
HELSINKI UNIVERSITY OF TECHNOLOGY

Department of Computer Science and Engineering

Mika Tanskanen

ORGANIZING OF FASTER RELEASE CYCLE

 – SOFTWARE DEVELOPMENT ASPECT

Master’s Thesis

Espoo, January 28, 2008

Supervisor: Professor Marko Nieminen, D.Sc. (Tech.)

Instructor: Kirsi Lagus, M.Sc.

 II

HELSINKI UNIVERSITY OF TECHNOLOGY
Department of Computer Science and Engineering

ABSTRACT OF MASTER’S THESIS

Author Date
Mika Tanskanen January 28, 2008
 Pages
 109 + 11

Title of thesis

Organizing of Faster Release Cycle – software development aspect

Professorship Professorship Code
User-Centred Product Development T-121

Supervisor
Professor Marko Nieminen, D.Sc. (Tech.)

Instructor
Kirsi Lagus, M.Sc.

The aim of this constructive research was to research how large Research & Development (R&D)
organizations could more dynamically and rapidly adapt to continuously changing market needs.
Changing market needs bring changes to the content of ongoing product release programs, mostly in
late phase of these programs. These changes involve the addition of some feature to the ongoing pro-
gram or the removal of some already planned feature. As a result, the content of programs typically
becomes too large, thus making it necessary to change software (SW) development and management
in order to organize faster release cycles. This research focuses on organizing a faster release cycle.

Organizing a faster release cycle was found to be a topical issue at the Nokia Networks Business
Unit, which subsequently became part of the Nokia Siemens Networks Corporation. This research
focuses on two large R&D organizations and seeks to uncover the problems arising during SW de-
velopment and management. Of particular interest in this thesis were those situations requiring
changes to the content of programs at a late phase of development, as well as the strategies used to
solve these problems. Problems with proposed solutions were collected during interviews that were
arranged in the R&D organizations. The answers found during the interviews were compared with
results from the literature discussing agile methods. This data was then used to create a construction.
In this research, the term “construction” is used to denote a software process model.

This solutions identified in this research included automatic and continuous testing, minimizing par-
allel daily tasks, continuous competence sharing, continuous integration, incremental and iterative
development of SW, backlogs for management and supervision of ongoing tasks, dynamics, taking
the meaning of the communication into consideration, splitting of tasks into suitable parts, and suita-
bly adjustable content in the programs. These solutions, together with other improvements would
enable organizing faster release cycles through R&D organizations. Consequently, the eXtreme
Faster Release Cycle (XFRC) process model was constructed from this research. Exploiting the
XFRC process model would most likely enable a faster release cycle in both the target corporation
and as well as many other corporations in a variety of different industries.

Keywords
Agile methods, faster release cycle, organizing, product release program, software development

 III

TEKNILLINEN KORKEAKOULU
Tietotekniikan osasto

DIPLOMITYÖN TIIVISTELMÄ

Tekijä Päiväys
Mika Tanskanen 28. tammikuuta 2008
 Sivumäärä
 109 + 11

Työn nimi

Nopeutetun tuotejulkaisuaikataulun organisointi – ohjelmistokehityksen näkökulma

Professuuri Koodi
Käyttäjäkeskeinen tuotekehitys T-121

Valvoja
Professori Marko Nieminen, TkT

Ohjaaja
Kirsi Lagus, FM

Tämän konstruktiivisen tutkimuksen tavoitteena oli tutkia miten lähinnä ohjelmistotuotekehitykseen
erikoistuneissa, laajoissa tuotekehitysorganisaatioissa (R&D) voitaisiin mukautua markkinoiden alati
muuttuviin tarpeisiin entistä dynaamisemmin ja nopeammin. Markkinoiden muuttuvat tarpeet aiheut-
tavat muutoksia meneillään olevien tuotejulkaisuiden sisältöön, useimmiten niiden myöhäisessä vai-
heessa. Tällöin meneillään olevien tuotejulkaisuiden puitteissa kehitettäviin tuotteisiin lisätään jokin
uusi ominaisuus tai poistetaan tai siirretään myöhemmäksi tehtäväksi jokin jo suunniteltu ominai-
suus. Seurauksena on se, että tuotejulkaisuiden sisältö kasvaa varsin usein liian suureksi ja ohjelmis-
tokehitys sekä sen johtaminen asettaa muutospaineita nopeutetun julkaisuaikataulun organisoinnille,
jonka suunnittelemiseksi tämä tutkimus osaltaan päätettiin tehdä.

Nopeutetun julkaisuaikataulun organisoinnin suunnittelun todettiin olevan ajankohtainen myös No-
kia Networks – liiketoimintayksikössä, josta sittemmin tuli osa Nokia Siemens Networks yritystä.
Tutkimuksen kohteeksi valittiin ohjelmistokehitykseen ja sen organisointiin liittyvien ongelmakohti-
en selvittäminen kahdessa laajassa R&D organisaatiossa. Ensisijaisina tutkimuskohteina oli tutkia
mitä ongelmakohtia liittyy lähinnä sellaiseen tilanteeseen, jossa tuotejulkaisun sisältöön kohdistuu
muutoksia lähinnä sen loppuvaiheessa ja miten kyseisiä ongelmakohtia voitaisiin ratkaista. Tutki-
muksessa huomioitiin sekä ohjelmistokehityksen että johdon näkökulmat. Ongelmakohdat ratkai-
suehdotuksineen kerättiin haastattelemalla henkilöstöä R&D organisaatioissa. Haastattelutuloksia
peilattiin ketteriä menetelmiä käsittelevän kirjallisuuskatsauksen myötä löytyneisiin tuloksiin. Näin
saatiin aikaan perusta konstruktiolle, joka tarkoittaa prosessimallia tämän tutkimuksen puitteissa.

Etenkin automaattinen ja jatkuva testaus, rinnakkaisten työtehtävien minimointi, osaamisen jatkuva
jakaminen, jatkuva ohjelmistokomponenttien integrointi, inkrementaalinen ja iteratiivinen lähesty-
mistapa ohjelmistokehitykseen, meneillään olevien ja tulevaisuuteen ajoittuvien tehtävien ym. hallin-
ta sekä seuranta erilaisia listoja (eng. backlog) hyödyntäen, dynaamisuus, kommunikoinnin merki-
tyksen huomioiminen, tehtävien pilkkominen riittävän pieniksi osakokonaisuuksiksi ja sopivasti mi-
toitettu tuotejulkaisuiden sisältö vaikuttavat olevan tutkimuksen perusteella osaltaan ratkaisuosateki-
jöitä. Kyseisiin osatekijöihin liittyvät kehitystoimenpiteet osaltaan mahdollistaisivat tehokkaamman
ohjelmistokehityksen organisoinnin, joka saisi aikaan myös nopeutetun julkaisuaikataulun organi-
soinnin R&D organisaatioissa. Täten tutkimuksen lopputuloksena aikaansaatiin konstruktioksi eXt-
reme Faster Release Cycle (XFRC) prosessimalli. Kyseisen prosessimallin soveltaminen käytäntöön
mitä todennäköisimmin mahdollistaa nopeutetun julkaisuaikataulun toteutumisen sekä kohdeyrityk-
sen sisällä että myös monissa muissa yrityksissä, miltei toimialariippumattomasti.

Avainsanat
Ketterät menetelmät, nopeutettu julkaisuaikataulu, organisointi, tuotejulkaisuprogram, ohjelmistoke-
hitys

 IV

PREFACE

This Master’s Thesis was part of research at Nokia Corporation and this thesis was carried out

in the Software Business and Engineering Laboratory of the Department of Computer Science

and Engineering at Helsinki University of Technology (HUT) between autumn 2005 and au-

tumn 2007. The idea of this research arose from the needs of Nokia Corporation to visualize

faster release cycles. Therefore, this research was established in the autumn 2005. Writing this

thesis was done besides a fulltime job at Nokia Corporation (since 1.4.2007 at Nokia Siemens

Networks Corporation) and part-time studies at HUT. The thesis was completed in the autumn

2007.

