations could have been used in this study. First, they

had to be running specifically the software version 5.0 amongst several other ver-

sions. Second, they had to be rather big operators because of the volume of AUL

data; I wanted it to be as great as possible. Also, one requirement was that the

system should be in production use and not in test use in order to collect authentic

data from real use situation.

After I weighted the conditions above with the people in Comptel, I chose one

customer to approach. I contacted the customer through a project manager, who

already had contacts to the company. The actual approach was a proposal letter

45

CHAPTER 5. APPLYING TASK FREQUENCY TOOL FOR MDS/SAS 5.0 46

that the project manager sent to the company.

The customer was concerned for their privacy and did not want their name to be

published in this thesis. Furthermore, they were worried that the analyses could

reveal something of their network infrastructure. Because of the privacy concerns,

the company is nicknamed as PhoneWiz hereafter. The network infrastructure

issue was unnecessary because the detailed information is abstracted before the

analyses. Therefore, there is no possibility that network specific information is

revealed in analyses.

There was no previous information of the active use of MDS/SAS after it is con-

figured to the teleoperator’s system. For that reason, the data collection time was

left open and only a rough approximation from a week to a month could be given

to PhoneWiz

5.2 Configuring TFT for MDS/SAS 5.0

In the case of MDS/SAS, the UI elements were collected manually. I did not want

to use extra time to implement an automated UI element collection module to

TFT. So, I collected the link element information by browsing the UI and writing

a hierarchical document of the link structure in MDS/SAS. There is an example of

the collected information in below:

Main -> {
/sas5/naviServlet #Main Menu# "MDS/SAS 5.0"
/sas5/index.jsp #Main Menu# "Logout"
/sas5/naviServlet/showNetwork #Main Menu# "Network"
/sas5/naviServlet/showMonitoring #Main Menu# "Monitoring"
/sas5/naviServlet/showOperConf #Main Menu# "Oper_Conf"
/sas5/naviServlet/showMaintenance #Main Menu# "Maintenance"
/sas5/naviServlet/showUserMaint #Main Menu# "User_Maint"

}

Network -> {
/sas5/networkServlet #Network menu# "Network_Model"
/sas5/neTypesServlet #Network menu# "NE_Types"
/sas5/neIfTypesServlet #Network menu# "NE_Interface_Types"
/sas5/connectionTypesServlet #Network menu# "Connection_Types"

CHAPTER 5. APPLYING TASK FREQUENCY TOOL FOR MDS/SAS 5.0 47

/sas5/defNeParamsServlet #Network menu#
"Default_NE_Parameters"

}

NE_Types -> {
/sas5/ne_types_servlet/showNETypeDetailsReadOnly?id=<NE Type>

#NE Types submenu# "NE_Type_Details"
/sas5/ne_types_servlet/showNETypeDetails?id=<NE Type>

#NE Types submenu# "Modify_NE_Type"
/sas5/ne_types_servlet/showNETypeDeleteConf?id=<parameter>

#NE Types submenu# "Delete_Parameter"
/sas5/ne_types_servlet/createNEType

#NE Types submenu# "Add_New_NE_Types"
}

The UI description file contains 39 link sets that describe the link structure of the

application. Altogether, there are 183 abstracted links in the file. The complete list

of the links is presented in Appendix B.

5.3 Collected Data

There was no experience of how much time it would take to collect enough data

to get some significant amount of actual use logging events. Therefore, there was

only an approximation that user actions should be counted in thousands or even in

tens of thousands to get reliable results from the analyses.

The accumulation of the collected weblog was followed weekly. After the first two

weeks, it was clear that the approximated maximum time limit of collection would

exceed because of the low use activity of MDS/SAS. Consequently, the collection

continued for eight weeks until it had to be stopped to meet the time limits of this

thesis. Otherwise, it would have been continued to get more data for the analyses.

An example of collected weblog data is in below (IP-address is shortened for secu-

rity and timestamp and number of sent bytes for brevity). The whole weblog from

the same session is in Appendix C.

x.x.x.160--[13/3/2003:12:43:41] "GET /sas5/index.jsp HTTP/1.1" 200
x.x.x.160--[13/3/2003:12:43:41] "GET /sas5/styles/sas5_ie.css HTTP/1.1" 200

CHAPTER 5. APPLYING TASK FREQUENCY TOOL FOR MDS/SAS 5.0 48

x.x.x.160--[13/3/2003:12:43:41] "GET /sas5/images/dot.gif HTTP/1.1" 200
x.x.x.160--[13/3/2003:12:43:41] "GET /sas5/images/comptel.gif HTTP/1.1" 200
x.x.x.160--[13/3/2003:12:43:46] "POST /sas5/ui_user_servlet HTTP/1.1" 302
x.x.x.160--[13/3/2003:12:43:46] "GET /sas5/navigation_servlet/show?pageid=

1047552226441 HTTP/1.1" 302
x.x.x.160--[13/3/2003:12:43:46] "GET /sas5/Frames.jsp?pageid=

1047552226459 HTTP/1.1" 200
x.x.x.160--[13/3/2003:12:43:46] "GET /sas5/Header.jsp HTTP/1.1" 200
x.x.x.160--[13/3/2003:12:43:46] "GET /sas5/Menu.jsp HTTP/1.1" 200
x.x.x.160--[13/3/2003:12:43:46] "GET /sas5/EmptyMenu.jsp HTTP/1.1" 200
x.x.x.160--[13/3/2003:12:43:46] "GET /sas5/Empty.html HTTP/1.1" 200
x.x.x.160--[13/3/2003:12:43:46] "GET /sas5/Welcome.jsp HTTP/1.1" 200
x.x.x.160--[13/3/2003:12:43:46] "GET /sas5/Footer.jsp HTTP/1.1" 200
x.x.x.160--[13/3/2003:12:43:46] "GET /sas5/images/dot.gif HTTP/1.1" 200
x.x.x.160--[13/3/2003:12:43:46] "GET /sas5/styles/sas5_ie.css HTTP/1.1" 200
x.x.x.160--[13/3/2003:12:43:46] "GET /sas5/images/comptel.gif HTTP/1.1" 200
x.x.x.160--[13/3/2003:12:43:46] "GET /sas5/images/menuBG.gif HTTP/1.1" 200
x.x.x.160--[13/3/2003:12:43:48] "GET /sas5/navigation_servlet/showEmpty-

Network HTTP/1.1" 302
x.x.x.160--[13/3/2003:12:43:48] "GET /sas5/Frames.jsp?pageid=1047552228058

HTTP/1.1" 200
x.x.x.160--[13/3/2003:12:43:48] "GET /sas5/Header.jsp HTTP/1.1" 200
x.x.x.160--[13/3/2003:12:43:48] "GET /sas5/NetworkNavigation.jsp

HTTP/1.1" 200
x.x.x.160--[13/3/2003:12:43:48] "GET /sas5/NetworkMenu.jsp HTTP/1.1" 200
x.x.x.160--[13/3/2003:12:43:48] "GET /sas5/EmptyNetwork.jsp HTTP/1.1" 200
x.x.x.160--[13/3/2003:12:43:48] "GET /sas5/Empty.html HTTP/1.1" 200
x.x.x.160--[13/3/2003:12:43:48] "GET /sas5/Footer.jsp HTTP/1.1" 200
x.x.x.160--[13/3/2003:12:43:48] "GET /sas5/images/dot.gif HTTP/1.1" 200
x.x.x.160--[13/3/2003:12:43:48] "GET /sas5/images/comptel.gif HTTP/1.1" 200
x.x.x.160--[13/3/2003:12:43:48] "GET /sas5/styles/sas5_ie.css HTTP/1.1" 200
x.x.x.160--[13/3/2003:12:43:48] "GET /sas5/images/menuBG.gif HTTP/1.1" 200
x.x.x.160--[13/3/2003:12:43:53] "GET /sas5/network_servlet HTTP/1.1" 302

After filtering the “noise” from above, the intentional user actions are the follow-

ing:

/sas5/navigation_servlet/showEmptyNetwork
/sas5/network_servlet

In the end, the size of the weblog was 4,6 MB and it contained more than 44000

entries. Reducing the noise and filtering only the intentional user actions reduced

the size of the useful log file to contain only a bit more than 2100 actions. So, the

ratio between the noise and the meaningful user actions was about 5%. The rest of

the weblog consisted of HTTP requests for e.g. pictures and style sheet files.

CHAPTER 5. APPLYING TASK FREQUENCY TOOL FOR MDS/SAS 5.0 49

5.4 Analyses

The analyses were conducted for the collected and filtered actual use logging

events. The analyses are described in Section 3.3. TFT provides only numeri-

cal information of the analyses. To illustrate the results here, they are described

with graphical presentation. The illustrations are a graphical transformation of the

results of the analyses.

5.4.1 Visualisation of User Selection

TFT provides hit-analysis information for the single user interface elements. It

counts the single user selections for each element and ranks them in descending

order. After that, it outputs the frequency of the user selection with the name of the

page and the link text. Therefore, information is easy to map into the user interface

and different data representations can be applied.

There was 44 abstracted user interface elements that were used during the test

period. In other words, 24 % of the UI elements were used at least once.

The following lines are a selection of the original output of TFT. They describe the

usage of the links in the top part of the user interface. It would be helpful to refer

to Appendix B to understand the ’Page’ and ’link text’ variable.

Frequency :’272’
Page :’Main Menu’ link text :’Monitoring’
Frequency :’126’
Page :’Main Menu’ link text :’Logout’
Frequency :’64’
Page :’Main Menu’ link text :’Network’
Frequency :’32’
Page :’Main Menu’ link text :’Maintenance’
Frequency :’16’
Page :’Main Menu’ link text :’Operational Configuration’
Frequency :’4’
Page :’Main Menu’ link text :’User Maintenance’

To illustrate the results better, I leaned the top part of the MDS/SAS 5.0’s user

interface page and drew a graphical presentation of the user selections on top of it.

CHAPTER 5. APPLYING TASK FREQUENCY TOOL FOR MDS/SAS 5.0 50

Figure 5.1: Visualisation of user selections on the user interface’s top panel.

The user selections are presentented graphically with different sized peaks on

top of the user interface page. The higher the peak, the more user selections that

particular element has had during the test period. For those interested, the figure

was prepared with CorelDRAW 10.

From the graphical illustration, it is easy to get an idea of the distribution of the

user selections on the top panel. The most used user selections were Monitoring

and Logout links. It is also easy to see that Operational Configuration and User

Maintenance links were selected very rarely. A surprising factor is that the main

page contains the link ’MDS/SAS 5.0’ that was never selected. TFT registers only

the links that were selected at least once and therefore, the link ’MDS/SAS 5.0’ is

not listed in the previously described output.

5.4.2 User Action Sequence Frequencies

In order to study the different navigation paths of the user, information regarding

the most frequent user selection combinations is important. TFT provides a possi-

bility to study the different length combinations and find out the most frequently

occurring sequences.

MDS/SAS 5.0 was analysed with sequence lengths from two to five. When the

length was increased to over five, the occurrences of sequences drop to less than

ten. For this purpose, it was relevant to limit the upper limit, because of the reliabil-

ity of the results. Also, some unrelevant sequences were removed from the results.

They contained e.g. Logout selection between the first and the last selections.

CHAPTER 5. APPLYING TASK FREQUENCY TOOL FOR MDS/SAS 5.0 51

The results are reported so that the frequency of the sequence is on the first line

and the sequence itself is after that. To better understand the results here, the

MDS/SAS 5.0’s link structure should be read from Appendix B. The occurred

sequences and their frequencies are reported below:

Sequence length: 2
Frequency :’83’
Page :’Main Menu’ link :’Monitoring’
Page :’Monitoring menu’ link :’Requests’
Frequency :’79’
Page :’Requests submenu’ link :’Request_Details’
Page :’Request Details <ID> subsubmenu’ link :’Task_ID_Number’
Frequency :’60’
Page :’Tasks submenu’ link :’Task_Details’
Page :’Tasks submenu’ link :’Task_Details’
Frequency :’49’
Page :’Maintenance menu’ link :’System_Status’
Page :’Maintenance menu’ link :’System_Status’
Frequency :’47’
Page :’Network Model submenu’ link :’NE_Details’
Page :’Network Model submenu’ link :’NE_Details’
Frequency :’32’
Page :’Monitoring menu’ link :’Requests’
Page :’Requests submenu’ link :’Request_Details’
Frequency :’31’
Page :’Request Details <ID> subsubmenu’ link :’Task_ID_Number’
Page :’Task Details subsubmenu’ link :’IO_Log’

Sequence length: 3
Frequency :’31’
Page :’Tasks submenu’ link :’Task_Details’
Page :’Tasks submenu’ link :’Task_Details’
Page :’Tasks submenu’ link :’Task_Details’
Frequency :’27’
Page :’Maintenance menu’ link :’System_Status’
Page :’Maintenance menu’ link :’System_Status’
Page :’Maintenance menu’ link :’System_Status’
Frequency :’27’
Page :’Requests submenu’ link :’Request_Details’
Page :’Request Details <ID> subsubmenu’ link :’Task_ID_Number’
Page :’Task Details subsubmenu’ link :’MML_Log’
Frequency :’26’
Page :’Network Model submenu’ link :’NE_Details’
Page :’Network Model submenu’ link :’NE_Details’
Page :’Network Model submenu’ link :’NE_Details’
Frequency :’21’
Page :’Requests submenu’ link :’Request_Details’
Page :’Request Details <ID> subsubmenu’ link :’Task_ID_Number’
Page :’Task Details subsubmenu’ link :’IO_Log’
Frequency :’15’
Page :’Main Menu’ link :’Monitoring’
Page :’Monitoring menu’ link :’Requests’

CHAPTER 5. APPLYING TASK FREQUENCY TOOL FOR MDS/SAS 5.0 52

Page :’Requests submenu’ link :’Request_Details’

Sequence length: 4
Frequency :’20’
Page :’Network Model submenu’ link :’NE_Details’
Page :’Network Model submenu’ link :’NE_Details’
Page :’Network Model submenu’ link :’NE_Details’
Page :’Network Model submenu’ link :’NE_Details’
Frequency :’17’
Page :’Tasks submenu’ link :’Task_Details’
Page :’Tasks submenu’ link :’Task_Details’
Page :’Tasks submenu’ link :’Task_Details’
Page :’Tasks submenu’ link :’Task_Details’
Frequency :’15’
Page :’Maintenance menu’ link :’System_Status’
Page :’Maintenance menu’ link :’System_Status’
Page :’Maintenance menu’ link :’System_Status’
Page :’Maintenance menu’ link :’System_Status’
Frequency :’8’
Page :’Requests submenu’ link :’Request_Details’
Page :’Request Details <ID> subsubmenu’ link :’Task_ID_Number’
Page :’Task Details subsubmenu’ link :’MML_Log’
Page :’Requests submenu’ link :’Request_Details’

Sequence length: 5
Frequency :’14’
Page :’Network Model submenu’ link :’NE_Details’
Page :’Network Model submenu’ link :’NE_Details’
Page :’Network Model submenu’ link :’NE_Details’
Page :’Network Model submenu’ link :’NE_Details’
Page :’Network Model submenu’ link :’NE_Details’
Frequency :’12’
Page :’Maintenance menu’ link :’System_Status’
Page :’Maintenance menu’ link :’System_Status’
Page :’Maintenance menu’ link :’System_Status’
Page :’Maintenance menu’ link :’System_Status’
Page :’Maintenance menu’ link :’System_Status’
Frequency :’9’
Page :’Tasks submenu’ link :’Task_Details’
Page :’Tasks submenu’ link :’Task_Details’
Page :’Tasks submenu’ link :’Task_Details’
Page :’Tasks submenu’ link :’Task_Details’
Page :’Tasks submenu’ link :’Task_Details’
Frequency :’8’
Page :’Request Details <ID> subsubmenu’ link :’Task_ID_Number’
Page :’Task Details subsubmenu’ link :’MML_Log’
Page :’Requests submenu’ link :’Request_Details’
Page :’Request Details <ID> subsubmenu’ link :’Task_ID_Number’
Page :’Task Details subsubmenu’ link :’MML_Log’

The shortest sequence length shows the navigation path segments that the user is

following. When the sequence length is increased, the bigger picture of the system

is easy to see. Based on the results, it seems that the user is monitoring the system.

CHAPTER 5. APPLYING TASK FREQUENCY TOOL FOR MDS/SAS 5.0 53

If we analyse one of the most frequently occurring sequences, we notice that the

user browses from the Main page to the Monitoring page to see request and task

details. When the user has entered the task details page, he is interested to see the

different logs that are related to each task. Also, the user tends to remain on the

tasks details page by browsing different tasks.

5.4.3 User Interface Transition Steps with Measured Probabil-

ities

Dividing the user interface to states was straightforward. The sub-menu links on

the main page form a natural and distinctive classification of the different states

of MDS/SAS 5.0. Therefore, they are Main, Network, Monitoring, Operational

Configuration, Maintenance and User Maintenance state, which are described in

below:

Main state contains the selection of the further actions. Every time the user

changes from one state to another, he has to go via this state.

Network state holds all operator’s network infrastructure related things.

Monitoring state holds the reports of the activities inside MDS/SAS 5.0. For

example, the incoming requests and the application statistics are observed in

this state.

Operational Configuration state holds operations that are for handling the

MDS/SAS 5.0 related parameters. For example, tracelevels and log file di-

rectories are set here. In addition, the service modules are operated in this

state.

Maintenance state is for “maintaining” the system by exporting and importing

the configurations. Also, the user can get different reports of the functions

of MDS/SAS 5.0.

User Maintenance state is for handling the user access and profiles in

MDS/SAS 5.0.

