Helsinki University of Technology

Department of Electrical and Communications Engineering

Sami Rantala

Usability of user interface markup language

Thesis submitted in partial fulfillment of the requirements for the degree of Master of

Science in Engineering

Espoo, April 12, 2001

Supervisor: Marko Nieminen, Professor of User interfaces and usability

Instructor: Gerry Callaghan, B. Sc.

Helsinki University of Technology Abstract of the Master’s Thesis

Author: Sami Rantala
Name of the Thesis. Usability of user interface markup language

Date: April 12, 2001 Number of Pages: 88

Department of Electrical and Communications Engineering
Professorship: Tik-86 User interfaces and usability

Supervisor: Marko Nieminen, Professor of User interfaces and usability
Instructor: Gerry Callaghan, B.Sc.

User Interface Markup Language (UIML) is an appliance-independent language for
creating user interfaces. This study concentrates on how well user interfaces can be
created with UIML, both from developers’ and end-users perspective. However the
emphasisis on the developers' perspective.

First the existing knowledge is reviewed both on UIML and research methods. After
this two sets of user interfaces are built for testing. The first set is built with platform-
dependent languages, e.g. Java and Wireless Markup Language (WML), and the
second with UIML. A set consists of a PC application and a WML application. The
evaluation criteria and methods are defined before testing.

The user interfaces created during this thesis are identical within the limits given by
the pre-release version of the renderer, which is the program that renders the UIML
user interfaces. These limits bring out the biggest problem with UIML. It is totally
dependent on the implementation of the renderer.

Depending on the target platform, the amount of UIML code needed to achieve the
same outcome as with the platform-dependent languages ranges from only sightly
more to double of the comparable platform dependent language. Mapping one UIML
document to multiple platforms proved to be a difficult task as the platforms’ user
interface toolkits, e.g. Javaand WML, were structurally very different.

Despite the limitations of UIML, it is a moderately good language for user interface
creation. If good tools are made available and the renderers are up to the job, then
UIML may be a good solution for multiple-platform user interfaces.

Keywords: User Interface Markup Language (UIML), user interface (Ul), XML,
usability, appliance-independent.

Teknillinen Korkeakoulu Diplomityon Tiivistelmi

Tekij& Sami Rantala
Tyon Nimi: User interface markup language:n kaytettavyys

Paivaméara huhtikuu 12, 2001 Sivumaéré: 88

Osasto: Sahko- jatietoliikennetekniikka
Professuuri: Tik-86 Kayttoliittymét ja kaytettavyys

Tyon valvoja: Professori Marko Nieminen
Tyon ohjagja: Gerry Callaghan, B.Sc.

User Interface Markup Language (UIML) on alustariippumaton kayttdliittymien
luomiseen tarkoitettu kieli. Tama diplomityd keskittyy siihen, miten hyvin
kayttoliittymia voidaan luoda UIML:la loppukayttgian ja suunnittelijan
perspektiivista. Pagpaino on kuitenkin suunnittelijoiden puolella.

Ensmmaiseks kaydaan 18pi oleellista taustatietoa. Seuraavaks luodaan kaks paria
testikayttoliittymia. Ensimmainen pari on luotu JavallajaWML:lla (Wireless Markup
Language). Toinen pari on luotu UIML:la& Molemmat parit sisdtévé PC-
kayttoliittyman ja WAP-kayttdliittyman (Wireless Application Protocol). Kaytto-
liittymien arvostel uperusteet on mééritelty ennen testauksen aloittamista

Luodut kayttdliittyméa ovat identtisid kun ottaa huomioon UIML-tulkin
keskeneraisyyden. UIML-tulkki (eng. renderer) on ohjelma, joka luo kayttoliittyman
UIML-dokumentin perusteella. Tama tuo esille UIML:n suurimman ongelman.
UIML on taysin riippuvainen UIML-tulkin laadusta.

Riippuen austasta UIML:n vaatima koodimaéra verrattuna vastaavaan
alustariippuvaisella kielella tehtyyn kayttoliittyméan vaihtelee paljonkin. Javan
ollessa kyseessa suhde on 124% ja WML:n 230%, molemmissa tapauksissa
alustariippuvaisten kielten eduksi. Suuri rakenteellinen ero Javan ja WML:n vdilla
esti kayttamasta samaa UIM L-dokumenttia molempiin kayttoliittymiin.

Rajoituksistaan huolimatta UIML on melko hyva kieli kayttoliittymien luomiseen.
Jos UIML saa kunnon tyokalutuen, mukaanlukien tulkit, siitd voi muodostua hyva
ratkaisu, kun tarvitaan saman ohjelman kayttoliittymia monelle eri alustalle.

Avainsanat: User Interface Markup Language (UIML), kayttoliittym&, XML,
kaytettévyys, alustariippumattomuus.

Preface

Preface

I would like to thank Professor Marko Nieminen for his guideance through the entire

thesis. His pointers guided me to the right path from the beginning.

Specia thanks to Gerry Callaghan who presented the subject and patiently read
through my thesis many times and gave invaluable input. Also, big thanks to Eimear

Lyons, Danny Owens, Jennifer Allen and Denis Hackett for their help.

| am grateful to Ericsson and especially Harri Oikarinen for making my thesis
possible.

Specia thanks to Pia Lappalainen who helped me greatly by checking the grammar
and spelling of thisthesis.

Finally I would like to thank all the people that gave me advice and support. The
completion of thiswork would have been impossible without you. Thank you.

Rantala, Sami. Usability of user interface markup language. Department of Electrica and
Communications Engineering, Helsinki University of Technology. Espoo, Finland. 2001.

Table Of Figures

Table Of Figures

Figure 1. User interfaces needed with an appliance-dependent user interface language....................... 10
Figure 2. Files that are needed when using an appliance-independent user interface language............ 11
Figure 3. An XML element with a start tag and its corresponding end tag.ccccceveeevvevrcceeseesnene, 15
Figure 4. AN emPty ElEMENE........coiiiiiiere ettt bbb 16
Figure 5. User interface created With UTIML ... 19
Figure 6. UIML user interface after button Was pressed ... 20
Figure 7. Remote access. Renderer is situated on the client COMPULES...........cocoveverernienenneneeeeee 24
Figure 8. Remote access. Renderer is situated 0N the SEIVEr........coceeveeveccecce e 25
Figure 9. Applications and how they are implemented. ..o e 28
Figure 10. Banking application, unpaid DillS............cccoiieiieii i 32
Figure 11. Banking application, SEttingStah.cccoeiieii e 33
Figure 12. Banking application, pull-dOWN MENULccciiiririieeeieee e 33
Figure 13. Banking application, New Dill dialog.coeiririeiiineeere e 34
Figure 14. Banking application, new bill (copied from old) dialog.coceeerenriininninerecsee 34
Figure 15. Banking application, MaiN PAJE.........ccceeieereeiereeeseeseesteesieeeessaeseesseesseesseesssseesnsssseessesnes 35
Figure 16. Banking application, user infOrmation...........cccvccveirreesiese e 36
Figure 17. Banking application, list of unpaid billScard..........c.ccccevvevi e 37
Figure 18. Banking application, unpaid bill Card.cccoeov e 37
Figure 19. Banking application, NeW Dill Card...........cccoureirineiniereee e 38
Figure 20. Questionnaire results and average valUES fOr reSUILS.........ccocvreirinerenenere e 47
Figure 21. Lines of code for WAP application. Comments areincluded.ccocovvenvienenncnennenn 48
Figure 22. Lines of code for PC application. Comments are included.ccccooevevninennenennennnn. 49

Rantala, Sami. Usability of user interface markup language. Department of Electrica and
Communications Engineering, Helsinki University of Technology. Espoo, Finland. 2001.

Table Of Contents

Table Of Contents

1 INTRODUCTION ...couiiiiiinniiinuiseisensessesssisssiss 9
11 BACKGROUND ...ttt bbb bbb bbb bbb bbb bbb 9
12 RESEARCH PROBLEM ...ttt bbb s bbb 11
13 OBJECTIVES OF THE STUDY ...ttt sttt s s s s s s s sn e s 12
14 SCOPE OF THE STUDY ..ottt st s s sbe s b s s sh e s h e s sr e e sn e e 12
15 STRUCTURE OF THE THESIS......eciitiitiieiti et s s s s s 12
2 REVIEW OF EXISTING KNOWLEDGE 14
21 DEFINITION OF USABILITY .uoitiiiiiiiisiiiiin it b bbb 14
2.2 XML IN A NUTSHELL ottt bbb s 15
2.2.1 XML ROLALION G BPIES ..o 15
222 Well fOrMEANESS..........cc.ooouiiiiiii e 16
2.2.3 Data type definitioN.................c..ccevcviiiiieiiiiiieiie ettt 17
2.2.4 StYle SHEts I XMLcc.ccoooieiiieiiiieiieeeeee et 17
2.3 INTRODUCTION TO UIML ..o s 18
2.3.1 BASTC STPUCITUF@. ... 18
2.3.2 UIML @XAMPIE.........ccooiiiiiiiiiieeee ettt 19
2.3.3 UIML @IEMERLS ...ttt 20
2.3.4 Rendering the user iNterface.ccccccooiiiiiiiiiiiiiiii i 23
24 WML ettt bt be ettt e a e e bt e b e e b e e beenbeeneesheeneeenaeenreenteen 25
2.5 JAVA AND SWING.....ccuiiiiiiiitiieeie st 25
2.6 PLATFORM CONTEXT w.uvitiitiiiiiiiiiieie sttt sttt bbb s bbbt s 26
2.6.1 Desktop and laptop COMPULEEScc.occeevieiiiiiiiiiiieeceeeie e 26
2.6.2 Handheld cOmMPULErc.cccooiiiiiiiiiiee et 26
2.6.3 PDA oot 26
2.6.4 WAP cellular DRORe.................c.cocoiiiiiiiii e 27
2.6.5 VOUCE PRORC ... 27
2.6.6 3 GEHEFALION PFOGUCLS ...ttt enae s 27
2.7 RESEARCH BACKGROUND ..ottt ittt sttt st bbbt s bbb s 27
2.7.1 ReS@Arch MEINOUS ..ot 27
2.7.2 SCOIAFTOS ...t 28
2.7.3 USGDIlity FOSHING. ..ottt 29
2.7.4 Thinking-aloud Method.....................ccocciiiiiiiiiiiiee e 29
2.7.5 PiUlOE EOSTING. ... 29
3 CONSTRUCTION OF THE APPLICATION 30

Rantala, Sami. Usability of user interface markup language. Department of Electrica and
Communications Engineering, Helsinki University of Technology. Espoo, Finland. 2001.

Table Of Contents

31
3.2
3.2.1
3.2.2
3.3
3.3.1
332
3.3.3

4

41
4.2
4.3
4.3.1
4.3.2
4.4

5

5.1
5.2
5.3
5.4

6

6.1
6.1.1
6.1.2
6.1.3
6.2
6.3
6.4

7

8

CHOOSING THE APPLICATION ..ciiiiieettttetieesseesbbseeeassssssbasssessesssasssssseesesssasssssesssesssessssresseesssesns 30
S0 N Y =T N 30
PC oo 31

WWAPooooeeeeeeeeeee e 31
BUILDING THE APPLICATIONiiiiuutteeieeeteiiurteeeeesseassssssssessssssssssssesssssssssssssesssesssasssssssssesssesssnes 32
JAVA APPLICALION ... 32

WML QPPIICALION............c.oieiiee ettt 35

UIML GPPLICALIONS ... 38
EVALUATION OF THE APPLICATION 39
EVALUATION CRITERIA ..ceetttttiitteeeeeeeerereeeeeeereseseresssesesesssssesssssssssessseseseeseeeeeeeetereeeerrn 39
VERIFYING CRITERIA 1: COMPARING THE USER INTERFACES.....cciiiiiiiiririieeeeesseiirneeeeessssssnnnes 40
VERIFYING CRITERIA 2 ooeeeeieei i e eettettee e e e e seitastteesesssessbsaesssesssesasbasssasssessssbasseesesssassssesesesssesssres 40
USGDILIY FOSES ..ottt 40

DB ISIING. ... 42
VERIFYING CRITERIA 3; EXPERT OPINIONS ..veiiiiiiiiitirieeieeessesstbeeeeeessesasssssessssssesssssesssssssesnnnes 43
RESULTS OF THE STUDYcooeiiieeecrieeescnneeecsseessssssesssssssesssssssssssssssssssses 45
[T 11 =S (R 45
(Ol 1= = N N 45
(Ol = = NN 46
(@0l = 1N TN 47
CONCLUSIONS AND DISCUSSIONccoeevrerecrureeessrsneescsssnessssssassens 53
CRITERIA RESULT S ttttiiiiiiiittttteteeseeiiutteeteesssasibbsseessssssassbssssssesssassstesesesssessssresssesssesssssasssessseins 53

C IOEPIA L ..o e el 53

CF IO IA 2 ... 53

CF IO IA 3 oo 54

OTHER OBSERVATIONSuttttiiieeiieiiittetieesssssssbssieesssssassssssessesssassssssesesssesssresssesssesssssesseesssesns 56
RELIABILITY ANALY SIS utttiiiiiiiiiiittiiieeeisssisssetessssesissestsesssssssssssesesssssessssssssesssessssrssssesssessssnes 56
VALIDITY OF THE STUDY 1etiiiiiiiiiutteeiieeeeiiiitssteeesesssssssssssssesssasisssssssssssesssssssssssssssssssssssssesssesssres 58

Y U0Y 1LY DN 2 59
REFERENCESooueeeeereeccneeens 60

Rantala, Sami. Usability of user interface markup language. Department of Electrica and
Communications Engineering, Helsinki University of Technology. Espoo, Finland. 2001.

Abbreviations

Abbreviations

Abbreviation Explanation

DTD Data Type Definition

IT Information Technology

PC Personal Computer

PDA Personal Digital Assistant

Ul User Interface

UIML User Interface Markup Language
WAP Wireless Application Protocol
WML Wireless Markup Language
XML EXtensible Markup Language
XSL EXtended Style Language
HTML HyperText Markup Language

Rantala, Sami. Usability of user interface markup language. Department of Electrica and
Communications Engineering, Helsinki University of Technology. Espoo, Finland. 2001.

Introduction 9

1 Introduction

Nowadays people want to be able to access IT services, wherever they are. This
means that the same services must be available on many different appliances, such as
desktop PC, small PDAs, WAP phones and voice phones.

It is time consuming to create user interfaces for each of these appliances
independently. Ideally an interface should be specified without any device-dependent
information and mapped to different devices as necessary. This is where user
interface markup language steps in. UIML is an appliance-independent language for

describing user interfaces.

1.1 Background

Abrams (1999) defines three reasons for developing the UIML.:

» Historical motivation or raising the abstraction.

» Managing the family of interfaces.

* Avoiding market risks when devel oping applications for new appliances.
These reasons are inspected in more detail in the following paragraphs.

In the early stages of computers, programs were written in binary machine code.
Time passed and higher-level languages became available. Higher-level languages
are more abstract than lower-level ones and alow less skilled people to program.
This same trend can be seen in user interface creation. In the beginning there were no
readily available user interface components and everything had to be made from
scratch. As time passed, toolkits for user interfaces emerged. These toolkits were
collections of readymade user interface components that anyone could use.
Nowadays one can build the user interfaces using toolkits and graphical drag & drop
tools. User interface designers come from many different backgrounds, from human
factor specialists to cognitive psychologists, from graphic designers to programmers.
It is necessary to have a simple and flexible process for creating user interfaces.

Raised abstraction may allow non-programmers to create user interfaces.

Rantala, Sami. Usability of user interface markup language. Department of Electrica and
Communications Engineering, Helsinki University of Technology. Espoo, Finland. 2001.

Introduction 10

Consider a situation where the same application is run on PC, handheld PC and
cellular WAP phone. All of the appliances need their own user interfaces. All of
these user interfaces have common parts, since they are just different views of the
same application. Using appliance-independent user interface language would mean
that there is no need to write the common code for appliances multiple times.
Maintaining consistency across appliances is easy, since they all use the same data to
create the user interfaces.

Appliance-dependent style sheets are used to map the user interfaces into the current
appliances. All applications have appliance-independent code. The situation is even
better when multiple applications are running on multiple appliances. As can be seen
in Figure 1 and Figure 2, the amount of code needed to maintain 3 applications on
three appliances is reduced dramatically by using appliance-independent user
interface language. When using appliance-dependent language al applications need
separate user interfaces for all devices. On the other hand, when using appliance-
independent language, applications need one user interface description per
application and one style sheet per device. Style sheets contain the appliance-
dependent data. Style sheets are reusable for different applications.

Device | Device Device
| 2 i
Applic. | Interface | Interface | Interface
1 l 2 3
Applic. | Interface | Interface | Interface
2 4 5 o
Applie. | Interface | Interface | Interface
i 7 8 9

Figure 1. User interfaces needed with an appliance-dependent user interface

language.

Rantala, Sami. Usability of user interface markup language. Department of Electrica and
Communications Engineering, Helsinki University of Technology. Espoo, Finland. 2001.

Introduction 11

Style Sheet Device

Epplication UT Drescription 1 X

1 1

Style Sheet Device
2

Application UI Descripti
ptiot
2 ’ 2

Application UI Description

; N . Style Sheet

3

Figure 2. Files that are needed when using an appliance-independent user

interface language.

There are always risks in developing applications for new platforms. Using an
appliance-independent user interface language would allow the reuse of user

interface description and lower the risks when adopting new technol ogies.

1.2 Research problem

A reduction in the amount of user interface code needed for a single application
would reduce the workload of the developers. This would help the developers in
creating new user interfaces and maintaining the old user interfaces. But to be able to
find out if UIML really helps to reduce the amount of code, the following question
needs to be answered. Is it possible to create an application that runs on multiple

appliances with just one user interface definition and one style sheet per appliance?