This research would not have been accomplished without collaboration with many people

from HUT and Nokia Corporation. Thus, I would next like to thank all those people who en-

abled this research by participating at different stages of the research.

First of all, I would like to express the very high appreciation to my supervisor, Professor

Marko Nieminen from HUT, for his advice during this research.

I would like to express the extremely high appreciation to my instructor Kirsi Lagus from

Nokia Corporation. I am truly grateful that she was able to dedicate her time to this research. I

would also like to thank my previous boss Seppo Koivunen and current boss Jukka Seppänen,

for their support and understanding for this research. Overall, I am grateful to my employer

for giving me the opportunity to do this research.

Many interviewees and workgroup members in Platform R&D and Application R&D organi-

zations devoted their time to participate to this research. I appreciate their attitude very highly

and thus I would like to dedicate word of thanks to them. Unfortunately their names have

been left out of this Master’s Thesis for confidentiality reasons.

Research Professor Pekka Abrahamsson from VTT and Researcher Kristian Rautiainen from

HUT have commented on second last version of this thesis. I would like to express my grati-

tude to them for their useful comments.

Finally, most of all I would like to express the highest appreciation to my lovely sweetheart

Anne for the patience, encouragement she has given during this research. Furthermore, I am

most indebted to Anne for reviewing linguistic form of this Master’s Thesis.

Espoo, January 28, 2008

Mika Tanskanen

 V

TABLE OF CONTENTS

PREFACE .. IV

TABLE OF CONTENTS ... V

LIST OF FIGURES .. VIII

LIST OF TABLES .. IX

LIST OF ABBREVIATIONS ... X

1. INTRODUCTION TO THE RESEARCH.. 1

1.1 Background ... 1

1.2 Aim of the research... 2

1.3 Research problem... 2

1.4 Scope of the research... 3

1.5 Constructive research approach... 4
1.5.1 Motivation.. 4
1.5.2 Research process flow ... 4

1.6 Structure of the thesis .. 5

2. LITERATURE REVIEW ... 6

2.1 Overview to Agile Modeling and agile methods.. 7
2.1.1 Agile Modeling .. 7
2.1.2 eXtreme Programming.. 7
2.1.3 Scrum.. 11
2.1.4 Other agile methods ... 14

2.2 Experiences of other corporations – eXtreme Programming cases... 16
2.2.1 Case: Ericsson.. 16
2.2.2 Case: IBM ... 18
2.2.3 Case: Lund Institute of Technology.. 21

2.3 Experiences of other corporations – Scrum cases... 24
2.3.1 Case: AG Communication Systems ... 24
2.3.2 Case: University of Ljubljana .. 26
2.3.3 Case: Solystic ... 27

2.4 Experiences of other corporations – other cases... 30
2.4.1 Case: Philips ... 30
2.4.2 Case: Avain Technologies.. 32
2.4.3 Case: Smartner Information Systems .. 38

2.5 Summary of literature review... 41

3. IMPLEMENTATION AND RESULTS FROM INTERVIEW STUDY ... 42

3.1 Overview to the interview method .. 43

 VI

3.1.1 Motivation.. 43
3.1.2 Interview flow .. 43

3.2 Interview results and comparison with the literature – Well-Tried practices 44
3.2.1 Platform R&D aspect .. 44
3.2.2 Application R&D aspect .. 45

3.3 Interview results and comparison with literature – problems and proposed solutions by

interviewees .. 47
3.3.1 Lot of parallel tasks in daily work.. 47
3.3.2 Lack of competence sharing... 48
3.3.3 Bureaucratic decision making... 50
3.3.4 Underestimation of needed resources ... 51
3.3.5 Inadequate co-operation between testing and SW groups.. 53
3.3.6 Lacking Feature Owner .. 55
3.3.7 Inadequate communication .. 56
3.3.8 Late changes to the content of release programs.. 57
3.3.9 Inconsistent synchronization of release programs... 59
3.3.10 Heavyweight documentation and bureaucratic reviews .. 60
3.3.11 Lack of versioning knowledge of program blocks.. 62

3.4 Experiences of Scrum piloting .. 64

3.5 Summary of results from interview study.. 66

4. EXTREME FASTER RELEASE CYCLE (XFRC) PROCESS MODEL ... 67

4.1 Overview to XFRC process model .. 68

4.2 XFRC values .. 69

4.3 XFRC practices.. 77

4.4 XFRC roles and responsibilities.. 79

4.5 XFRC process model .. 82

4.6 Summary of XFRC process model.. 88

5. CONCLUSIONS... 89

5.1 Answers to first research sub-question... 90

5.2 Answers to second research sub-question ... 92
5.2.1 Well-tried practices ... 92
5.2.2 Discovered problems.. 92
5.2.3 Proposed solutions ... 93
5.2.4 Dependencies between proposed solutions .. 100

5.3 Answers to third research sub-question.. 102

5.4 Answers to research main question ... 103

6. DISCUSSION... 104

6.1 Learning experiences ... 105

 VII

6.2 Reliability and validity of research.. 105

6.3 Suggestions for Further Actions... 106

6.4 Suggestions for Further Research.. 108

LIST OF REFERENCES... 110

APPENDICES... 114

Appendix 1: XP practices .. 114

Appendix 2: Scrum’s Product Backlog.. 115

Appendix 3: Scrum’s Product Burn-Down chart .. 116

Appendix 4: Scrum’s Sprint Backlog ... 117

Appendix 5: Scrum’s Release Backlog.. 118

Appendix 6: Scrum’s Sprint Burn-Down chart.. 119

Appendix 7: Scrum Retrospective Meeting chart ... 120

Appendix 8: Scrum practices.. 121

Appendix 9: Interview Questions ... 122

Appendix 10: Summarized problems with most essential proposed solutions 123

Appendix 11: Other practices ... 124

 VIII

LIST OF FIGURES

Figure 1. Structure of the thesis... 5
Figure 2. Introduction to chapter 2... 6
Figure 3. Waterfall, Iterative and XP lifecycles.. 7
Figure 4. XP Process Model .. 9
Figure 5. A typical XP designer’s working day .. 10
Figure 6. Scrum Process Model .. 11
Figure 7. The Cycles of Control framework by SEMS... 33
Figure 8. The cycles of improved process at Avain Technologies.. 34
Figure 9. The cycles of improved process at Smartner... 38
Figure 10. Introduction to chapter 3... 42
Figure 11. Introduction to chapter 4... 67
Figure 12. Examples of recommended contact persons and job rotation... 81
Figure 13. eXtreme Faster Release Cycle (XFRC) process model .. 82
Figure 14. Introduction to chapter 5... 89
Figure 15. Interpreted dependencies between proposed solutions .. 100
Figure 16. Introduction to chapter 6... 104
Figure 17. IDEAL model... 108