CHAPTER 5. APPLYING TASK FREQUENCY TOOL FOR MDS/SAS 5.0 54

TFT provides a transition matrix describing the transitions from one state to an-

other. Table 5.1 presents the matrix that was the output of executing this analysis

with TFT. The matrix contains transitions from state A to state B and vice versa.

Main Network Monitoring Oper.Conf. Maintenance UserMaint.

Main 149 52 214 10 29 1

Network 48 219 4 0 0 0

Monitoring 218 0 982 0 7 0

Oper.Conf. 9 0 1 0 0 0

Maintenance 30 0 6 0 125 0

UserMaint. 1 0 0 0 0 0

Table 5.1: State transition matrix of MDS/SAS 5.0. The number of a particular

state transition is marked in the matrix.

A state transition diagram with associated probabilites is a good representation for

determining trends and patterns of using an application. By dividing the number

of transitions from a state to a particular state by the total number of outgoing

transitions, it is possible to calculate the probability of the transitions between

states. The user action does not necessarily cause a state change, but it can be a

transition to itself. Figure 5.2 is the transition diagram with associated probabilities

of the matrix in Table 5.1.

It can be seen from Figure 5.2 that the state transitions violate the original defi-

nition of the states because there are transitions that are not going via the Main

state. For example, the user changes state from Monitoring to Maintenance with a

probability of 0,01. How should this be interpreted?

The answer is found from the browser’s Back button, which makes it possible to

follow the navigation path backwards without selecting any links. A state transi-

tion from Monitoring to Maintenance is actually going via Main state as can be

seen in Figure 5.3. It is impossible to notice it automatically with the current anal-

ysis method because the Back button pressings are not recorded to the web server

log. For that reason, we have to manually adjust the result by changing the state

transition matrix. The changed matrix is in Table 5.2.

When we apply the adjusted state transition matrix to the state chart, the probabil-

ities change a bit as can be seen in Figure 5.4.

CHAPTER 5. APPLYING TASK FREQUENCY TOOL FOR MDS/SAS 5.0 55

1

0,11

0,18

0,47 0,18

0,02

0,90
0,06

0,18

0,78

0,33

0,80 0,81

0,01

0,02

0,01

0,04

0,10

1

0,11

0,18

0,47 0,18

0,02

0,90
0,06

0,18

0,78

0,33

0,80 0,81

0,01

0,02

0,01

0,04

0,10

PSfrag replacements

MainMain

NetworkNetwork MonitoringMonitoring

OperationalOperational
ConfigurationConfigurationMaintenance

Maintenance

Maintenance

Maintenance

UserUser

Figure 5.2: State chart of the usage of MDS/SAS 5.0. The application was

divided to segments - states - according to the menu structure on the main

page. The numbers in the chart are probabilities of the state transitions of

the interface during the data collection period. Altogether, there were 2114

user actions that formed the sample of this analysis (n=2114).

1. Monitoring link
2. Back button

3. Maintenance link

1. Monitoring link
2. Back button

3. Maintenance link

PSfrag replacements
MainMain

MaintenanceMaintenance

MonitoringMonitoring

Figure 5.3: One possible state tran-

sition from Monitoring to Mainte-

nance. The user action that changes

the state is attached to the transition

arrow with an order number.

CHAPTER 5. APPLYING TASK FREQUENCY TOOL FOR MDS/SAS 5.0 56

Main Network Monitoring Oper.Conf. Maintenance UserMaint.

Main 149 52 215 10 36 1

Network 52 219 0 0 0 0

Monitoring 225 0 982 0 0 0

Oper.Conf. 10 0 0 0 0 0

Maintenance 36 0 0 0 125 0

UserMaint. 1 0 0 0 0 0

Table 5.2: Adjusted State transition matrix of MDS/SAS 5.0. The straight tran-

sitions between the states are changed to go via Main state as is the case in reality.

The changed values are set in bold face.

1,00

0,11

0,20

0,46 0,19

0,02

1,00
0,07

0,22

0,78

0,33

0,80 0,81

0,01

1,00

0,11

0,20

0,46 0,19

0,02

1,00
0,07

0,22

0,78

0,33

0,80 0,81

0,01

PSfrag replacements

MainMain

NetworkNetwork MonitoringMonitoring

OperationalOperational
ConfigurationConfigurationMaintenance

Maintenance

Maintenance

Maintenance

UserUser

Figure 5.4: Adjusted state chart of the usage of MDS/SAS 5.0. This chart

is based on the data in Table 5.2. The changed probabilities are set in bold

face type.

CHAPTER 5. APPLYING TASK FREQUENCY TOOL FOR MDS/SAS 5.0 57

The transition probabilities support the results of the previous analyses and provide

some new information. The most probable transition from the Main state is the

transition to Monitoring state. A somehow surprising result, which can not be

seen from the previous analyses, is the probability of the transitions inside the

Main state. It seems that the user is looking for some function by browsing the

sub-menu links before entering a desired page. Moreover, those selections are

not occurring in any specified order because they are not reported in User Action

Sequence Frequencies analysis (see Section 5.4.2).

Even without knowing anything about the user, it seems to be possible to recognize

his/her user group from the analysis results. The variety of the used tasks is rather

small, which suggests that the person belongs to the second user group (see Section

4.2.2).

Chapter 6

Conclusions

This chapter begins with a summary of what was actually studied and performed

in this thesis. The second section is a discussion part, where the results of this

work are related to the bigger picture of the actual use logging. The final section is

a description for the future research questions that came about during this thesis.

6.1 Summary

The actual use logging is a fruitful source to gather information about the user

behaviour in the user interface. There is a clear practical need for developing tools

for collecting and analysing the actual use logging events. However, because there

is no formal methodology to consistently describe the graphical user interfaces,

the collection has to use the methods that we have. In this study, a model and

implementation for the collection and analysis was conducted by taking the HTML

description of the application’s user interface as a starting point.

After inquiring about the structure of the UI from the HTML description, the web

server’s access log was filtered against it. Consequently, only the intentional user

actions were left. The semantically insignificant weblog was automatically trans-

formed to contain particles, which could be enriched to useful semantic informa-

tion. For this purpose, the study provided three different methods of analysis.

They were selected to form a multipurpose toolbox that can be used in a variety of

58

CHAPTER 6. CONCLUSIONS 59

situations.

In addition to the theoretical model, the study contains an implementation of it.

The model was tested with a real life case. The implementation of the collec-

tion and analysis software was published under the GNU General Public License

(GPL). The collection and analysis are separated in the implementation. There-

fore, both, or either of them, can be included in some already existing software to

enhance its features. Naturally, this has to follow the GPL policy.

6.2 Discussions

The model proved to be successful in providing interesting information with little

human involvement. The results provided strong numeric information that help

the case study company to analyse the usage of their software. For example, the

main page of the software contained two links that were used very seldom and one

link that was not used at all during the test period. As a result of all analyses, the

next versions of the software’s user interface could be even better suited for the

user interests and different use tasks.

The idea of parsing the user interface structure from the HTML information was

confirmed to be a good concept. It was possible to acquire a useful user interface

structure, and apply it in conjunction with the weblog data. However, there were

some limitations in the collectable elements. Because of the weblog collection,

only the HTTP GET method requests were written into the log. Consequently,

the HTML form information as well as button pressings were excluded from this

study.

A distinguishing factor between the traditional hit-analysis software and the model

presented in this thesis is the type of the collected and analysed elements. Here,

the user activated elements are in focus instead of the downloaded user interface

pages. For that reason, it is possible to execute analyses directly to the interface

elements, and respectively get results that relate to them. All this concludes to a

high level of automatisation in the collection and analysis while the results still

provide highly semantical data.

CHAPTER 6. CONCLUSIONS 60

The results from the User Interface Transition Steps with Measured Probabilities

analysis suggest that it could be possible to recognize different user groups based

on the transition probabilities. It would be interesting to compare the state charts

of two users who belong to different user groups. If those state charts describe the

characteristic use of the user groups well, they can be used as base reference charts

in deciding to which group an unknown user belongs to. Unfortunately, there was

no comparison material available during the project.

The sofware implementation, TFT, is technically bound to the browser-based in-

terface. The log collection from a generic, e.g. Windows software, needs its own

study, but the analyses could be the same than in this thesis. The collection of

user interface events from the browser-based user interface was possible because

the web server provided a method to collect the information between the user in-

terface and the software core. It remains to be seen if the same is possible with

Windows software.

There might be some interesting connections between the user interface state def-

inition and its navigation map. Although the state definition was experimental

in this thesis, it obviously was very close to the navigation map of the interface.

Therefore, a designed navigation map helps to take TFT in use by defining the

states for the User Interface Transition Steps with Measured Probabilities analysis

beforehand.

6.3 Future Work

The research questions that arose during working with this thesis, can be divided

into two groups. The first group consists of technical improvements and enhance-

ments to TFT software. They are related to the browser-based user interfaces and

can be seen as software development of TFT to improve the automatisation of the

collection and analysis. The second group of the research questions is related to

the actual use logging approach from greater perspective.

To improve the use of TFT, the user interface description collection should be

automatised. In order to acquire the whole structure of the user interface, there

should be a module with a breadth-first search algorithm to automatically collect

CHAPTER 6. CONCLUSIONS 61

the description. The idea was shortly described in Section 3.2.2. Another project

would be to include an automatic visualisation of the results to TFT. The User

Interface Transition Steps with Measured Probabilities analysis would be rather

straightforward to visualise with already existing Unix software tools.

If the actual use logging approach is wanted to integrate to the user interface design

process from the very beginning, it needs some future work. Before we can suggest

to use the navigation map of a user interface as a base in defining the states of

the interface (see Section 6.2), more studies are needed. For example, different

software can be studied in respect to their navigation maps and their states.

As was already mentioned in the previous section, it would be interesting to study

if there is some mechanism in, e.g. Windows software, to automatically collect

user events. Such research requires investigations of the techniques that are used

in the window system. The research would be demanding but it would open the

gate for actual use logging to today’s “de facto” operating system.

I believe the results put forward in this work demonstrate that actual use logging

approach can contribute to the field of usability. I showed how a generic web server

log collection may be used to study the user behaviour in an application. The re-

sults were encouraging and analyses provided reliable data which was straightfor-

ward to present in visualised format. I hope this study encourages people involved

in usability to see the potential of actual use logging; it is a method to better un-

derstand the user in the context of his/her application.

Bibliography

Badre, A. (1980), Chime: A knowledge-based computer-human interaction moni-

toring engine, Technical Report GIT-GVU-91-06, Georgia Institute of Tech-

nology, Atlanta, GA.

Balbo, S. (1996), Ema: Automatic analysis mechanism for the ergonomic evalu-

ation of user interfaces, Technical report, Commonwealth Scientific and In-

dustrial Research Organisation. CSIRO Technical report.

Buxton, W., Lamb, M., Sherman, D. & Smith, K. (1983), ‘Towards a comprehen-

sive user interface management system’, Computer Graphics 17(3).

Chen, C. (1993), ‘Writing with collaborative hypertext: analysis and modelling’,

Journal of the American Society for Information Science 48(11).

Comer, D. (1995), Internetworking With TCP/IP, vol.1, Prentice Hall International

Editions, New Jersey, USA. ISBN 0-13-227836-7.

Cooley, R., Mobasher, B. & Srivastava, J. (1999), ‘Data preparation for mining

world wide web browsing patterns’, Knowledge and Information Systems 1.

Faraone, S. & Dorfman, D. (1987), ‘Lag sequential analysis: Robust statistical

methods’, Psychological Bulletin 101.

Finlay, J. & Wolf, K. (1995), User action graphing effort (usage), in ‘Proceedings

of HCI’95’.

Fisher, C. (1991), Protocol Analyst’s Workbench: Design and evaluation of

computer-aided protocol analysis, PhD thesis, Carnegie-Mellon University,

Pittsburgh, PA.

62

BIBLIOGRAPHY 63

Guzdial, M. (1996), Deriving software usage patterns from log files, Techni-

cal report, Commonwealth Scientific and Industrial Research Organisation.

CSIRO Technical report.

Guzdial, M., Santos, P., Badre, A., Hudson, S. & Gray, M. (1994), ‘Analyzing and

visualizing log files: A computational science of usability’.

*citeseer.nj.nec.com/guzdial94analyzing.html

Hilbert, D. & Redmiles, D. (1998), An approach to large-scale collection of appli-

cation usage data over the internet, in ‘Proceedings of the 20th International

Conference on Software Engineering (ICSE’98).’.

Hilbert, D. & Redmiles, D. (2000), ‘Extracting usability information from user

interface events’, ACM Computing Surveys 32(4).

Hoppe, H. (1988), Task-oriented parsing: A diagnostic method to be used by adap-

tive systems, in ‘Proceedings of CHI’88’.

Macleod, M. & Rengger, R. (1993), The development of drum: A software tool

for video-assisted usability evaluation, in ‘Proceedings of HCI’93’.

Net (1999), Network Working Group, Request for Comments: 2616, Hypertext

Transfer Protocol – HTTP/1.1.

Nielsen, J. (1993), Usability Engineering, Academic Press, London, UK.

Olsen, D. & Redmiles, D. (1998), Interface usage measurements in a user interface

management system, in ‘Proceedings of UIST’88’.

Sanderson, P., Scott, J., Johnston, T., Mainzer, J., Watanabe, L. & James, J. (1994),

‘Macshapa and the enterprise of exploratory sequential data analysis (esda)’,

International Journal of Human-Computer Studies 41.

Sweeney, M., Maguire, M. & Shackel, B. (1993), ‘Evaluating user-computer in-

teraction: a framework’, International Journal of Man-Machine Studies 38.

W3C (1995), Logging control in w3c httpd. Document from the web page of

World Wide Web Consortium.

*http://www.w3.org/Daemon/User/Config/Logging.html

BIBLIOGRAPHY 64

Weiler, P. (1993), Software for the usability lab: A sampling of current tools, in

‘Proceedings of INTERCHI’93’.

Appendix A

Task Frequency Tool Source Code

WeblogHandler class:

/∗ ∗∗
∗ C o p y r i g h t (C) 2 0 0 3 Pekka Par tanen < pekka . p a r t a n e n @ i k i . f i > ∗

∗ A l l r i g h t s r e s e r v e d . ∗

∗ ∗

∗ T h i s program i s f r e e s o f t w a r e ; you can r e d i s t r i b u t e i t ∗

∗ and / or mod i f y i t under t h e t e r m s o f t h e GNU Genera l P u b l i c ∗

∗ L i c e n s e . See t h e f i l e COPYRIGHT f o r more i n f o r m a t i o n . ∗

∗ ∗

∗ T h i s program i s d i s t r i b u t e d i n t h e hope t h a t i t w i l l be ∗

∗ u s e f u l , b u t WITHOUT ANY WARRANTY ; w i t h o u t even t h e i m p l i e d ∗

∗ warran ty o f MERCHANTABILITY or FITNESS FOR A PARTICULAR ∗

∗ PURPOSE . See t h e GNU Genera l P u b l i c L i c e n s e f o r more ∗

∗ d e t a i l s . ∗

∗ ∗

∗ T h i s s o f t w a r e i s p a r t o f t h e Master ’ s T h e s i s t h a t was ∗

∗ w r i t t e n t o t h e Department o f Computer S c i e n c e a t H e l s i n k i ∗

∗ U n i v e r s i t y o f Techno logy . ∗

∗∗ ∗ /
package com . a u l . t f t ;

import j a v a . i o . B u f f e r e d R e a d e r ;
import j a v a . i o . F i l e ;
import j a v a . i o . F i l e I n p u t S t r e a m ;
import j a v a . i o . I n p u t S t r e a m R e a d e r ;
import j a v a . i o . IOExcep t ion ;
import j a v a . l a n g . E x c e p t i o n ;

/∗ ∗
∗ < code>WeblogHandler </ code > t a k e s care o f t h e weblog f i l e . I t
∗ p r o v i d e s a method t o g e t weblog l i n e s one by one from t h e
∗ f i l e . T h i s c l a s s r e a d s a l l f i l e s from a s p e c i f i c weblog
∗ d i r e c t o r y .
∗

65

APPENDIX A. TASK FREQUENCY TOOL SOURCE CODE 66

∗ @author <a h r e f =" pekka . p a r t a n e n @ i k i . f i ">Pekka Partanen
∗ @vers ion 1 . 0
∗ @see B u f f e r e d R e a d e r
∗ @see F i l e
∗ @since 1 . 0
∗ /

p u b l i c c l a s s WeblogHandler {

/∗ weblog e n t r i e s t h a t were c o l l e c t e d by web s e r v e r
∗ /

p r i v a t e s t a t i c B u f f e r e d R e a d e r w e b l o g F i l e = n u l l ;

/∗ An a r r a y o f f i l e n a m e s i n t h e weblog d i r e c t o r y
∗ /

p r i v a t e s t a t i c F i l e [] f i l e N a m e s ;

/∗ Coun ter o f t h e f i l e n a m e s i n t h e weblog d i r e c t o r y
∗ /

p r i v a t e s t a t i c i n t f i l e N a m e C o u n t e r = 0 ;

/∗ ∗
∗ S u p p r e s s e d d e f a u l t c o n s t u c t o r
∗ /

p r i v a t e WeblogHandler () { }

/∗ ∗
∗ C o n s t r u c t o r . Opens a < code>B u f f e r e d R e a d e r </ code >
∗ i n t e r f a c e t o a weblog f i l e .
∗