If UIML is truly appliance-independent, then it probably reduces the amount of
source code needed for the user interfaces. But some things are harder to accomplish
than others. So it must be found out, if working with UIML is actually harder and
more time-consuming than with appliance-dependent methods.

There is still one important issue to be considered. UIML is a generic way of
describing user interfaces. User interfaces created with UIML may not be as good as
user interfaces created with appliance specific tools. It must be verified if thisis the

case.

Rantala, Sami. Usability of user interface markup language. Department of Electrica and
Communications Engineering, Helsinki University of Technology. Espoo, Finland. 2001.

Introduction 12

1.3 Objectives of the study

1. Tofind out UIML’slimitations and problemsin a multi-appliance environment.
2. Tofind out UIML’slimitations and problemsin user interface creation.

3. Toevauate the usability potential of UIML from the developers’ perspective.

1.4 Scope of the study

The scope of the study is limited to one test application on two appliances. Analysis
is based on expert opinions. Some usability testing is done, but most of the emphasis
is on expert opinions. This is due to the fact that the thesis focuses on inspecting a
user interface language and not user interfaces. There are no user interface building
tools based on UIML yet and this restricts the ability to create user interfaces for
testing.

The amount of appliances used in this study is limited to two. The appliances used
are a standard PC environment and a WAP cellular phone, which is simulated with a

program.

The most limiting factor of this study is that only one person can be used in the

actual work of creating the user interfaces.

1.5 Structure of the thesis

The first section is called Introduction and it goes through the problem domain and
defines the objectives for this thesis. The second section is called Review of Existing
Knowledge and it describes the problem domain and the research background

necessary for thisthesis.

Third section, Construction of the Application, goes through the selection of the test
application domain, the creation of scenarios and the actual construction of the test

applications.

Rantala, Sami. Usability of user interface markup language. Department of Electrica and
Communications Engineering, Helsinki University of Technology. Espoo, Finland. 2001.

Introduction 13

Evauation of the application, which is the fourth section, defines the evaluation
criteria and methods used during this study. The fifth section, Results of the Study,
states the results based on the evaluation methods defined in the previous section.

The sixth section is called Conclusion And Discussion and in this section the results
are inspected against the evaluation criteria. The validity and reliability of this thesis
are evaluated in this section. Also, any other observations concerning the study are
stated.

The seventh and the final section is called Summary and it gives an overview of the

results and the conclusions.

Rantala, Sami. Usability of user interface markup language. Department of Electrica and
Communications Engineering, Helsinki University of Technology. Espoo, Finland. 2001.

Review of Existing Knowledge 14

2 Review of Existing Knowledge

2.1 Definition of usability

Usability is not just one easily quantifiable property. Usability is traditionally defined
by five attributes (Nielsen 1993, 26).

» Learnability: The system should be easy to learn. This alows new users to
quickly start productive work.

» Efficiency: Once the system has been learned, it should be efficient to use to

allow high level of productivity.

» Memorability: The system should be easy to remember. This allows the casual

user to return to the system without having to relearn the whole system.

» Errors: The system should be built so that the error rate islow. When errors occur

it should be easy to recover from them.
» Satisfaction: The system should be pleasant to use.

The attributes that concern this thesis are learnability, efficiency and errors.
Memorability and satisfaction do not fit into the scope of this study, as inspecting
memorability would take more time than is available. Measuring satisfaction needs
more than one test subject for the results to be valid and there is only one test subject
available. In this case the test subject is the same as the user interface programmer.
Similarly, it is not possible to study learnability of UIML with the normal usability
methods within the boundaries set for this thesis.

The view taken on usability in thisthesisis alittle different from traditional usability
engineering. Thisis due to the fact that this thesis is about inspecting a user interface
language instead of a user interface. Here are the three attributes which concern the
thesis, and dlightly modified explanations that suit to the objectives of the thesis
better.

» Learnability: UIML as alanguage should be easy to learn.

Rantala, Sami. Usability of user interface markup language. Department of Electrica and
Communications Engineering, Helsinki University of Technology. Espoo, Finland. 2001.

Review of Existing Knowledge 15

» Efficiency: UIML as alanguage should allow designers to create user interfaces

efficiently and without limiting the designer’ s options.

» Errors: Creating user interfaces with UIML should not be more difficult than

appliance-dependent languages.

2.2 XML in a nutshell

This is a short introduction to the world of XML. The acronym XML stands for
eXtensible Markup Language. XML is a markup language that is used to define new
markup languages, in other words XML is a metalanguage.

World Wide Web Consortium is responsible for the development of XML and they
have published a recommendation (1999), which defines the language.

2.2.1 XML notation in brief

The XML document consists of a number of elements. In Figure 3 you can see an
example of an XML element. An element has a name and optional attributes. There
can be any number of attributes in an element. As Figure 3 shows, an attribute

consists of an attribute’ s name and an attribute’ s value.

Start tag
.—'-""/\“'——.

<element name=“example”>
N AL A
Tos ame Affributename AHriDite valne

e iy
T

Attribute

End tag

e Ty
</element>

Figure 3. An XML element with a start tag and its corresponding end tag.

Rantala, Sami. Usability of user interface markup language. Department of Electrica and
Communications Engineering, Helsinki University of Technology. Espoo, Finland. 2001.

Review of Existing Knowledge 16

An element may have text or other elements placed between its start and end tags.
Usually the element identifies the nature of the content they surround. If the element
has no content, then a shorter notation, shown in Figure 4, can be used.

Empty tag

<element name="example”/>

Figure 4. An empty element

2.2.2 Well formedness

Every XML document must be well formed. This means that the document must
follow all of the notational and structural rules of XML. The most important of these

rules are:
No unclosed tags.

Each and every element must be closed, that is, they must have an end tag. If the
element is empty it can use the shorthand shown in Figure 4.

No overlapping tags.

An element that is inside another element must close before the containing element
closes. This XML document, for example,

<sport>
<basketball></sport>
</basketball>

is not well formed, because the <basketball> element, which opens inside <sport>
element, is not closed inside of the <sport> element. The correct way to do it would
belike this:

<sport>
<basketball></basketball>
</sport>

Attribute values must be enclosed in quotes.

The correct way to assign values to the attributes is shown in Figure 3 and Figure 4.

Rantala, Sami. Usability of user interface markup language. Department of Electrica and
Communications Engineering, Helsinki University of Technology. Espoo, Finland. 2001.

Review of Existing Knowledge 17

The text characters <, > and ” must always be represented by ‘character

entities’.

When these three characters are used in the text part of the XML, they must be
represented by specia character entities, as shown in Table 1. Note that this does not
apply to the markup language itself.

Table 1. List of characters to be replaced when used in the text part of XML

document.
Character Replacing character entity
< <
> &qgt;
"

2.2.3 Data type definition

Data Type Definition (DTD) is the grammar for a markup language. The designer of
the markup language defines the DTD for that particular language. The DTD
specifies the elements and which attributes the elements may have. It also specifies

which elements may or must be found inside other elements and in which order.

If the XML document is well formed and follows the rules set in the DTD, then the
document isvalid XML.

2.2.4 Style sheets in XML

XML can be used with two different style sheets. The older one is cascading style
sheets or CSS and it can aso be used with HTML. The newer one is called
extensible style sheet language or XSL and it can only be used with the XML.

Rantala, Sami. Usability of user interface markup language. Department of Electrica and
Communications Engineering, Helsinki University of Technology. Espoo, Finland. 2001.

Review of Existing Knowledge 18

CSS (World Wide Web Consortium, 1998) can be used to specify formatting
semantics. For example, it could specify that the text contents of a certain element
should always be displayed in ared font.

XSL (World Wide Web Consortium, 2000) is a language for expressing style sheets.
It can be used to transform XML documents and to specify formatting semantics. In
addition to being capable of performing the same actions as CSS, XSL could, for
example, be used to transform a UIML document into an HTML document.

2.3 Introduction to UIML

This is a short introduction to a XML language called UIML. This section will go
through UIML’s structure and elements with the help of simple examples. Also, it
will show how user interfaces are created from UIML documents. A company named
Harmonia Inc. isresponsible for the development of the UIML specification.

2.3.1 Basic structure

Thisisthe basic structure for aUIML document:

<uiml>
<head>
<meta> ... </meta>
</head>
<peers> ... </peers>
<template> . .. </template>
<interface>
<structure>
<part>...</part>
</structure>
<style>
<property> . .. </property>
</style>
<content>
<constant> . .. </constant>
<content>
<behavior>
<rule> ... </rule>
</behavior>
</interface>
</uiml>

Rantala, Sami. Usability of user interface markup language. Department of Electrica and
Communications Engineering, Helsinki University of Technology. Espoo, Finland. 2001.

Review of Existing Knowledge 19

2.3.2 UIML example

Here is an example of an UIML document. The first three lines define that thisis an
UIML document. All XML documents have similar lines. The part that is inside
UIML tagsisthe actual UIML document.

<?xml version="1.0" encoding="1SO-8859-1"?>
<!DOCTYPE uiml PUBLIC "-//UIT//DTD UIML 2.0 Drafi/EN"
"CAUIML2\bin\UIML2 0d.dtd">
<uiml>
<interface>
<structure name="JavaSwing">
<part name="exampleFrame" class="JFrame">
<part name="button" class="JButton"></part>
</part>
</structure>
<style name="JavaSwing'™>
<property part-name="exampleFrame" name="title"> Example </property>
<property part-name="exampleFrame" name="size"> 300,100 </property>
<property part-name="button" name="text"> Press me </property>
</style>
<behavior>
<rule>
<condition>
<event class="actionPerformed" part-name="button"/>
</condition>
<action>
<property part-name="exampleFrame" name="title">Button was pressed
</property>
</action>
</rule>
</behavior>
</interface>
</uiml>

This UIML document produces the user interface shown in Figure 5 and Figure 6.

=1 Example H=] E3

Press me

Figure 5. User interface created with UIML

Rantala, Sami. Usability of user interface markup language. Department of Electrica and
Communications Engineering, Helsinki University of Technology. Espoo, Finland. 2001.

Review of Existing Knowledge 20

=4 Button was pressed =] 3

Press me

Figure 6. UIML user interface after button was pressed

2.3.3 UIML elements

This section presents the major UIML elements. Whenever possible the example in

the subsection 2.3.2 is used as a basis.
Interface

An interface element is composed of four other elements. It is a container for these

elements. The elements are structure, style, content and behavior.
Structure

The structure element is a hierarchical presentation of the user interface parts. Each
part has an instance name and a class. The instance name uniquely identifies the
part. The class identifies the part as being an element of a certain class. The user
interface implementers can freely choose the names and classes. Multiple structure

hierarchies can be used. It would look like this:

<structure name="JavaSwing">
<part name="exampleFrame" class="JFrame'>
<part name="button" class="JButton"></part>
</part>
</structure>
<structure name="secondStructure >

</structure>
The structure’ s name attribute can later be used to choose which structure hierarchy

is to be used. The JavaSwing structure defines that there is a JFrame component,

which has one JButton inside it. JFrame and JButton are Java Swing components.

Rantala, Sami. Usability of user interface markup language. Department of Electrica and
Communications Engineering, Helsinki University of Technology. Espoo, Finland. 2001.

Review of Existing Knowledge 21

Style

The style element specifies the presentation style for the interface parts. The
presentation is device-dependent and consequently each device needs its own style

elements.

Below is shown two different ways for the JavaSwing structure to render the
document. The difference is that if the BigJavaSwing style element is used, then the
size of the exampleFrame is doubled.

<style name="JavaSwing'™>
<property part-name="exampleFrame" name="title"> Example </property>
<property part-name="exampleFrame" name="size"> 300,100 </property>
<property part-name="button" name="text"> Press me </property>
</style>
<style name="BigJavaSwing >
<property part-name="exampleFrame" name="title"> Example </property>
<property part-name="exampleFrame" name="size"> 600,200 </property>
<property part-name="button" name="text"> Press me </property>
</style>

The part-name attribute sets the property’s value for the specified user interface part
and the part-class sets the value for all the interface parts of that class. If the property
is set for both the part and the class, then the value set for the part is used.

Content

UIML defines the content of the interface parts in a separate content element. There
can be multiple content hierarchies. For example, each language might have its own
content hierarchy or there might be separate novice and expert content hierarchies.
The contents of the interface parts can also be set by the application logic.

The content element is simple to use as can be seen in the following example:

<content name="english >
<constant name="title "> Example </constant>

<conmstant . ..> ... </constant>
</content>
<content name="finnish”>
<constant name="title > Esimerkki </constant>

Rantala, Sami. Usability of user interface markup language. Department of Electrica and
Communications Engineering, Helsinki University of Technology. Espoo, Finland. 2001.

Review of Existing Knowledge 22

<comstant . ..> ... </constant>
</content>

There can be constant elements with the same name attributes within other content
hierarchies, as shown in the example above. Before the constant actually appears
anywhere in the user interface it has to be referred to. This is done by writing the

property element in a dightly different way, as shown in the example below.

This example sets the value directly:
<property part-name="example” name="title "> Example </property>
and this refers to the constant element:

<property part-name="example”’ name=""title ">
<reference constant-name title”’/>
</property>

Behavior

The behavior of the user interface, i.e., what happens when the user interacts with the
user interface is specified in the behavior element. The behavior is defined by a set of

conditions and associated actions.

<behavior>
<rule>
<condition>
<event class="actionPerformed" part-name="button"/>
</condition>
<action>
<property part-name="exampleFrame" name="title">Button was pressed
</property>
</action>
</rule>
</behavior>

The rule in the above example specifies that when the event actionPerformed
happens to the part named button, the action specified inside the action element takes
place. In this case the action is targeted at a part named exampleFrame. That is
specified by the attribute part-name. The attribute name specifies the
exampleFrame’'s property which is to be set. The action means that the

exampleFrame’ stitleis set to “Button was pressed”.

Rantala, Sami. Usability of user interface markup language. Department of Electrica and
Communications Engineering, Helsinki University of Technology. Espoo, Finland. 2001.

Review of Existing Knowledge 23

Peers

The peers element defines relations between items in UIML document and target
platforms. For example, a part button in UIML document could correspond to a Java

swing object called JButton.
Template

The template allows the reuse of UIML elements. Each template element can contain
only one child element, but that child element can contain any number of child
elements. The element that sources the template must have the same tag name as the
template’s only child has. There are three choices how to source the template

element: replace, append and cascade.

Replace simply replaces the element, which sources the template, and it's child
nodes with the template. Append attaches the template to the end of the element that
sources the template. Cascade attaches the template nodes to the element, which
sources the template, only if there is no node with the same name. If there is a node
with the same name, cascade skips that node and tries the next one in the templ ate.

Head

The head element contains metadata about the current UIML document. It is similar
to HTML head element.

2.3.4 Rendering the user interface

Rendering is specified as follows in the UIML Draft Specification (2000)
“Rendering is a process of converting a UIML document into a form that can be
displayed (e.g. through sight or sound) to an end user, and with which an end user

can interact.”

There are two ways to render a UIML document. The first one is called compiling
and the second one interpreting.

Compiling means that the UIML document is compiled into another language.

Examples of possible languages are Java, WML and HTML.

Rantala, Sami. Usability of user interface markup language. Department of Electrica and
Communications Engineering, Helsinki University of Technology. Espoo, Finland. 2001.

Review of Existing Knowledge 24

Interpreting means that a program reads a UIML document and makes calls to an
appliance-dependent toolkit, which displays the user interface. For example, web
browsers do interpreting when presented with an HTML document.

In addition to the UIML document, a program called renderer is needed to run the
UIML user interface on a device. The renderer, as the name suggests, does the
rendering. When interpreting is used the renderer takes care of user interface events
and function calls that are made from the rendered user interface.

When using compiling, the end result is independent of the renderer. The compiled
document can be distributed and used without the renderer. On the other hand, when
using interpreting both the UIML document and the renderer are needed to run the
user interface. The advantage of interpreting is that in theory the user interface could
be changed and adjusted run-time. The weaknesses are the need for the renderer and

that the renderer introduces some overhead into user interface computations.

There are two ways of arranging remote access using UIML. In both cases the
interface server creates UIML instances dynamically using the user profile as input
and sends it to the renderer. The interface server is connected to the application’s

backbone.

Thefirst case is shown in the Figure 7. A PC web browser requests a UIML instance
from the interface server and gives possible user profile to the interface server. The
user profile might include something like the user's language or persona
preferences. In this case the renderer compiles the UIML document into a language
that the PC web browser understands, most likely HTML.

User profile
p — énterf ace
UM erver

PC weh
browser

Eenderer

—"""

Figure 7. Remote access. Renderer is situated on the client computer.

Rantala, Sami. Usability of user interface markup language. Department of Electrica and
Communications Engineering, Helsinki University of Technology. Espoo, Finland. 2001.

Review of Existing Knowledge 25

The second case is shown in Figure 8. Thisis basically the same case as above with
one exception. The renderer is on the interface server and it can, therefore, only be
used as a compiler. The interface server returns the compiled file, in this case in
WML, to the WAP cellular phone.

User profile
WAP cell ———

phune L WL

Interface
Server

Eenderer

Figure 8. Remote access. Renderer is situated on the server.

When running a UIML application on aloca device without remote connections, the
interface server shown in Figure 7 and Figure 8 is not needed. Instead, the
application itself is responsible for passing the UIML document to the renderer.

2.4 WML

WML stands for Wireless Markup Language. It is used to display information on
WAP-capable cellular phones. WML is an XML-based language created and
maintained by the WAP Forum. The WAP WML specification (2000) defines this
language.

WML uses the metaphor of a deck of cards. A card shows as a single page on aWAP
browser. A deck is a collection of cards. It is aso the smallest downloadable unit of
WML code.

2.5 Java and Swing

Java is an object-oriented programming language developed by Sun Microsystems.
Swing is part of the Java foundation classes and it is used in creating graphical user

interfaces.