 IX

LIST OF TABLES

Table 1. Scrum Roles and responsibilities .. 12
Table 2. Key practices of other agile methods .. 15
Table 3. XP related experiences according to piloting at Ericsson ... 16
Table 4. XP related experiences according to piloting at IBM .. 19
Table 5. XP related experiences according to piloting at Lund’s Institute .. 21
Table 6. Scrum related experiences according to piloting at AG Communication Systems................................... 24
Table 7. Scrum related experiences according to piloting at University of Ljubljana ... 26
Table 8. Scrum related experiences according to piloting at Solystic... 27
Table 9. Combination of agile methods related experiences according to piloting at Philips................................. 30
Table 10. The Cycles of Control according to SEMS approach.. 33
Table 11. The Cycles of Control at Avain Technologies ... 34
Table 12. Combination of agile methods related experiences according to piloting at Avain Technologies.......... 35
Table 13. Combination of agile methods related experiences according to piloting at Smartner 38
Table 14. Well-tried practices by interviewees – Platform R&D aspect.. 44
Table 15. Well-tried practices by interviewees – Application R&D aspect.. 45
Table 16. Experiences of Scrum Piloting... 64
Table 17. XFRC values.. 69
Table 18. XFRC practices.. 77
Table 19. XFRC roles and responsibilities .. 79

 X

LIST OF ABBREVIATIONS

AM Agile Modeling

ASD Adaptive Software Development

CMM Capability Maturity Model (for Software)

CR Change Request

CVS Concurrent Versions System

DSDM Dynamic Systems Development Method

FDD Feature Driven Development

FT Functional Testing (planning, execution and reporting)

HSDPA High Speed Downlink Packet Access

HUT Helsinki University of Technology

HW Hardware

IDEAL Initiating, Diagnosing, Establishing, Acting and Learning

IS Implementation Specification

ISD Internet-Speed SW Development

ISO International Organization for Standardization

MI Module Implementation

MT Module Testing (planning, execution and reporting)

PP Pragmatic Programming

Q&A Quality & Assurance

R&D Research and Development

RUP Rational Unified Process

SD Software Design

SEI Software Engineering Institute

SEMS Software Engineering Management System

SFS System Specification

SPI SW Process Improvement

ST System Testing (planning, execution and reporting)

SW Software

TDD Test Driven Development

VTT Technical Research Centre of Finland

XFRC eXtreme Faster Release Cycle – process model,

designed by M. Tanskanen

XP eXtreme Programming

 1

1. INTRODUCTION TO THE RESEARCH

Designer knows that perfection is not achieved when there is nothing to add but when there is
nothing to remove.

Antoine de Saint-Exupéry

1.1 Background

Nokia Corporation initiated the subject of this research in order to find solution to the ques-

tion: how to make release cycle faster regarding Change Requests (CR) related working that

pertains to possible changes of content of release programs in late phase of the programs. The

reasons for this research can be split into two categories. First category consists of market

situation related reasons. It means that continuous learning, dynamical behavior and flexible

adaptation for continuous changes regarding market needs are needed through Research and

Development (R&D) organizations in contemporary growing global market area. This seems

to be general problem in the telecommunication business, because the products might be

based on new concepts that are always not known in detail from customers and corporation

perspective. Second category consists of reasons that had been noticed according to corpora-

tion’s internal needs. There was noticed that current release programs have too large content

and management of large content takes lot of time, partially due to CRs, so search of alterna-

tives for more efficient SW development including content management perspective were

started. Thus, the Faster Release Cycle project was established in the autumn 2005.

Platform R&D and Application R&D organizations along with other R&D organizations were

part of Nokia Networks business group which was one of business groups of Nokia Corpora-

tion during this research. Since 1.4.2007 these R&D organizations were included to be part of

Nokia Siemens Networks Corporation. Operating on international telecommunications

equipment market is the above mentioned organization’s line of business. Members of those

large organizations develop radio access, mobility core and wireless broadband network solu-

tions for customers who are network providers and operators.

Representatives from both Platform R&D and Application R&D organizations participated in

the project and few working groups started their activities as weekly workshops. Searching

possible solutions how to make current release cycle faster was common denominator for

these working groups. The working groups were split into six different categories: i) Continu-

ous Technical Management, ii) Program and Project Management, iii) Software (SW) Devel-

opment: Platform and Application development working groups, iv) Maintenance, v) Cus-

tomer Documentation and vi) Hardware (HW) Development. Author of this thesis partici-

 2

pated in activities with couple of SW development working groups: Platform and Application

development working groups. Different activities with above mentioned working groups cre-

ated basis and necessity of this research.

The research was decided to start and research material was decided to collect during litera-

ture review and interviews. At first the preliminary study was done by participate in activities

of working groups and by discussion with few people working in R&D organizations. Ac-

cording to the preliminary study and aims of the Faster Release Cycle project, the research

problem (chapter 1.3) was defined and detailed planning of this research was started. Also the

aims (chapter 1.2) of this research were defined, scope of the research (chapter 1.4) was de-

fined and research approach (chapter 1.5) was selected.

1.2 Aim of the research

The aim of this research was to find answers to research main question and sub-questions in

order to solve the research problem (chapter 1.3) by constructing appropriate solution model.

Hereinafter this solution model is called as an eXtreme Faster Release Cycle (XFRC) process

model. Proposed process model was constructed on the basis of literature, interviews and pilot

experiences. Usability was in major role during this research and process model was con-

structed from usability perspective as the usability definition says:

Usability is scope that describes a product can be used by specified users to achieve specified
goals with productivity, efficiency and satisfaction in a specified context of use.

(ISO 9241-11 1998, p. 2)

1.3 Research problem

Research problem as main focus of this research was organizing of faster release cycle from

software development aspect. In the beginning of this research both managerial and especially

SW designers’ perspectives were seen to be essential for organizing of faster release cycle. It

meant study of how to organize especially SW designers’ daily work so that release cycle

could become faster. Constructing of new process model seemed to be one alternative to

make release cycle faster. That process model would be dynamically scalable model e.g. for

organizing of SW development through R&D organizations. In addition, it would not be de-

pended of possible late changes to content of release programs. The organizing related results

were decided to analyze from usability aspect. SW designers are “users” within this aspect

and organizing of their work was mainly researched from this usability perspective during this

research. Thus, SW designers could develop SW productively, efficiently and enjoyable to

 3

achieve specified goals in specified context during release programs when their tasks could be

organized more suitable than before this research (cf. ISO 9241-11 1998, p. 2).

According to above, the research main question was determined as follows:

What kind of SW process model would enable the faster release cycle when content of on-

going release programs is continuously changing in late phase?

Before construction of the process model that enables faster release cycle information regard-

ing current state of Platform R&D and Application R&D organizations was needed. To dis-

cover current state the experiences that describe possible problems with proposed solutions

were needed to collect through these organizations. Mainly CR process and general SW de-

velopment practices including problems with proposed solutions were researched. In addition,

similar experiences of other corporations and basic principles for constructing the process

model were needed to discover from the literature. Therefore, in order to construct solution to

research main question the following three research sub-questions were formed:

1. Which are the basic principles for constructing the process model that enables faster re-

lease cycle?

2. What kind of problem(s) pertain to ongoing product release program(s) when some fea-

ture is added to that program in late phase and how to solve the possible problem(s)?

3. What kind of problem(s) pertain to ongoing product release program(s) when some fea-

ture is (re)moved from that program in late phase and how to solve the possible prob-

lem(s)?

Answers to first research sub-question were found along with the literature review (chapter 2).

Answers to second and third research sub-questions are based on interview results (chapter 3).

These answers were compared with the literature review results that describe above experi-

ences and principles for constructing the process model. Due to analysis of above results, the

XFRC process model (chapter 4) was constructed for organizing of faster release cycle. More

details of this research are discussed in chapters 1.4 and 1.5. Detailed structure of this thesis is

described in chapter 1.6.