∗ @param f i l e n a m e t h e name o f t h e weblog f i l e
∗ @see B u f f e r e d R e a d e r
∗ @since 1 . 0
∗ /

p u b l i c WeblogHandler (S t r i n g dirName) throws E x c e p t i o n {

t r y {
LogWri t e r . l o g g e r . e n t e r i n g (" WeblogHandler " ,

" c o n s t r u c t o r ") ;
LogWri t e r . l o g g e r . f i n e (" Opening w e b l o g f i l e "+

" d i r e c t o r y : ’ " + dirName + " ’ ") ;
t h i s . f i l e N a m e s = (new F i l e (dirName)) . l i s t F i l e s () ;

i f (t h i s . f i l e N a m e s = = n u l l) {
S t r i n g s = " d i r e c t o r y ’ "+dirName+

" ’ does n o t c o n t a i n f i l e s " ;
LogWri t e r . l o g g e r . s e v e r e (s) ;
throw new E x c e p t i o n (s) ;

}

w e b l o g F i l e = new B u f f e r e d R e a d e r (
new I n p u t S t r e a m R e a d e r (

new F i l e I n p u t S t r e a m (t h i s . f i l e N a m e s [
t h i s . f i l e N a m e C o u n t e r]))) ;

++ t h i s . f i l e N a m e C o u n t e r ;

APPENDIX A. TASK FREQUENCY TOOL SOURCE CODE 67

LogWri t e r . l o g g e r . f i n e (" Opened w e b l o g f i l e : ’ "+
(t h i s . f i l e N a m e s [t h i s . f i l e N a m e C o u n te r − 1]) . t o S t r i n g () +

" ’ ") ;

} catch (E x c e p t i o n e) {
LogWri t e r . l o g g e r . s e v e r e (e . ge tMessage ()) ;
throw e ;

}
}

/∗ ∗
∗ Gets a s i n g l e l i n e from t h e weblog f i l e . R e t u r n s an empty
∗ < code>S t r i n g </ code > i f t h e weblog f i l e i s empty .
∗

∗ @return weblog l i n e
∗ @see B u f f e r e d R e a d e r
∗ @since 1 . 0
∗ /

p u b l i c S t r i n g g e t L i n e () throws E x c e p t i o n {
t r y {

LogWri t e r . l o g g e r . e n t e r i n g (" WeblogHandler " ,
" g e t L i n e ") ;

S t r i n g l i n e ;
S t r i n g v a l u e ;

/ / I f t h e f i l e i s read , a new f i l e i s used . But i f
/ / t h e read f i l e was t h e l a s t one t h e n an empty
/ / s t r i n g i s r e t u r n e d .
i f ((l i n e = w e b l o g F i l e . r e a d L i n e ()) = = n u l l) {

i f (t h i s . f i l e N a m e C o u n te r >=
t h i s . f i l e N a m e s . l e n g t h) {
LogWri t e r . l o g g e r . f i n e ("No more w e b l o g f i l e s "+

" t o r e a d ") ;
v a l u e = " " ;

} e l s e {
w e b l o g F i l e = new B u f f e r e d R e a d e r (

new I n p u t S t r e a m R e a d e r (
new F i l e I n p u t S t r e a m (t h i s . f i l e N a m e s [

t h i s . f i l e N a m e C o u n t e r]))) ;
++ t h i s . f i l e N a m e C o u n t e r ;

}

i f ((l i n e = w e b l o g F i l e . r e a d L i n e ()) = = n u l l) {
LogWri t e r . l o g g e r . f i n e ("No more w e b l o g f i l e s "+

" t o r e a d ") ;
v a l u e = " " ;

} e l s e
v a l u e = l i n e ;

} e l s e
v a l u e = l i n e ;

LogWri t e r . l o g g e r . e x i t i n g (" WeblogHandler " ,
" g e t L i n e ") ;

APPENDIX A. TASK FREQUENCY TOOL SOURCE CODE 68

re turn v a l u e ;

} catch (IOExcep t ion e) {
LogWri t e r . l o g g e r . s e v e r e (" Ca tched IOExcep t ion : ’ " +

e . ge tMessage () + " ’ ") ;
throw e ;

} catch (E x c e p t i o n e) {
LogWri t e r . l o g g e r . s e v e r e (" Ca tched E x c e p t i o n : ’ " +

e . ge tMessage () + " ’ ") ;
throw e ;

}
}

}

APPENDIX A. TASK FREQUENCY TOOL SOURCE CODE 69

UIDescrHandler class:

/∗ ∗∗
∗ C o p y r i g h t (C) 2 0 0 3 Pekka Par tanen < pekka . p a r t a n e n @ i k i . f i > ∗

∗ A l l r i g h t s r e s e r v e d . ∗

∗ ∗

∗ T h i s program i s f r e e s o f t w a r e ; you can r e d i s t r i b u t e i t ∗

∗ and / or mod i f y i t under t h e t e r m s o f t h e GNU Genera l P u b l i c ∗

∗ L i c e n s e . See t h e f i l e COPYRIGHT f o r more i n f o r m a t i o n . ∗

∗∗ ∗ /
package com . a u l . t f t ;

import j a v a . i o . B u f f e r e d R e a d e r ;
import j a v a . i o . F i l e I n p u t S t r e a m ;
import j a v a . i o . I n p u t S t r e a m R e a d e r ;
import j a v a . u t i l . r e g e x . P a t t e r n ;
import j a v a . u t i l . r e g e x . Matcher ;
import j a v a . u t i l . B i t S e t ;
import j a v a . u t i l . H a s h t a b l e ;
import j a v a . u t i l . Vec to r ;

/∗ ∗
∗ UIDescrHandler t a k e s care o f t h e u s e r i n t e r f a c e d e s c r i p t i o n .
∗ I t r e a d s t h e f o r m a t o f t h e d e s c r i p t i o n f i l e and p r o v i d e s a
∗ s e t o f methods f o r o t h e r c l a s s e s t o a c c e s s t h e d e s c r i p t i o n
∗ f i l e . The f i l e i s read t o a < code>Hash tab le </ code > f o r f a s t e r
∗ r e f e r e n c e .
∗

∗ @author <a h r e f =" pekka . p a r t a n e n @ i k i . f i ">Pekka Partanen
∗ @vers ion 1 . 0
∗ @see B i t S e t
∗ @see B u f f e r e d R e a d e r
∗ @see H a s h t a b l e
∗ @see Matcher
∗ @see P a t t e r n
∗ @see V e c t o r
∗ @since 1 . 4
∗ /

p u b l i c c l a s s UIDesc rHand le r {

p r i v a t e s t a t i c H a s h t a b l e keyTab le = new H a s h t a b l e () ;
p r i v a t e s t a t i c H a s h t a b l e v a l u e T a b l e = new H a s h t a b l e () ;
p r i v a t e s t a t i c H a s h t a b l e keyAndPageMappingTable =

new H a s h t a b l e () ;
p r i v a t e s t a t i c H a s h t a b l e keyToParentLinkName =

new H a s h t a b l e () ;
p r i v a t e s t a t i c H a s h t a b l e linkNameToKey = new H a s h t a b l e () ;
p r i v a t e s t a t i c S t r i n g pageNameSepara tor ;
p r i v a t e s t a t i c S t r i n g l i n k N a m e S e p a r a t o r ;

/ / S u p p r e s s e d d e f a u l t c o n s t r u c t o r
p r i v a t e UIDesc rHand le r () { }

/∗ ∗

APPENDIX A. TASK FREQUENCY TOOL SOURCE CODE 70

∗ C o n s t r u c t o r . The d e s c r i p t i o n f i l e name i s passed as a
∗ parame ter and t h e f i l e i s read t o a
∗ < code>Hash tab le </ code >.
∗

∗ @param f i l e n a m e t h e name o f t h e u s e r i n t e r f a c e
∗ d e s c r i p t i o n f i l e .
∗ @since 1 . 0
∗ /

p u b l i c UIDesc rHand le r (S t r i n g f i l e n a m e) throws E x c e p t i o n {

t r y {
LogWri t e r . l o g g e r . e n t e r i n g (" UIDesc rHand le r " ,

" c o n s t r u c t o r ") ;

i n t b i t I n d e x = 0 ;
B u f f e r e d R e a d e r u i F i l e ;
Matcher m, n ;
P a t t e r n p , q ;
S t r i n g key ;
S t r i n g l i n e ;
S t r i n g p a r e n t L i n k = " " ;

/ / S t o r i n g page and l i n k name s e p a r a t o r c h a r a c t e r s
/ / t o member v a r i a b l e s
t h i s . pageNameSepara tor =

ConfReader . g e t V a l u e (P a r a m e t e r s .PAGENAMESEPARATOR) ;
t h i s . l i n k N a m e S e p a r a t o r =

ConfReader . g e t V a l u e (P a r a m e t e r s .LINKNAMESEPARATOR) ;

u i F i l e = new B u f f e r e d R e a d e r (
new I n p u t S t r e a m R e a d e r (

new F i l e I n p u t S t r e a m (f i l e n a m e))) ;

LogWri t e r . l o g g e r . f i n e (" Opened : ’ " + f i l e n a m e + " ’ ") ;

/ / The p a r s i n g regexp i s read from t h e c o n f i g u r a t i o n
/ / f i l e . Each match ing l i n e o f t h e d e s c r i p t i o n f i l e
/ / i s parsed and s t o r e d t o H a s h t a b l e .
p = P a t t e r n . compi l e (ConfReader . g e t V a l u e (

P a r a m e t e r s . UIDSCRPTREGEXP)) ;
q = P a t t e r n . compi l e (" ([a−zA−Z0−9_]∗) [− >] .∗ ") ;
whi le ((key = u i F i l e . r e a d L i n e ()) ! = n u l l) {

m = p . ma tche r (key) ;
n = q . ma tche r (key) ;

i f (n . ma tches ()) {
p a r e n t L i n k = (n . group (1)) . t r i m () ;
LogWri t e r . l o g g e r . f i n e (" Matched q . Line : ’ "+

key+" ’ ") ;
LogWri t e r . l o g g e r . f i n e (" Page name : ’ "+

p a r e n t L i n k +" ’ ") ;
} e l s e i f (m. ma tches ()) {

LogWri t e r . l o g g e r . f i n e (" Matched m. Line : ’ "+
key+" ’ ") ;

l i n e = key ;

APPENDIX A. TASK FREQUENCY TOOL SOURCE CODE 71

key = m. group (P a r a m e t e r s . SELECTED_GROUP) ;
/ / Dynamic c o n t e n t i s a b s t r a c t e d
key =

CommonTools . c o n v e r t R e que s t l i neToN ame (key) ;
/ / The page name and t h e l i n k t e x t are
/ / s t o r e d t o h a s h t a b l e
s to rePageAndLink (key , l i n e) ;

/ / S t o r e t h e key t o h a s h t a b l e w i t h name o f
/ / t h e p a r e n t l i n k
keyToParentLinkName . p u t ((S t r i n g) key ,

(S t r i n g) p a r e n t L i n k) ;

/ / Key v a l u e s are a l s o i n s e r t e d t o
/ / H a s h t a b l e . I f t h e key v a l u e i s a l r e a d y i n
/ / t h e t a b l e t h e n we don ’ t want t o s t o r e i t
/ / aga in .
i f (! i sKeyUIElement (key)) {

s t o r e K e y (key , b i t I n d e x) ;
++ b i t I n d e x ;

}
} e l s e {

LogWri t e r . l o g g e r . f i n e (" Does n o t match . Line "+
" : ’ "+key+" ’ ") ;

}
}

LogWri t e r . l o g g e r . e x i t i n g (" UIDesc rHand le r " ,
" c o n s t r u c t o r ") ;

} catch (E x c e p t i o n e) {
LogWri t e r . l o g g e r . s e v e r e (e . ge tMessage ()) ;
throw e ;

}
}

/∗ ∗
∗ S t o r e s t h e key and b i t i n d e x t o two
∗ < code>Hash tab le </ code>s . One i s keyed w i t h a
∗ b i t I n d e x−v a r i a b l e w h i l e t h e o t h e r w i t h a key−v a r i a b l e .
∗

∗ @param key t h e a b s t r a c t e d u s e r i n t e r f a c e d e s c r i p t i o n
∗ l i n e
∗ @param b i t I n d e x t h e number o f t h e u s e r i n t e r f a c e e l e m e n t
∗ @see B i t S e t
∗ @see H a s h t a b l e
∗ @since 1 . 0
∗ /

p r i v a t e s t a t i c void s t o r e K e y (S t r i n g key , i n t b i t I n d e x) {

t r y {
LogWri t e r . l o g g e r . e n t e r i n g (" UIDesc rHand le r " ,

" s t o r e K e y ") ;

B i t S e t b i t s e t = new B i t S e t () ;

APPENDIX A. TASK FREQUENCY TOOL SOURCE CODE 72

/ / b i t I n d e x i s s e t t o B i t S e t i n s t a n c e
b i t s e t . s e t (b i t I n d e x) ;
keyTab le . p u t (key , b i t s e t) ;
v a l u e T a b l e . p u t (b i t s e t , key) ;

LogWri t e r . l o g g e r . e x i t i n g (" UIDesc rHand le r " ,
" s t o r e K e y ") ;

} catch (E x c e p t i o n e) {
System . o u t . p r i n t l n (e . ge tMessage ()) ;

}
}

/∗ ∗
∗ Parses t h e page name and l i n k t e x t from t h e u s e r
∗ i n t e r f a c e d e s c r i p t i o n l i n e . S t o r e s v a l u e s t o a
∗ < code>Vec tor </ code > and i n s e r t s i t t o a
∗ < code>Hash tab le </ code > w i t h a p r e v i o u s l y w i t h key .
∗

∗ @param key t h e key f o r H a s h t a b l e
∗ @param l i n e t h e u s e r i n t e r f a c e d e s c r i p t i o n l i n e t h a t
∗ c o n t a i n s t h e l i n k t e x t and page name
∗ @see V e c t o r
∗ @see H a s h t a b l e
∗ /

p r i v a t e s t a t i c void s to rePageAndLink (S t r i n g key ,
S t r i n g l i n e)

throws E x c e p t i o n {

t r y {
LogWri t e r . l o g g e r . e n t e r i n g (" UIDesc rHand le r " ,

" s to rePageAndLink ") ;
S t r i n g pageName = " " ;
S t r i n g l i n k T e x t = " " ;
Vec to r pageAndLink =

new Vec to r (P a r a m e t e r s . PAGE_AND_LINK_ELEMS) ;

/ / Page name and l i n k t e x t are parsed from t h e u s e r
/ / i n t e r f a c e d e s c r i p t i o n f i l e
pageName =

l i n e . s u b s t r i n g (l i n e . indexOf (pageNameSepara tor)+1 ,
l i n e . l a s t I n d e x O f (pageNameSepara tor)) ;

l i n k T e x t =
l i n e . s u b s t r i n g (l i n e . indexOf (l i n k N a m e S e p a r a t o r)+1 ,

l i n e . l a s t I n d e x O f (l i n k N a m e S e p a r a t o r)) ;

LogWri t e r . l o g g e r . f i n e (" page name : ’ "+pageName+
" ’ and l i n k t e x t : ’ "+
l i n k T e x t +" ’ ") ;

/ / Page name and l i n k t e x t are s t o r e d t o a v e c t o r ,
/ / which i s i n s e r t e d t o a H a s h t a b l e
pageAndLink . add (P a r a m e t e r s . PAGE_ENTRY , pageName) ;

APPENDIX A. TASK FREQUENCY TOOL SOURCE CODE 73

pageAndLink . add (P a r a m e t e r s . LINK_ENTRY , l i n k T e x t) ;
keyAndPageMappingTable . p u t (key , pageAndLink) ;

/ / V a r i a b l e key i s s t o r e d as a v a l u e t o
/ / h a s h t a b l e . V a r i a b l e l i n k T e x t i s used as a key .
linkNameToKey . p u t (l i n k T e x t , key) ;

LogWri t e r . l o g g e r . e x i t i n g (" UIDesc rHand le r " ,
" s to rePageAndLink ") ;

} catch (E x c e p t i o n e) {
LogWri t e r . l o g g e r . s e v e r e (e . ge tMessage ()) ;
throw e ;

}
}

/∗ ∗
∗ R e t u r n s t h e boo lean v a l u e depend ing i f t h e key i s i n t h e
∗ < code>Hash tab le </ code >.
∗

∗ @param key t h e key v a l u e o f a H a s h t a b l e e n t r y
∗ @return < code>t r u e </ code > i f t h e key was i n t h e H a s h t a b l e
∗ @see H a s h t a b l e
∗ @since 1 . 0
∗ /

p u b l i c s t a t i c boolean i sKeyUIElement (S t r i n g key) {
re turn keyTab le . c o n t a i n s K e y (key) ;

}

/∗ ∗
∗ R e t u r n s t h e < code>B i t S e t </ code > v a l u e o f t h e c l a s s
∗ v a r i a b l e k e y T a b l e .
∗

∗ @param key t h e key v a l u e o f a H a s h t a b l e e n t r y
∗ @return B i t S e t v a l u e o f t h e H a s h t a b l e k e y T a b l e
∗ @see B i t S e t
∗ @see H a s h t a b l e
∗ @since 1 . 0
∗ /

p u b l i c s t a t i c B i t S e t ge tKeyValue (S t r i n g key) {
re turn (B i t S e t) keyTab le . g e t (key) ;

}

/∗ ∗
∗ Gets t h e c o n v e r t e d name o f t h e r e q u e s t l i n e t h a t i s
∗ a s s o c i a t e d t o a < code>B i t S e t </ code > v a l u e .
∗

∗ @param key t h e key v a l u e o f a H a s h t a b l e e n t r y
∗ @return < code>t r u e </ code > i f t h e key was i n t h e H a s h t a b l e
∗ @see B i t S e t
∗ @see H a s h t a b l e
∗ @since 1 . 0
∗ /