Rantala, Sami. Usability of user interface markup language. Department of Electrica and
Communications Engineering, Helsinki University of Technology. Espoo, Finland. 2001.

Review of Existing Knowledge 26

2.6 Platform context

UIML can be used with avery wide range of devices and it can easily be extended to

work with new devices.

2.6.1 Desktop and laptop computers

There is a wide variety of desktop computers available. They all have keyboards,
pointing devices (e.g. mouse) and comparatively large view screens. They can be
connected to network with broadband connections and can handle complex multiple

window graphical user interfaces.

Applications on desktop and laptop computers can be divided roughly into two
categories: traditional applications that run on the same computer, and browser-based

applications that run on a server.

2.6.2 Handheld computer

Handheld computers are small enough to fit into a large pocket. They commonly
have keyboards, styluses and touch screens. Screen resolution is limited to less than
half of those available with desktop computers.

Their screen size limits the complexity of their user interfaces. Applications usually
have only one window. Handheld computers can have Internet access with the help

of cellular phones or with adirect link to a desktop computer.

2.6.3 PDA

Personal digital assistants (PDA) are smal enough to fit into a pocket. They
commonly have keypads, styluses and touch screens. Screen resolution is limited to

less than half of those available with desktop computers.

Rantala, Sami. Usability of user interface markup language. Department of Electrica and
Communications Engineering, Helsinki University of Technology. Espoo, Finland. 2001.

Review of Existing Knowledge 27

Their screen size limits the complexity of their user interfaces. Applications usually
have only one window. PDAs can have Internet access with the help of cdlular

phones or with direct links to a desktop computer.

2.6.4 WAP cellular phone

WAP celular phones usually have small black and white screens. The size and
resolution of the screen varies greatly among different phones. Applications are on
computers in various locations and WAP phones connect to them through a radio
link.

2.6.5 Voice phone

The ordinary voice phone, where the user listens to messages and gives commands
with the keypad.

2.6.6 3" generation products

These products are still on the drawing board. They will combine many of the
properties of handheld computers, PDAs and WAP phones. They will also have
broadband radio Internet accesses.

2.7 Research background

2.7.1 Research methods

Two sets of user interfaces will be created to inspect UIML. The first one is created
with UIML and the second one with appliance-dependent languages as shown in
Figure 9. Both sets of user interfaces are for the same application. The aim is to make

the user interfaces identical.

Rantala, Sami. Usability of user interface markup language. Department of Electrica and
Communications Engineering, Helsinki University of Technology. Espoo, Finland. 2001.

Review of Existing Knowledge 28

» Java g
PC
—»
\ PC Style
Sheet
Application 1 ——p TUIMIL
;EIZI:& Style
» wap
b WML p Phone

Figure 9. Applications and how they are implemented.

Java- and WM L-based user interfaces are used as a basis for the evaluation of UIML.
By comparing the user interfaces, one can investigate how well user interfaces can be
created with UIML. By comparing the source files and the work done on them, one

can see how much effort UIML takes compared to appliance-dependent languages.

Usability potential of UIML from the developer’s viewpoint is examined with expert

evauations.

2.7.2 Scenarios

Scenarios are stories of fictional characters using the system in fictional environment
(Preece J. et a 1994, 462). Characters and the environment are realistic
representations of real users and the environment. The stories try to capture the way
the system would be used when it is completed. Multiple scenarios will be needed to

reflect all the different situations that can occur.

Scenarios offer a concrete way for designers to evaluate the design in the early
phases of a design process. Since scenarios describe the actual ways of using the

system, they can easily be used as usability test tasks.

Rantala, Sami. Usability of user interface markup language. Department of Electrica and
Communications Engineering, Helsinki University of Technology. Espoo, Finland. 2001.

Review of Existing Knowledge 29

2.7.3 Usability testing

Usability testing with real people provides direct information about how they use the
system. Usability tests consist of atest application, test subjects and test tasks. Test
subjects are given tasks to do on the test application. The experimenter monitors how
the test subject does these tasks.

Usability testing gives designers invaluable information on how the real users see the

user interface and what are the problems with it.

2.7.4 Thinking-aloud method

Nielsen (1993, 195) says “Thinking aloud method may be the single most valuable
usability engineering method.” Thinking-aloud method calls for the test subjects to
continuously think aloud while they are using the test application.

Experimenters get a direct “view” in to the test subjects thoughts and thus can see

which parts of the test application cause problems to them.

2.7.5 Pilot testing

Pilot testing is often used to verify that the usability test plan realy functions as
intended. It usually finds at least some of the bugs in the test plan, which can be
fixed once they are found (Rubin 1994, 95). After the deficiencies are fixed the rea
tests will run much smoother. Also user interface problems found during the pilot
tests can be fixed before the rea testing begins. There are no reasons to test for
known problems.

Rantala, Sami. Usability of user interface markup language. Department of Electrica and
Communications Engineering, Helsinki University of Technology. Espoo, Finland. 2001.

Construction of the Application 30

3 Construction of the Application

The test applications will have functional user interfaces and the minimum necessary
application logic so they can be tested. Applications are not meant to be realistic. So
they will not have all the features usually associated with real applications.

3.1 Choosing the application

The application selected for the project should be one that can and would be used on
different appliances. UIML is most likely to be used in an area where the need to use

severa different appliancesis great.

The application should have users who would use it on a PC and on mobile
appliances. Mobile appliances include handheld computers, PDA’s and WAP

cellular phones.

Banks offer services, which can be of great use to mobile users as well as home
users. Paying bills and checking account events from home or on the move can be

very useful. This fulfills our requirements for the test application.

3.2 Scenario

Two dlightly different scenario sets are to be used as the basis for building of the two
applications. Both have two scenarios. The first set is used with the PC application
and the second set is used with the WAP application.

Scenarios are also used as usability test tasks. They are used to make the test person
feel that he's inside the problem and at the same time the scenario gives him goals
for the test.

Rantala, Sami. Usability of user interface markup language. Department of Electrica and
Communications Engineering, Helsinki University of Technology. Espoo, Finland. 2001.

Construction of the Application 31

3.21 PC

Scenario 1:

You are a home and there is an electric bill to be paid. The bills due date is
tomorrow, so it has to be paid soon. You have a home computer and on it you have
remote banking application and Internet connection. Y ou decide to use them to pay

your bill.
Scenario 2:

When you are putting the bill in the binder, you notice that the sum is much larger
than in the previous electric bills. You call the electric company and they admit that
there has been a computer error and they’ll send a new fixed bill to you. Now you

need to cancel the bill before the money leaves your account.

3.2.2 WAP

Scenario 1:

You are leaving for a holiday trip with your family. On your way to the car you
check the mailbox, not the electronic one, one last time. You find a phone bill and
take it with you. In the evening, after long drive, you take out your WAP capable

cellular phone and useiit to pay the bill.
Scenario 2:

After giving the payment order via your WAP phone, you place the bill in the
envelope for safekeeping until you get back to your house. While doing this you
notice that the bill is not actually addressed for you but your neighbor. Postman must
have made a mistake. You decide to cancel your payment and give the bill to your
neighbor when you get back.

Rantala, Sami. Usability of user interface markup language. Department of Electrica and
Communications Engineering, Helsinki University of Technology. Espoo, Finland. 2001.

Construction of the Application 32

3.3 Building the application

3.3.1 Java application

The banking application has a main window that can be divided into two parts: user
information and tab panel. User information part as shown in Figure 10 shows user’s
name, account number and account balance. There is also a button labeled “New
bill” in user information part. This button opens adialog for anew hill.

B Banking application
File

ETHE I]e.n. Banke
Arcourn 1224876 'H-'I

Balance: 1042

Linpaid Bills | seﬂlnqsl

Due Date | P ayee | £
| Ot 27, 20000 John Do 150
Moy 27, 2000 Jog Smih 300
Cogy 5 New Bl Delete]

Figure 10. Banking application, unpaid bills.

The tab panel has two tabs. The first one shows the list of unpaid bills and it can be
seen in the Figure 10. The list shows following information about the bills: Due date,
Payee and amount. Bills can be chosen from the list and the chosen bill can be either
deleted or copied as a new bill. These actions are launched from the two buttons at
the bottom of the Figure 10.

The second tab is named “ Settings” and it can be seen in Figure 11. In settings tab,
there is only two radio buttons, which control the language used in the application.

Possible choices are English and Finnish.

Rantala, Sami. Usability of user interface markup language. Department of Electrica and
Communications Engineering, Helsinki University of Technology. Espoo, Finland. 2001.

Construction of the Application 33

f2t Banking application
File

Mama: I]au. Banker
Sceounl 1224-B76 wl

Balance: 10432

Unpald Bills Setings |

@ Englizh " Finnish

Figure 11. Banking application, settings tab.

There is a pull-down menu on the top of the application window and the pull-down

menu is shown in Figure 12.

ey Bill |

Figure 12. Banking application, pull-down menu.

When user wants to enter a new bill, he or she either presses the button labeled “New
Bill” or chooses the “New Bill” action from the pull-down menu. This opens a new
window, which is unsurprisingly called “New Bill”. This window can be seen in
Figure 13.

Rantala, Sami. Usability of user interface markup language. Department of Electrica and
Communications Engineering, Helsinki University of Technology. Espoo, Finland. 2001.

Construction of the Application 34

53 New Bill
T Payes - 1 Mote -
Marne: i ;I
Account: i _j

Cue Date: r—" I_ | Amaount; |

Ik, | Cancel |

Figure 13. Banking application, new bill dialog.

If user presses “Copy as a New Bill” button, when a bill is highlighted on the list, a
new window, which is shown in Figure 14, opens. The only differences from Figure
13 are, that the window title is different and that the input fields are filled.

=i New Bill(Copied from old)

T Payes - 1 Mote -
Marne: i-JI:IE 5mith| Rent =
Account |o265-214 ,_ ~|

Due Date: [27 [10][2000 Amount: 300

Ik, | Cancel |

Figure 14. Banking application, new bill (copied from old) dialog.
The new bill dialogs have input fields for following information:

* Payee name

* Payee account

* Note

* Duedate, separate fields for days, months and year

Rantala, Sami. Usability of user interface markup language. Department of Electrica and
Communications Engineering, Helsinki University of Technology. Espoo, Finland. 2001.

Construction of the Application 35

e Amount

The window has also two buttons, which are labeled OK and Cancel. As one can
expect OK accepts the new bill and Cancel rejects it. Both buttons close the new bill

window.

3.3.2 WML application

The WML application differs somewhat from the Java application. The main page or

card shown in Figure 15 has three links:
* Userinformation
e Unpaid bills

* New hill

Bankin

Un-aid bills
Hew bill

Options

Figure 15. Banking application, main page

Rantala, Sami. Usability of user interface markup language. Department of Electrical and
Communications Engineering, Helsinki University of Technology. Espoo, Finland. 2001.

Construction of the Application 36

User information card shown in Figure 16 shows user’s name, account and balance.
Account can be selected, but it doesn’t affect anything.

Ui K 2 TN

— Uszer Information—
Mame: lack Banker

Oplions Back |

Figure 16. Banking application, user information

Thelist of unpaid billsis shown in Figure 17. The bill’ s information name contains a
link to more specific information about the bill. The term list is a bit misleading for
this card, since it only supports one hill. The reason for thisisthat if this were ared
application, the WAP server would be responsible for creating the WML cards
dynamically. Since the application backbone is not implemented, this approximation
is adequate.

Rantala, Sami. Usability of user interface markup language. Department of Electrica and
Communications Engineering, Helsinki University of Technology. Espoo, Finland. 2001.

Construction of the Application 37

(e I = T

—List of unpaid bills —

Dlake: 110900
Amount: 155

Options

Figure 17. Banking application, list of unpaid bills card.

Card unpaid bill shown in Figure 18 contains al the information about the chosen
bill.

Unpaid bill ——
Account: 1234333

Account: 1234323 Moke:
Mote: Due date: 110900

Due dake: 110900 Amount: 155

Options Dptions

Figure 18. Banking application, unpaid bill card.

New bill card shown in Figure 19 is used to enter new bill information. The card has

input fields for following information:
* Payee name

* Payee account

Rantala, Sami. Usability of user interface markup language. Department of Electrical and
Communications Engineering, Helsinki University of Technology. Espoo, Finland. 2001.

Construction of the Application 38

* Note
 Duedate
e Amount

W MECILS,

Mew bill——

(|
D daki:
[110900]

Figure 19. Banking application, new bill card.

3.3.3 UIML applications

UIML applications should look identical to those introduced in 3.3.1 and 3.3.2.

Rantala, Sami. Usability of user interface markup language. Department of Electrical and
Communications Engineering, Helsinki University of Technology. Espoo, Finland. 2001.

Evaluation of the Application

39

4 Evaluation of the Application

4.1 Evaluation criteria

For unambiguous results clearly stated success criteriais needed. Success criteriaand
methods for their verification are listed in the Table 2 below.

Table 2 Success criteria and methods of verification.

ID Criteria Importance | Method of verification

1 User interface components of the | Mandatory Compare the Java and the WML
UIML user interfface must be application to the UIML user interface.
positioned according to the designer’s They should be very close to identical.
plan

2 The usability of the UIML user | Desirable Usability tests and interviews.
interface should be as good as the
usability of user interface created
with appliance-dependent language. ?

3 The UIML should not be | Desrable Expert opinion based on comparing the

significantly harder to use than

appliance-dependent languages

code needed for the user interfaces.

“Not significantly harder” means

approximately same amount of work

@Usahility isawide areaand it is not fully covered by thisthesis.

UIML and WML are both XML languages. Any XML language can be mapped into

other XML language as long as they have al the relevant information. It may be
possible that the WML code rendered from the UIML document is identical to the
original WML code. In this case there is no need to run any tests on them.

Comparing two identical user interfaces, which also have identical source code, is a

waste of time.

Rantala, Sami. Usability of user interface markup language. Department of Electrica and
Communications Engineering, Helsinki University of Technology. Espoo, Finland. 2001.

Evaluation of the Application 40

4.2 \Verifying criteria 1: Comparing the user interfaces

The user interfaces are compared by placing them side by side and examining them
visualy. All deviations are noted and their importance is evaluated. Any major
deviancies, which can not be fixed, mean that the UIML won't pass the criteria 1
shown in Table 2.

4.3 Verifying criteria 2

4.3.1 Usability tests

The usahility tests are used to evaluate the usability of the user interfaces. The goal is
to compare the UIML user interfaces to the Java and WML based user interfaces.
The input is not used to improve the user interfaces, but to evaluate the differences

between the languages used in creating them.

The test subjects are chosen from the personnel of Ericsson Systems Expertise Ltd.
in Athlone, Ireland. Thisis also the place where the tests are done. As tests are used
in examining the UIML language and not the application itself, there is no need to
get a good representation of the normal banking application users. Four test subjects
are chosen from the experienced usability people.

The usability tests use the scenarios described in the subsection 3.2. All test subjects
go through al the scenarios. Test subjects are not told which user interface they are
using at the time of testing. Half of the test subjects go through the user interfacesin
opposite order. This should prevent the learning effect from biasing the tests. After
the usability tests, the test subjects are debriefed to find out their personal
preferences and observations concerning the user interfaces. After the debriefing
they are told which user interface was done with which user interface language. This

isdone to avoid any prejudices affecting the tests and debriefing.

The experimenter and the user interface designer are the same person. This creates
some objectivity problems (Nielsen 1993, 180), which is unavoidable. No recording

devices are used during the testing.

The usability tests are run on afollowing setup.

Rantala, Sami. Usability of user interface markup language. Department of Electrica and
Communications Engineering, Helsinki University of Technology. Espoo, Finland. 2001.

Evaluation of the Application 41

e Desktop PC

e Windows NT 4.0 operating system

e 500 MHz Intel Pentium 3 processor

e 128 Mb of main memory

» Java?2 SDK, Standard Edition Version 1.3.0

* NokiaWAP Toolkit 2.0

e Universal IT UIML Javarenderer version 0.5d

e Universal IT UIML WML renderer version 0.3b
Nokia s WAP toolkit is used to simulate a WAP phone on the PC.

Criteria 2 can be separated into two parts. functional usability and subjective
usability. Functional usability is concerned with the correct use of a user interface
and deviations from that. Subjective usability is concerned with the opinions of the
test subjects and is consequently more concerned with the comfort of use of user

interfaces.

UIML fails the functional part of the criteria 2 if the usability tests find that the
UIML user interfaces do not function as specified. If there is failure and it can be
fixed, then obvioudly the fault is in implementation and not with the UIML. The
success of the subjective part is decided by the questionnaire administered in the

debriefing phase.

Pilot testing will be used to test the whole usability test process from start to finish.
That means that the pilot test subject will go through both the usability tests and
debriefing. Only one pilot test subject is used. The pilot test subject is chosen from
the same pool as the test subjects. The thinking - aloud method (Nielsen 1993, 195-
198) is used during pilot testing. This helps to find out problems in the scenarios and
applications that would cause unnecessary complications with the usability tests.

Rantala, Sami. Usability of user interface markup language. Department of Electrica and
Communications Engineering, Helsinki University of Technology. Espoo, Finland. 2001.

Evaluation of the Application 42

4.3.2 Debriefing

Each test subject is debriefed immediately after his or her usability tests are finished.
Thisisto make sure that the tests are still fresh in the memory. Debriefing consists of
aquestionnaire and an interview.

The questionnaire is administered before any other discussion about the system. This
helps avoid any biases caused by the comments of the experimenter (Nielsen 1993,

191). After the questionnaire isfilled, there is an interview.

The questionnaire is used to compare the user interfaces created with UIML to those
created with Java and WML. Semantic differentials are used for this, since they are
scales on which the test subjects are asked to express the degree to which they favor
one of two choices (Rubin 1994, 203). This questionnaire uses five point scales as
shown in Table 3. Both ends of the scale read from 1-2 and 0 in the middle is a no-
preference choice. This prevents any bias associated with higher versus lower
numbers (Rubin 1994, 203).