1.4 Scope of the research

Literature review (chapter 2) and use of interview method (chapter 3.1) are main parts of this

research. The scope of the literature review was limited to overview to agile methods and

faster release cycle related experiences (chapters 2.2 - 2.4) of other corporations. Especially

 4

Scrum and eXtreme Programming (XP) were selected under detailed research. Scope of agile

method overview and related experiences was consequently limited to concern mainly XP

(chapter 2.1.2) and Scrum (chapter 2.1.3) methods because Scrum was already under pilot

process (chapter 3.4) in one SW development group in Platform R&D organization. In addi-

tion, many experiences of both methods are available. Detailed study of other agile methods

(chapter 2.1.4) was mainly excluded in this research but overview to those methods is shortly

discussed in chapter 2.4. The scope of interviews is discussed in details in chapter 3.1.2.

1.5 Constructive research approach

1.5.1 Motivation

One of research approaches is constructive research approach (Kasanen et al. 1993, pp. 243-

264) and it was selected also for this research. Also e.g. case research (Järvenpää & Kosonen

2003, p. 19-20) and action research (Järvenpää & Kosonen 2003, p. 21-22) were other alterna-

tives when selecting research approach. However, constructive research appeared to be a

natural choice for this research because it is suitable approach when solutions model(s) are

needed to be constructed for solving e.g. (SW) process related problems. The constructive ap-

proach provides clear phases for research process and provides possibility to select different

research methods for the support of research. It also enables demonstration of solution, i.e.

testing of suitability of construction. According to demonstration results, the solution model

can be addressed to work in the real world. If some solution model does not work in the real

world it can be modified and demonstrated after re-modification.

1.5.2 Research process flow

Constructive research process can be split to six main phases. The phases are described here

(Kasanen et al. 1993, pp. 243-264):

1. Find a practically relevant problem

2. Obtain an understanding of the research topic

3. Construct a solution model

4. Demonstrate that the solution works

5. Show theoretical connections and research contribution of the solution concept

6. Examine the scope of the applicability of solution

At first the research problem (chapter 1.3) and related research main question with sub-

questions were selected according to preliminary (chapter 1.1) research. Understanding of the

 5

research topic originated from own experiences and participation in Faster Release Cycle-

project’s workshops increased detailed knowledge. Constructing the solution model (XFRC

process model) was done at the end of this research. Interpretations for the XFRC process

model have been done according to literature review (chapter 2), interview results (chapters

3.2 and 3.3) and Scrum piloting (chapter 3.4) experiences. Actual demonstration that the

above process model works was excluded because timing and scope of this research were lim-

ited. However, demonstration related further actions that are discussed in chapter 6.3 and ex-

periences of Scrum piloting (chapter 3.4) belong to part of demonstration that the process

model works. The interview results compared with the literature review results show theoreti-

cal connections of the XFRC process model. Scope of the applicability of the process model

is discussed shortly in chapter 4 where the XFRC process model is illustrated too.

1.6 Structure of the thesis

This thesis reports the results of a constructive research process for organizing of faster re-

lease cycle. First the background, problems, aims, scope and approach of this research is dis-

cussed in this chapter 1. Chapter 2 contains literature review that was done by searching rele-

vant data from standards, books and conference articles. The interviews were arranged in Plat-

form R&D and Application R&D organizations. Fundamental research problem related inter-

view results that were compared with the literature are discussed in chapter 3.

Literature review and interview results were summarized and analyzed. The XFRC process

model has been constructed according to analyzed data. The XFRC process model is de-

scribed in chapter 4. Conclusions of this research are described in chapter 5. Other discussion

about this research has been written to chapter 6.

The structure of this thesis is clarified in Figure 1 below:

Figure 1. Structure of the thesis

 6

2. LITERATURE REVIEW

So much has already been written about everything that you can’t find anything about it.
James Thurber

This chapter introduces overview to Agile Modeling (AM), agile methods and related experi-

ences of other corporations. This literature review was needed in order to create theoretical

basis of agile SW development and to find answers to first research sub-question (chapter

1.3).

Overview (chapter 2.1) to AM and agile methods is based mostly on books and conference

articles. The agile methods are e.g. XP and Scrum. In this research both of them were selected

for scientific study because Scrum was already under pilot process in one SW development

group in Platform R&D organization. Furthermore, many experiences from other corpora-

tions, which have piloted agile method(s) as among others both above methods for improving

their SW process in their organizations, were available. In addition, the hypothesis was that

e.g. combination of XP and Scrum might be suitable for organizing of faster release cycle.

The best practices of few other methods have only been described shortly in this chapter.

Experiences (chapters 2.2 - 2.4) of other corporations are exclusively based on the research

reports and conference articles. The experiences consist of well-tried practices and problems

with proposed solutions, suggested by corporations, for those problems. Well-tried practices

are summarized in Tables (4-9, 10, 13 and 14) and discussed in detail in text. The problems

with proposed solutions are mainly listed only shortly in above Tables. The purpose of the

experiences is to demonstrate how other corporations have used agile practices, i.e. what kind

of practices have succeeded or failed during e.g. piloting of some agile method(s).

Figure 2. Introduction to chapter 2

 7

2.1 Overview to Agile Modeling and agile methods

2.1.1 Agile Modeling

Agile Modeling (AM) is practice-based methodology for effective modeling and documenta-

tion of SW (Ambler 2007). In addition, it is way to model organizing team structures and

ways of working with agile methods. One or more agile method (chapters 2.1.2 - 2.1.4) can be

base process model of software development systems when AM is used. The AM methodol-

ogy is a collection of practices, guided by principles and values. The underlying idea of AM is

to encourage designers to produce sufficiently advanced models to support design needs and

documentation purposes, i.e. amount of models and documentation is tried to keep as low as

possible. (Ambler 2007; Abrahamsson et al. 2003)

2.1.2 eXtreme Programming

The eXtreme Programming (XP) is a lightweight process for small and medium sized teams

developing rapidly changing requirements (Aarnio 2001, p. 18; Beck 2000). XP consists of

shorter iterations than e.g. Waterfall Model (Royce 1970) and Iterative Model (Larman et al.

2003). Nonetheless, it contains same phases which can be e.g. System Specification (SFS),

Implementation Specification (IS), Software Design (SD), Module Implementation (MI),

Module Testing (MT), Functional Testing (FT) and so on. These development lifecycles are

described in Figure 3 (Beck 1999).

Figure 3. Waterfall, Iterative and XP lifecycles

The values of XP, as well as of AM values, are communication, simplicity, feedback and

courage. Most common source of problems in any project is poor communication and XP en-

courages to open and honest communication. Simplicity brings many advantages: better test-

ability, better readability of code, simple but not too simple documentation, short iterations

 8

with small releases (release programs), problem solving and re-factoring. Early and concrete

feedback by customer enables controlling of efforts. Feedback is also relatively immediate

through working team. Customer and team are typical main roles according to XP. E.g. pro-

grammer, testing person, coach and manager can belong to team.

Besides above values, during XP process also few key practices should be followed (Aarnio

2001, pp. 19-24; Beck 1999). Above simple documentation belongs to simple design that is

one of XP’s key practices. These key practices have been listed here:

1. Planning Game

2. Small release programs

3. Metaphor

4. Simple design

5. Testing

6. Re-factoring

7. Pair programming

8. Continuous integration

9. Collective ownership

10. On-site customer

11. 40-hours weeks

12. Open workspace

13. Just rules

Above practices and detailed description of the process phases is described in next sections in

this chapter. In addition, these practices with entailed benefits are discussed in Appendix 1:

XP practices.

Typical practice in XP is above pair programming in which two designers participate in e.g.