APPENDIX A. TASK FREQUENCY TOOL SOURCE CODE 74

p u b l i c s t a t i c S t r i n g getKeyName (B i t S e t v a l u e) {
re turn (S t r i n g) v a l u e T a b l e . g e t (v a l u e) ;

}

/∗ ∗
∗ Gets t h e name o f t h e key , which i s mapped t o a l i n k t e x t .
∗

∗ @see H a s h t a b l e
∗ @since 1 . 0
∗ /

p u b l i c s t a t i c S t r i n g
getKeyToLinkTextMapping (S t r i n g l i n k T e x t) {
re turn (S t r i n g) linkNameToKey . g e t (l i n k T e x t) ;

}

/∗ ∗
∗ Gets a v e c t o r c o n t a i n i n g t h e name o f t h e page and l i n k t o
∗ where t h e c o n v e r t e d h t t p r e q u e s t l i n e i s a s s o c i a t e d t o .
∗

∗ @param key c o n v e r t e d h t t p r e q u e s t l i n e
∗ @see V e c t o r
∗ @since 1 . 0
∗ /

p u b l i c s t a t i c Vec to r getKeytoPageMapping (S t r i n g key) {
re turn (Vec to r) keyAndPageMappingTable . g e t (key) ;

}

/∗ ∗
∗ Gets t h e keyAndPageMappingTable .
∗

∗ @param key c o n v e r t e d h t t p r e q u e s t l i n e
∗ @see V e c t o r
∗ @since 1 . 0
∗ /

p u b l i c s t a t i c H a s h t a b l e ge tKey toPageMappingTable () {
re turn keyAndPageMappingTable ;

}

/∗ ∗
∗ Gets a s t r i n g c o n t a i n i n g t h e name o f t h e p a r e n t l i n k t h a t
∗ p o i n t s t o t h e page i n where < code>key </ code > e x i s t s .
∗

∗ @param key c o n v e r t e d h t t p r e q u e s t l i n e
∗ @see H a s h t a b l e
∗ @since 1 . 0
∗ /

p u b l i c s t a t i c S t r i n g
getKeyToParentLinkNameMapping (S t r i n g key) {
re turn (S t r i n g) keyToParentLinkName . g e t (key) ;

}

APPENDIX A. TASK FREQUENCY TOOL SOURCE CODE 75

/∗ ∗
∗ Gets keyToParentLinkName h a s h t a b l e .
∗

∗ @see H a s h t a b l e
∗ @since 1 . 0
∗ /

p u b l i c s t a t i c H a s h t a b l e ge tKeyToParen tL inkNameHashtable () {
re turn keyToParentLinkName ;

}
}

APPENDIX A. TASK FREQUENCY TOOL SOURCE CODE 76

UIAndWeblogMatcher class:

/∗ ∗∗
∗ C o p y r i g h t (C) 2 0 0 3 Pekka Par tanen < pekka . p a r t a n e n @ i k i . f i > ∗

∗ A l l r i g h t s r e s e r v e d . ∗

∗ ∗

∗ T h i s program i s f r e e s o f t w a r e ; you can r e d i s t r i b u t e i t ∗

∗ and / or mod i f y i t under t h e t e r m s o f t h e GNU Genera l P u b l i c ∗

∗ L i c e n s e . See t h e f i l e COPYRIGHT f o r more i n f o r m a t i o n . ∗

∗∗ ∗ /
package com . a u l . t f t ;

import j a v a . i o . F i l e ;
import j a v a . i o . F i l e O u t p u t S t r e a m ;
import j a v a . i o . O u t p u t S t r e a m W r i t e r ;
import j a v a . i o . P r i n t W r i t e r ;
import j a v a . u t i l . r e g e x . Matcher ;
import j a v a . u t i l . r e g e x . P a t t e r n ;

/∗ ∗
∗ Matches t h e u s e r i n t e r f a c e d e s c r i p t i o n t o t h e weblog e n t r i e s .
∗ In t h e o t h e r words , t h i s c l a s s f i l t e r s t h e i n t e n t i o n a l u s e r
∗ a c t i o n s from t h e weblog n o i s e . The f i l t e r e d a c t i o n s are
∗ s t o r e d t o a f i l e i n a key format , which can be used i n
∗ a n a l y s i s .
∗

∗ @author <a h r e f =" pekka . p a r t a n e n @ i k i . f i ">Pekka Partanen
∗ @vers ion 1 . 0
∗ @see F i l e
∗ @see Matcher
∗ @see P a t t e r n
∗ @see P r i n t W r i t e r
∗ @since 1 . 4
∗ /

p u b l i c c l a s s UIAndWeblogMatcher {

/∗ F i l t e r e d HTTP query l i n e s c o n t a i n i n g o n l y t h e i n t e n t i o n a l
∗ u s e r a c t i o n s
∗ /

p r i v a t e P r i n t W r i t e r f i l t e r e d E n t r i e s ;

/∗ ∗
∗ S u p p r e s s e d d e f a u l t c o n s t u c t o r
∗ /

p r i v a t e UIAndWeblogMatcher () { }

/∗ ∗
∗ C o n s t r u c t o r . Opens a f i l e f o r s t o r i n g t h e f i l t e r e d u s e r
∗ a c t i o n s .
∗

∗ @param u i E l e m F i l e t h e u s e r i n t e r f a c e d e s c r i p t i o n f i l e
∗ @see P r i n t W r i t e r
∗ @since 1 . 0
∗ /

APPENDIX A. TASK FREQUENCY TOOL SOURCE CODE 77

p u b l i c UIAndWeblogMatcher (F i l e u i E l e m F i l e)
throws E x c e p t i o n {
t r y {

LogWri t e r . l o g g e r . e n t e r i n g (" UIAndWeblogMatcher" ,
" c o n s t r u c t o r ") ;

f i l t e r e d E n t r i e s = new P r i n t W r i t e r (
new O u t p u t S t r e a m W r i t e r (

new F i l e O u t p u t S t r e a m (u i E l e m F i l e , t rue))) ;

LogWri t e r . l o g g e r . e x i t i n g (" UIAndWeblogMatcher" ,
" c o n s t r u c t o r ") ;

} catch (E x c e p t i o n e) {
LogWri t e r . l o g g e r . s e v e r e (

" Ca tched an e x c e p t i o n i n UIAndWeblogMatcher"+
" c o n s t r u c t o r ") ;

throw e ;
}

}

/∗ ∗
∗ Matches t h e u s e r i n t e r f a c e d e s c r i p t i o n f i l e and weblog
∗ e n t r i e s . I f ma tches are found , t h e y are w r i t t e n t o a f i l e
∗ i n key f o r m a t . In t h a t fo rmat , t h e f i l e e n t r i e s can be
∗ used i n UIDescrHandler c l a s s .
∗

∗ @param weblogHandler r e f e r e n c e t o t h e weblog h a n d l i n g
∗ c l a s s i n s t a n c e
∗ @see UIDescrHandler
∗ @since 1 . 4
∗ /

p u b l i c void matchUIAndWeblog (WeblogHandler web logHand ler)
throws E x c e p t i o n {

t r y {
LogWri t e r . l o g g e r . e n t e r i n g (" UIAndWeblogMatcher" ,

" matchUIAndWeblog") ;
S t r i n g keyCand = " " ;
Matcher m;
P a t t e r n p ;

p = P a t t e r n . compi l e (ConfReader . g e t V a l u e (
P a r a m e t e r s .WEBLOGREGEXP)) ;

LogWri t e r . l o g g e r . f i n e (" Compiled regexp : ’ " +
p . p a t t e r n () + " ’ f o r p a r s i n g t h e weblog ") ;

/ / Each l i n e o f t h e weblog i s parsed and c o n v e r t e d
/ / t o t h e same r e p r e s e n t a t i o n than t h e u s e r
/ / i n t e r f a c e d e s c r i p t i o n f i l e l i n e s . Parsed r e q u e s t
/ / l i n e s are compared t o c o n v e r t e d u s e r i n t e r f a c e
/ / d e s c r i p t i o n l i n e s t o check i f t h e r e q u e s t l i n e i s
/ / one o f t h e u s e r i n t e r f a c e e l e m e n t s
whi le ((keyCand = web logHand ler . g e t L i n e ()) ! = " ") {

LogWri t e r . l o g g e r . f i n e (" keyCand : ’ "+keyCand+" ’ ") ;
m = p . ma tche r (keyCand) ;

APPENDIX A. TASK FREQUENCY TOOL SOURCE CODE 78

i f (m. ma tches ()) {
keyCand = m. group (P a r a m e t e r s . SELECTED_GROUP) ;
LogWri t e r . l o g g e r . f i n e (" P a r s e d key "+

" c a n d i d a t e : ’ " +
keyCand + " ’ ") ;

/ / Parameter v a l u e s are a b s t r a c t e d
keyCand =

CommonTools . c o n v e r t R e ques t l i ne ToN ame (
keyCand) ;

LogWri t e r . l o g g e r . f i n e s t (
"Key c a n d i d a t e a f t e r a b s t r a c t i o n : ’ "+
keyCand+" ’ ") ;

/ / I f weblog e n t r y i s a u s e r i n t e r f a c e
/ / e l emen t , i t i s w r i t t e n t o a f i l e f o r
/ / l a t e r use
i f (UIDesc rHand le r . i sKeyUIElement (keyCand)) {

LogWri t e r . l o g g e r . f i n e (" Key ’ " + keyCand+
" ’ matched t o UI e l e m e n t ") ;

f i l t e r e d E n t r i e s . p r i n t l n (keyCand) ;

}
}

}

LogWri t e r . l o g g e r . e x i t i n g (" UIAndWeblogMatcher" ,
" c o n s t r u c t o r ") ;

} catch (E x c e p t i o n e) {
LogWri t e r . l o g g e r . s e v e r e (

" Ca tched an e x c e p t i o n i n matchUIAndWeblog") ;
/ / C l o s i n g o f t h e f i l t e r e d u s e r a c t i o n s f i l e
f i l t e r e d E n t r i e s . c l o s e () ;
throw e ;

}

f i l t e r e d E n t r i e s . c l o s e () ;
}

}

APPENDIX A. TASK FREQUENCY TOOL SOURCE CODE 79

TransitionStepAnalysis class:

/∗ ∗∗
∗ C o p y r i g h t (C) 2 0 0 3 Pekka Par tanen < pekka . p a r t a n e n @ i k i . f i > ∗

∗ A l l r i g h t s r e s e r v e d . ∗

∗ ∗

∗ T h i s program i s f r e e s o f t w a r e ; you can r e d i s t r i b u t e i t ∗

∗ and / or mod i f y i t under t h e t e r m s o f t h e GNU Genera l P u b l i c ∗

∗ L i c e n s e . See t h e f i l e COPYRIGHT f o r more i n f o r m a t i o n . ∗

∗∗ ∗ /
package com . a u l . t f t ;

import j a v a . i o . B u f f e r e d R e a d e r ;
import j a v a . i o . F i l e I n p u t S t r e a m ;
import j a v a . i o . I n p u t S t r e a m R e a d e r ;
import j a v a . l a n g . I n t e g e r ;
import j a v a . u t i l . Enumera t ion ;
import j a v a . u t i l . H a s h t a b l e ;
import j a v a . u t i l . Vec to r ;

/∗ ∗
∗ C l a s s f o r t r a n s i t i o n s t e p a n a l y s i s . T r a n s i t i o n s be tween t h e
∗ a p p l i c a t i o n s t a t e s are c o u n t e d . Here , t h e s t a t e s are d e f i n e d
∗ as t h e l i n k s on t h e main page .
∗

∗ @author <a h r e f =" pekka . p a r t a n e n @ i k i . f i ">Pekka Partanen
∗ @vers ion 1 . 0
∗ @see B u f f e r e d R e a d e r
∗ @see Enumera t ion
∗ @see H a s h t a b l e
∗ @see V e c t o r
∗ @since 1 . 0
∗ /

p u b l i c c l a s s T r a n s i t i o n S t e p A n a l y s i s {

/∗ F i l t e r e d u s e r a c t i o n s
∗ /

p r i v a t e B u f f e r e d R e a d e r u i F i l e ;

/∗ Name o f t h e r o o t page
∗ /

p r i v a t e S t r i n g r o o t P a g e ;

/∗ A h a s h t a b l e i n where an a b s t r a c t e d HTTP query l i n e i s a
∗ key and t h e page name i s t h e v a l u e
∗ /

p r i v a t e H a s h t a b l e keyAndPageMappingTable ;

/∗ T r a n s i t i o n s be tween t h e s t a t e s . V e c t o r from s t a t e t o
∗ s t a t e i s a key and t h e number o f i t s o c c u r r e n c e s i s t h e
∗ v a l u e
∗ /

p r i v a t e H a s h t a b l e t r a n s i t i o n s = new H a s h t a b l e () ;

APPENDIX A. TASK FREQUENCY TOOL SOURCE CODE 80

/∗ ∗
∗ S u p p r e s s e d d e f a u l t c o n s t r u c t o r
∗ /

p r i v a t e T r a n s i t i o n S t e p A n a l y s i s () { }

/∗ ∗
∗ C o n s t r u c t o r . The r o o t page name and t h e i n t e n t i o n a l u s e r
∗ a c t i o n f i l e i s read .
∗

∗ @param u s e r A c t i o n s t h e f i l e where t h e i n t e n t i o n a l u s e r
∗ a c t i o n k e y s are s t o r e d
∗ @see B u f f e r e d R e a d e r
∗ @see H a s h t a b l e
∗ @since 1 . 0
∗ /

p u b l i c T r a n s i t i o n S t e p A n a l y s i s (S t r i n g u s e r A c t i o n s)
throws E x c e p t i o n {

t r y {
LogWri t e r . l o g g e r . e n t e r i n g (" T r a n s i t i o n S t e p A n a l y s i s " ,

" c o n s t r u c t o r ") ;
u i F i l e = new B u f f e r e d R e a d e r (

new I n p u t S t r e a m R e a d e r (
new F i l e I n p u t S t r e a m (u s e r A c t i o n s))) ;

r o o t P a g e = ConfReader . g e t V a l u e (P a r a m e t e r s .ROOTPAGE) ;
keyAndPageMappingTable =

UIDesc rHand le r . ge tKey toPageMappingTable () ;

LogWri t e r . l o g g e r . e x i t i n g (" T r a n s i t i o n S t e p A n a l y s i s " ,
" c o n s t r u c t o r ") ;

} catch (E x c e p t i o n e) {
LogWri t e r . l o g g e r . s e v e r e (" Ca tched e x c e p t i o n : ’ "+

e . ge tMessage () + " ’ ") ;
throw e ;

}
}

/∗ ∗
∗ T h i s method runs t h e t r a n s i t i o n s t e p a n a l y s i s . At f i r s t ,
∗ two a d j a c e n t i n t e n t i o n a l u s e r a c t i o n s are read from f i l e .
∗ T h e i r p a r e n t pages − s t a t e s − are s e a r c h e d and are s t o r e d
∗ t o < code>Hash tab le </ code > i n < code> s t o r e T r a n s i t i o n </ code>
∗ method . A f t e r t h e u s e r a c t i o n f i l e i s read t o t h e end ,
∗ t h e t r a n s i t i o n s t a t e s are p r i n t e d w i t h t h e i r o c c u r r e n c e
∗ i n f o r m a t i o n .
∗

∗ @see Enumera t ion
∗ @see H a s h t a b l e
∗ @see V e c t o r
∗ @since 1 . 0
∗ /

p u b l i c void a n a l y s e () throws E x c e p t i o n {

APPENDIX A. TASK FREQUENCY TOOL SOURCE CODE 81

t r y {
LogWri t e r . l o g g e r . e n t e r i n g (" T r a n s i t i o n S t e p A n a l y s i s " ,

" a n a l y s e ") ;
S t r i n g key ;
S t r i n g pageA = " " ;
S t r i n g pageB = " " ;

/ / A l l u s e r a c t i o n s are read and t h e i r n a t i v e p a r e n t
/ / pages are s e a r c h e d . Then t r a n s i t i o n s from n a t i v e
/ / page x t o n a t i v e page y are s t o r e d t o a h a s h t a b l e

i f ((key = u i F i l e . r e a d L i n e ()) = = n u l l)
throw new E x c e p t i o n (" Use a c t i o n f i l e i s empty ") ;

pageA = s e a r c h P a r e n t s (key) ;

whi le ((key = u i F i l e . r e a d L i n e ()) ! = n u l l) {
pageB = s e a r c h P a r e n t s (key) ;

s t o r e T r a n s i t i o n (pageA , pageB) ;
pageA = pageB ;

}

Vec to r temp =
new Vec to r (P a r a m e t e r s . STATE_AND_OCCURRENCES) ;

f o r (Enumera t ion e =
t h i s . t r a n s i t i o n s . keys () ; e . hasMoreElements () ;) {

temp = (Vec to r) e . n e x t E l e m e n t () ;
System . o u t . p r i n t l n (temp+" : ’ "+

(I n t e g e r) t h i s . t r a n s i t i o n s . g e t ((Vec to r) temp)+
" ’ ") ;

}

LogWri t e r . l o g g e r . e x i t i n g (" T r a n s i t i o n S t e p A n a l y s i s " ,
" a n a l y s e ") ;

} catch (E x c e p t i o n e) {
LogWri t e r . l o g g e r . s e v e r e (" Ca tched an e x c e p t i o n i n "+

" T r a n s i t i o n S t e p A n a l y s i s ") ;
throw e ;

}
}

/∗ ∗
∗ S e a r c h e s a l l p a r e n t l i n k s t h a t t h e parame ter
∗ < code>key </ code > has . The s e a r c h i s done u n t i l t h e " r o o t
∗ page " i s found . At f i r s t , t h e key i s s e a r c h e d from
∗ UIDescrHandler ’ s h a s h t a b l e keyAndPageMappingTable , which
∗ g i v e s t h e name o f t h e l i n k t h a t t o o k t h e u s e r t o t h e page
∗ where t h i s l i n k was p r e s s e d . Then , t h e name o f t h e l i n k
∗ i s s e a r c h e d from UIDescrHandler ’ s keyAndPageMappingTable
∗ h a s h t a b l e and when i t i s found , t h e a p p r o p r i a t e key i s
∗ read and i t ’ s p a r e n t l i n k i s s e a r c h e d . T h i s c o n t i n u e s
∗ u n t i l t h e p a r e n t l i n k name i s t h e " r o o t page " .