Table 3. The scale used in the questionnaire.

Application 1 2 1 0 1 2 Application 2

Questionnaire has five questions on PC and WAP applications, which results in ten
guestions altogether. Both PC and WAP application parts have the same questions.
The questions are:

1. Which one looks better?

2. Which one responds faster?

3. Which one has faster screen updates?
4. Which oneiseasier to use?

5. | prefer?

PC and WAP applications are separate cases when considering the criteria 2. No

guestion should get mean value of more than 1 in favor of non-UIML user interfaces.

Rantala, Sami. Usability of user interface markup language. Department of Electrica and
Communications Engineering, Helsinki University of Technology. Espoo, Finland. 2001.

Evaluation of the Application 43

Also, the mean value of all five of the questions should not exceed 0,75 in favor of
non-UIML user interfaces. If either one or both of these conditions fail, then UIML
fails the subjective part of criteria 2.

Test subjects are also asked for the reasons behind their answers in the questionnaire.
This may reveal consistent complaints about some aspects of either one of the user

interfaces and thus help out in finding weaknesses about them.

During the interview the test subjects are asked for any comments they might have
about the applications. The aim is to find what differences the test subjects noticed
and which they thought affected the usability of the application. Attention is also
given to the subjective seriousness of the usability problems.

After the debriefing is finished, the questionnaires and the experimenter’ s notes will
be labeled with the test subject’s number. Also, a short test report shall be written if

necessary.

4.4 Verifying criteria 3: Expert opinions

The time spent on creating the user interfacesis not a good measuring unit to find out
which interface is harder to use for following reasons:

* When creating the Java and WML interface al user interface components and
their variables were defined. These same variables are used with UIML. So, the
time needed with the UIML is not comparable, because there is less work to be

done with it.

* UIML isanew language and therefore UIML programming skills are not as high
as with already existing languages. Consequently a lot of time is spent on
studying the UIML language and the studying is intermixed with user interface
coding. This means that it is very difficult to estimate the time needed to code the

user interfaces.

Because of these reasons some other measurement unit should be used to measure
how hard the UIML is to use. An expert opinion based on observing the following
pointsis used to evaluate the criteria 3:

Rantala, Sami. Usability of user interface markup language. Department of Electrica and
Communications Engineering, Helsinki University of Technology. Espoo, Finland. 2001.

Evaluation of the Application 44

 Amount of code needed for UIML based application versus Java and WML
applications.

* Amount of appliance-independent code in UIML documents.
* Amount of appliance-dependent code needed to support UIML.
» How easily appliance-dependent code works with UIML.

* How difficult it is to implement an UIML application versus Java and WML

applications. Thisincludes an estimate of UIML learnability.

» Complexity of UIML document versus Java and WML code.

Rantala, Sami. Usability of user interface markup language. Department of Electrica and
Communications Engineering, Helsinki University of Technology. Espoo, Finland. 2001.

Results of the Study 45

5 Results of the Study

5.1 Pilot test

The pilot test showed that the way the application works is not as clear as it should
be. Subject thought that the bill is paid immediately after it is entered. In other
words, the ideathat the bill is on the list of unpaid bills and is paid when the due date
arrives was not intuitive for the test subject. To avoid more problems of this type the
idea will be explained to the test subjects. This does not disqualify the results from
the usability tests, because it is the user interface language that is being tested, not
the application logic.

No other problems were found during the pilot test.

5.2 Criteria 1

The WML renderer is not complete at the time of testing and the current version
supports only part of the WML tags and UIML properties. When the supported tags
were compiled, the resulting WML file is exactly the same as the target WML file
minus the unsupported tags. Based on this, an assumption can be made that the
unsupported tags would also be compiled correctly on later renderer versions. If the
renderer supported al WML tags, the UIML-WAP and WML-WAP user interfaces
would be identical. Therefore, usability testing and comparing the WAP user

interfaces is unnecessary.

Although the Java renderer is not complete at the time of testing, the UIML user
interface is identical with the Java user interface. Screenshots from the Java
application can be found in section 3.3.1 and screenshots from the UIML PC

application are in appendix 1.

Rantala, Sami. Usability of user interface markup language. Department of Electrica and
Communications Engineering, Helsinki University of Technology. Espoo, Finland. 2001.

Results of the Study 46

5.3 Criteria 2

WAP applications were not tested for the reason given in the first paragraph of

section 5.2.

The usability test did not find any functional problems specific to the UIML
application. One functional problem was found outside of the tests. It concerns the
table and row-selection. To use the “Copy as anew” feature in the UIML application
one must select the wanted row twice, when using it the first time. After the first time
everything works correctly. Also, either deleting a bill or changing the user interface
language eliminates this problem. This problem is not evident in the Java application,
which uses this table in the same way as the UIML application. Most likely this
problem originates from the way the renderer handles Java events. This may change

with the future rel eases of the Javarenderer.

Figure 20 shows the questionnaire answers and average values for each question.
Only one test subject favored one of the test applications over the other. The test
subject favored Java application dlightly on questions 2, 3 and 5. The test subject
wrote in the questionnaire that it was likely that the preference was caused by
learning effect making the second test application faster to use. Otherwise the test
subjects noticed no differences between the test applications.

Rantala, Sami. Usability of user interface markup language. Department of Electrica and
Communications Engineering, Helsinki University of Technology. Espoo, Finland. 2001.

Results of the Study 47

[
[|
—
1 |
|
I
I
2 |
|
I
) E Test subject 1
S M Test subject 2
» 3 I O Test subject 3
S o Test subject 4
] W Average value
|
I
4 |
|
I
I
5 |
|
UIML 2 1 0 1 2 Java
Answers

Figure 20. Questionnaire results and average values for results

The questionnaires found out all that was intended and the interviews did not reveal
anything new. This was because the user interfaces are identical from the users

perspective.

5.4 Criteria 3

The amount of lines of code needed for the WAP user interfaces is shown in Figure
21. WML needs only 82 lines of code, where UIML needs 191, which does not even
contain all the functionality of the WML user interface. If al functionality were
included, it would increase the amount of lines to over 200. There are more than two

times as many linesin the UIML document asin the WML file.

Rantala, Sami. Usability of user interface markup language. Department of Electrica and
Communications Engineering, Helsinki University of Technology. Espoo, Finland. 2001.

Results of the Study 48

250

200

150

Lines of code

100 4 191

50

82

UIML WML
Ul language

Figure 21. Lines of code for WAP application. Comments are included.

Figure 22 shows the amount and the distribution of lines of code for the PC
applications. The application backbone is the same for both of the applications. As
can be seen, the UIML application has 186 lines of code more than the Java
application. It means that the UIML application is 24% larger than the Java
application.

32% of the UIML application’s actual user interface code is Java. This Java code
consists of necessary methods for the UIML document to work with the application
backbone and of code to use some user interface components and actions, which
were not supported by UIML. These mainly consist of methods used in creating and
updating border objects and the table.

Rantala, Sami. Usability of user interface markup language. Department of Electrica and
Communications Engineering, Helsinki University of Technology. Espoo, Finland. 2001.

Results of the Study 49

1200
1000 1 Total 969
Total 783
800 -
OuUIML
M Java code

600 -

O Application Backbone

Lines of code

UIML JAVA
Ul language

Figure 22. Lines of code for PC application. Comments are included.

The following example gives a good idea of how complex it isto use UIML in WAP
user interface creation. It is an extreme case, but it demonstrates the complexity very
well. These examples are from the test applications and rest of the UIML documents
can be found in the appendix 2. First isthe WML code:

<card id="new" title="New bill">
<p>
Payee: <input name="name"/>
Payee account: <input name="account"/>
Note: <input name="note"/>
Due date:<input name="date"/>
Amount: <input name="amount"/>
</p>
</card>

The picture of the user interface that this piece of code creates can be seen in Figure
19 on page 38. The parts from UIML document that produce exactly the same WML

codelook likethis:

<part name="new" class="Card">

<part name="prev2" class="Do"/>

<part name="newpara" class="P">
<part name="newl" class="RichText"/>
<part name="namefield" class="Input"/>
<part name="new2" class="RichText"/>
<part name="accountfield" class="Input"/>
<part name="new3" class="RichText"/>

Rantala, Sami. Usability of user interface markup language. Department of Electrica and
Communications Engineering, Helsinki University of Technology. Espoo, Finland. 2001.

Results of the Study 50

<part name="notefield" class="Input"/>
<part name="new4" class="RichText"/>
<part name="datefield" class="Input"/>
<part name="new3" class="RichText"/>
<part name="amountfield" class="Input"/>
</part>
</part>

<style>
<property part-name="new" name="title">New bill</property>
<property part-name="newl" name="content">Name:</property>
<property part-name="new2" name="content">Account:</property>
<property part-name="new3" name="content">Note:</property>
<property part-name="new4" name="content">Date.:</property>
<property part-name="new5" name="content">Amount.: </property>
<property part-name="namefield" name="name">name</property>
<property part-name="accountfield" name="name">account</property>
<property part-name="notefield" name="name">note</property>
<property part-name="datefield" name="name">date</property>
<property part-name="amountfield" name="name">amount</property>

style
</style>

<rule>
<condition>
<event class="prev" part-name="new" name="do"/>
</condition>
<action>
<property part-name="prev" name="visible">true</property>
</action>
</rule>

This example does not include the definitions for the WML vocabulary, since the
renderer provides it. This complexity comes from the fact that when using UIML
each value and attribute needs to be set separately. In most parts the complexity of
this example comes from the input elements that are inside the text paragraph. UIML
provides no way to place an element inside an other element’s value. The solution is
to break the latter element into two pieces and insert the former element between

them.

Using Java Swing toolkit with UIML is more straightforward than using UIML to
create WML code, since both Java Swing and UIML separate the structure and the
content from each other. The Java code is in appendix 3. When comparing the Java

code and the UIML document used in creating a user interface, there are many

Rantala, Sami. Usability of user interface markup language. Department of Electrica and
Communications Engineering, Helsinki University of Technology. Espoo, Finland. 2001.

Results of the Study 51

similarities. Swing uses a hierarchical way in user interface element placement, same
as UIML. Swing uses methods to set element properties and content. UIML uses the
property and content elements. These similarities lead to that working with UIML

and Swing toolkit is similar to working with only Java Swing.

How well does the appliance-dependent code work with UIML? This is a renderer
specific question, but the renderer proves that UIML can and does work well with
Java. For example, the renderer does not support Java borders, but it was possible to
add borders with Java code to the UIML user interface. Also, it proved to be possible
to send and receive data between UIML user interface and Java program. A real
problem with UIML and Java cooperation was found when using the table element.
This problem is described in section 5.3 in greater detail. Accessing some Swing
properties and methods from UIML is a bit different from what one would expect
from Java coding experience. For example, when using Java some Swing properties
have to be set by using method calls, but when using UIML they are set using
attributes. Other small differences can be found between Java and UIML.

The amount of appliance-independent code in UIML could not be verified
experimentally, since at the time of the testing the current version of the renderer did
not support all of the necessary properties of UIML. Working with UIML brought to
light some pros and cons concerning the appliance-independent code. These are
discussed in the following paragraphs.

In section 1.1 it was claimed that only one common style sheet is needed per
appliance for al applications. This claim is not achieved, since almost every user
interface component needs it’s own settings in all applications. UIML has a concept
called a vocabulary, which is used to map UIML code into a specific toolkit. It can
be said that one appliance needs one style shest, if the style sheet is the vocabulary
for the appliance. But they still need style elements for describing the user interface
elements. Creating a vocabulary is extra work that has to be done once for each
appliance.

When comparing UIML documents for the PC and the WAP phone it is clear that
they have structuraly little in common, which may or may not be the result of poor

design. But when one compares the complexities of both of the UIML documents, it

Rantala, Sami. Usability of user interface markup language. Department of Electrica and
Communications Engineering, Helsinki University of Technology. Espoo, Finland. 2001.

Results of the Study 52

is clear that the PC document’s structure is much more complex. This large

difference in the complexities indicates that they would be structurally hard to match.

The contents of user interface elements are mostly appliance-independent. If the
UIML document is used in creating user interfaces on multiple appliances, then there
is some reduction in the amount of code needed. This is entirely dependent on the
application. More importantly, the user interfaces will have consistent user interface
element content across appliances, which is good news from the usability point of

view.

Rantala, Sami. Usability of user interface markup language. Department of Electrica and
Communications Engineering, Helsinki University of Technology. Espoo, Finland. 2001.

Conclusions And Discussion 53

6 Conclusions And Discussion

6.1 Criteria results

6.1.1 Criteria 1

The test applications show clearly that the UIML user interfaces are visually equal to
the user interfaces created with Java and WML. Although we only compare user
interfaces created with UIML with user interfaces created with two other languages,
it is quite clear that user interfaces, regardless of the toolkit used, can be created with
the UIML as well as with platform specific languages. Consequently criteria 1 is
passed.

6.1.2 Criteria 2

The questionnaires show that the test subjects dlightly favor the Java user interface,
but the probability of this being caused by the learning effect is quite high. Three of
the test subjects did not notice any differences between the applications and
answered with the no-preference choice to all of the questions. One of the four test
subjects favored the Java application on questions 2, 3 and 5. The test subject
suspected that it just felt faster because the user interface was familiar when one
performed the tasks on the second application. Questions 2 and 3 were about the
speed of the user interface and favoring the later test application supports the
learning effect theory. Question 5 asked which one of the user interfaces the test
subject preferred. Clearly, if the test subject perceives that one of the applications is
faster than the other, then he or she prefers the faster one and thus the answer to

guestion 5 does not contradict the learning effect theory.

Since the magjority of the test subjects favored neither of the user interfaces and the
validity of the sole differing opinion is uncertain. It can be said that the UIML user
interface, at least in the users' mind, is as good as the Java user interface. Usability

tests showed no functiona problems with the user interfaces. When al this is taken

Rantala, Sami. Usability of user interface markup language. Department of Electrica and
Communications Engineering, Helsinki University of Technology. Espoo, Finland. 2001.

Conclusions And Discussion 54

into consideration it can be said that the usability of a user interface does not suffer

from using UIML. This means that criteria 2 is passed.

6.1.3 Criteria 3

Thereislittle doubt in the fact that UIML needs more lines to accomplish the desired
outcome than appliance-dependent languages in general. This is clearly shown in
Figure 21 and Figure 22. The actual amount depends greatly on the toolkit used. In
this study the UIML documents sizes varied from 124% to 230% of the
corresponding appliance-dependent application’s size. These numbers are only
indicative of the situation in general and they are statistically speaking invalid, since

the numbers are gathered from one pair of user interfaces on two appliances.

XML languages differ greatly from functional programming languages. This makes
comparing the sizes of an XML document and non-XML document difficult or even
meaningless. For this reason the lines of code needed with UIML and Java
applications cannot be compared easily. One has to take into account the differences
between the languages. So the lower limit of 124%, which was with the Java
application, does not tell us as much as the higher limit. The higher limit of 230%
comes from when UIML was compiled into WML. As both, WML and UIML, are

XML languages the numbers can be compared directly.

The PC applications are roughly the same size and the effort needed to create them
was dlightly in favor of Java application. It takes a bit more effort to work with
UIML-Java combination than working with pure Java code. There is always more to

know when using two languages instead of just one.

The amount of Java code needed to support the UIML application was 32% of the
UIML PC applications user interface code. This does not include the application
backbone. Once the renderer is complete, approximately one third of this Java code
could be done with UIML. This would reduce the percentage to approximately 20%,
which is quite acceptable, at least in this case. Here we made the assumption that one
linein the UIML document correlates to one line of Java code. A more redlistic ratio
would be dlightly in favor of Java as indicated by the amount of code in Java and

Rantala, Sami. Usability of user interface markup language. Department of Electrica and
Communications Engineering, Helsinki University of Technology. Espoo, Finland. 2001.

Conclusions And Discussion 55

UIML applications. Figures available are not statistically valid and the UIML
application uses some Java code, which makes it hard to find a solid Java-UIML
lines of code ratio. This makes the one-to-one ratio assumption as good as any other

ratio we can calculate on the basis of the available data.

The UIML WAP application is more than double the size of the WML WAP
application. This translates directly into the effort needed to code the user interface.
But since coding is only a part of the process and it can be facilitated with proper
tools, this means that the total effort is somewhat less than the ratio calculated from
the lines of code indicates. It is impossible to say exactly how much less, since we

could not use time to measure the effort, and the effect of toolsis not clear.

The structure of UIML document makes it complicated to use toolkits that can place
a user interface component within other components' content. These toolkits or
languages include, for example, HTML and WML. This does not mean that UIML
cannot be used with them. It simply means that lots of lines are needed for something
that can be done with far fewer lines if programmed with the target language. Good

examples of this are the WAP applications created during this study.

The test applications were too different to be able to use asingle UIML document for
both user interfaces. It seems that UIML could be used in multiple appliance
environment if the appliances are similar or at least not very different. For example,
WAP phones could have different user interfaces for different phones. It should be
studied in greater detail which appliances and what type of applications can benefit

from multiple appliance UIML user interfaces.

Learning the UIML proved to be quite easy. At least for someone who has previous
experience with functional languages and who is familiar with the concepts of XML
beforehand. One does not need to learn as much as with the functional languages.
This is based on subjective opinion and as such should be taken with a grain of salt.

It should be studied how people with different backgrounds learn to use UIML.

When all thisistaken into account it is clear that in general UIML is alittle harder to
use than appliance-dependent languages, but not significantly. This means that
criteria 3 is passed.

Rantala, Sami. Usability of user interface markup language. Department of Electrica and
Communications Engineering, Helsinki University of Technology. Espoo, Finland. 2001.