MI-phase with each other at a single computer. Benefits of pair programming are: i) code re-

views are effective in finding defects (cf. quality), ii) rapid feedback, iii) familiarity of e.g.

program block increases and iv) changing pairs occasionally increases competence sharing. It

is good to have experienced and novice designer working as a pair so novice’s knowledge is

increased e.g. in programming. When designer is working with other people trust is essential,

e.g. when designer makes decisions or when some other people need help. Also courage is

needed in order to reach aims of project. (Aarnio 2001, p. 18-24; Ambler 2002, pp. 19-26, 83-

88, 131-133, 143-165, 185-187, 194)

 9

XP process model is described in Figure 4. (Ambler 2002, p. 191)

Figure 4. XP Process Model

At the start of the XP lifecycle, the architecture is selected and on-site customer picks the next

release program by choosing the most valuable features (called user stories in XP). User story

contains a name and short description of a needed feature. The customer (one on-site cus-

tomer in this case) writes the user stories that enable designers (e.g. 10 people team) to esti-

mate how long story or stories will take time to implement. This phase is called Exploration

Phase. (Aarnio 2001, pp. 19-21, 24-27; Ambler 2002, pp. 190-192, 199-206; Beck 1999)

Exploration Phase is followed by Planning Phase (called also Planning Game). In this phase

content of coming release program is planned according to prioritized user stories. According

to estimations, the customer decides the scope and timing of release program(s). After that

user stories are assigned to the iteration that contains typical SW process phases. This phase is

called Iterations to Release Phase. During iteration team members implement their tasks that

they want to be responsible for. This is possible because of collective ownership and team‘s

possibility to make decisions regarding programming. The XP team meets daily (not at week-

end or holiday) and designs what team members have done and what they will do before next

meeting. This meeting is called Stand-Up Meeting. Daily work consists of Stand Up Meeting

and breaking up team into pairs which meet in quick design session before implementation

and testing etc. Code is implemented, tested and integrated daily and also re-factoring is pos-

sible if needed. Integration is not allowed until tests are executed. The unit tests (typically e.g.

MT cases) are planned and implemented before implementation. It is called Test Driven De-

velopment (TDD) (Mugridge 2003). Overtime work is not allowed, i.e. 40 hours is maximum

 10

amount of work weekly. Typical XP designer’s day is described in Figure 5. (Aarnio 2001,

pp. 24-27; Ambler 2002, pp. 192-196, 214-222; Beck 1999)

Figure 5. A typical XP designer’s working day

After iterations the functionality is tested with acceptance tests. The customer has specified

the acceptance tests while team has implemented Iterations to Release Phase. The customer is

also responsible for verifying acceptance tests and reviewing test results. When functionality

has been tested and approved system can be released. This phase is called Productionizing

Phase. The Productionizing Phase is followed by Maintenance Phase. (Aarnio 2001, pp. 26-

27; Ambler 2002, pp. 196-197; Beck 1999)

As above mentioned overview shows the XP process model contains five main phases and

many useful engineering practices for agile SW development. Besides engineering practices

also awareness about managerial and organizational aspects are essential so that it would be

possible to organize of faster release cycle. Thus, Scrum paradigm was decided to select for

scientific study in this research because it emphasizes exactly those aspects. Overview to

Scrum is described in next chapter.

 11

2.1.3 Scrum

Scrum is an agile, lightweight process that can be used to manage and control software and
product development using iterative, incremental practices.
 (Schwaber 2007a)

Scrum represents a paradigm shift in software development (Schwaber & Beedle 2002, p.

110). Scrum can be scaled through large, local and multi-site organizations (Schwaber 2003,

p. 119-125) so it has been selected under study in this research. Scrum consists of practices of

an iterative, incremental process that has been developed at Bell Labs in 1930s (Larman et al.

2003). The iteration (sprint) is heart of Scrum and output of fixed period, 30 days iterations,

is an increment of product (Schwaber 2003, pp. 5-8, 136; Schwaber & Beedle 2002, p. 50).

The increment of the product can be part of some feature. This kind of feature can be e.g.

High Speed Downlink Packet Access (HSDPA) feature that is developed during SW product

release programs in Platform R&D and Application R&D organizations. Any phase (e.g. IS,

SD, MI and MT or SFS, IS, SD, MI, MT and FT and so on) can be included to all iterations.

Scrum roles can be described by three main roles: i) Product Owner, ii) Team (consists of 5-9

persons) and iii) Scrum Master (Schwaber 2003, p. 6). Responsibilities of those roles are de-

scribed in Table 1 on next page and Scrum process model is described in Figure 6 below

(Schwaber 2003, pp. 6-7, 9, 101-118, 142-143; Schwaber & Beedle 2002, pp. 8-9, 28, 31-32,

36, 38, 118, 140-141, 147-154)

Figure 6. Scrum Process Model

 12

Table 1. Scrum Roles and responsibilities

Scrum Role Responsibility

Product Owner - creating requirements using the Product Backlog

- prioritizing Product Backlog contained requirements

- participation in Sprint Planning Meeting, Sprint Review

Meeting, Sprint Retrospective Meeting

- conforming Scrum values (commitment, focus, open-

ness, respect and courage)

Team - building of functionality according to requirements

- planning how to do development work (self-organizing

team)

- constructing and maintaining a list (Sprint Backlog) of

tasks to perform during each sprint

- using and conforming existing architectures, standards,

technology etc.

- conforming Scrum values (commitment, focus, open-

ness, respect and courage)

- collaboration with other Scrum teams that have same

(Scrum) or similar (e.g. XP or some other suitable agile

method) structures (cf. also chapter 3.4 contained ex-

periences)

- participation in Sprint Planning Meeting, Daily Scrum

Meeting, Sprint Review Meeting, Sprint Retrospective

Meeting

Scrum Master - employing the Scrum process to build product (success

of Scrum)

- representing management and the team to each other

- ensuring that impediments are promptly removed

- collaboration with customer and management

- teaching Scrum to everyone in the team

- participation in Sprint Planning Meeting, Daily Scrum

Meeting, Sprint Review Meeting, Sprint Retrospective

Meeting

- conforming Scrum values (commitment, focus, open-

ness, respect and courage)

 13

Start of the sprint, the team reviews and plans what it must do during iteration to be started.

This review session is called Sprint Planning Meeting. It is similar than Planning Game in XP

(Vriens 2003). It has two parts and one part takes about four hours. The first part is spent by

presenting a Product Backlog to the team. Product Backlog (Appendix 2: Scrum’s Product

Backlog) contains list of changes that will be made to the product for future release programs.

Changes can be constituted of e.g. functions, technologies, enhancements and bug fixes, i.e.

all work that can be foreseen for a product. Product Owner collaborates with the team and

they discuss what will be done for the next sprint. Product Owner owns the Product Backlog.

During the first part of Sprint Planning Meeting, Product Owner presents a highest priority

Product Backlog to the team. The team tells to Product Owner how much it believes can turn

into a completed increment of product functionality by the end of the sprint. Also Product

Burn-Down chart (Appendix 3: Scrum’s Product Burn-Down chart) can be used to indicate

remaining work concerning coming sprints. The Product Burn-Down chart is estimated in

days. In consequence of above, managing the anticipated end date and progress of the entire

project is easier. (Schwaber 2007a; Schwaber 2003, pp. 10-13)

When the highest priority Product Backlog has been selected and the team has decided what it

must do during sprint, the second part of Sprint Planning Meeting can be started. During sec-

ond part the team constructs Sprint Backlog (Appendix 4: Scrum’s Sprint Backlog) and possi-

ble Release Backlog (Appendix 5: Scrum’s Release Backlog) if needed. Also Sprint Burn-

Down chart (Appendix 6: Scrum’s Sprint Burn-Down chart) can be used to indicate remaining

work in hours during sprint. Sprint Backlog contains estimations and task names for devel-

opment work to be done during sprint. Sprint Backlog is estimated in hours. Release Backlog

is subset of Product Backlog that is selected for a release. In other words, Release Backlog is

the same as Product Backlog but restricted to a release program. Release Backlog is estimated

in days. The reviewed Sprint Backlog is hanged across the wall of meeting room(s) that have

been reserved for daily meetings arranged by every Scrum team. (Schwaber 2003, pp. 5, 8,