APPENDIX A. TASK FREQUENCY TOOL SOURCE CODE 82

∗

∗ @param key HTTP query l i n e i n a b s t r a c t e d f o r m a t
∗ @return a s t a t e t o which < code>key </ code > b e l o n g s t o
∗ @since 1 . 0
∗ /

p r i v a t e S t r i n g s e a r c h P a r e n t s (S t r i n g key) throws E x c e p t i o n {

t r y {
LogWri t e r . l o g g e r . e n t e r i n g (" s e a r c h P a r e n t s " ,

" c o n s t r u c t o r ") ;

S t r i n g p a r e n t L i n k =
UIDesc rHand le r . getKeyToParentLinkNameMapping (key) ;

S t r i n g prevLink = " " ;
S t r i n g pa ren tKey ;

whi le (! p a r e n t L i n k . e q u a l s (t h i s . r o o t P a g e)) {

p revLink = p a r e n t L i n k ;
/ / Here we s e a r c h t h e c o r r e s p o n d i n g key v a l u e t o
/ / t h e p a r e n t l i n k t e x t
paren tKey =

UIDesc rHand le r . ge tKeyToLinkTextMapping (p a r e n t L i n k) ;
p a r e n t L i n k =

UIDesc rHand le r . getKeyToParentLinkNameMapping (pa ren tKey) ;
}

LogWri t e r . l o g g e r . e x i t i n g (" T r a n s i t i o n S t e p A n a l y s e " ,
" s e a r c h P a r e n t s ") ;

i f (! p revLink . e q u a l s (" "))
re turn prevLink ;

e l s e
re turn p a r e n t L i n k ;

} catch (E x c e p t i o n e) {
LogWri t e r . l o g g e r . s e v e r e (" Ca tched an e x c e p t i o n i n "+

" s e a r c h P a r e n t s : ’ " +
e . ge tMessage () + " ’ ") ;

throw e ;
}

}

/∗ ∗
∗ S t o r e s t h e t r a n s i t i o n from s t a t e A t o s t a t e B t o a
∗ h a s h t a b l e . I f a c e r t a i n t r a n s i t i o n a l r e a d y e x i s t s i n t h e
∗ h a s h t a b l e , t h e v a l u e i s i n i t i a l i s e d t o ’ 1 ’ . O therwi se ,
∗ t h e v a l u e i s i n c r e a s e d by ’ 1 ’ .
∗

∗ @param s t a t e A The s o u r c e s t a t e
∗ @param s t a t e B The d e s t i n a t i o n s t a t e
∗ @see H a s h t a b l e
∗ @see V e c t o r
∗ @since 1 . 0

APPENDIX A. TASK FREQUENCY TOOL SOURCE CODE 83

∗ /
p r i v a t e void s t o r e T r a n s i t i o n (S t r i n g s t a t e A , S t r i n g s t a t e B) {

t r y {
LogWri t e r . l o g g e r . e n t e r i n g (" s t o r e T r a n s i t i o n " ,

" c o n s t r u c t o r ") ;

Vec to r pagesAandB = new Vec to r (2) ;
I n t e g e r v a l u e ;

LogWri t e r . l o g g e r . f i n e (" S t o r i n g v a l u e s s t a t e A : ’ "+
s t a t e A +" ’ s t a t e B : ’ "+ s t a t e B +" ’ ") ;

pagesAandB . add (P a r a m e t e r s . STATE_POSITION ,
(S t r i n g) s t a t e A) ;

pagesAandB . add (P a r a m e t e r s . OCCURRENCE_POSITION,
(S t r i n g) s t a t e B) ;

/ / I f t h e key a l r e a d y e x i s t s i n t h e h a s h t a b l e , t h e
/ / v a l u e i s i n c r e a s e d by one . Otherwi se , t h e v a l u e i s
/ / i n i t i a l i s e d t o ’ 1 ’

i f (t h i s . t r a n s i t i o n s . c o n t a i n s K e y ((Vec to r) pagesAandB)) {
LogWri t e r . l o g g e r . f i n e (" key e x i s t e d ") ;
v a l u e =

(I n t e g e r) t h i s . t r a n s i t i o n s . g e t ((Vec to r) pagesAandB) ;
v a l u e = new I n t e g e r (v a l u e . i n t V a l u e () + 1) ;

} e l s e {
LogWri t e r . l o g g e r . f i n e (" key does n o t e x i s t ") ;
v a l u e = new I n t e g e r (1) ;

}

LogWri t e r . l o g g e r . f i n e (" S t o r i n g v a l u e : ’ "+
v a l u e . t o S t r i n g () + " ’ ") ;

t h i s . t r a n s i t i o n s . p u t ((Vec to r) pagesAandB . c l o n e () ,
(I n t e g e r) v a l u e) ;

LogWri t e r . l o g g e r . e x i t i n g (" T r a n s i t i o n S t e p A n a l y s e " ,
" s t o r e T r a n s i t i o n ") ;

} catch (E x c e p t i o n e) {
LogWri t e r . l o g g e r . s e v e r e (" Ca tched an e x c e p t i o n i n "+

" s t o r e T r a n s i t i o n : ’ "+
e . ge tMessage () + " ’ ") ;

}
}

}

APPENDIX A. TASK FREQUENCY TOOL SOURCE CODE 84

Runner class:

/∗ ∗∗
∗ C o p y r i g h t (C) 2 0 0 3 Pekka Par tanen < pekka . p a r t a n e n @ i k i . f i > ∗

∗ A l l r i g h t s r e s e r v e d . ∗

∗ ∗

∗ T h i s program i s f r e e s o f t w a r e ; you can r e d i s t r i b u t e i t ∗

∗ and / or mod i f y i t under t h e t e r m s o f t h e GNU Genera l P u b l i c ∗

∗ L i c e n s e . See t h e f i l e COPYRIGHT f o r more i n f o r m a t i o n . ∗

∗∗ ∗ /
package com . a u l . t f t ;

import j a v a . i o . F i l e ;
import j a v a . u t i l . H a s h t a b l e ;

/∗ ∗
∗ E x e c u t o r o f t h e c o l l e c t i o n and a n a l y s i s c l a s s e s .
∗

∗ @author <a h r e f =" pekka . p a r t a n e n @ i k i . f i ">Pekka Partanen
∗ @vers ion 1 . 0
∗ @see F i l e
∗ @see H a s h t a b l e
∗ @since 1 . 0
∗ /

p u b l i c f i n a l c l a s s Runner {

/∗ ∗
∗ S u p p r e s s e d d e f a u l t c o n s t r u c t o r
∗ /

p r i v a t e Runner () { }

/∗ ∗ Main program
∗ @param args command l i n e argumen t s (n o t used)
∗ /

p u b l i c s t a t i c void main (S t r i n g a r g s []) {

t r y {
ConfReader confReade r = new ConfReader () ;
LogWri t e r l o g W r i t e r = new LogWri t e r () ;
l o g W r i t e r . s e t L o g L e v e l (ConfReader . g e t V a l u e (

P a r a m e t e r s .DBGLEVEL)) ;
UIDesc rHand le r u i D e s c r H a n d l e r =

new UIDesc rHand le r (ConfReader . g e t V a l u e (
P a r a m e t e r s . UIDSCRPT)) ;

F i l e u i E l e m F i l e =
new F i l e (ConfReader . g e t V a l u e (

P a r a m e t e r s . UIELEMFILE)) ;

/ / t h e u s e r a c t i o n f i l e i s r e u s e d i f i t e x i s t s
i f (! u i E l e m F i l e . e x i s t s ()) {

l o g W r i t e r . l o g g e r . f i n e (" P a r s e d UI e l e m e n t does "+
" n o t e x i s t s ") ;

UIAndWeblogMatcher ma tche r =
new UIAndWeblogMatcher (u i E l e m F i l e) ;

APPENDIX A. TASK FREQUENCY TOOL SOURCE CODE 85

WeblogHandler web logHand ler =
new WeblogHandler (ConfReader . g e t V a l u e (

P a r a m e t e r s .WEBLOGDIR)) ;
ma tche r . matchUIAndWeblog (web logHand ler) ;

} e l s e
l o g W r i t e r . l o g g e r . f i n e (" P a r s e d UI e l e m e n t "+

" a l r e a d y e x i s t s ") ;

NumberOfHi t sAna lys i s n o h A n a l y s i s =
new NumberOfHi t sAna lys i s () ;

H a s h t a b l e f r e q s =
n o h A n a l y s i s . r u n A n a l y s i s (I n t e g e r . p a r s e I n t (

ConfReader . g e t V a l u e (P a r a m e t e r s . SEQLGTH))) ;

n o h A n a l y s i s . o r d e r K e y s b y F r e q s t o A r r a y (f r e q s) ;

/ / T r a n s i t i o n s t e p a n a l y s i s
T r a n s i t i o n S t e p A n a l y s i s t r a n s i t i o n S t e p s =

new T r a n s i t i o n S t e p A n a l y s i s (ConfReader . g e t V a l u e (
P a r a m e t e r s . UIELEMFILE)) ;

t r a n s i t i o n S t e p s . a n a l y s e () ;

LogWri t e r . l o g g e r . e x i t i n g (" Runner " , " main ") ;
} catch (E x c e p t i o n e) {

LogWri t e r . l o g g e r . s e v e r e (e . ge tMessage ()) ;
System . o u t . p r i n t l n (e . ge tMessage ()) ;

}
}

}

APPENDIX A. TASK FREQUENCY TOOL SOURCE CODE 86

Parameters class:

/∗ ∗∗
∗ C o p y r i g h t (C) 2 0 0 3 Pekka Par tanen < pekka . p a r t a n e n @ i k i . f i > ∗

∗ A l l r i g h t s r e s e r v e d . ∗

∗ ∗

∗ T h i s program i s f r e e s o f t w a r e ; you can r e d i s t r i b u t e i t ∗

∗ and / or mod i f y i t under t h e t e r m s o f t h e GNU Genera l P u b l i c ∗

∗ L i c e n s e . See t h e f i l e COPYRIGHT f o r more i n f o r m a t i o n . ∗

∗∗ ∗ /
package com . a u l . t f t ;

/∗ ∗
∗ T h i s c l a s s c o n t a i n s t h e c o n s t a n t v a l u e s . For example , t h e
∗ c o n f i g u r a t i o n f i l e ’ s parame ter names are s t o r e d here .
∗

∗ @author <a h r e f =" pekka . p a r t a n e n @ i k i . f i ">Pekka Partanen
∗ @vers ion 1 . 0
∗ @since 1 . 0
∗ /

p u b l i c c l a s s P a r a m e t e r s {

/ / ConfReader v a l u e s
s t a t i c f i n a l S t r i n g CONFFILE = " t f t . p r o p e r t i e s " ;
s t a t i c f i n a l S t r i n g TFTLOGFILE = " t f t l o g f i l e " ;
s t a t i c f i n a l S t r i n g WEBLOGDIR = " w e b l o g d i r " ;
s t a t i c f i n a l S t r i n g WEBLOGREGEXP = " web logregexp " ;
s t a t i c f i n a l S t r i n g DBGLEVEL = " d b g l e v e l " ;
s t a t i c f i n a l S t r i n g SEQLGTH = " s e q l g t h " ;
s t a t i c f i n a l S t r i n g UIDSCRPT = " u i d s c r p t " ;
s t a t i c f i n a l S t r i n g UIDSCRPTREGEXP = " u i d s c r p t r e g e x p " ;
s t a t i c f i n a l S t r i n g UIELEMFILE = " u i e l e m f i l e " ;
s t a t i c f i n a l S t r i n g PAGENAMESEPARATOR = " p a g e n a m e s e p a r a t o r " ;
s t a t i c f i n a l S t r i n g LINKNAMESEPARATOR = " l i n k n a m e s e p a r a t o r " ;
s t a t i c f i n a l S t r i n g ROOTPAGE = " r o o t p a g e " ;

/ / C o n f i g u r a t i o n f i l e ’ s u i d s c r p t p a r s i n g r e g e x p parame ter f o r
/ / t h e group t h a t i s d e c l a r e d w i t h p a r e n t h e s i s
s t a t i c f i n a l i n t SELECTED_GROUP = 1 ;

/ / Leng th o f t h e v e c t o r t h a t s t o r e s t h e page name and l i n k
/ / t e x t and t h e i r v e c t o r p o s i t i o n s
s t a t i c f i n a l i n t PAGE_AND_LINK_ELEMS = 2 ;
s t a t i c f i n a l i n t PAGE_ENTRY = 0 ;
s t a t i c f i n a l i n t LINK_ENTRY = 1 ;

/ / Used i n LogWri t e r c l a s s f o r open ing t h e l o g f i l e so t h a t
/ / t h e new l o g messages are appended t o t h e f i l e
s t a t i c f i n a l boolean APPEND = t rue ;

/ / Used i n T r a n s i t i o n S t e p A n a l y s i s f o r i n i t i a l i s i n g a v e c t o r
/ / t o where t h e s t a t e and i t s number o f o c c u r r e n c e s i s
/ / s t o r e d
s t a t i c f i n a l i n t STATE_AND_OCCURRENCES = 2 ;

APPENDIX A. TASK FREQUENCY TOOL SOURCE CODE 87

s t a t i c f i n a l i n t STATE_POSITION = 0 ;
s t a t i c f i n a l i n t OCCURRENCE_POSITION = 1 ;

/∗ ∗
∗ S u p p r e s s e d d e f a u l t c o n s t r u c t o r
∗ /

p r i v a t e P a r a m e t e r s () { }
}

APPENDIX A. TASK FREQUENCY TOOL SOURCE CODE 88

LogWriter class:

/∗ ∗∗
∗ C o p y r i g h t (C) 2 0 0 3 Pekka Par tanen < pekka . p a r t a n e n @ i k i . f i > ∗

∗ A l l r i g h t s r e s e r v e d . ∗

∗ ∗

∗ T h i s program i s f r e e s o f t w a r e ; you can r e d i s t r i b u t e i t ∗

∗ and / or mod i f y i t under t h e t e r m s o f t h e GNU Genera l P u b l i c ∗

∗ L i c e n s e . See t h e f i l e COPYRIGHT f o r more i n f o r m a t i o n . ∗

∗∗ ∗ /
package com . a u l . t f t ;

import j a v a . u t i l . l o g g i n g . Logger ;
import j a v a . u t i l . l o g g i n g . F i l e H a n d l e r ;
import j a v a . u t i l . l o g g i n g . Leve l ;
import j a v a . u t i l . l o g g i n g . S i m p l e F o r m a t t e r ;

/∗ ∗
∗ LogWri t e r i s a wrapper f o r < code>Logger </ code > c l a s s . I t
∗ p r o v i d e s a s t a t i c v a r i a b l e < code>logger </ code > f o r o t h e r
∗ methods f o r l o g message w r i t i n g .
∗

∗ @author <a h r e f =" pekka . p a r t a n e n @ i k i . f i ">Pekka Partanen
∗ @vers ion 1 . 0
∗ @see F i l e H a n d l e r
∗ @see Logger
∗ @see S i m p l e F o r m a t t e r
∗ @since 1 . 4
∗ /

p u b l i c c l a s s LogWri t e r {

/∗ R e f e r e n c e f o r < code>Logger </ code > c l a s s
∗ /

p u b l i c s t a t i c Logger l o g g e r ;

/∗ F i l e f o r l o g w r i t i n g
∗ /

p r i v a t e s t a t i c F i l e H a n d l e r fh ;

/∗ F o r m a t t e r f o r t h e < code>Logger </ code > method
∗ /

p r i v a t e s t a t i c S i m p l e F o r m a t t e r s f ;

/∗ ∗
∗ D e f a u l t c o n s t r u c t o r f o r l o g w r i t e r .
∗

∗ @see Logger
∗ @since 1 . 4
∗ /

p u b l i c LogWri t e r () {
t r y {

s f = new S i m p l e F o r m a t t e r () ;
l o g g e r = Logger . g e t L o g g e r (" t f t s y s t e m ") ;
fh = new F i l e H a n d l e r (ConfReader . g e t V a l u e (

APPENDIX A. TASK FREQUENCY TOOL SOURCE CODE 89

P a r a m e t e r s . TFTLOGFILE) ,
P a r a m e t e r s . APPEND) ;

fh . s e t F o r m a t t e r (s f) ;
l o g g e r . addHand le r (fh) ;

} catch (E x c e p t i o n e) {
System . e r r . p r i n t l n (e . ge tMessage ()) ;