Conclusions And Discussion 56

6.2 Other observations

Non-programmers can use UIML, but knowledge of the user interface toolkit is very
important for user interface developers. UIML only maps into the toolkit and does
not hide the toolkit’s user interface components properties from the developer. So
the developer cannot use toolkits effectivel y without first understanding them.

UIML does not limit what the user interface designers can do. On the other hand, the
renderers limit what parts of toolkits are available for the designer. This means that
the renderer is the first, and probably also the biggest, bottleneck for the UIML user
interface development for new devices. Older devices should have third-party

renderers available.

The only functional problem that was found in the applications was the modified
JTable in the PC UIML application. This problem may go away with future releases
of the Java renderer, but something similar might come up later. So it would be
important to study customized user interface gadgets and how they work with UIML
in greater detail.

The test applications showed no degraded performance due to the use of the UIML
renderer. Larger and more resource-intensive applications may suffer from degraded
performance because of the overhead of using the renderer in interpreting a UIML
document into user interface. It should be studied how much overhead the renderer

causes.

Harmonia Inc. has released a shorthand notation for UIML, which reduces the
amount of elements needed for defining the properties of a user interface component.
This makes the hand coding of UIML documents a more attractive option than the

results of thisthesis suggest.

6.3 Reliability Analysis

Visually comparing two graphical user interfaces is by its very nature an error free
operation. As this study did not cover all possible user interface components, some

Rantala, Sami. Usability of user interface markup language. Department of Electrica and
Communications Engineering, Helsinki University of Technology. Espoo, Finland. 2001.

Conclusions And Discussion 57

user interface components may not be as presentable with UIML as with native
toolkits. So the results are nearly 100% reliable.

Usability tests were executed in a way that is standard throughout the usability
science. Very seldom are there enough test subjects in usability tests for statistically
valid results. The extrareliability gained from having a large number of test subjects
simply is not worth the time. The reliability gained from the limited amount of test
subjects is adequate for usability purposes method (Nielsen 1993, 173-174). This
means that the reliability is high enough to satisfy the needs of this study.

The results from the guestionnaire are not statistically valid and cannot be regarded
as completely reliable. The results give indication of what the situation readly is.
Since the variance of the answers is very small, the results can be used as a good
estimate of the real situation.

The expert opinions are always opinions and thus can vary between different experts,
even by alarge margin. Also, in this study the test applications were evaluated and
made by the same person. This may have caused a defensive attitude in the
evaluation of the applications. But knowing this beforehand and the fact that the
applications were created for the sole purpose of testing UIML and not to be used in
any real world situation reduces the effects of the defensive attitude to insignificant

levels.

Also, the fact that the expert opinions are from only one researcher reduces the

validity by a small margin. Multiple opinions would have given more reliable results.

The opinions are based on measurable quantities wherever possible. The rationale for
each opinion is clearly stated. This does not increase the reliability by itself but it
gives the reader a way to see how the opinions were formed and thus each reader is

ableto check easily if they agree with the results.

The expert opinions given here cannot be viewed as the only truth, but they are valid
from the author’s point of view. And since the paths to the conclusions are clearly
stated, each and everyone can evaluate the reliability for themselves.

The articles and books used in this study are recent due the nature of the topic. The

literature used is selected from respected professionals. The source information

Rantala, Sami. Usability of user interface markup language. Department of Electrica and
Communications Engineering, Helsinki University of Technology. Espoo, Finland. 2001.

Conclusions And Discussion 58

should represent reliable information, although the papers on UIML are from the
authors of UIML.

6.4 Validity of the study

The objectives for this study were:

To find out UIML's limitations and problems in a multi-appliance environment.

In away this objective was not fully achieved within this study, since it would have
needed more appliances and test applications than were used in this study or even
could have been used in optimal circumstances. But a complete coverage was not an
objective for this study. This study found some problems for and limitations on

UIML in amulti-appliance environment and thus completed this objective.
To find out UIML's limitations and problems in user interface creation.
To evaluate the usability potential of UIML from the developers’ perspective.

These objectives were completed quite thoroughly. Much of the data that was
collected during this study was used in comparing UIML to other languages that can
be used in creating user interfaces. This means that the data and the testing that gave

the data directly contributed to the completion of these two objectives.

Rantala, Sami. Usability of user interface markup language. Department of Electrica and
Communications Engineering, Helsinki University of Technology. Espoo, Finland. 2001.

Summary 59

7 Summary

UIML can be used in user interface creation ailmost as well as any other native
toolkits. Almost, because it always needs a renderer and if the renderer does not
allow a functionality that the target toolkit can do, then the UIML simply cannot
perform these functions. If the renderer is up to the job, then the UIML user interface

can be as good as the one directly created with the target toolkit.

The Java renderer used in this study proves that the UIML can work well with the
target toolkits. Programming languages can be used to enhance the user interfaces

created with UIML, aslong as the renderer alowsit.

UIML applications need more lines of code to accomplish the same things as with
the native toolkits. The amount of lines needed is highly dependent on the target
toolkit. When using Java toolkit with UIML, the UIML application needed 24%
more lines than the pure Java application did, even though 32% of the UIML-Java
application was Java code, not UIML. When using UIML with WML toolkit the
application needed more than two times more lines. This is not an exact figure
because not everything could be tested, as at the time of testing the renderer was not

fully functional (pre-release version).

If the structures of the user interface components in the target toolkits are too
different, then it can be very difficult to use one UIML document with multiple
“style sheets’ in creating the user interfaces. This means that it is possible to create
multiple-appliance user interfaces if the target toolkits are similar enough. For
example, Java and WML applications proved to be too hard to match structurally
during this study.

Rantala, Sami. Usability of user interface markup language. Department of Electrica and
Communications Engineering, Helsinki University of Technology. Espoo, Finland. 2001.

References 60

8 References

Abrams, M., Phanouriou, C., Batongbacal, A., Williams, S. & Shuster, J. (1999):
UIML: An Appliance-Independent XML User Interface Language. Paper presented
at 8th International World Wide Web Conference (WWWS8). Toronto, Canada. May
1999. http://www8.org/w8-papers/5b-hypertext-media/uiml/uiml.html. Also
appeared in Computer Networks, Vol. 31, 1999, pp. 1695-1708.

Abrams, M., Phanouriou, C. (1999): UIML: An XML Language for Building
Device-Independent User Interfaces. Paper presented at XML’99 conference.
Philadelphia, USA. December 1999. Also appeared in XML '99 Conference
Proceedings, available from GCA at http://www.gca.org/

Nielsen, J. (1993): Usability Engineering. Morgan Kaufmann Publishers, Inc. San
Francisco, USA. ISBN 0-12-518406-9.

Preece, J., Rogers, Y., Sharp, H., Benyon, D., Holland, S. & Carey, T. (1994):
Human-Computer Interaction. Addison-Wesley Publishing Company. Wokingham,
England. ISBN 0-201-62769-8.

Rubin, J. (1994): Handbook of usability testing: how to plan, design, and conduct
effective test. John Wiley & Sons, Inc. New York, USA. ISBN 0-471-59403-2.

Universal Interface Technologies (2000): White Paper: The UIML Vision. Available
at http://www.universalit.com/uiml/whitepapers/index.htm

World Wide Web Consortium (1998): Cascading Style Sheets, level 2. W3C
recommendation, available at http://www.w3.0rg/TR/REC-CSS2/.

World Wide Web Consortium (1999): Extensible Markup Language (XML) 1.0.
W3C recommendation, available at http://www.w3.0org/ TR/REC-xml.

World Wide Web Consortium (2000): Extensible Stylesheet Language (XSL)
Version 1.0. W3C Working Draft, available at http://www.w3.org/TR/xsl/.

WAP Forum 2000. Wireless Application Protocol Wireless Markup Language
Specification version 1.3. Available at
http://www1.wapforum.org/tech/documents/WAP-191-WM L -20000219-a.pdf

Rantala, Sami. Usability of user interface markup language. Department of Electrica and
Communications Engineering, Helsinki University of Technology. Espoo, Finland. 2001.

Appendix 1: UIML PC application screenshots 61

Appendixes

Appendix 1: UIML PC application screenshots

[E Eanking applical

Figure 24 Settings panel, banking application

Rantala, Sami. Usability of user interface markup language. Department of Electrical and
Communications Engineering, Helsinki University of Technology. Espoo, Finland. 2001.

Appendix 1: UIML PC application screenshots

62

M ey

Figure 25 File menu, banking application

B3 B il
P myesz Hala
ST i |
Azepn [
Cusdaa: | [| Ampait |

e |

Figure 26 New bill dialog, banking application

25 i 0 o e il s)
P ooy HiTl
T I.T:m Brrif Rani
LT famisa14
Due data: 7 [in g Ampanc [1i

e |

Figure 27 New bill (copied from old), banking application

Rantala, Sami. Usability of user interface markup language. Department of Electrica and

Communications Engineering, Helsinki University of Technology. Espoo, Finland. 2001.

Appendix 2: UIML documents

63

Appendix 2: UIML documents
PC application

<?xml version="1.0" encoding="1S0-8859-1"?><!DOCTYPE uiml PUBLIC "-//UIT//DTD UIML 2.0 Draft//EN"
"CAUIML2\bin\UIML2 0d.dtd"><uiml> <interface>
<structure>
</-- Banking application’s main frame -->
<part name="Banking" class="JFrame">
<style>
<property name="title">Banking application</property>

—_n

<property name="visible">false</property>

</style>
<part name="contentPanel" class="JPanel">
<style>
<property name="layout">java.awt. BorderLayout</property>
</style>

</-- Menubar and it's contents -->
<part name="menubar" class="JMenuBar">

<style>
<property name="borderAlignment">North</property>
</style>
<part name="menu" class="JMenu">
<style>
<property name="text">File</property>
</style>
<part name="menultem" class="JMenultem'">
<style>
<property name="text">New</property>
</style>
</part>
</part>
</part>

<!-- Menubar ends -->
<part name="extraPanel" class="JPanel">
<style>
<property name="borderAlignment">Center</property>
<property name="layout">java.awt. BorderLayout</property>

</style>
<part name="topPanel" class="JPanel">
<style>
<property name="borderAlignment">North</property>
<property name="layout">java.awt. BorderLayout</property>
</style>
<part name="userInformationPanel" class="JPanel">

<style>
<property name="borderAlignment">West</property>
<property name="layout">java.awt. GridLayout</property>
</style>
<!-- labelPanel contains the labels for inputfields -->
<part name="labelPanel" class="JPanel">
<style>
<property name="layout">java.awt.GridLayout</property>
<property name="layout rows">3</property>
<property name="layout vgap'>3</property>

</style>
<part name="nameLabel" class="JLabel">
<style>
<property name="text">Name:</property>
</style>
</part>
<part name="accountLabel" class="JLabel">
<style>
<property name="text">Account: </property>
</style>
</part>
<part name="balanceLabel" class="JLabel">
<style>

Rantala, Sami. Usability of user interface markup language. Department of Electrica
Communications Engineering, Helsinki University of Technology. Espoo, Finland. 2001.

and

Appendix 2: UIML documents

<property name="text">Balance:</property>
</style>
</part>
</part>
<!-- labelPanel ends -->
<!-- fieldPanel contains three text fields -->
<part name="fieldPanel" class="JPanel">
<style>
<property name="layout">java.awt.GridLayout</property>
<property name="layout rows'">3</property>
<property name="layout vgap">3</property>
</style>
<part name="nameField" class="JTextField">
<style>
<property name="text">John Banker</property>
<property name="editable">false</property>
</style>
</part>
<part name="accountField" class="JComboBox">
<style>
<property name="content">
<constant model="list">
<constant name="a" value="1234-124"/>
<constant name="b" value="1234-876"/>

</constant>
</property>
<property name="selectedIndex">0</property>
</style>
</part>
<part name="balanceField" class="JTextField">
<style>

<property name="text">1053</property>
<property name="editable">false</property>

</style>
</part>
</part>
<!-- fieldPanel ends -->
</part>
<part name="newButtonPanel" class="JPanel">
<style>
<property name="borderAlignment">East</property>
</style>
<part name="newButton" class="JButton">
<style>
<property name="text">New Bill</property>
</style>
</part>
</part>
</part>

</-- Tabpane has two panels -->
<part name="tabPane" class="JTabbedPane">
<!-- first tab panel -->
<part name="tabPanell" class="JPanel">
<style>
<property name="name">UnpaidBills</property>
<property name="layout">java.awt. BorderLayout</property>
</style>
<!-- scrollPanel is scrollable panel which in this case has a JTable as a child -->
<part name="scrollPanel" class="JScrollPane">
<style>
<property name="borderAlignment">Center</property>
<property name="preferredSize">300,200</property>
</style>
<part name="table" class="JTable"/>
</part>
</-- scrollPanel ends -->
<!-- buttonPanel has two buttons -->
<part name="buttonPanel" class="JPanel">

<style>

<property name="borderAlignment">South</property>
</style>
<part class="JButton" name="copyasnewButton">

<style>

Rantala, Sami. Usability of user interface markup language. Department of Electrica
Communications Engineering, Helsinki University of Technology. Espoo, Finland. 2001.

and

Appendix 2: UIML documents

65

<property name="text">Copy As New</property>
</style>
</part>
<part class="JButton" name="delete Button">
<style>
<property name="text">Delete</property>
</style>
</part>
</part>
<!-- buttonPanel ends -->
</part>
<!-- First tab panel ends -->
<!-- Second tab panel starts -->
<part name="tabPanel2" class="JPanel">
<style>
<property name="name">Settings</property>
</style>
<!-- Radio button group -->
<part class="ButtonGroup" name="buttongroup">
<part class="JRadioButton" name="English">
<style>
<property name="text">English</property>

1,

<property name="selected">true</property>

</style>
</part>
<part class="JRadioButton" name="Finnish">
<style>
<property name="text">Finnish</property>
</style>
</part>
</part>
</-- Radio button group ends -->
</part>
<!-- Second tab panel ends -->
</part>
<!-- Tabpane ends -->
</part>
</part>

<!-- Banking application's invoice dialog -->
<part name="invoiceDialog" class="JDialog">
<style>
<property name="title">New bill</property>
<property name="size">508,227</property>
<property name="visible">false</property>

—_n

<property name="modal">true</property>

</style>
<part name="basePanel" class="JPanel">
<style>
<property name="layout">java.awt. BorderLayout</property>
</style>

</-- buttonPanel2 has two buttons: ok and cancel, which appear at
the bottom of the GUI -->
<part name="buttonPanel2" class="JPanel">

<style>
<property name="borderAlignment">South</property>
</style>
<part name="ok" class="JButton">
<style>
<property name="text">Ok</property>
</style>
</part>
<part name="cancel" class="JButton">
<style>
<property name="text">Cancel</property>
</style>
</part>
</part>

<!-- buttonPanel2 ends -->
<!/-- inputPanel includes all the input fields and their labels -->
<part name="inputPanel" class="JPanel">
<style>
<property name="layout">java.awt. BorderLayout</property>
<property name="borderAlignment">North</property>

Rantala, Sami. Usability of user interface markup language. Department of Electrica
Communications Engineering, Helsinki University of Technology. Espoo, Finland. 2001.

and

Appendix 2: UIML documents

66

</style>
</-- dateAndAmountPanel has input fields conserning
dates and amount and their labels -->
<part name="date AndAmountPanel" class="JPanel">
<style>
<property name="layout">java.awt.GridLayout</property>
<property name="borderAlignment">South</property>
</style>
<!-- dateBasePanel contains the fields and label conserning the date-->
<part name="dateBasePanel" class="JPanel">

<style>

<property name="layout">java.awt.GridBagLayout</property>
</style>
<part name="dateLabel" class="JLabel">

<style>

<property name="text">Due date:</property>
<property name="gridx">0</property>
<property name="gridy">0</property>
</style>
</part>
<part name="dateFieldPanel" class="JPanel">
<style>
<property name="gridx">1</property>
<property name="gridy">0</property>
</style>
<part name="dayField" class="JTextField">
<style>
<property name="toolTipText">Day</property>
<property name="columns">2</property>
</style>
</part>
<part name="monthField" class="JTextField">
<style>
<property name="toolTipText">Month</property>
<property name="columns">2</property>
</style>
</part>
<part name="yearField" class="JTextField">
<style>
<property name="toolTipText">Year</property>
<property name="columns">4</property>
</style>
</part>
</part>
</part>
<!-- dateBasePanel ends -->
<!/-- amountBasePanel has label and input field conserning the amount -->

_n"

<part name="amountBasePanel" class="JPanel">

<style>

<property name="layout">java.awt. GridBagLayout</property>
</style>
<part name="amountLabelPanel" class="JPanel">

<style>

<property name="gridx">0</property>
<property name="gridy">0</property>
</style>
<part name="amountLabel" class="JLabel">
<style>
<property name="text">Amount: </property>
</style>
</part>
</part>
<part name="amountFieldPanel" class="JPanel">
<style>
<property name="gridx">1</property>
<property name="gridy">0</property>

</style>
<part name="amountField" class="JTextField">
<style>
<property name="columns">6</property>
</style>
</part>
</part>

Rantala, Sami. Usability of user interface markup language. Department of Electrica
Communications Engineering, Helsinki University of Technology. Espoo, Finland. 2001.

and

Appendix 2: UIML documents

67

</part>
<!-- amountBasePanel ends-->
</part>
<!-- dateAndAmountPanel ends -->
<!/-- northPanel has fields and labels conserning the payee -->
<part name="northPanel" class="JPanel">
<style>
<property name="layout">java.awt. GridLayout</property>
<property name="borderAlignment">North</property>
<property name="layout columns">2</property>
</style>
<!-- payeePanel has fields for payee's name and account and labels for them -->
<part name="payeePanel" class="JPanel">
<style>
<property name="layout">java.awt.GridLayout</property>
<property name="layout columns">2</property>
</style>
<part name="payeeLabelPanel" class="JPanel">
<style>
<property name="layout">java.awt.GridLayout</property>
<property name="layout rows">2</property>
<property name="layout vgap'>3</property>