133-136; Schwaber & Beedle 2002, pp. 47-48, 71-72)

Ongoing sprint consists of development work and daily meetings. Sprint fixes typical project

related variables: time available (every sprint is always 30 days), cost (in people and re-

sources) and delivered quality (usually organizational standard). Also scope of functionality

can be changed during sprint if needed, i.e. content of release program can be removed but not

added. However, content of release program can also be added but only if the team allows

that. Each Scrum team meets daily and one meeting (also called the Daily Scrum Meeting)

takes time not more than 15 minutes. During the meeting, the team members tell what they

 14

have done since last daily meeting, what they will do before the next meeting and what obsta-

cles have been noticed. Remaining work is written into Sprint Backlog which is updated by

team members. Used time is not tracked in Sprint Backlog because the progress is followed

mostly through the Scrum daily meetings (Itkonen et al. 2003). The estimation is the total es-

timated hours remaining, regardless of the number of people that are doing development

work. Thus, meetings ensure that every member knows what everyone else is doing and

thereby mentoring or collaboration is promoted. Also tacit and explicit knowledge can be

found and perceived better due to knowledge sharing during daily meetings. (Schwaber 2003,

pp. 8, 15-136, 141; Schwaber & Beedle 2002, pp. 33, 40, 43, 52, 72, 111-113, 118; Nonaka &

Takeuchi 1995)

At the end of the iteration, the team presents the increment of working functionality it has

built. This session is called Sprint Review Meeting and it takes about four hours. During

Sprint Review Meeting the developed functionality is demonstrated to Product Owner and

stakeholders (people with an interest in the outcome of the project) can inspect the functional-

ity. Also timely adaptations to the project can be made. Any unimplemented functionality is

re-entered onto the Product Backlog and it is reprioritized. After Sprint Review a Sprint Ret-

rospective Meeting is arranged (see Appendix 7: Scrum Retrospective Meeting chart). Then

during about three hours the team discusses about experiences regarding completed sprint and

plans how to make things better during the next sprint. (Schwaber 2007a; Schwaber 2003, pp.

6, 101, 137-139, 142; Schwaber & Beedle 2002, pp. 53-56)

As above overview to Scrum described there are many managerial and organizational aspects

in Scrum. Rules for changes of content of sprints, specified roles and responsibilities are in-

cluded in those aspects. E.g. fixed period iterations (sprints), meetings, backlogs and continu-

ous integration are practices that entail many benefits concerning those aspects. Scrum prac-

tices with benefits are also discussed in Appendix 8: Scrum practices. The aspects that were

discussed in this overview to Scrum complement the engineering practices of XP and are es-

sential part of organizing of faster release cycle.

2.1.4 Other agile methods

Also e.g. Adaptive Software Development (ASD), Crystal Family, Dynamic Systems Devel-

opment Method (DSDM), Feature Driven Development (FDD), Internet-Speed SW Devel-

opment (ISD), Pragmatic Programming (PP) and Rational Unified Process (RUP) are agile

methods (Abrahamsson et al. 2003; Paetsch et al. 2003). Detailed study of those methods has

been excluded from this research because enough information and similarities have been

 15

found already between XP and Scrum methods. In addition, larger scale research would be

needed if other methods would have been decided to take under detailed study. Therefore,

only the most essential values and practices of other methods are described in Table 2:

Table 2. Key practices of other agile methods

Method Key Practices More information

ASD - incremental and iterative development with proto-

typing

- short projects and release cycles

- customer focus group review at the end of cycle

(Highsmith 2000)

Crystal

Family

- incremental time-boxed delivery with prototyping

- automated regression testing

- reviews and workshops

(Cockburn 2004)

DSDM - incremental development with prototyping

- testing is integrated through the lifecycle

- time and resources are fixed so scope of release

program content can be adjusted

(Stapleton 1997)

FDD - prioritized (by team) feature list

- feature based development by small teams

- 30 minutes weekly meeting

(Palmer & Felsing

2002)

ISD - fast release cycles and short development cycles

- based on “Synchronize-and-stabilize” approach by

Microsoft (also “Synchronize-and-stabilize” ap-

proach contains good practices for organizing of

faster release cycle like agile methods contain)

- development with parallel release programs

- customer involvement

- stable architecture

- reuse of SW components

(Baskerville et al.

2003)

About “Synchronize-

and stabilize”: (Cusu-

mano & Selby 1997;

Cusumano & Yoffie

1999)

PP - incremental and iterative development with rigor-

ous testing and user-centred development

- collection of short-tips that focus on day-to-day

problems (about 70)

(Hunt & Thomas 2000)

RUP - iterative development

- Use Cases

(Hirsch 2005)

 16

2.2 Experiences of other corporations – eXtreme Programming cases

2.2.1 Case: Ericsson

Ericsson Corporation is the largest supplier of mobile systems in the world. In 2004 one large

design organization at Ericsson decided to improve their SW process by piloting of agile

methods. The piloting was a part of the continuous SW Process Improvement (SPI) activity

performed at the corporation. The aims of the piloting were: i) keep up the efficiency of the

existing way of working, ii) competence build-up, iii) investigate possibility of using XP

practices (mainly pair programming, Planning Game and collective ownership in this case) in

the SW development, and to iv) study the impact of pair work on the motivation of the de-

signers. Also on-site customer practice had been planned to use during piloting but it had been

excluded because support for implementation phase was already got from the existing organi-

zation.

The experiences were collected during and after piloting, from minutes of the pilot (steering)

meetings that were arranged weekly (one hour per week). The experiences were also collected

by interviews of designers and testing personnel. Experiences that were noticed during pilot-

ing at Ericsson have been summarized in Table 3:

Table 3. XP related experiences according to piloting at Ericsson

Well-tried practices

- Planning Game (task planning)

- Small tasks

- Pair programming

- Collective ownership

- Sitting arrangements

- Meetings

- Code reviews

Problems with proposed solutions

- Problem: It was not always easy to see what should be done for a task. On the other

hand, functionality was easy to leave out of the original tasks as the task specifica-

tions were too specific.

- Solution: Designers chose to combine some tasks.

 17

- Problem: Competence build-up can be needed at a time when project deadline is ap-

proaching fast.

- Solution: When time, competence and complexity aspects are taken into considera-

tion competence build-up can be facilitated although project would be in late phase.

(Auvinen et al. 2005)

The article demonstrated that pilot project was success. According to the article, the main

benefit of the piloting seemed to be competence build-up, i.e. SW development competence

level increased. The Planning Game was the most beneficial. It gave clarity to the implemen-

tation work itself and furthermore helped in tracking the timeliness of a process.

Before piloting the data about the status of the project was vague, facilitation of (approxi-

mately weekly) pair switching was needed and features were needed to split into small tasks.

Planning Game was seen to be one answer and it was held twice during this piloting. When

Planning Game practice was used, work related to features was split into smaller tasks. Also

complexity value (High, Medium, Low) was defined for these tasks. Due to use of Planning

Game and smaller tasks tangible deliverables were got. The designers liked the fact that split-

ting of the work into smaller tasks made it more systematic. A task was defined as something

which required from one to three days to implement. Feature was composed of few tasks and

estimation concerned one week or maximum two weeks work. Better structured work content

improved task identity. Task significance was increased as the knowledge on related tasks

grew. Also motivation and satisfaction increased from the designers’ viewpoint.