}
}

/∗ ∗
∗ S e t s t h e l o g l e v e l . Maps t h e f o l l o w i n g v a l u e s t o
∗ c o r r e s p o n d i n g l e v e l v a l u e s :
∗ < ul >
∗ < l i >SEVERE
∗ < l i >WARNING
∗ < l i >INFO
∗ < l i >CONFIG
∗ < l i >FINE
∗ < l i >FINEST
∗ </ ul >
∗ <p>
∗ I f none o f t h e v a l u e s above match t h e parame ter ’ s va lue ,
∗ < code>ALL</ code > v a l u e i s used f o r l o g l e v e l .
∗

∗ @param l e v e l v a l u e from t h e c o n f i g u r a t i o n f i l e f o r t h e
∗ l o g l e v e l
∗ @since 1 . 4
∗ /

p u b l i c void s e t L o g L e v e l (S t r i n g l e v e l) {

i f (l e v e l . e q u a l s ("SEVERE"))
l o g g e r . s e t L e v e l (Leve l . SEVERE) ;

e l s e i f (l e v e l . e q u a l s ("WARNING"))
l o g g e r . s e t L e v e l (Leve l .WARNING) ;

e l s e i f (l e v e l . e q u a l s (" INFO"))
l o g g e r . s e t L e v e l (Leve l . INFO) ;

e l s e i f (l e v e l . e q u a l s ("CONFIG"))
l o g g e r . s e t L e v e l (Leve l . CONFIG) ;

e l s e i f (l e v e l . e q u a l s (" FINE"))
l o g g e r . s e t L e v e l (Leve l . FINE) ;

e l s e i f (l e v e l . e q u a l s ("FINER"))
l o g g e r . s e t L e v e l (Leve l . FINER) ;

e l s e i f (l e v e l . e q u a l s ("FINEST"))
l o g g e r . s e t L e v e l (Leve l . FINEST) ;

e l s e
l o g g e r . s e t L e v e l (Leve l . ALL) ;

l o g g e r . c o n f i g (" Logger i n i t i a l i z e d t o l e v e l : ’ "+
l o g g e r . g e t L e v e l () + " ’ ") ;

}
}

APPENDIX A. TASK FREQUENCY TOOL SOURCE CODE 90

FreqBitSet class:

/∗ ∗∗
∗ C o p y r i g h t (C) 2 0 0 3 Pekka Par tanen < pekka . p a r t a n e n @ i k i . f i > ∗

∗ A l l r i g h t s r e s e r v e d . ∗

∗ ∗

∗ T h i s program i s f r e e s o f t w a r e ; you can r e d i s t r i b u t e i t ∗

∗ and / or mod i f y i t under t h e t e r m s o f t h e GNU Genera l P u b l i c ∗

∗ L i c e n s e . See t h e f i l e COPYRIGHT f o r more i n f o r m a t i o n . ∗

∗∗ ∗ /
package com . a u l . t f t ;

import j a v a . u t i l . Vec to r ;
import j a v a . u t i l . B i t S e t ;

/∗ ∗
∗ A data s t r u c t u r e f o r s t o r i n g i n f o r m a t i o n o f t h e u s e r a c t i o n
∗ sequence and a number o f t h e i r o c c u r r e n c e s . T h i s c l a s s
∗ i m p l e m e n t s < code>Comparable </ code > c l a s s because t h e
∗ o c c u r r e n c e s are wanted t o be o u t p u t i n o r d e r .
∗

∗ @author <a h r e f =" pekka . p a r t a n e n @ i k i . f i ">Pekka Partanen
∗ @vers ion 1 . 0
∗ @see Comparable
∗ @see I n t e g e r
∗ @see V e c t o r
∗ @since 1 . 2
∗ /

p u b l i c c l a s s F r e q B i t S e t implements Comparable {

/∗ V a r i a b l e f o r s t o r i n g t h e number o f k e y V e c t o r o c c u r r e n c e s
∗ /

p r i v a t e I n t e g e r f r e q ;

/∗ V e c t o r f o r s t o r i n g t h e u s e r a c t i o n sequence
∗ /

p r i v a t e Vec to r keyVec to r ;

/∗ ∗
∗ S u p p r e s s e d d e f a u l t c o n s t r u c t o r
∗ /

p r i v a t e F r e q B i t S e t () { }

/∗ ∗
∗ C o n s t r u c t o r t h a t s t o r e s t h e p a r a m e t e r s t o c l a s s v a r i a b l e s .
∗

∗ @param f r e q number o f o c c u r r e n c e s o f k e y V e c t o r
∗ @param k e y V e c t o r u s e r a c t i o n sequence
∗ @since 1 . 0
∗ /

p u b l i c F r e q B i t S e t (I n t e g e r f r e q , Vec to r keyVec to r) {

LogWri t e r . l o g g e r . e n t e r i n g (" F r e q B i t S e t " , " c o n s t r u c t o r ") ;
LogWri t e r . l o g g e r . f i n e s t (" Rece ived p a r a m e t e r s f r e q : ’ "+

APPENDIX A. TASK FREQUENCY TOOL SOURCE CODE 91

f r e q +" ’ and keyVec to r : ’ "+
keyVec to r +" ’ ") ;

i f (f r e q = = n u l l | k eyVec to r = = n u l l) {
N u l l P o i n t e r E x c e p t i o n npe =

new N u l l P o i n t e r E x c e p t i o n () ;
LogWri t e r . l o g g e r . t h r o w i n g (" F r e q B i t S e t " ,

" c o n s t r u c t o r " , npe) ;
throw npe ;

}

t h i s . f r e q = f r e q ;
t h i s . keyVec to r = (Vec to r) keyVec to r . c l o n e () ;
LogWri t e r . l o g g e r . e x i t i n g (" F r e q B i t S e t " , " c o n s t r u c t o r ") ;

}

/∗ ∗
∗ Gets t h e c l a s s v a r i a b l e < code>f r e q </ code >.
∗

∗ @return number o f t h e o c c u r r e n c e s
∗ @since 1 . 0
∗ /

p u b l i c I n t e g e r f r e q () {
LogWri t e r . l o g g e r . e n t e r i n g (" F r e q B i t S e t " , " f r e q ") ;
LogWri t e r . l o g g e r . e x i t i n g (" F r e q B i t S e t " , " f r e q ") ;
re turn f r e q ;

}

/∗ ∗
∗ Gets t h e c l a s s v a r i a b l e < code>k e y V e c t o r </ code >.
∗

∗ @return < code>Vec tor </ code > t h a t h o l d s t h e u s e r a c t i o n
∗ sequence
∗ @since 1 . 0
∗ /

p u b l i c Vec to r keyVec to r () {
LogWri t e r . l o g g e r . e n t e r i n g (" F r e q B i t S e t " , " keyVec to r ") ;
LogWri t e r . l o g g e r . e x i t i n g (" F r e q B i t S e t " , " keyVec to r ") ;
re turn keyVec to r ;

}

/∗ ∗
∗ Gets t h e s i z e o f t h e < code>k e y V e c t o r </ code >.
∗

∗ @return s i z e o f t h e < code>k e y V e c t o r </ code>
∗ @since 1 . 0
∗ /

p u b l i c i n t k e y V e c t o r S i z e () {
LogWri t e r . l o g g e r . e n t e r i n g (" F r e q B i t S e t " , " k e y V e c t o r S i z e ") ;
LogWri t e r . l o g g e r . e x i t i n g (" F r e q B i t S e t " , " k e y V e c t o r S i z e ") ;
re turn keyVec to r . s i z e () ;

}

APPENDIX A. TASK FREQUENCY TOOL SOURCE CODE 92

/∗ ∗
∗ Imp lemen ted new < code>equa l s </ code > method .
∗

∗ @param comparable < code>Objec t </ code>
∗ @return < code>t r u e </ code > i f t h e < code>Objec t </ code>
∗ e q u a l s t o t h i s c l a s s
∗ @since 1 . 0
∗ /

p u b l i c boolean e q u a l s (O b j e c t o) {
LogWri t e r . l o g g e r . e n t e r i n g (" F r e q B i t S e t " , " e q u a l s ") ;
i f (! (o i n s t a n c e o f F r e q B i t S e t)) {

LogWri t e r . l o g g e r . e x i t i n g (" F r e q B i t S e t " , " e q u a l s ") ;
re turn f a l s e ;

}

F r e q B i t S e t f b s = (F r e q B i t S e t) o ;
LogWri t e r . l o g g e r . e x i t i n g (" F r e q B i t S e t " , " e q u a l s ") ;
re turn f b s . f r e q . e q u a l s (f r e q) ;

}

/∗ ∗
∗ Imp lemen ted new < code>hashCode </ code > method .
∗

∗ @return new hashcode
∗ @since 1 . 0
∗ /

p u b l i c i n t hashCode () {
LogWri t e r . l o g g e r . e n t e r i n g (" F r e q B i t S e t " , " hashCode ") ;
LogWri t e r . l o g g e r . e x i t i n g (" F r e q B i t S e t " , " hashCode ") ;
re turn 1 6∗ f r e q . hashCode () ;

}

/∗ ∗
∗ Imp lemen ted new < code>t o S t r i n g </ code > method .
∗

∗ @return < code>S t r i n g </ code > p r e s e n t a t i o n o f t h i s c l a s s
∗ @since 1 . 0
∗ /

p u b l i c S t r i n g t o S t r i n g () {
LogWri t e r . l o g g e r . e n t e r i n g (" F r e q B i t S e t " , " t o S t r i n g ") ;
S t r i n g temp = new S t r i n g () ;
temp = f r e q + " " ;
f o r (i n t i = 0 ; i < keyVec to r . s i z e () ; + + i)

temp = temp + " " + (B i t S e t) keyVec to r . g e t (i) ;
LogWri t e r . l o g g e r . f i n e s t (" R e t u r n i n g v a l u e : ’ "+temp+" ’ ") ;
LogWri t e r . l o g g e r . e x i t i n g (" F r e q B i t S e t " , " t o S t r i n g ") ;
re turn temp ;

}

/∗ ∗

APPENDIX A. TASK FREQUENCY TOOL SOURCE CODE 93

∗ Comparing < code >Objec t </ code > t o t h i s c l a s s .
∗

∗ @param <code>Objec t </ code > t o compare t o t h i s c l a s s
∗ @return t h e v a l u e 0 i f t h e argument s t r i n g i s e q u a l t o
∗ t h i s s t r i n g ; a v a l u e l e s s than 0 i f t h i s s t r i n g i s
∗ l e x i c o g r a p h i c a l l y l e s s than t h e s t r i n g argument ; and a
∗ v a l u e g r e a t e r than 0 i f t h i s s t r i n g i s l e x i c o g r a p h i c a l l y
∗ g r e a t e r than t h e s t r i n g argument .
∗ @since 1 . 0
∗ /

p u b l i c i n t compareTo (O b j e c t o) {

LogWri t e r . l o g g e r . e n t e r i n g (" F r e q B i t S e t " , " compareTo ") ;
F r e q B i t S e t f b s = (F r e q B i t S e t) o ;
i n t v a l u e = f b s . f r e q . compareTo (f r e q) ;
LogWri t e r . l o g g e r . f i n e s t (" R e t u r n i n g v a l u e : ’ "+ v a l u e+" ’ ") ;
LogWri t e r . l o g g e r . e x i t i n g (" F r e q B i t S e t " , " compareTo ") ;
re turn v a l u e ;

}
}

APPENDIX A. TASK FREQUENCY TOOL SOURCE CODE 94

CommonTools class:

/∗ ∗∗
∗ C o p y r i g h t (C) 2 0 0 3 Pekka Par tanen < pekka . p a r t a n e n @ i k i . f i > ∗

∗ A l l r i g h t s r e s e r v e d . ∗

∗ ∗

∗ T h i s program i s f r e e s o f t w a r e ; you can r e d i s t r i b u t e i t ∗

∗ and / or mod i f y i t under t h e t e r m s o f t h e GNU Genera l P u b l i c ∗

∗ L i c e n s e . See t h e f i l e COPYRIGHT f o r more i n f o r m a t i o n . ∗

∗∗ ∗ /
package com . a u l . t f t ;

/∗ ∗
∗ Genera l t o o l s f o r o t h e r c l a s s e s .
∗

∗ @author <a h r e f =" pekka . p a r t a n e n @ i k i . f i ">Pekka Partanen
∗ @vers ion 1 . 0
∗ @since 1 . 0
∗ /

p u b l i c c l a s s CommonTools {

/∗ ∗
∗ S u p p r e s s e d d e f a u l t c o n s t r u c t o r .
∗ /

p r i v a t e CommonTools () { }

/∗ ∗
∗ Handles t h e dynamic c o n t e n t o f t h e u s e r i n t e r f a c e
∗ d e s c r i p t i o n . The u s e r i n t e r f a c e d e s c r i p t i o n f i l e can have
∗ f i e l d s i n a n g l e b r a c k e t s t o r e p r e s e n t dynamic c o n t e n t .
∗ <p>
∗ Method i s used t o c o n v e r t t h e chang ing parame ter v a l u e s t o
∗ a b s t r a c t e d c o n s t a n t v a l u e s . The u s e r i n t e r f a c e d e s c r i p t i o n
∗ f i e l d s t h a t c o n t a i n a n g l e b r a c k e t s are c o n v e r t e d t o a
∗ d e f a u l t v a l u e . In t h e same way , weblog e n t r i e s t h a t have
∗ ’ = . ∗ ’ v a l u e s i n t h e i r query p a r t are c o n v e r t e d t o t h e same
∗ d e f a u l t v a l u e .
∗

∗ @param key HTTP query l i n e f o r c o n v e r s i o n . Could be from
∗ t h e u s e r i n t e r f a c e d e s c r i p t i o n f i l e or from t h e weblog
∗ @return key c o n v e r t e d HTTP query l i n e
∗ @since 1 . 0
∗ /

p u b l i c s t a t i c S t r i n g c o n v e r t R e ques t l i ne ToN ame (S t r i n g key) {

/ / For f i l e s i n t h e UI e l e m e n t d e s c r i p t i o n
key =

key . r e p l a c e A l l (" \ \= <[0−9a−zA−Z[−][+][%]]∗ > " , "FFF ") ;

/ / F o l l o w i n g l i n e h a n d l e s t h e p a r a m e t e r s ’ v a l u e s i n t h e
/ / r e a l HTTP r e q u e s t
key = (key . r e p l a c e A l l (" \ \=[0 −9 a−zA−Z[−] [+][%]]∗ " ,

" FFF")) . t r i m () ;
re turn key ;

APPENDIX A. TASK FREQUENCY TOOL SOURCE CODE 95

}
}

Appendix B

Link Structure of MDS/SAS 5.0

Main -> {
/sas5/navigation_servlet #Main Menu# "MDS/SAS 5.0"
/sas5/index.jsp #Main Menu# "Logout"
/sas5/navigation_servlet/showEmptyNetwork #Main Menu# "Network"
/sas5/navigation_servlet/showEmptyMonitoring #Main Menu# "Monitoring"
/sas5/navigation_servlet/showEmptyOperationalConfiguration #Main Menu#

"Operational_Configuration"
/sas5/navigation_servlet/showEmptyMaintenance #Main Menu# "Maintenance"
/sas5/navigation_servlet/showEmptyUserMaintenance #Main Menu#

"User_Maintenance"
}

Network -> {
/sas5/network_servlet #Network menu# "Network_Model"
/sas5/ne_types_servlet #Network menu# "NE_Types"
/sas5/ne_interface_types_servlet #Network menu# "NE_Interface_Types"
/sas5/connection_types_servlet #Network menu# "Connection_Types"
/sas5/default_ne_parameters_servlet #Network menu# "Default_NE_Parameters"

}

Monitoring -> {
/sas5/requests_servlet #Monitoring menu# "Requests"
/sas5/tasks_servlet?entry=<maybe yes> #Monitoring menu# "Tasks"
/sas5/total_statistics_servlet #Monitoring menu# "MDSSAS_Total_Statistics"
/sas5/client_system_statistics_servlet #Monitoring menu#

"MDSSAS_Client_Systems"
/sas5/ne_statistics_servlet #Monitoring menu# "NE_Statistics"
/sas5/core_statistics_servlet #Monitoring menu# "MDSSAS_Core_Statistics"
/sas5/maintenance_log_servlet #Monitoring menu# "Maintenance_Log"

}

Operational_Configuration -> {
/sas5/grc_servlet #Operational Configuration menu# "GRC_Parameters"
/sas5/service_modules_servlet #Operational Configuration menu#

"Service_Modules"
}

96

APPENDIX B. LINK STRUCTURE OF MDS/SAS 5.0 97

Maintenance -> {
/sas5/system_status_servlet #Maintenance menu# "System_Status"
/sas5/export_import_servlet/showImport #Maintenance menu#

"Configuration_Importing"
/sas5/reports_servlet #Maintenance menu# "Reports"

}

User_Maintenance -> {
/sas5/ui_profile_servlet #User Maintenance menu# "UI_Profiles"
/sas5/ui_user_servlet/showUsers #User Maintenance menu# "UI_Users"
/sas5/ui_user_servlet/showPassword?id=<username> #User Maintenance menu#

"Set_UI_Password"
/sas5/client_user_servlet/showUsers #User Maintenance menu# "Client_Users"

}

Network_Model -> {
/sas5/NetworkModel.jsp?REFRESH.RATE=<60> #Network Model submenu#

"1_min"
/sas5/NetworkModel.jsp?REFRESH.RATE=<120> #Network Model submenu#

"2_min"
/sas5/NetworkModel.jsp?REFRESH.RATE=<600> #Network Model submenu#

"10_min"
/sas5/NetworkModel.jsp?REFRESH.RATE=<0> #Network Model submenu#

"no_refresh"
/sas5/network_servlet/updateView/?element=<NE> #Network Model submenu#

"Plus_Symbol_Network_Model"
/sas5/network_servlet/showNeDetails?neId=<NE> #Network Model submenu#