</style>
<part name="payeeNameLabel" class="JLabel">
<style>
<property name="text">Name:</property>
</style>
</part>
<part name="payeeAccountLabel" class="JLabel">
<style>
<property name="text">Account: </property>
</style>
</part>
</part>
<part name="payeeFieldPanel" class="JPanel">

<style>
<property name="layout">java.awt.GridLayout</property>
<property name="layout rows">2</property>
<property name="layout vgap">3</property>
</style>
<part name
<style>
<property name="columns">10</property>
</style>
</part>
<part name="payeeAccountField" class="JTextField">
<style>
<property name="columns">10</property>
</style>
</part>
</part>
</part>
<!/-- payeePanel ends -->
</-- notePanel has input field for note -->
<part name="notePanel" class="JPanel">
<style>
<property name="layout">java.awt. GridLayout</property>
</style>
<part name="noteScrollPane" class="JScrollPane">

—_"

<part name="noteTextArea" class="JTextArea">

_nm

'payeeNameField" class="JTextField">

<style>
<property name="columns">10</property>
</style>
</part>
</part>
</part>
<!-- notePanel ends -->
</part>
<!-- northPanel ends -->
</part>
</-- inputPanel ends -->
</part>

</part>

Rantala, Sami. Usability of user interface markup language. Department of Electrica
Communications Engineering, Helsinki University of Technology. Espoo, Finland. 2001.

and

Appendix 2: UIML documents

68

</part>
</structure>
<behavior>
<rule>
</--
This rule sets the action for pull-down menu item, which opens new bill dialog
>
<condition>
<event class="actionPerformed" part-name="menultem"/>
</condition>
<action>
<call name="bank.setBillTitle"/>
<property part-name="payeeNameField" name="text"/>
<property part-name="payeeAccountField" name="text"/>
<property part-name="noteTextArea" name="text"/>
<property part-name="dayField" name="text"/>
<property part-name="monthField" name="text"/>
<property part-name="yearField" name="text"/>
<property part-name="amountField" name="text"/>
<property part-name="invoice Dialog" name="visible'">true</property>
</action>
</rule>
<rule>
<J--
This rule sets the action for newButton, which opens new bill dialog
>
<condition>
<event class="actionPerformed" part-name="newButton"/>
</condition>
<action>
<call name="bank.setBillTitle"/>
<property part-name="payeeNameField" name="text"/>
<property part-name="payeeAccountField" name="text"/>
<property part-name="noteTextArea" name="text"/>
<property part-name="dayField" name="text"/>
<property part-name="monthField" name="text"/>
<property part-name="yearField" name="text"/>
<property part-name="amountField" name="text"/>
<property part-name="invoice Dialog" name="visible'">true</property>
</action>
</rule>
<rule>
<J--

This rule sets the action for delete Button, which deletes selected message.
1t does this by calling Java method delete Bill
>
<condition>
<event class
</condition>
<action>
<call name="bank.deleteBill"/>
</action>
</rule>
<rule>

_n

‘actionPerformed" part-name="delete Button"/>

<J--
This rule sets the action for copyasnewButton, which opens new bill dialog and
copies the selected bill's information into the new bill.
1t does this by calling Java method copyAsNewBill
>
<condition>
<event class="actionPerformed" part-name="copyasnewButton"/>
</condition>
<action>
<call name="bank.copyAsNewBill"/>
</action>
</rule>
<rule>
</--
This rule set the action for part ok, which saves the new bill.
1t does this by calling Java method insertBill. After the method call
it clears the fields and makes the dialog invisible.
>
<condition>

Rantala, Sami. Usability of user interface markup language. Department of Electrica and

Communications Engineering, Helsinki University of Technology. Espoo, Finland. 2001.

Appendix 2: UIML documents

69

<event class="actionPerformed" part-name="o0k"/>
</condition>
<action>
<call name="bank.insertBill"/>
<property part-name=""invoiceDialog" name="visible">false</property>
<property part-name="payeeNameField" name="text"/>
<property part-name="payeeAccountField" name="text"/>
<property part-name="noteTextArea" name="text"/>
<property part-name="dayField" name="text"/>
<property part-name="monthField" name="text"/>
<property part-name="yearField" name="text"/>
<property part-name="amountField" name="text"/>
</action>
</rule>
<rule>
<J--
This rule set the action for part cancel, which cancels the new bill and makes
the dialog invisible.

>
<condition>
<event class="actionPerformed" part-name="cancel"/>
</condition>
<action>
<property part-name="invoiceDialog" name="visible">false</property>
<property part-name="payeeNameField" name="text"/>
<property part-name="payeeAccountField" name="text"/>
<property part-name="noteTextArea" name="text"/>
<property part-name="dayField" name="text"/>
<property part-name="monthField" name="text"/>
<property part-name="yearField" name="text"/>
<property part-name="amountField" name="text"/>
</action>
</rule>
<rule>
</--

This rule set the action for part English, which changes the user interface language
in to english.

>

<condition>
<event class="itemStateChanged" part-name="English"/>

</condition>

<action>
<property part-name="Banking" name="title">Banking application</property>
<property part-name="menu" name="text">File</property>
<property part-name="menultem" name="text">New Bill</property>
<property part-name="nameLabel" name="text">Name:</property>
<property part-name="accountLabel" name="text">Account: </property>
<property part-name="balanceLabel" name="text">Balance:</property>
<property part-name="newButton" name="text">New Bill</property>
<property part-name="tabPanell" name="name">Unpaid Bills</property>
<property part-name="tabPanel2" name="name">Settings</property>
<property part-name="copyasnewButton" name="text">Copy as New</property>
<property part-name="delete Button" name="text">Delete</property>
<property part-name="English" name="text">English</property>
<property part-name="Finnish" name="text">Finnish</property>
<property part-name=""invoiceDialog" name="title">New Bill</property>
<property part-name="ok" name="text">Ok</property>
<property part-name="cancel" name="text">Cancel</property>
<property part-name="dateLabel" name="text">Due Date:</property>
<property part-name="amountLabel" name="text">Amount: </property>
<property part-name="payeeNameLabel" name="text">Name:</property>
<property part-name="payeeAccountLabel" name="text">Account: </property>
<call name="bank.setLanguage">

<param>0</param>

</call>

</action>

</rule>
<rule>
< ./__

This rule set the action for part Finnish, which changes the user interface language

in to finnish.
>

<condition>

Rantala, Sami. Usability of user interface markup language. Department of Electrica and

Communications Engineering, Helsinki University of Technology. Espoo, Finland. 2001.

Appendix 2: UIML documents

70

<event class="itemStateChanged" part-name="Finnish"/>

</condition>

<action>
<property part-name="Banking" name="title">Pankki sovellus</property>
<property part-name="menu" name="text"> Tiedosto</property>
<property part-name="menultem" name="text">Uusi lasku</property>
<property part-name="nameLabel" name="text">Nimi:</property>
<property part-name="accountLabel" name="text">Tilinumero: </property>
<property part-name="balanceLabel" name="text">Saldo:</property>
<property part-name="newButton" name="text">Uusi Lasku</property>
<property part-name="tabPanell" name="name">Maksamattomat laskut</property>
<property part-name="tabPanel2" name="name">Asetukset</property>
<property part-name="copyasnewButton" name="text">Kopio laskuksi</property>
<property part-name="delete Button" name="text"> Poista</property>
<property part-name="English" name="text">Englanti</property>
<property part-name="Finnish" name="text">Suomi</property>
<property part-name="invoiceDialog" name="title">Uusi lasku</property>
<property part-name="ok" name="text">Ok</property>
<property part-name="cancel" name="text">Peruuta</property>
<property part-name="dateLabel" name="text"> Erdpdivdi:</property>
<property part-name="amountLabel" name="text">Summa: </property>
<property part-name="payeeNameLabel" name="text">Nimi:</property>
<property part-name="payeeAccountLabel" name="text"> Tilinumero: </property>
<call name="bank.setLanguage">

<param name="language"> 1 </param>

</call>
</action>
</rule>
</behavior>
</interface>
<peers>
<logic>
</--
This logic element maps the UIML method calls into the real Java methods and classes.
>
<d-component name="bank" maps-to="thesis.uimlbanking. Banking2">
<d-method name="deleteBill" maps-to="deleteBill"/>
<d-method name="copyAsNewBill" maps-to="copyAsNewBill"/>
<d-method name="insertBill" maps-to="insertBill"/>
<d-method name="setBillTitle" maps-to="setBillTitle"/>
<d-method name="setLanguage" maps-to=""setLanguage'>
<d-param type="int" name="language"/>
</d-method>
</d-component>
</logic>
</peers>
</uiml>
WAP application

<?xml version="1.0"?>
<!DOCTYPE uiml PUBLIC "-//UIT//DTD UIML 2.0 Drafi//EN" "C:\UIML2\bin\UIML2 0d.dtd">
<uiml>
<interface>
<structure>
<part name="Banking" class="Wml">
<!/-- startpage is the main card and starting place for the application -->
<part name="startpage" class="Card">
<part name="startpara" class="P">
<part name="starttext" class="RichText"/>
</part>
</part>
<!-- user card has the user information-->
<part name="user" class="Card">
<part name="prevl" class="Do"/>
<part name="userpara" class="P">
<part name="username" class="RichText"/>
<part name="ownaccount" class="Select">
<part name="optionl" class="Option">
<part name="optionltxt" class="RichText"/>
</part>
<part name="option2" class="Option">

Rantala, Sami. Usability of user interface markup language. Department of Electrica
Communications Engineering, Helsinki University of Technology. Espoo, Finland. 2001.

and

Appendix 2: UIML documents 71

<part name="option2txt" class="RichText"/>
</part>
</part>
<part name="userbalance" class="RichText"/>
</part>
</part>
<!-- new card is used for inputing a new bill -->
<part name="new" class="Card">
<part name="prev2" class="Do"/>
<part name="newpara" class="P">
<part name="newl" class="RichText"/>
<part name="namefield" class="Input"/>
<part name="new2" class="RichText"/>
<part name="accountfield" class="Input"/>
<part name="new3" class="RichText"/>
<part name="notefield" class="Input"/>
<part name="new4" class="RichText"/>
<part name="datefield" class="Input"/>
<part name="new5" class="RichText"/>
<part name="amountfield" class="Input"/>
</part>
</part>
<!-- old card shows the information concerning the selected bill-->
<part name="old" class="Card">
<part name="prev3" class="Do"/>
<part name="pl" class="P">
<part name="unpaidl" class="RichText"/>
</part>
<part name="pl" class="P">
<part name="unpaid2" class="RichText"/>

</part>
<part name="pl" class="P">

<part name="unpaid3" class="RichText"/>
</part>

<part name="pl" class="P">
<part name="unpaid4" class="RichText"/>
</part>
<part name="pl" class="P">
<part name="unpaid5" class="RichText"/>
</part>
</part>
<!-- bills card is a list of bills, can show only one
bill so list is bit ambitious name for it-->
<part name="bills" class="Card">
<part name="prev4" class="Do"/>
<part name="delete" class="Do"/>
<part name="listofbills" class="P">
<part name="listtext" class="RichText"/>
</part>
</part>
</part>
</structure>

<style>

<!-- properties for startpage card -->

<property part-name="startpage" name="title">Banking application</property>

</-- property starttext is used to input wml code directly, because current version of

the renderer does not support the tags we want -->

<property part-name=""starttext" name="content">
<anchor> User Information &It;go href="#user"/> ⁢/anchor> &It;br/>
<anchor> List of unpaid bills < go href="#bills"/> &It;/anchor> &lIt;br/>
<anchor> New bill &It;go href="#new"/> &It;/anchor>

</property>

</-- properties for user card -->

<property part-name="user" name="title">User Information</property>

<property part-name="username" name="content">name: Jack Banker</property>
<property part-name="ownaccount" name="title">Account: </property>

<property part-name="optionltxt" name="content">1234-867</property>
<property part-name="option2txt" name="content">1234-124</property>

" _n"

<property part-name="userbalance" name="content">Balance: $(pounds)</property>

<!-- properties for new card -->

Rantala, Sami. Usability of user interface markup language. Department of Electrica and
Communications Engineering, Helsinki University of Technology. Espoo, Finland. 2001.

Appendix 2: UIML documents

72

<property part-name="new" name="title">New bill</property>
<property part-name="new1" name="content">Name:</property>
<property part-name="new2" name="content">Account:</property>
<property part-name="new3" name="content">Note:</property>
<property part-name="new4" name="content"> Date:</property>
<property part-name="new5" name="content">Amount: </property>
<property part-name="namefield" name="name">name</property>
<property part-name="accountfield" name="name">account</property>
<property part-name="notefield" name="name">note</property>
<property part-name="datefield" name="name">date</property>

<property part-name="amountfield" name="name">amount</property>

<!-- properties for old card -->

<property part-name="old" name="title">Unpaid bill</property>

<property part-name="unpaidl " name="content">name: $name</property>
<property part-name="unpaid2" name="content">Account: $account</property>
<property part-name="unpaid3" name="content">Note: $note</property>
<property part-name="unpaid4" name="content">Due Date: $date</property>
<property part-name="unpaid5" name="content">Amount: $amount</property>

<!-- properties for bills card -->

<property part-name="bills" name="title"> List of unpaid bills</property>

</-- property listtext is used to input wml code directly, because current version of

the renderer does not support the tags we want -->

<property part-name="listtext" name="content">
<anchor> Name: $name< go href="#old"/> &It;/anchor> &It;br/>
Date: $date &It; br/>
Amount: $amount

</property>

</style>

<behavior>
<rule>
<!--this rule does nothing, rendered want's a rule for Option tags -->
<condition>
<event class="Onpick" part-name="optionl" name="itemselect"/>
</condition>
<action>
</action>
</rule>
<rule>
<!/--this rule does nothing, rendered want's a rule for Option tags -->
<condition>
<event class="Onpick" part-name
</condition>
<action>
</action>
</rule>
<rule>
<!--this rule moves the WAP browser to previous page-->
<condition>
<event class="prev" part-name="user" name="do"/>
</condition>
<action>
<property part-name="prev" name="visible">true</property>
</action>
</rule>
<rule>
<!--this rule moves the WAP browser to previous page-->
<condition>
<event class="prev" part-name="new" name="do"/>
</condition>
<action>
<property part-name="prev" name="visible">true</property>
</action>
</rule>
<rule>
<!--this rule moves the WAP browser to previous page-->
<condition>
<event class="prev" part-name="old" name="do"/>
</condition>
<action>
<property part-name="prev" name="visible">true</property>

_n _n

option2" name="itemselect"/>

Rantala, Sami. Usability of user interface markup language. Department of Electrica
Communications Engineering, Helsinki University of Technology. Espoo, Finland. 2001.

and

Appendix 2: UIML documents

73

</action>
</rule>
<rule>
<!--this rule moves the WAP browser to previous page-->
<condition>
<event class="prev" part-name="bills" name="do"/>
</condition>
<action>
<property part-name="prev" name="visible">true</property>
</action>
</rule>
<rule>
<!--this rule moves the WAP browser to previous page-->
<condition>
<event class="accept" part-name="bills" name="do"/>
</condition>
<action>
<property part-name="prev" name="visible">true</property>
</action>
</rule>
</behavior>
</interface>
</uiml>

Rantala, Sami. Usability of user interface markup language. Department of Electrica and

Communications Engineering, Helsinki University of Technology. Espoo, Finland. 2001.

Appendix 3: Java code

74

Appendix 3: Java code

Common code for PC applications

Class InfoCollection

//Title: UIML Banking application

//Version: 1.0

//Author: Sami Rantala

//Company: L M Ericsson Ltd.

//Description: This program is used to compare Swing and UIML interfaces.
package thesis.common;

import java.util. Vector;

public class InfoCollection {
Vector store;

/* InfoCollection()
* Class constructor, places 2 bills into unpaid list.
*/
public InfoCollection() {
store = new Vector(10,4);
Invoicelnfo start] = new Invoicelnfo("John Doe", "1234-234", "Rent", 150, 27,9,2000);

Invoicelnfo start2 = new Invoicelnfo("Joe Smith", "9865-314", "Rent",300, 27,10,2000);

store.addElement(startl);
store.addElement(start2);

}

/* getlnvoice(int i)
* This method returns requested invoicelnfo instance from the collection.
*/

public Invoicelnfo getInvoice(int i) {
return (Invoicelnfo)store.elementAt(i);

/* deleteRow(int i)
* This method removes the requested invoicelnfo from the collection.
*/

public void deleteRow(int i){store.removeElementAt(i);}

/* addlnvoice(Object o)
* This method adds an Object o into the collection
*/

public void addInvoice(Object o) {
store.addElement(o);

}

/* getSize()
* This method returns collections size
*/

public int getSize() {return store.size();}

Class Invoicelnfo

//Title: UIML Banking application

//Version: 1.0

//Author: ~ Sami Rantala

//Company: L M Ericsson Ltd.

//Description: This program is used to compare Swing and UIML interfaces.
package thesis.common;

import java.util. *;
import java.lang. Integer;

public class Invoicelnfo {
private String payee;
private String payeeAccount;

Rantala, Sami. Usability of user interface markup language. Department of Electrica and

Communications Engineering, Helsinki University of Technology. Espoo, Finland. 2001.