Pair programming was proven to be one of well-tried practices in this piloting. Pair program-

ming was only recommended, not a rule, i.e. designers decided on whether to work alone or

as a pair. In spite of that, many designers decided to participate the piloting of pair program-

ming. According to results, pair programming was more efficient than working alone. It of-

fered an efficient way of ensuring quality in an early phase, by having an extra pair of eyes

checking the code as it was being written. It also increased the sense of team work and sense

of responsibility. Furthermore, it facilitated problem solving and learning.

Collective ownership was implemented so that pairs do all the needed changes for a feature in

two subsystems, not only to one subsystem as before piloting. The new approach seemed to

help work allocation and to increase overall understanding of the architecture of both subsys-

tems. Overall, using of collective ownership and pair programming in SD and MI phases was

beneficial, also for use through large organization.

 18

Communication improved between designers and testing personnel. All designers were sitting

in the same room and pair programming made knowledge sharing of designers possible and

improved SW development competence level. Pair programming also made knowledge shar-

ing between designers and testing persons possible because there were at least two designers

who were familiar with piece of code a testing person was asking about. Due to sitting ar-

rangements and pair programming, feedback was fast and it increased during piloting. Also

above mentioned pilot (steering) weekly meetings increased communication in general. Dur-

ing those meetings pilot steering group and designers discussed about: what features had been

done, what features were currently ongoing and was the schedule kept.

In addition, due to use of agile practices the deliveries were made on schedule without devia-

tions from the original estimations and quality of product increased. According the analysis

that had been done during piloting, amount of fault reports had decreased with 5.5% because

pair programming was used and code reviews were conducted.

(Auvinen et al. 2005)

2.2.2 Case: IBM

IBM develops and manufactures industry's most advanced information technologies, includ-

ing computer systems, SW, storage systems and microelectronics. There are many own inter-

nal web development teams at IBM. In one team the traditional waterfall model was used for

developing most web-based applications. The waterfall model seemed to be heavy-weight and

decision making of requirements was slow through many boards. Decreasing development

time and decreasing time to market were needed too so that release cycle could be made

faster. Also more flexibility, decreasing costs and increasing user satisfaction were needed.

Therefore, it was decided at IBM to pilot XP practices within piloting team.

In this case the piloting team consisted of designers (e.g. information architect and visual de-

signer), project manager for webmaster programmers and project manager for the design

group, usability specialists, coaches and a customer entity. Team members had read some of

the XP literature and also training sessions had been arranged before piloting. After achieving

basic knowledge of XP they believed that XP might work well in their development environ-

ment.

The potential of piloting was to make the development process more responsive to users’

needs and changing business requirements. Assumption was that depending on piloting results

the renewed development process with XP practices could make sense as a development

 19

methodology in a diverse web development environment in IBM. Experiences that were no-

ticed during piloting at IBM have been summarized in Table 4.

Table 4. XP related experiences according to piloting at IBM

Well-tried practices

- On-site customer

- Planning Game (partially succeeded)

- Simple design

- 40-hour week (sustainable pace, i.e. no overtime)

- Small release programs and short iterations

- Metaphor

- Meetings

- Coding standards (not formalized during piloting)

- Pair coaching

Problems with proposed solutions

- Problem: Customer did not want to set release dates so they considered each itera-

tion as a release.

- Solution: They had convinced the customer about usefulness of multiple iteration

release cycles.

- Problem: There had been no platform on which to share the tests, so each designer

had a few tests that can’t effectively be run by others.

- Solution: This was addressed and solid testing architecture for tests was started to

establish.

- Problem: The lack of experience with TDD practice.

- Solution: Training sessions with hands-on demonstrations were arranged.

- Problem: Minor problems regarding re-factoring, pair programming, continuous in-

tegration and collective ownership were noticed.

- Solution: Designer resources were increased. Since the designer resources were in-

creased, pairing had increased to the extent that pairing had become less of an issue.

Also other improvements were planned (e.g. use of pairing within code review proc-

ess) and started.

(Grossman et al. 2004)

According to the article, XP made sense as a development methodology in a diverse web de-

velopment environment. Also few problems were noticed, but improvements for solving those

problems were started during piloting in the team.

 20

On-site customer practice had worked extremely well. During piloting there was one on-site

customer representative in the team. The customer had quickly learned how to write user sto-

ries for features during the Planning Game. It was observed to be an activity that offers good

approach to produce user stories. On the other hand, the Planning Game partially failed. The

team had hard time picking up the concept of “ideal time” for estimation purposes and most

of staff had responsibilities for several projects. This was decided to improve in the long-term.

In addition, beginning of a self-managing and self-organizing community with acceptance of

a sense of shared responsibility was seen. Also team’s skills were developed and significance

of estimations was emphasized within team. As a consequence of these improvements, the

Planning Game became more efficient. (Later on, the team started referring to the Planning

Game as “the Planning Process” because terms such as “Game” trivialize the seriousness of

the activity).

The team was building SW with simple design practices what was needed “today”, keeping

flexible for changes that will be done in the future. Design was kept as simple as possible and

most of written stories were sized at around two ideal designer days. Simple design made a

good fit with two-week iteration. Overtime work was not allowed during iterations.

Customer did not have any difficulties in prioritizing and selecting user stories for each itera-

tion. Due to use of two-week iterations also staging was simple and quick, without requiring

management, and yet able to respond quickly to changes. Furthermore, there was high degree

of communication among the team both in the Planning Game and during iterations. Addi-

tionally sharing of metaphors through the team helped everyone on the team to understand the

essence of the project. Overall, it was easy to convince everyone to use above iteration cycle

and everybody were pleased with the results. Also three-week iteration cycle was tried but the

results were not as satisfactory.

Coding standards were not formalized during piloting but it seemed to be a valuable (future

development) practice and according to the article it could be taken into use later. Also few

additional practices as stand-up meetings, iteration retrospective meetings and pair coaching

seemed to be valuable practices according to piloting experiences. During meetings team

members shared their experiences. They also got feedback and courage during those meet-

ings. In addition, meetings were good channel from learning perspective as e.g. pair coaching

practice that seemed to proven beneficial practice during this piloting.

(Grossman et al. 2004)

 21

2.2.3 Case: Lund Institute of Technology

Lund Institute of Technology is located in Sweden. Within one programming course few XP

core practices were studied as support for teaching the basic concepts in software engineering.

These core practices were pair programming, Planning Game, TDD, small release programs

and on-site customer. The course also increased the students (107 people on course) practical

skills in testing, configuration management and re-factoring, which they can use in their in

later courses. Also few additional practices as First Iteration, on-site coach, team-in-one-

room, “Spike-time”, reflection and documentation practices were added to concept of the

course.

The course was organized in a theory part which was followed by a project part. During the

theory part the XP practices were studied. During the project part students were grouped into

teams (8-10 people per team) that did XP style project in six iterations during six weeks of

study, i.e. fixed time box (planning time, Spike-time and lab-time). All teams developed es-

sentially the same product (a system for tracking races in the motorcycle sport Enduro) during

the course and were given the same set of requirements (user stories). All teams also had the

same person as customer. Experiences that were noticed during piloting at Lund’s Institute

have been summarized in Table 5:

Table 5. XP related experiences according to piloting at Lund’s Institute

Well-tried practices

- Pair programming

- Planning Game

- On-site customer

- Small release programs

- First Iteration

- Configuration management using Concurrent Versions System (CVS)

- On-site coach

- Sitting arrangements

- Collective ownership

- Time (called Spike-time in the article) allocations for e.g. learning

- Meetings

Problems with proposed solutions

- Problem: TDD mostly failed. In general the students had big problems in under-

standing how to write test cases in a useful way. On the other hand, some teams

 22

wrote tests first as TDD suggested.