"NE_Details"
/sas5/network_servlet/showNeAdding?newNe=<yes>#Network Model submenu#

"Add_NE"
/sas5/network_servlet/showConnectionAdding?newConnection=<yes>

#Network_Model_submenu# "Add_Connection"
}

NE_Types -> {
/sas5/ne_types_servlet/showNETypeDetailsReadOnly?id=<NE Type>

#NE Types submenu# "NE_Type_Details"
/sas5/ne_types_servlet/showNETypeDetails?id=<NE Type> #NE Types submenu#

"Modify_NE_Type"
/sas5/ne_types_servlet/showNETypeDeleteConfirmation?id=<parameter>

#NE Types submenu# "Delete_Parameter"
/sas5/ne_types_servlet/createNEType #NE Types submenu# "Add_New_NE_Types"

}

NE_Interface_Types -> {
/sas5/ne_interface_types_servlet/newNEInterfaceType

#NE Interface Types submenu# "Add_New_NE_Interface_Types"
/sas5/ne_interface_types_servlet/modifyNEInterfaceType?type=<type>

#NE Interface Types submenu# "Modify_NE_Interface_Types"
/sas5/ne_interface_types_servlet/deleteConfirmation?type=<type>

#NE Interface Types submenu# "Delete_NE_Interface_Type"
}

Connection_Types -> {
/sas5/connection_types_servlet/modifyConnectionType?type=<type>

APPENDIX B. LINK STRUCTURE OF MDS/SAS 5.0 98

#Connection Types submenu# "Modify_Connection_Types"
/sas5/connection_types_servlet/deleteConfirmation?type=<type>

#Connection Types submenu# "Delete_Connection_Type"
/sas5/connection_types_servlet/newConnectionType

#Connection Types submenu# "Add_New_Connection_Types"
}

Default_NE_Parameters -> {
/sas5/default_ne_parameters_servlet/modifyDefaultParameter?id=

<parameter> #Default NE Parameters submenu#
"Modify_Default_NE_Parameter"

/sas5/default_ne_parameters_servlet/deleteConfirmation?id=
<parameter> #Default NE Parameters submenu#
"Delete_NE_Parameter"

/sas5/default_ne_parameters_servlet/newDefaultParameter
#Default NE Parameters submenu# "Add_New_Default_NE_Parameters"

}

Requests -> {
/sas5/Requests.jsp?searchForm=<false> #Requests submenu#

"HIDE_SHOW_SEARCH_FORM_Requests"
/sas5/requests_servlet/selectAllRequests #Requests submenu#

"Select_All_Requests"
/sas5/requests_servlet/unselectAllRequests #Requests submenu#

"Unselect_All_Requests"
/sas5/requests_servlet/showRequestDetails?requestId=<requestID>

#Requests submenu# "Request_Details"
}

Tasks -> {
/sas5/tasks_servlet/toggleSearchForm?taskSearchForm=<false>

#Tasks submenu# "HIDE_SHOW_SEARCH_FORM_Tasks"
/sas5/tasks_servlet/selectAllTasks #Tasks submenu# "Select_All_Tasks"
/sas5/tasks_servlet/unselectAllTasks #Tasks submenu# "Unselect_All_Tasks"
/sas5/tasks_servlet/showTaskDetails?taskId=<task ID>&requestId=

<request ID> #Tasks submenu# "Task_Details"
}

NE_Statistics -> {
/sas5/ne_statistics_servlet/showNEDetailedStatistics

#NE Statistics submenu# "More_Detailed_Table"
/sas5/ne_statistics_servlet/showNEStatistics #NE Statistics submenu#

"Concise_Table"
}

MDSSAS_Core_Statistics -> {
/sas5/core_statistics_servlet/search?layer=<0>

#MDS/SAS Core Statistics submenu# "Client_System_Layer"
/sas5/core_statistics_servlet/search?layer=<1>

#MDS/SAS Core Statistics submenu# "Request_Processing_Layer"
/sas5/core_statistics_servlet/search?layer=<2>

#MDS/SAS Core Statistics submenu# "Service_Module_Layer"
/sas5/core_statistics_servlet/search?layer=<3>

#MDS/SAS Core Statistics submenu# "Task_Engine_Layer"
}

APPENDIX B. LINK STRUCTURE OF MDS/SAS 5.0 99

GRC_Parameters -> {
/sas5/grc_servlet/showParameters?<id=comptel.cs.nemo>

#GRC Parameters submenu# "comptel_cs_nemo"
/sas5/grc_servlet/showParameters?id=<comptel.sas>

#GRC Parameters submenu# "comptel_sas"
/sas5/grc_servlet/showParameters?id=<comptel.sas.gui>

#GRC Parameters submenu# "comptel_sas_gui"
/sas5/grc_servlet/showParameters?id=<comptel.sas.re>

#GRC Parameters submenu# "comptel_sas_re"
/sas5/grc_servlet/showParameters?id=<comptel.sas.te>

#GRC Parameters submenu# "comptel_sas_te"
/sas5/grc_servlet/sectionDeleteConfirmation?id=<name of section>

#GRC Parameters submenu# "Delete_GRC_Section"
/sas5/grc_servlet/newSection #GRC Parameters submenu#

"Add_New_GRC_Parameter"
}

Service_Modules -> {
/sas5/service_modules_servlet?&broker.pluginId=

<id of plug-in>&broker.request=<details>
#Service Modules submenu# "Routing_Service"

}

System_Status -> {
/sas5/SystemStatus.jsp?refreshRate=<5> #System Status#

"5_s_refresh_rate_"
/sas5/SystemStatus.jsp?refreshRate=<20> #System Status#

"20_s_refresh_rate"
/sas5/SystemStatus.jsp?refreshRate=<60> #System Status#

"60_s_refresh_rate’"
/sas5/SystemStatus.jsp?refreshRate=<0> #System Status#

"no_refresh’"
/sas5/component_log_servlet?prefix=<NM> #System Status submenu# "Nemo"
/sas5/component_log_servlet?prefix=<TE> #System Status submenu#

"TaskEngine"
/sas5/component_log_servlet?prefix=<> #System Status submenu#

"RequestEngine"
/sas5/component_log_servlet?prefix=<UI> #System Status submenu#

"User_Interface"
}

Reports -> {
/sas5/reports_servlet/showParameterSetting?name=<Database usage>

#Reports submenu# "Database_Usage_Reports"
/sas5/reports_servlet/showParameterSetting?name=<GRC> #Reports submenu#

"GRC_Reports"
/sas5/reports_servlet/showParameterSetting?name=<Network model>

#Reports submenu# "Network_Model_Reports"
/sas5/reports_servlet/showParameterSetting?name=<Request details>

#Reports submenu# "Request_Details_Reports"
/sas5/reports_servlet/showParameterSetting?name=<Request summary>

#Reports submenu# "Request_Summary_Reports"
/sas5/reports_servlet/showParameterSetting?name=<Requests>

#Reports submenu# "Requests_Reports"

APPENDIX B. LINK STRUCTURE OF MDS/SAS 5.0 100

/sas5/reports_servlet/showParameterSetting?name=<Service modules>
#Reports submenu# "Service_Modules_Reports"

/sas5/reports_servlet/showParameterSetting?name=<Task summary>
#Reports submenu# "Task_Summary_Reports"

/sas5/reports_servlet/showParameterSetting?name=<Summary for NE>
#Reports submenu# "Task_Summary_For_NE_Reports"

/sas5/reports_servlet/showParameterSetting?name=<Summary for NE type>
#Reports submenu# "Task_Summary_For_NE_Type_Reports"

/sas5/reports_servlet/showParameterSetting?name=<User management>
#Reports submenu# "User_Management_Reports"

}

UI_Profiles -> {
/sas5/ui_profile_servlet/showProfileDetails?name=<profile>

#UI Profiles submenu# "UI_profile_name"
/sas5/ui_profile_servlet/modifyProfileFromList?name=<profile>

#UI Profiles submenu# "Modify_Profile_Details"
/sas5/ui_profile_servlet/deleteConfRequest?id=<profile>&caller=

<profiles> #UI Profiles submenu# "Delete_UI_profile"
/sas5/ui_profile_servlet/newProfile #UI Profiles submenu#

"Add_New_UI_Profiles"
}

UI_Users -> {
/sas5/ui_user_servlet/showUserDetails?name=<GUIuser> #UI Users submenu#

"UI_User_Details"
/sas5/ui_user_servlet/modifyUserFromList?name=<GUIuser>

#UI Users submenu# "Modify_UI_User_Details"
/sas5/ui_user_servlet/deleteConfRequest?id=<user>&userCaller=

<caller> #UI Users submenu# "Delete_UI_User"
/sas5/ui_user_servlet/newUser #UI Users submenu# "Add_New_UI_Users"

}

Client_Users -> {
/sas5/client_user_servlet/showUserDetails?name=<bss5>

#Client Users submenu# "Username_Client_Users"
/sas5/client_user_servlet/modifyUserFromList?name=<username>

#Client Users submenu# "Modify_Client_User_Details"
/sas5/client_user_servlet/deleteConfRequest?id=<username>&userCaller=

<caller> #Client Users submenu# "Delete_Client_User"
/sas5/client_user_servlet/newUser #Client Users submenu#

"Add_New_Client_Users"
/sas5/client_user_servlet/modifyUserFromReadOnly?name=<username>

#Client Users submenu# "Modify_Client_Users"
}

Plus_Symbol_Network_Model -> {
/sas5/network_servlet/showConnectionDetails?conId=<NE>&sourceNe=

<NE>&targetNe=<target NE> #’+’ symbol subsubmenu#
"Connection_Details "

}

NE_Details -> {
/sas5/network_servlet/showNeModify?neId=<NE> #NE Details submenu#

"Modify_NE_Details"

APPENDIX B. LINK STRUCTURE OF MDS/SAS 5.0 101

/sas5/network_servlet/lockNetworkElement #NE Details submenu#
"Lock_NE_Details"

/sas5/network_servlet/unlockNetworkElement #NE Details submenu#
"Unlock_NE_Details"

/sas5/network_servlet/showNeDeleteConfirmation #NE Details submenu#
"Delete_NE_Details"

/sas5/network_servlet/showNeDeleteConfirmation #NE Details submenu#
"Duplicate_NE_Details"

/sas5/network_servlet/showNeParameterModify?paramName=
<NE parameter> #NE Details submenu# "Modify_NE_Parameter"

/sas5/network_servlet/showNeParamDelConfirmation?paramName=
<parameter> #NE Details submenu# "Delete_NE_parameter"

/sas5/network_servlet/showNeParameterAdding?newParam=<yes>
#NE Details submenu# "Add_New_NE_Details"

}

NE_Type_Details -> {
/sas5/ne_types_servlet/showNETypeDetails?id=<NE>

#NE Type Details subsubmenu# "Modify_NE_Type_Details"
}

Request_Details -> {
/sas5/requests_servlet/showRequestParameters

#Request Details subsubmenu# "Parameters_Request_Details"
/sas5/requests_servlet/showTaskDetails?taskId=<task ID number>

#Request Details <requestID> subsubmenu# "Task_ID_Number"
}

Task_Details -> {
/sas5/tasks_servlet/showTaskParameters?taskId=

<number of taskId>&requestId=<number of requestId>
#Task Details subsubmenu# "Parameters_Task_Details"

/sas5/log_servlet/searchIOLog?taskId=<number of taskId>&neId=
<Id of NE>&startDate=<startdate>&endDate=<enddate>&channel=
<number of channel> #Task Details subsubmenu# "IO_Log"

/sas5/log_servlet/searchMMLLog?&taskId=<number of taskId>&neId=
<Id of NE>&startDate=<startdate>&endDate=<enddate>&channel=
<number of channel> #Task Details subsubmenu# "MML_Log"

/sas5/log_servlet/searchErrorLog?&taskId=<number of taskId>&neId=
<Id of NE>&startDate=<startdate>&endDate=<enddate>&channel=
<number of channel> #Task Details subsubmenu# "Error_Log"

}

comptel_cs_nemo -> {
/sas5/grc_servlet/modifyParameter?id=<parameter>

#GRC Parameters subsubmenu# "Modify_GRC_Parameters"
/sas5/grc_servlet/paramDeleteConfirmation?id=<parameter>

#GRC Parameters subsubmenu# "Delete_GRC_Parameter"
/sas5/grc_servlet/newParameter #GRC Parameters subsubmenu#

"Add_new_GRC_Parameter"
}

comptel_sas -> {
/sas5/grc_servlet/modifyParameter?id=<name of parameter>

#GRC Parameter subsubmenu# "Modify_GRC_Parameters"

APPENDIX B. LINK STRUCTURE OF MDS/SAS 5.0 102

/sas5/grc_servlet/paramDeleteConfirmation?id=<parameter>
#GRC Parameters subsubmenu# "Delete_GRC_Parameter"

/sas5/grc_servlet/newParameter #GRC Parameters subsubmenu#
"Add_new_GRC_Parameter"

}

comptel_sas_gui
/sas5/grc_servlet/modifyParameter?id=<parameter>

#GRC Parameters subsubmenu# "Modify_GRC_Parameters"
/sas5/grc_servlet/paramDeleteConfirmation?id=<parameter>

#GRC Parameters subsubmenu# "Delete_GRC_Parameter"
/sas5/grc_servlet/newParameter #GRC Parameters subsubmenu#

"Add_new_GRC_Parameter"
}

comptel_sas_re -> {
/sas5/grc_servlet/modifyParameter?id=<parameter>

#GRC Parameters subsubmenu# "Modify_GRC_Parameters"
/sas5/grc_servlet/paramDeleteConfirmation?id=<parameter>

#GRC Parameters subsubmenu# "Delete_GRC_Parameter"
/sas5/grc_servlet/newParameter #GRC Parameters subsubmenu#

"Add_new_GRC_Parameter"
}

comptel_sas_te -> {
/sas5/grc_servlet/modifyParameter?id=<parameter>

#GRC Parameters subsubmenu# "Modify_GRC_Parameters"
/sas5/grc_servlet/paramDeleteConfirmation?id=<parameter>

#GRC Parameters subsubmenu# "Delete_GRC_Parameter"
/sas5/grc_servlet/newParameter #GRC Parameters subsubmenu#

"Add_new_GRC_Parameter"
}

Routing_Service -> {
/sas5/service_modules_servlet?&broker.pluginGuild=

<service>&broker.request=<request>&action=<action>
#<service module> subsubmenu# "List_Number_Ranges"

}

UI_User_Details -> {
/sas5/ui_user_servlet/modifyUserFromReadOnly?name=<GUIuser>

#UI User Details subsubmenu# "Modify_UI_User_Details"
}

Client_User_Details -> {
/sas5/client_user_servlet/modifyUserFromReadOnly?name=

<username> #Client User Details subsubmenu#
"Modify_Client_User_Details"

}

Connection_Details -> {
/sas5/network_servlet/showConnectionModify?conId=<NE>

#Connection Details subsubsubmenu# "Modify_Connection_Details"
/sas5/network_servlet/lockConnection

#Connection Details subsubsubmenu# "Lock_Connection_Details"

APPENDIX B. LINK STRUCTURE OF MDS/SAS 5.0 103

/sas5/network_servlet/unlockConnection
#Connection Details subsubsubmenu# "Unlock_Connection_Details"

/sas5/network_servlet/showConnectionDeleteConfirmation
#Connection Details subsubsubmenu# "Delete_Connection_Details"

/sas5/network_servlet/showConnectionAdding?copy=<yes>
#Connection Details subsubsubmenu# "Duplicate_Connection_Details"

}

List_Number_Ranges -> {
/sas5/service_modules_servlet?&broker.pluginGuild=

<service>&broker.request=<request>&action=<printEditRange>
#List Number Ranges subsubsubmenu# "Edit_Number_Range"

/sas5/service_modules_servlet?&broker.pluginGuild=
<service>&broker.request=<request>&action=<deleteRange>&ra
#List Number Ranges subsubsubmenu# "Delete_Number_Range"

/sas5/service_modules_servlet?&broker.pluginGuild=
<service>&broker.request=<request>&action=<printCreateRange>
#List Number Ranges subsubsubmenu# "Create_New_Number_Range"

}

Appendix C

Weblog Excerpt

The following weblog was collected from a single session. The IP-address is

masked for security. The result of filtration is presented after the weblog.

x.x.x.160 - - [13/Mar/2003:12:43:41 2000] "GET /sas5/index.jsp HTTP/1.1" 200 3592
x.x.x.160 - - [13/Mar/2003:12:43:41 2000] "GET /sas5/styles/sas5_ie.css HTTP/1.1" 200 16665
x.x.x.160 - - [13/Mar/2003:12:43:41 2000] "GET /sas5/images/dot.gif HTTP/1.1" 200 43
x.x.x.160 - - [13/Mar/2003:12:43:41 2000] "GET /sas5/images/comptel.gif HTTP/1.1" 200 1862
x.x.x.160 - - [13/Mar/2003:12:43:46 2000] "POST /sas5/ui_user_servlet HTTP/1.1" 302 654
x.x.x.160 - - [13/Mar/2003:12:43:46 2000] "GET /sas5/navigation_servlet/show?

pageid=1047552226441 HTTP/1.1" 302 654
x.x.x.160 - - [13/Mar/2003:12:43:46 2000] "GET /sas5/Frames.jsp?pageid=1047552226459