Appendix 3: Java code 75

private String note;
private Integer amount;

private Calendar date = Calendar.getlInstance();
public Invoicelnfo() {

public Invoicelnfo(String a,String b, String c, int d, inte, int f, int g) {
payee = new String(a);

payeeAccount = new String(b);

note = new String(c);

amount = new Integer(d);

date.set(g.fe);

/

/*Methods for getting variables from this class*/

public Object getPayee(){return payee,}

public Object getPayeeAccount(){return payeeAccount,}

public Object getNote(){return note,}

public Object getAmount(){return amount,}

public Object getDay() {return java.lang.Integer.toString(date.get(date. DAY OF MONTH));}
public Object getMonth(){return java.lang.Integer.toString(date.get(date. MONTH)),}

public Object getYear(){return java.lang.Integer.toString(date.get(date. YEAR));}

public Object getlnvoiceDate() {return date.getTime();}

/*Methods for setting variables*/

public void setPayee(String a){payee = new String(a);}

public void setPayee Account(String b) {payeeAccount = new String(b);}
public void setNote(String c){note = new String(c);}

public void setAmount(int d) {amount = new Integer(d);}

public void setlnvoiceDate(int y, int m, int d){date.set(y,m,d),}

}

Class MyTableModel

//Title: UIML Banking application

//Version: 1.0

//Author: Sami Rantala

//Company: L M Ericsson Ltd.

//Description: This program is used to compare Swing and UIML interfaces.
package thesis.common;

import java.text.*;

public class MyTable Model extends javax.swing.table. AbstractTableModel {
String/[] columnNames = {"Due Date", "Payee", "£"};
String[] columnNames2 = {"Erdpdiivi", "Saaja”, "£"};
InfoCollection cont;
Invoicelnfo info;
DateFormat df = DateFormat.getDatelnstance(DateFormat. DEFAULT);
int language;

public MyTableModel(InfoCollection c){
cont = ¢;

/

public void setLanguage (int language){
this.language = language;
}

/*gets the table column count™/
public int getColumnCount() {
return columnNames.length;

/* gets the table row count */
public int getRowCount() {
return cont.getSize();

/

/*gets the tables column names*/
public String getColumnName int col) {

Rantala, Sami. Usability of user interface markup language. Department of Electrica and
Communications Engineering, Helsinki University of Technology. Espoo, Finland. 2001.

Appendix 3: Java code

76

ifllanguage == 0){
return columnNames/[col];
} else {return columnNames2/[col];}

/*Gets unpaid bills table information from invoicelnfo™/

public Object getValueAt(int row, int col) {
info = cont.getInvoice(row);
switch(col){

case 0: return df format(info.getInvoiceDate());

case 1: return info.getPayee();
case 2: return info.getAmount();
default: return null;
}
Y

/*Gets the class of table entries™/
public Class getColumnClass(int ¢) {
return getValueAt(0, c).getClass();
}
/

UIML PC application

Class Banking2

//Title: UIML Banking application
//Version: 1.0

//Author: Sami Rantala
//Company: L M Ericsson Ltd.

//Description: This program is used to compare Swing and UIML interfaces.

package thesis.uimlbanking;

import com.universalit.renderer. Renderer;
import javax.swing.*;

import java.awt.event. *;

import javax.swing.event. *;

import javax.swing.border.*;

import thesis.common.™;

public class Banking2 {
static String uimlFileName = "banking.uiml";
static Renderer r;
private MyTableModel myModel;
private InfoCollection unpaidBills;
private JTable table;
private ListSelectionModel rowSM;
private int selectedRow = -1;
private Border emptyBorder10pt;
private Border etchedBorder;

private TitledBorder noteBorder = BorderFactory.createTitledBorder(etchedBorder);
private TitledBorder payeeBorder = BorderFactory.createTitledBorder(etchedBorder);

private int lan =0;

public Banking2() {

emptyBorder10pt = BorderFactory.createEmptyBorder(10,10,10,10);

table = (JTable) r.getPartByName("table");
unpaidBills = new InfoCollection();

myModel = new MyTableModel(unpaidBills);

if(table = null){
table.setModel(myModel);

table.setAutoResizeMode(table AUTO RESIZE ALL COLUMNS);
table.sizeColumnsToFit(table. AUTO RESIZE ALL COLUMNS);

rowSM = table.getSelectionModel();

rowSM.addListSelectionListener(new ListSelectionListener() { // this part of the finds out
public void valueChanged(ListSelectionEvent e) { // which row is selected

//Ignore extra messages.
if (e.getValuelsAdjusting()) return;

ListSelectionModel Ism = (ListSelectionModel)e.getSource();

if (Ism.isSelectionEmpty()) {
//no rows are selected

Rantala, Sami. Usability of user interface markup language. Department of Electrica and

Communications Engineering, Helsinki University of Technology. Espoo, Finland. 2001.

Appendix 3: Java code 77

selectedRow = -1;
Jelse {

selectedRow = Ism.getMinSelectionIndex();
//row selectedRow is selected

/

/

Ni
/
setBorders();
setBorders2();
JFrame j = (JFrame)r.getPartByName("Banking");
J.pack();
J.setVisible(true);

/* insertBill(...)
* This method inserts a new bill into the unpaidBills list
*/
public void insertBill() {
String payeeName = new String();
String payeeAccount = new String();
String noteText = new String();
String amount = new String();
String year = new String();
String month = new String();
String day = new String();
Invoicelnfo info = new Invoicelnfo();
// first get the input components and then their contents
JTextField a = (JTextField)r.getPartByName("payeeNameField");
iffa!=null)
payeeName = a.getText();
JTextField b = (JTextField)r.getPartByName("payeeAccountField");
if(b!=null)
payeeAccount = b.getText();
JTextArea c = (JTextArea)r.getPartByName("noteTextArea");
if(c!=null)
noteText = c.getText();
JTextField d = (JTextField)r.getPartByName("amountField");
if(d!=null)
amount = d.getText();
JTextField e = (JTextField)r.getPartByName("yearField");
iffe!=null)
year = e.getText();
JTextField f = (JTextField)r.getPartByName("monthField");
if{fl=null)
month = f.getText();
JTextField g = (JTextField)r.getPartByName("dayField");
if(g!=null)
day = g.getText();

// Set the bill information in to instance of Invoicelnfo class
if(payeeName!=null)
info.setPayee(payeeName);
if(payeeAccount!=null)
info.setPayeeAccount(payeeAccount);
if(noteText!=null)
info.setNote(noteText);
iftamount!=null)
info.setAmount(java.lang. Integer.parselnt(amount));
iftvear!=null && year!=null && day!=null)
info.setInvoice Date(java.lang. Integer.parselnt(yvear),
Java.lang.Integer.parselnt(month),
Java.lang. Integer.parselnt(day));
if(info!=null)
unpaidBills.addInvoice(info);
refreshTable(unpaidBills.getSize());
cancelNewBill();
/

/* refreshTable(int i)
* This method fires an event that updates the table.

Rantala, Sami. Usability of user interface markup language. Department of Electrica and
Communications Engineering, Helsinki University of Technology. Espoo, Finland. 2001.

Appendix 3: Java code

78

*/
public void refreshTable(int i) {
myModel. fireTable Rowslnserted(i,i);

/* deleteBill(...)
* This method deletes a bill from the unpaidBills list
*/
public void deleteBill() {
if(selectedRow |=-1){
unpaidBills.delete Row (selectedRow);
myModel.fireTable RowsDeleted(selectedRow,selectedRow);
selectedRow = -1;
/
/

/* copyAsNewBill()
* This method copies the currently selected bill as a new bill
*/
public void copyAsNewBill() {
if(selectedRow = -1){
// If selectedRow is larger than -1, then
// we copy selected bill's info into the new one.
//ifit's -1 then no row is selected.
Invoicelnfo invoice = unpaidBills.getInvoice(selectedRow);
((JTextField)r.getPartByName("payeeNameField")).setText((String)invoice.getPayee());

((JTextField)r.getPartByName("payeeAccountField")).setText((String)invoice.getPayee Account());

((JTextArea)r.getPartByName("noteTextArea")).setText((String)invoice.getNote());
((JTextField)r.getPartByName("dayField")).setText((String)invoice.getDay());
((JTextField)r.getPartByName("monthField")).setText((String)invoice.getMonth());
((JTextField)r.getPartByName("yearField")).setText((String)invoice.getYear());
String a = ((Integer)invoice.getAmount()).toString();
((JTextField)r.getPartByName("amountField")).setText(a);
JDialog d = (JDialog)r.getPartByName("invoice Dialog");
ifflan == 0){
d.setTitle("New bill(Copied from old)"),}
if (lan == 1){
d.setTitle("Uusi lasku(kopio)");}
d.setVisible(true);
/
/

/* setBillTitle()
* Sets the new bill dialogs title
*/
public void setBillTitle() {
JDialog d = (JDialog)r.getPartByName("invoiceDialog");
ifflan == 0){
d.setTitle("New bill"),}
else{
d.setTitle("Uusi lasku");}
/

/* cancelNewBill()
* This method is used to cancel the new bill dialog.
*/
public void cancelNewBill() {
JDialog d = (JDialog)r.getPartByName("invoiceDialog");
d.setVisible(false);
/

/* setLanguage(int language)
* This method changes the languages of those parts that cannot
* be changed directly from UIML code
*/
public void setLanguage(int language){
lan = language;
JTabbedPane TabbedPanel = (JTabbedPane)r.getPartByName("tabPane");
ifflan == 0){
TabbedPanel.setTitleAt(0, "Unpaid Bills");
TabbedPanel setTitleAt(1, "Settings");

Rantala, Sami. Usability of user interface markup language. Department of Electrica and

Communications Engineering, Helsinki University of Technology. Espoo, Finland. 2001.

Appendix 3: Java code

79

payeeBorder.setTitle("Payee");

noteBorder.setTitle("Note");

myModel.setLanguage(0);

// Make sure the table is painted correctly

myModel fireTableStructureChanged();
table.sizeColumnsToFit(table. AUTO RESIZE ALL COLUMNS);

Y

ifflan == 1){
TabbedPanel.setTitleAt(0, "Maksamattomat laskut");
TabbedPanel setTitleAt(1, "Asetukset”);
payeeBorder.setTitle("Saajan tiedot");
noteBorder.setTitle("Viesti");
myModel.setLanguage(1);
// Make sure the table is painted correctly
myModel. fireTableStructureChanged|();
table.sizeColumnsToFit(table. AUTO RESIZE ALL COLUMNS);

/* setBorders()
* This method sets the borders for the Banking application JFrame
*/

private void setBorders() {
JPanel a = (JPanel)r.getPartByName("extraPanel");
a.setBorder(emptyBorder10pt);
JPanel b =(JPanel)r.getPartByName("userInformationPanel");
b.setBorder(emptyBorder10pt);
JPanel ¢ = (JPanel)r.getPartByName("newButtonPanel");
c.setBorder(emptyBorder10pt);
JPanel d = (JPanel)r.getPartByName("tabPanell");
d.setBorder(emptyBorder10pt);

/

/* setBorders2()
* This method sets the borders for invoiceDialog
*/
private void setBorders2(){
etchedBorder = BorderFactory.createEtchedBorder();

JPanel d = (JPanel)r.getPartByName("inputPanel");
iffd!= null)
d.setBorder(emptyBorder10pt);
JPanel e = (JPanel)r.getPartByName("dateAndAmountPanel");
if(e!= null)
e.setBorder(BorderFactory.createCompoundBorder(BorderFactory.create EmptyBorder(4,2,0,2),etchedBorder));
JPanel f = (JPanel)r.getPartByName("payeePanel");
if{f1= null)
f-setBorder(BorderFactory.createCompoundBorder(payeeBorder,emptyBorder10pt));
JPanel g = (JPanel)r.getPartByName("notePanel");
if(g!= null)
g.setBorder(BorderFactory.createCompoundBorder(note Border,emptyBorder10pt));
payeeBorder.setTitle("Payee");
noteBorder.setTitle("Note");

public static void main(String[] args) {
ry {
UlManager.setLookAndFeel(UIManager.getSystemLookAndFeelClassName());
} catch (Exceptione) { }
r = new Renderer();

boolean renderOK = r.render UIML(uimlFileName);
if(lrenderOK){
System.exit(1);

Banking?2 banking2 = new Banking2();
r.registerComponentinstance("bank.Banking2.", banking2);
/
/

Rantala, Sami. Usability of user interface markup language. Department of Electrica
Communications Engineering, Helsinki University of Technology. Espoo, Finland. 2001.

and

Appendix 3: Java code

80

Java PC application

Class Banking

//Title: Banking application

//Version: 1.0

//Author: Sami Rantala

//Company: L M Ericsson Ltd.

//Description: This is used to compare Swing and UIML interfaces.

package thesis.javabanking;
import java.awt.*;

import javax.swing.*;
import java.awt.event.*;

public class Banking extends WindowAdapter {
MainFrame GUI;

/* Banking()
* This is the constructor.
*/

public Banking() {
GUI = new MainFrame();
GULaddWindowListener(this);
GULsetVisible(true);
GULpack();

/* windowClosing(WindowEvent e)

* This method closes the window.

*/
public void windowClosing(WindowEvent e) {
System.exit(0);

public static void main(String[] args) {
ry {

UlManager.setLookAndFeel(UlManager.getSystemLookAndFeelClassName());

} catch (Exceptione) { }
Banking banking = new Banking();
/
/

Class Invoice

//Title: Banking application

//Version: 1.0

//Author: ~ Sami Rantala

//Company: L M Ericsson Ltd.

//Description: This is used to compare Swing and UIML interfaces.

package thesis.javabanking;

import java.awt. *;

import javax.swing.*;

import javax.swing.border.*;
import java.awt.event.*;
import java.lang.String;
import java.lang. Integer;
import thesis.common.*;

public class Invoice extends JDialog {
JPanel BasePanel = new JPanel();
JPanel DateAndAmountPanel = new JPanel();
JPanel NotePanel = new JPanel();
JPanel PayeeLabel = new JPanel();
JPanel Payee = new JPanel();
JPanel NorthPanel = new JPanel();
JPanel PayeeField = new JPanel();
JPanel InputPanel = new JPanel();
JPanel AmountBasePanel = new JPanel();

Rantala, Sami. Usability of user interface markup language. Department of Electrica and

Communications Engineering, Helsinki University of Technology. Espoo, Finland. 2001.

Appendix 3: Java code 81

JPanel DateBasePanel = new JPanel();
JPanel DateFieldPanel = new JPanel();
JPanel AmountLabelPanel = new JPanel();
JPanel AmountFieldPanel = new JPanel();
JPanel ButtonPanel = new JPanel();

JScrollPane jScrollPane2 = new JScrollPane();

JLabel PayeeNameLabel = new JLabel();
JLabel PayeeAccountLabel = new JLabel();
JLabel AmountLabel = new JLabel();
JLabel DateLabel = new JLabel();

JTextArea NoteTextArea = new JTextArea();

JTextField DayField = new JTextField();
JTextField YearField = new JTextField();
JTextField MonthField = new JTextField();
JTextField AmountField = new JTextField();
JTextField PayeeAccountField = new JTextField();
JTextField PayeeNameField = new JTextField();

JButton OkButton = new JButton();
JButton CancelButton = new JButton();

BorderLayout borderLayout] = new BorderLayout();
BorderLayout borderLayout3 = new BorderLayout();

GridLayout gridLayout] = new GridLayout();
GridLayout gridLayout3 = new GridLayout();
GridLayout gridLayoutd4 = new GridLayout();
GridLayout gridLayout5 = new GridLayout();
GridLayout gridLayout6 = new GridLayout();
GridLayout gridLayout7 = new GridLayout();

GridBagLayout gridBagLayoutl = new GridBagLayout();
GridBagLayout gridBagLayout2 = new GridBagLayout();

Border etchedBorder;

Invoicelnfo info = new Invoicelnfo();
InfoCollection unpaidBills;
MainFrame fatherFrame;

Border emptyBorder10pt;
TitledBorder noteBorder;
TitledBorder payeeBorder;

int language;

/* Invoice(Frame frame, String title, boolean modal, InfoCollection unpaid)

* This is one of the constructors. It forwards calls to the main constructor.

*/
public Invoice(Frame frame, String title, boolean modal, InfoCollection unpaid) {
this(frame, title, modal, unpaid, null);

}

/* Invoice(Frame frame, String title, boolean modal, InfoCollection unpaid, Invoicelnfo invoicelnfo)
* This is the main constructor.
*/
public Invoice(Frame frame, String title, boolean modal, InfoCollection unpaid, Invoicelnfo invoicelnfo) {
super(frame, title, modal);
try {
Jbinit();
unpaidBills = unpaid;
JatherFrame = (MainFrame)frame;
if(invoicelnfo = null){
PayeeNameField.setText((String)invoicelnfo.getPayee());
PayeeAccountField.setText((String) invoicelnfo.getPayeeAccount());
NoteTextArea.setText((String)invoicelnfo.getNote());
DayfField.setText((String)invoicelnfo.getDay());
MonthField.setText((String)invoicelnfo.getMonth());
YearField. setText((String)invoicelnfo.getYear());
AmountField.setText(((Integer)invoicelnfo.getAmount()).toString());

Rantala, Sami. Usability of user interface markup language. Department of Electrica and
Communications Engineering, Helsinki University of Technology. Espoo, Finland. 2001.

Appendix 3: Java code 82

}
pack();

catch(Exception ex) {
ex.printStackTrace();
/
/

/* jblnit()
* This method intitializes Invoice dialog GUL
*/
void jblnit() throws Exception {
etchedBorder = BorderFactory.createEtchedBorder(Color.white,new java.awt.Color(134, 134, 134));
emptyBorderl0pt = BorderFactory.create EmptyBorder(10,10,10,10);
noteBorder = BorderFactory.createTitledBorder(etchedBorder);
payeeBorder = BorderFactory.createTitledBorder(etchedBorder);
BasePanel.setLayout(borderLayoutl);
NotePanel.setLayout(gridLayout5);
NotePanel.setBorder(BorderFactory.createCompoundBorder(noteBorder,emptyBorder10pt));
PayeeLabel setLayout(gridLayout6);
Payee.setLayout(gridLayout);
Payee.setBorder(BorderFactory.createCompoundBorder(payee Border,emptyBorder10pt));
NorthPanel.setLayout(gridLayout3);
NoteTextArea.setWrapStyleWord(true);
gridLayout3.setColumns(2);
gridLayout4.setColumns(2);
gridLayout6.setRows(2);
gridLayout6.setVgap(3);
JScrollPane?2.setHorizontalScrollBarPolicy(JScrollPane. HORIZONTAL SCROLLBAR NEVER);
JScrollPane?2.setVerticalScrollBarPolicy(JScrollPane. VERTICAL SCROLLBAR ALWAYS);
gridLayout7.setRows(2);
gridLayout7.setVgap(3);
PayeeField.setLayout(gridLayout7);
InputPanel.setLayout(borderLayout3);
DateAndAmountPanel.setLayout(gridLayoutl);
DateBasePanel.setLayout(gridBagLayoutl);
AmountBasePanel.setLayout(gridBagLayout2);

YearField.setColumns(4);
MonthField.setColumns(2);
AmountField. setColumns(7);
DaykField.setColumns(2);

OkButton.addActionListener(new java.awt.event. ActionListener() {

public void actionPerformed(ActionEvent e) {
OkButton_actionPerformed(e);

J
i
CancelButton.addActionListener(new java.awt.event. ActionListener() {

public void actionPerformed(ActionEvent e) {
CancelButton_actionPerformed(e);
Y
s

InputPanel.setBorder(emptyBorder10pt);
BasePanel setMinimumSize(new Dimension(380, 185));
BasePanel.setPreferredSize(new Dimension(500, 200));

DateAndAmountPanel.setBorder(BorderFactory.createCompoundBorder(BorderFactory.create EmptyBorder(4,2,0,2),etchedB

order));
PayeeNameField.setColumns(20);
getContentPane().add(BasePanel);
BasePanel.add(InputPanel, BorderLayout. NORTH);
InputPanel.add(NorthPanel, BorderLayout. NORTH);
NorthPanel.add(Payee, null);
Payee.add(PayeeLabel, null);
PayeeLabel.add(PayeeNameLabel, null);
PayeeLabel.add(PayeeAccountLabel, null);
Payee.add(PayeeField, null);
PayeeField.add(PayeeNameField, null);

Rantala, Sami. Usability of user interface markup language. Department of Electrica and
Communications Engineering, Helsinki University of Technology. Espoo, Finland. 2001.

Appendix 3: Java code 83

PayeeField.add(PayeeAccountField, null);
NorthPanel.add(NotePanel, null);

NotePanel.add(jScrollPane2, null);

InputPanel.add(Date AndAmountPanel, BorderLayout.SOUTH);
DateAndAmountPanel.add(Date BasePanel, null);
DateBasePanel.add(DateLabel, null);
DateBasePanel.add(DateFieldPanel, null);

DateFieldPanel add(DayField, null);
DateFieldPanel.add(MonthField, null);
DateFieldPanel.add(YearField, null);

DateAndAmountPanel.add(AmountBasePanel, null);
AmountBasePanel.add(AmountLabelPanel null);
AmountLabelPanel.add(AmountLabel, null);
AmountBasePanel.add(AmountFieldPanel null);
AmountFieldPanel.add(AmountField, null);
BasePanel.add(ButtonPanel, BorderLayout. SOUTH);
ButtonPanel.add(OkButton, null);
ButtonPanel.add(CancelButton, null);
JScrollPane2.getViewport().add(Note TextArea, null);

}

/* setLanguage(int i)
* This method sets the language for the user interface.
*/
public void setLanguage(int i) {
language = i;
setContents(language);

}

/* setContents(int [)
* This method sets the content of the UI components according to the
* language setting.
* 0 is english
* 1 is finnish

*/
private void setContents(int |){
ifil==0) {

OkButton.setText("OK");
CancelButton.setText("Cancel");
AmountLabel setText("Amount:");
DateLabel.setText("Due Date:");

PayeeNameLabel.setText("Name:");
PayeeAccountLabel.setText("Account:");

DayfField.setToolTipText("Day");
MonthField.setToolTipText("Month");
YearField.setToolTipText("Year");
payeeBorder.setTitle("Payee");
noteBorder.setTitle("Note");

Y

else iffl==1){
OkButton.setText("Hyvdiksy");
CancelButton.setText("Peruuta”);
AmountLabel.setText("Mdicird:");
DateLabel.setText("Erdpdiivi:");

PayeeNameLabel.setText("Nimi:");
PayeeAccountLabel.setText(" Tilinumero:");

DaykField.setToolTipText("Pdivi");

MonthField. setToolTipText("Kuukausi");

YearField.setToolTipText("Vuosi");

payeeBorder.setTitle("Saajan tiedot");

noteBorder.setTitle("Viesti");
Jelse{System.out.println("lllegal language choice");}

/* CancelButton_actionPerformed(ActionEvent e)
* This method disposes this dialog without saving any information.
*/

void CancelButton_actionPerformed(ActionEvent e) {

Rantala, Sami. Usability of user interface markup language. Department of Electrica and
Communications Engineering, Helsinki University of Technology. Espoo, Finland. 2001.

Appendix 3: Java code 84

this.dispose();

/* OkButton_actionPerformed(ActionEvent e)
* This method saves the bill data and disposes this dialog.
*/
void OkButton_actionPerformed(ActionEvent e) {
info.setPayee(PayeeNameField.getText());
info.setPayeeAccount(PayeeAccountField. getText());
info.setNote(Note TextArea.getText());
info.setAmount(java.lang. Integer.parselnt(AmountField.getText()));
info.setInvoice Date (java.lang.Integer.parselnt(YearField.getText()),
Java.lang. Integer.parselnt(MonthField.getText()),
Java.lang.Integer.parselnt(DayField.getText()));
unpaidBills.addlnvoice(info);
JfatherFrame.refreshTable(unpaidBills.getSize());
this.dispose();

}
Class MainFrame

//Title: Banking application

//Version: 1.0

//Author: Sami Rantala

//Company: L M Ericsson Ltd.

//Description: This is used to compare Swing and UIML interfaces.

package thesis.javabanking;

import java.awt. *;

import javax.swing.*;

import javax.swing.border.*;

import java.awt.event. *;

import javax.swing.JTable;

import javax.swing. ListSelectionModel;
import javax.swing.event.ListSelectionListener;
import javax.swing.event.ListSelectionEvent;
import javax.swing.event. Table ModelListener;
import javax.swing.event. Table ModelEvent;
import thesis.common.™;

public class MainFrame extends JFrame{
JMenuBar menuBar = new JMenuBar();
JMenu menu = new JMenu();
JMenultem menultem,
JPanel UserInformationPanel = new JPanel();
JPanel FieldPanel = new JPanel();
JPanel LabelPanel = new JPanel();
JPanel UnpaidBillsPanel = new JPanel();
JPanel SettingsPanel = new JPanel();
JPanel ButtonPanel = new JPanel();
JPanel TableButtonPanel = new JPanel();

JTabbedPane TabbedPanel = new JTabbedPane();
JScrollPane TableScrollPane = new JScrollPane();

JTextField NameField = new JTextField();
JTextField BalanceField = new JTextField();

String[] accounts = {"1234-876","1234-124"};
JComboBox AccountComboBox = new JComboBox(accounts);

JButton Delete = new JButton();
JButton CopyAsNewButton = new JButton();
JButton NewButton = new JButton();

JRadioButton englishLanguage = new JRadioButton();
JRadioButton finnishLanguage = new JRadioButton();
ButtonGroup group = new ButtonGroup();

JLabel NameLabel = new JLabel();

Rantala, Sami. Usability of user interface markup language. Department of Electrica and
Communications Engineering, Helsinki University of Technology. Espoo, Finland. 2001.

Appendix 3: Java code

85

JLabel BalanceLabel = new JLabel();
JLabel AccountLabel = new JLabel();

BorderLayout borderLayout2 = new BorderLayout();

GridLayout gridLayoutl = new GridLayout();
GridLayout gridLayout2 = new GridLayout();
GridLayout gridLayout8 = new GridLayout();

int language = 0;
int selectedRow = -1;

InfoCollection unpaidBills = new InfoCollection();
MyTableModel myModel = new MyTableModel(unpaidBills);
JTable UnpaidBillsTable = new JTable(myModel);

ListSelectionModel rowSM = UnpaidBillsTable.getSelectionModel();

JLabel jLabell = new JLabel();

JPanel TopPanel = new JPanel();

BorderLayout borderLayout3 = new BorderLayout();
JPanel contentPanel = new JPanel();

BorderLayout borderLayout4 = new BorderLayout();
Border EmptyBorder10pt;

Border UserInfoBorder;

String a= new String();
String b= new String();

/* MainFrame()
* This is the constructor.
*/

public MainFrame() {
try {
JbInit();
this.pack();

}
catch(Exception e) {
e.printStackTrace();
}
/

/* jblInit()
* This method initializes the Ul
*/
private void jbInit() throws Exception {

EmptyBorderl0pt = BorderFactory.createEmptyBorder(10,10,10,10);

setJMenuBar(menuBar);
TopPanel.setLayout(borderLayout3);
contentPanel.setLayout(borderLayout4);
contentPanel.setBorder(EmptyBorder10pt);
UserInformationPanel.setBorder(EmptyBorder10pt);
UnpaidBillsPanel.setBorder(EmptyBorder10pt);
ButtonPanel.setBorder(EmptyBorder10pt);
menuBar.add(menu);

menultem = new JMenultem();

menultem.addActionListener(new java.awt.event. ActionListener() {
public void actionPerformed(ActionEvent e) {
menultem_actionPerformed(e);
}
Y

menu.add(menultem);
UserInformationPanel.setLayout(gridLayoutS8);
NameField.setEditable(false);
FieldPanel setLayout(gridLayoutl);
LabelPanel.setLayout(gridLayout2);
gridLayoutl.setColumns(1);
gridLayoutl.setRows(3);
gridLayoutl.setVgap(3);
gridLayout2.setColumns(1);
gridLayout2.setRows(3);
gridLayout2.setVgap(3);
this.setEnabled(true);

Rantala, Sami. Usability of user interface markup language. Department of Electrica and

Communications Engineering, Helsinki University of Technology. Espoo, Finland. 2001.

Appendix 3: Java code 86

BalanceField.setEditable(false);

NewButton.addActionListener(new java.awt.event.ActionListener() {
public void actionPerformed(ActionEvent e) {
NewButton_actionPerformed(e);
/
Y

AccountComboBox.setSelectedltem(this);
TableScrollPane.setDouble Buffered(true);
TableScrollPane.setPreferredSize(new Dimension(300, 200));
TabbedPanel.add(UnpaidBillsPanel, "UnpaidBillsPanel");
TabbedPanel.add(SettingsPanel, "SettingsPanel");
UnpaidBillsPanel.setLayout(borderLayout2);

Delete.addActionListener(new java.awt.event.ActionListener() {
public void actionPerformed(ActionEvent e) {
Delete_actionPerformed(e);
/
¥N

CopyAsNewButton.addActionListener(new java.awt.event.ActionListener() {

public void actionPerformed(ActionEvent e) {
CopyAsNewButton_actionPerformed(e);

}
P24

// UnpaidBillsTable.setShowHorizontalLines(false);
UnpaidBillsTable.setAutoResizeMode (UnpaidBillsTable. AUTO RESIZE ALL COLUMNS);
this.getContentPane().add(contentPanel, BorderLayout. CENTER);
contentPanel.add(TopPanel, BorderLayout NORTH);
TopPanel.add(UserInformationPanel, BorderLayout. WEST);
UserInformationPanel.add(LabelPanel, null);
LabelPanel.add(NameLabel, null);

LabelPanel.add(AccountLabel, null);
LabelPanel.add(BalanceLabel, null);
UserInformationPanel.add(FieldPanel, null);
FieldPanel.add(NameField, null);
FieldPanel.add(AccountComboBox, null);
FieldPanel.add(BalanceField, null);

TopPanel .add(ButtonPanel, BorderLayout. EAST);
ButtonPanel.add(NewButton, null);
contentPanel.add(TabbedPanel, BorderLayout. CENTER);
UnpaidBillsPanel.add(TableScrollPane, BorderLayout. NORTH);
UnpaidBillsPanel.add(Table ButtonPanel, BorderLayout.SOUTH);
TableButtonPanel.add(CopyAsNewButton, null);
TableButtonPanel.add(Delete, null);

englishLanguage.setActionCommand("english");
SfinnishLanguage.setActionCommand("finnish");
group.add(englishLanguage);
group.add(finnishLanguage);
englishLanguage.setSelected(true);

englishLanguage.addActionListener(new java.awt.event. ActionListener() {
public void actionPerformed(ActionEvent e) {
radioButton_actionPerformed(e);
}
N

SfinnishLanguage.addActionListener(new java.awt.event.ActionListener() {
public void actionPerformed(ActionEvent e) {
radioButton_actionPerformed(e);
J
Y

SettingsPanel.add(englishLanguage,null);
SettingsPanel.add(finnishLanguage,null);
TableScrollPane.getViewport().add(UnpaidBillsTable, null);

rowSM.addListSelectionListener(new ListSelectionListener() {
public void valueChanged(ListSelectionEvent e) {

Rantala, Sami. Usability of user interface markup language. Department of Electrica and
Communications Engineering, Helsinki University of Technology. Espoo, Finland. 2001.

Appendix 3: Java code 87

//Ignore extra messages.
if (e.getValuelsAdjusting()) return;
ListSelectionModel Ism = (ListSelectionModel)e.getSource();
if (Ism.isSelectionEmpty()) {
//no rows are selected
selectedRow = -1;
Jelse {
selectedRow = Ism.getMinSelectionlndex();
//selectedRow is selected
/
}
i
setContents(getLanguage());
/

/* setContents(int i)
* This method sets the content of the Ul components.
* int i is the language code
* 0 is english
* 1 is finnish

*/
private void setContents(int i){
if(i==0){

menu.setText("File");

menultem.setText("New Bill");
CopyAsNewButton.setText("Copy as New Bill");
BalanceLabel.setText("Balance:");
AccountLabel.setText("Account:");
Delete.setText("Delete");
BalanceField.setText("1052");
NewButton.setText("New bill");

NameLabel setText("Name:");
NameField.setText("Jack Banker");
JLabell.setText("This space is intentionally left blank");
this.setTitle("Banking application”);
TabbedPanel.setTitle At(0, "Unpaid Bills");
TabbedPanel.setTitleAt(1, "Settings");
englishLanguage.setText("English");
SfinnishLanguage.setText("Finnish");

a = "New Bill";
b = "New Bill(Copied from old)";
Jelse {

menu.setText("Tiedosto");

menultem.setText("Uusi lasku");
CopyAsNewButton.setText("Kopioi uudeksi laskuksi");
BalanceLabel.setText("Saldo:");
AccountLabel. setText("Tilinumero:");
Delete.setText("Poista");
BalanceField.setText("1052");
NewButton.setText("Uusi lasku");
NameLabel.setText("Nimi:");
NameField.setText("Jack Banker");
this.setTitle("Pankki sovellus");
TabbedPanel.setTitleAt(0, "Maksamattomat laskut");
TabbedPanel.setTitleAt(1, "Asetukset");
englishLanguage.setText("Englanti");
SfinnishLanguage.setText("Suomi");
a = "Uusi lasku";
b = "Uusi lasku (kopio)";

/
/

/* refreshTable(int i)
* This method fires an event that updates the table.
*/
public void refreshTable(int i) {myModel.fireTableRowsinserted(i,i);}

/* getLanguage()
* This method returns the language code.
* 0 is english
* 1 is finnish
*/

Rantala, Sami. Usability of user interface markup language. Department of Electrica and
Communications Engineering, Helsinki University of Technology. Espoo, Finland. 2001.

Appendix 3: Java code

88

public int getLanguage(){return language;}

/* NewButton_actionPerformed(ActionEvent e)
* This method opens a dialog for creating new bill.
*/

void NewButton_actionPerformed(ActionEvent e) {
Invoice newBill = new Invoice(this, a , true, unpaidBills);
newBill.setLanguage(language);
newBill.setVisible(true);

}

/* Delete actionPerformed(ActionEvent e)
* This method deletes selected bill from the table.
*/
void Delete_actionPerformed(ActionEvent e) {
if(selectedRow != -1){
unpaidBills.delete Row (selectedRow);

myModel.fireTableRowsDeleted(selectedRow,selectedRow);

selectedRow = -1;

}
/

/* CopyAsNewButton _actionPerformed(ActionEvent e)

* This method copies the selected bill's information into the
* new bill dialog.

*/

void CopyAsNewButton_actionPerformed(ActionEvent e) {
System.out.println(selectedRow);
if(selectedRow |=-1){

Invoice copiedBill = new Invoice(this, b, true,unpaidBills, unpaidBills.getInvoice(selectedRow));

copiedBill.setLanguage(language);
copiedBill.setVisible(true);
/

/

/* menultem_actionPerformed(ActionEvent e)

* This method forwards alls calls to NewButton actionPerformed|(e).

*/
void menultem_actionPerformed(ActionEvent e) {
this. NewButton_actionPerformed(e);

}

/* RadioButton_actionPerformed(ActionEvent e)

* This method changes the language of the Ul according the radio buttons.

*/
void radioButton_actionPerformed(ActionEvent e){
if(e.getActionCommand().compareTo("english") == 0){
language = 0;
setContents(0);
myModel.setLanguage(0);
myModel fireTableStructureChanged();

UnpaidBillsTable.sizeColumnsToFit(UnpaidBillsTable. AUTO RESIZE ALL COLUMNS);

}
if(e.getActionCommand().compareTo("finnish") == 0){
language = I;
setContents(1);
myModel.setLanguage(1);
myModel fireTableStructureChanged();

UnpaidBillsTable.sizeColumnsToFit(UnpaidBillsTable. AUTO RESIZE ALL COLUMNS);

Rantala, Sami. Usability of user interface markup language. Department of Electrica and

Communications Engineering, Helsinki University of Technology. Espoo, Finland. 2001.