HTTP/1.1" 200 1292
x.x.x.160 - - [13/Mar/2003:12:43:46 2000] "GET /sas5/Header.jsp HTTP/1.1" 200 1122
x.x.x.160 - - [13/Mar/2003:12:43:46 2000] "GET /sas5/Menu.jsp HTTP/1.1" 200 1306
x.x.x.160 - - [13/Mar/2003:12:43:46 2000] "GET /sas5/EmptyMenu.jsp HTTP/1.1" 200 934
x.x.x.160 - - [13/Mar/2003:12:43:46 2000] "GET /sas5/Empty.html HTTP/1.1" 200 289
x.x.x.160 - - [13/Mar/2003:12:43:46 2000] "GET /sas5/Welcome.jsp HTTP/1.1" 200 491
x.x.x.160 - - [13/Mar/2003:12:43:46 2000] "GET /sas5/Footer.jsp HTTP/1.1" 200 950
x.x.x.160 - - [13/Mar/2003:12:43:46 2000] "GET /sas5/images/dot.gif HTTP/1.1" 200 43
x.x.x.160 - - [13/Mar/2003:12:43:46 2000] "GET /sas5/styles/sas5_ie.css HTTP/1.1" 200 16665
x.x.x.160 - - [13/Mar/2003:12:43:46 2000] "GET /sas5/images/comptel.gif HTTP/1.1" 200 1862
x.x.x.160 - - [13/Mar/2003:12:43:46 2000] "GET /sas5/images/menuBG.gif HTTP/1.1" 200 138
x.x.x.160 - - [13/Mar/2003:12:43:48 2000] "GET /sas5/navigation_servlet/showEmptyNetwork

HTTP/1.1" 302 654
x.x.x.160 - - [13/Mar/2003:12:43:48 2000] "GET /sas5/Frames.jsp?pageid=1047552228058

HTTP/1.1" 200 1312
x.x.x.160 - - [13/Mar/2003:12:43:48 2000] "GET /sas5/Header.jsp HTTP/1.1" 200 1122
x.x.x.160 - - [13/Mar/2003:12:43:48 2000] "GET /sas5/NetworkNavigation.jsp HTTP/1.1" 200 1313
x.x.x.160 - - [13/Mar/2003:12:43:48 2000] "GET /sas5/NetworkMenu.jsp HTTP/1.1" 200 1525
x.x.x.160 - - [13/Mar/2003:12:43:48 2000] "GET /sas5/EmptyNetwork.jsp HTTP/1.1" 200 87
x.x.x.160 - - [13/Mar/2003:12:43:48 2000] "GET /sas5/Empty.html HTTP/1.1" 200 289
x.x.x.160 - - [13/Mar/2003:12:43:48 2000] "GET /sas5/Footer.jsp HTTP/1.1" 200 950
x.x.x.160 - - [13/Mar/2003:12:43:48 2000] "GET /sas5/images/dot.gif HTTP/1.1" 200 43
x.x.x.160 - - [13/Mar/2003:12:43:48 2000] "GET /sas5/images/comptel.gif HTTP/1.1" 200 1862
x.x.x.160 - - [13/Mar/2003:12:43:48 2000] "GET /sas5/styles/sas5_ie.css HTTP/1.1" 200 16665
x.x.x.160 - - [13/Mar/2003:12:43:48 2000] "GET /sas5/images/menuBG.gif HTTP/1.1" 200 138
x.x.x.160 - - [13/Mar/2003:12:43:53 2000] "GET /sas5/network_servlet HTTP/1.1" 302 654
x.x.x.160 - - [13/Mar/2003:12:43:53 2000] "GET /sas5/NetworkModel.jsp?pageid=1047552233518

HTTP/1.1" 200 7688
x.x.x.160 - - [13/Mar/2003:12:43:53 2000] "GET /sas5/styles/sas5_ie.css HTTP/1.1" 200 16665
x.x.x.160 - - [13/Mar/2003:12:43:53 2000] "GET /sas5/help/RoboHelp_CSH.js HTTP/1.1" 200 6709
x.x.x.160 - - [13/Mar/2003:12:43:53 2000] "GET /sas5/images/workstation.gif HTTP/1.1" 200 1290

104

APPENDIX C. WEBLOG EXCERPT 105

x.x.x.160 - - [13/Mar/2003:12:43:53 2000] "GET /sas5/images/plus.gif HTTP/1.1" 200 927
x.x.x.160 - - [13/Mar/2003:12:43:53 2000] "GET /sas5/images/managed_ne.gif HTTP/1.1" 200 1025
x.x.x.160 - - [13/Mar/2003:12:43:55 2000] "GET /sas5/network_servlet/showNeDetails?neId=OMC13

HTTP/1.1" 302 654
x.x.x.160 - - [13/Mar/2003:12:43:55 2000] "GET /sas5/NeDetails.jsp?pageid=1047552235448

HTTP/1.1" 200 5893
x.x.x.160 - - [13/Mar/2003:12:44:02 2000] "GET /sas5/network_servlet/showNetworkModel

HTTP/1.1" 302 654
x.x.x.160 - - [13/Mar/2003:12:44:02 2000] "GET /sas5/NetworkModel.jsp?pageid=1047552242217

HTTP/1.1" 200 7688
x.x.x.160 - - [13/Mar/2003:12:44:02 2000] "GET /sas5/images/workstation.gif HTTP/1.1" 200 1290
x.x.x.160 - - [13/Mar/2003:12:44:02 2000] "GET /sas5/images/managed_ne.gif HTTP/1.1" 200 1025
x.x.x.160 - - [13/Mar/2003:12:44:02 2000] "GET /sas5/images/plus.gif HTTP/1.1" 200 927
x.x.x.160 - - [13/Mar/2003:12:44:04 2000] "GET /sas5/network_servlet/updateView?element=OMC13

HTTP/1.1" 302 654
x.x.x.160 - - [13/Mar/2003:12:44:04 2000] "GET /sas5/NetworkModel.jsp?pageid=1047552244042

HTTP/1.1" 200 8173
x.x.x.160 - - [13/Mar/2003:12:44:04 2000] "GET /sas5/images/plus.gif HTTP/1.1" 200 927
x.x.x.160 - - [13/Mar/2003:12:44:04 2000] "GET /sas5/images/top_begin.gif HTTP/1.1" 200 907
x.x.x.160 - - [13/Mar/2003:12:44:04 2000] "GET /sas5/images/workstation.gif HTTP/1.1" 200 1290
x.x.x.160 - - [13/Mar/2003:12:44:04 2000] "GET /sas5/images/minus.gif HTTP/1.1" 200 931
x.x.x.160 - - [13/Mar/2003:12:44:04 2000] "GET /sas5/images/managed_ne.gif HTTP/1.1" 200 1025
x.x.x.160 - - [13/Mar/2003:12:44:06 2000] "GET /sas5/network_servlet/showConnectionDetails?

conId=mds1_OMC13_399&sourceNe=mds1&targetNe=OMC13 HTTP/1.1" 302 654
x.x.x.160 - - [13/Mar/2003:12:44:06 2000] "GET /sas5/ConnectionDetails.jsp?pageid=1047552246295

HTTP/1.1" 200 2835
x.x.x.160 - - [13/Mar/2003:12:44:18 2000] "GET /sas5/network_servlet/showNetworkModel

HTTP/1.1" 302 654
x.x.x.160 - - [13/Mar/2003:12:44:18 2000] "GET /sas5/NetworkModel.jsp?pageid=1047552258374

HTTP/1.1" 200 7688
x.x.x.160 - - [13/Mar/2003:12:44:18 2000] "GET /sas5/images/managed_ne.gif HTTP/1.1" 200 1025
x.x.x.160 - - [13/Mar/2003:12:44:18 2000] "GET /sas5/images/plus.gif HTTP/1.1" 200 927
x.x.x.160 - - [13/Mar/2003:12:44:18 2000] "GET /sas5/images/workstation.gif HTTP/1.1" 200 1290
x.x.x.160 - - [13/Mar/2003:12:44:19 2000] "GET /sas5/network_servlet/showNeDetails?neId=OMC13

HTTP/1.1" 302 654
x.x.x.160 - - [13/Mar/2003:12:44:19 2000] "GET /sas5/NeDetails.jsp?pageid=1047552259963

HTTP/1.1" 200 5893
x.x.x.160 - - [13/Mar/2003:12:44:28 2000] "GET /sas5/ne_types_servlet HTTP/1.1" 302 654
x.x.x.160 - - [13/Mar/2003:12:44:28 2000] "GET /sas5/NeTypes.jsp?pageid=1047552268074

HTTP/1.1" 200 4421
x.x.x.160 - - [13/Mar/2003:12:44:30 2000] "GET /sas5/ne_interface_types_servlet

HTTP/1.1" 200 1946
x.x.x.160 - - [13/Mar/2003:12:44:31 2000] "GET /sas5/connection_types_servlet HTTP/1.1" 200 2546
x.x.x.160 - - [13/Mar/2003:12:44:33 2000] "GET /sas5/default_ne_parameters_servlet

HTTP/1.1" 200 6374
x.x.x.160 - - [13/Mar/2003:12:44:37 2000] "GET /sas5/navigation_servlet/showEmptyMaintenance

HTTP/1.1" 302 654
x.x.x.160 - - [13/Mar/2003:12:44:37 2000] "GET /sas5/Frames.jsp?pageid=1047552277928

HTTP/1.1" 200 1324
x.x.x.160 - - [13/Mar/2003:12:44:37 2000] "GET /sas5/Header.jsp HTTP/1.1" 200 1122
x.x.x.160 - - [13/Mar/2003:12:44:37 2000] "GET /sas5/MaintenanceNavigation.jsp

HTTP/1.1" 200 1311
x.x.x.160 - - [13/Mar/2003:12:44:37 2000] "GET /sas5/MaintenanceMenu.jsp HTTP/1.1" 200 1400
x.x.x.160 - - [13/Mar/2003:12:44:37 2000] "GET /sas5/EmptyMaintenance.jsp HTTP/1.1" 200 103
x.x.x.160 - - [13/Mar/2003:12:44:37 2000] "GET /sas5/Empty.html HTTP/1.1" 200 289
x.x.x.160 - - [13/Mar/2003:12:44:37 2000] "GET /sas5/Footer.jsp HTTP/1.1" 200 950
x.x.x.160 - - [13/Mar/2003:12:44:37 2000] "GET /sas5/images/dot.gif HTTP/1.1" 200 43
x.x.x.160 - - [13/Mar/2003:12:44:37 2000] "GET /sas5/styles/sas5_ie.css HTTP/1.1" 200 16665
x.x.x.160 - - [13/Mar/2003:12:44:37 2000] "GET /sas5/images/comptel.gif HTTP/1.1" 200 1862
x.x.x.160 - - [13/Mar/2003:12:44:37 2000] "GET /sas5/images/menuBG.gif HTTP/1.1" 200 138
x.x.x.160 - - [13/Mar/2003:12:44:39 2000] "GET /sas5/system_status_servlet HTTP/1.1" 302 654
x.x.x.160 - - [13/Mar/2003:12:44:39 2000] "GET /sas5/SystemStatus.jsp?pageid=1047552279917

HTTP/1.1" 200 4471
x.x.x.160 - - [13/Mar/2003:12:44:39 2000] "GET /sas5/help/RoboHelp_CSH.js HTTP/1.1" 200 6709
x.x.x.160 - - [13/Mar/2003:12:44:39 2000] "GET /sas5/styles/sas5_ie.css HTTP/1.1" 200 16665
x.x.x.160 - - [13/Mar/2003:12:44:42 2000] "GET

/sas5/navigation_servlet/showEmptyOperationalConfiguration HTTP/1.1" 302 654
x.x.x.160 - - [13/Mar/2003:12:44:42 2000] "GET /sas5/Frames.jsp?pageid=1047552282538

HTTP/1.1" 200 1349

APPENDIX C. WEBLOG EXCERPT 106

x.x.x.160 - - [13/Mar/2003:12:44:42 2000] "GET /sas5/Header.jsp HTTP/1.1" 200 1122
x.x.x.160 - - [13/Mar/2003:12:44:42 2000] "GET /sas5/OperConfigNavigation.jsp HTTP/1.1" 200 1313
x.x.x.160 - - [13/Mar/2003:12:44:42 2000] "GET /sas5/OperationalConfigurationMenu.jsp

HTTP/1.1" 200 1260
x.x.x.160 - - [13/Mar/2003:12:44:42 2000] "GET /sas5/EmptyOperationalConfiguration.jsp

HTTP/1.1" 200 103
x.x.x.160 - - [13/Mar/2003:12:44:42 2000] "GET /sas5/Empty.html HTTP/1.1" 200 289
x.x.x.160 - - [13/Mar/2003:12:44:42 2000] "GET /sas5/Footer.jsp HTTP/1.1" 200 950
x.x.x.160 - - [13/Mar/2003:12:44:42 2000] "GET /sas5/styles/sas5_ie.css HTTP/1.1" 200 16665
x.x.x.160 - - [13/Mar/2003:12:44:42 2000] "GET /sas5/images/dot.gif HTTP/1.1" 200 43
x.x.x.160 - - [13/Mar/2003:12:44:42 2000] "GET /sas5/images/comptel.gif HTTP/1.1" 200 1862
x.x.x.160 - - [13/Mar/2003:12:44:42 2000] "GET /sas5/images/menuBG.gif HTTP/1.1" 200 138
x.x.x.160 - - [13/Mar/2003:12:44:44 2000] "GET /sas5/grc_servlet HTTP/1.1" 302 654
x.x.x.160 - - [13/Mar/2003:12:44:44 2000] "GET /sas5/GRCSections.jsp?pageid=1047552284126

HTTP/1.1" 200 1843
x.x.x.160 - - [13/Mar/2003:12:44:44 2000] "GET /sas5/help/RoboHelp_CSH.js HTTP/1.1" 200 6709
x.x.x.160 - - [13/Mar/2003:12:44:44 2000] "GET /sas5/styles/sas5_ie.css HTTP/1.1" 200 16665
x.x.x.160 - - [13/Mar/2003:12:44:45 2000] "GET /sas5/grc_servlet/showParameters?id=

comptel.cs.nemo HTTP/1.1" 302 654
x.x.x.160 - - [13/Mar/2003:12:44:45 2000] "GET /sas5/GRCParameters.jsp?pageid=1047552285178

HTTP/1.1" 200 2164
x.x.x.160 - - [13/Mar/2003:12:44:47 2000] "GET /sas5/GRCSections.jsp HTTP/1.1" 200 1843
x.x.x.160 - - [13/Mar/2003:12:44:47 2000] "GET /sas5/grc_servlet/showParameters?id=

comptel.sas HTTP/1.1" 302 654
x.x.x.160 - - [13/Mar/2003:12:44:47 2000] "GET /sas5/GRCParameters.jsp?pageid=1047552288742

HTTP/1.1" 200 1715
x.x.x.160 - - [13/Mar/2003:12:44:49 2000] "GET /sas5/GRCSections.jsp HTTP/1.1" 200 1843
x.x.x.160 - - [13/Mar/2003:12:44:49 2000] "GET /sas5/grc_servlet/showParameters?

id=comptel.sas.gui HTTP/1.1" 302 654
x.x.x.160 - - [13/Mar/2003:12:44:51 2000] "GET /sas5/GRCParameters.jsp?pageid=1047552290976

HTTP/1.1" 200 4576
x.x.x.160 - - [13/Mar/2003:12:44:57 2000] "GET /sas5/grc_servlet HTTP/1.1" 302 654
x.x.x.160 - - [13/Mar/2003:12:44:57 2000] "GET /sas5/GRCSections.jsp?pageid=1047552297863

HTTP/1.1" 200 1843
x.x.x.160 - - [13/Mar/2003:12:44:59 2000] "GET /sas5/grc_servlet/showParameters?id=

comptel.sas.re HTTP/1.1" 302 654
x.x.x.160 - - [13/Mar/2003:12:44:59 2000] "GET /sas5/GRCParameters.jsp?pageid=1047552299304

HTTP/1.1" 200 7468
x.x.x.160 - - [13/Mar/2003:12:45:09 2000] "GET /sas5/GRCSections.jsp HTTP/1.1" 200 1843
x.x.x.160 - - [13/Mar/2003:12:45:10 2000] "GET /sas5/grc_servlet/showParameters?id=

comptel.sas.te HTTP/1.1" 302 654
x.x.x.160 - - [13/Mar/2003:12:45:10 2000] "GET /sas5/GRCParameters.jsp?pageid=1047552310676

HTTP/1.1" 200 4708
x.x.x.160 - - [13/Mar/2003:12:47:52 2000] "GET /sas5/ui_user_servlet/logout HTTP/1.1" 302 654

The result of filtering the weblog against the hierarchical user interface description

(Appendix B) is below:

/sas5/navigation_servlet/showEmptyNetwork
/sas5/network_servlet
/sas5/network_servlet/showNeDetails?neIdFFF
/sas5/network_servlet/updateView?elementFFF
/sas5/network_servlet/showConnectionDetails?conIdFFF&sourceNeFFF&targetNeFFF
/sas5/network_servlet/showNeDetails?neIdFFF
/sas5/ne_types_servlet
/sas5/ne_interface_types_servlet
/sas5/connection_types_servlet
/sas5/default_ne_parameters_servlet
/sas5/navigation_servlet/showEmptyMaintenance
/sas5/system_status_servlet
/sas5/navigation_servlet/showEmptyOperationalConfiguration

APPENDIX C. WEBLOG EXCERPT 107

/sas5/grc_servlet
/sas5/grc_servlet/showParameters?idFFF
/sas5/grc_servlet/showParameters?idFFF
/sas5/grc_servlet/showParameters?idFFF
/sas5/grc_servlet
/sas5/grc_servlet/showParameters?idFFF
/sas5/grc_servlet/showParameters?idFFF
/sas5/ui_user_servlet/logout