- Solution: More training will be given during future courses.

- Problem: Based on experiences of few students sometimes there might be conflicts

regarding how the code should be developed when working as pairs.

- Solution: An experienced designer (e.g. coach) can try to solve conflict or meeting

with other designers can be arranged.

- Problem: It was suggested that it is better to start with the simplest task and later

evolve it to the more advanced ones, if needed. Thus, simple design practice failed.

Some students misinterpreted “Do the simplest thing that can possibly work” to

mean “Change as little as possible to incorporate a new feature”.

- Solution: Examples and anti-examples were expected for the future courses.

(Hedin et al. 2003)

The overall results of this programming course were very positive. Researchers felt that stu-

dents had good understanding for fundamental problems and techniques in SW development

in middle size teams including testing, inspection, interaction with on-site customer, require-

ments and release process. During this course, students also learned how to use iterative

method and were exposed to the problems of changing requirements. The experiences of this

course are described in following paragraphs.

Some students had participated in another project where they had learned e.g. how to use pair

programming in an educational situation. On the basis of their experiences, they advised that

pair programming is good way to share competence and work efficiently. However, the de-

signers should themselves decide who to pair with. The personality matching is worth consid-

ering when pairs are formed. According to them, personality matching seemed to be in higher

role than competence matching when designers work as pair. In addition, changing of pairs

was recommended because it is important from a learning perspective and team building.

In the beginning of the course, many students were skeptical regarding estimation of tasks

without prior practical knowledge. However, most of iterations with Planning Game approach

were succeeded because students achieved practical experience how to estimate new tasks in

compliance with the user stories. Customer wrote these user stories before each iteration.

During the course students made three small release programs – one every two iterations. The

practice First Iteration (so called “Zero Feature Iteration”) made possible to get early informa-

tion on the system architecture. Due to use of that practice, it was possible to evolve the archi-

tecture at early stage before too much time had been used to build functionality. The on-site

 23

coaches were let to build a tiny first iteration of the system because experience of the system

was needed before start of a real first iteration. After the First Iteration the students were able

to start immediately by adding functionality to the existing system. The coach tracked of what

team members were doing during iterations.

At start of iterations two hours long planning meetings were arranged with coaches. There it

was discussed about experiences from previous iteration and on-site coach told instructions

for next iteration. During each planning meeting, time was allocated for e.g. reading and

learning about various issues, thinking about solutions for particular task, learning about SW

tools, re-factoring, code reviews and doing experimental programming with new solutions.

Above time allocations called Spike-time in the article.

Customer visited planning meetings and participated in evaluation of releases. An advantage

of this was that the students were forced to see the release from the customer’s viewpoint and

students also found realistic illustration of how requirements can unexpectedly change. They

also learned the problems which occurred when many designers were changing the same

source code. Configuration management (e.g. versioning and merging of code) using CVS

was proven to be one mechanism for handling of those problems. CVS had been set up and

sharing of result was easy with team members and frequent synchronization of code suc-

ceeded. Also re-factoring, separated tasks and short check-out times proved to be beneficial

mechanisms for handling of above problems.

In addition, communication and increase of team effectiveness seemed to be in a major role.

Spontaneous reflection (e.g. stand up meetings) that occurred in some teams, helped in team

building, as well as improved the effectiveness of the team. Effectiveness was increased along

with various sitting arrangements. Due to these arrangements, the team was present in the

same room. The students communicated easily and getting of help was fast. Overall, there

was high interaction and collaboration within the team. Furthermore, keeping the whole team

in one room seemed to help their success also with collective ownership of code.

(Hedin et al. 2003)

 24

2.3 Experiences of other corporations – Scrum cases

2.3.1 Case: AG Communication Systems

AG Communication Systems is a middle-sized corporation in Arizona. The corporation is ex-

perienced in SW development in the telecommunications market and there are several hun-

dreds of employees working in different size teams. The teams are working with different

software development project tasks. Some projects were more successful than others so learn-

ing the secrets of those successful projects started. In organization it also was decided to re-

search implementing of their SW development process in order to better meet shifting busi-

ness demands. About that time, they discovered the Scrum and it seemed to overlap signifi-

cantly with what they saw in consequence of successfully projects. Due to this observation the

piloting of Scrum was started in three diverse SW development teams (A-Team, B-Team and

C-Team). Experiences by AG Communication Systems have been summarized in Table 6:

Table 6. Scrum related experiences according to piloting at AG Communication Systems

Well-tried practices

- Meetings

- Small tasks

- Prioritized backlog(s)

- Small teams

Problems with proposed solutions

- Problem: It was not easy to spend lot of time in daily meetings.

- Solution: Two or three meetings per week seemed to work best.

- Problem: Some designers had difficulties in planning their workload.

- Solution: Sprint goals increased awareness of expectations and “kept people on

track”.

- Problem: Management might ask designers to other projects and designers might

have many (other) parallel tasks.

- Solution: The team decided to modify the backlog to reflect new strategy and de-

signers focused exclusively on the sprint. The team also noticed that Scrum would

work best when each designer focused exclusively on the sprint.

(Rising & Janoff 2000)

According to experiences of three teams, Scrum was appropriate for projects where require-

ments can’t be defined with details and chaotic conditions are anticipated throughout the

product development life cycle. After all they found that small teams can be flexible and

 25

adaptable in defining and applying an appropriate variant of Scrum. Especially meetings

proved to be beneficial practice during this piloting of Scrum.

A-team decided to pilot a one-month sprint. At first, a short Scrum presentation was arranged

and daily meetings were started. Scrum master facilitated meetings. The team began to spend

time in daily meetings to increase knowledge of Scrum and learned how this team would

adapt Scrum to its application. From the start of piloting the team had difficult to spend lot of

time in daily meetings. Later on the team decided to arrange meetings every other day, i.e.

three times per one week and two times on following week. It seemed to work best. During

these meetings increase of co-operation and volunteerism were evident as successes of small

tasks that were completed during sprint. Tasks included all design-cycle phases. Team mem-

bers took an interest in each other’s tasks and were more ready to help each other in their

problems. Detailed problem solving did not happen during these meetings but discussion

about details was done after meetings. After all the A-team completed a successful sprint and

delivered the planned components on time.

B-Team found itself in situation where corporation made major strategic change into team’s

first sprint in the beginning. It affected the Sprint Backlog contained tasks and team decided

to modify the backlog to reflect the new strategy. The tasks were prioritized for each sprint

and sorted by person. Designers also participated in other projects and it caused that team

over-committed itself. Meetings, rapid feedback and prioritizing of tasks helped to keep de-

signers commitment aligned with the goals of sprints. Team also noticed that Scrum would

work best when each designer focused exclusively on the sprint. Overall, B-Team completed

a series of increments during sprints.

C-Team tried applying Scrum for preliminary testing and bug fixing of the feature that the

team was responsible for. There were scheduled few testing times and a half-hour meeting

was arranged before and between each test time. During these meetings, team redefined some

testing procedures to make things faster. Meetings let all team members to know what was

planned and volunteer to work next testing time. Also possible problems were discussed dur-

ing meetings and Scrum master told information outside the team to team members. Thus,

meetings increased communication and competence sharing. Meetings were also efficient way

for tracking progress. At the end of sprint the feature was ready for integration testing and the

team had achieved its goal. C-Team was willing to continue use of Scrum practices also on

their future release programs likewise A-team and B-team.

 26

Besides above experiences, Rising & Janoff (2000) suggested that product development and

marketing groups must work together to provide the features with the highest value for the

release programs. They also suggested that marketing should prioritize the features and prod-

uct development should provide estimates for the effort. Marketing and product development

should also agree target set of the features.

(Rising & Janoff 2000)

2.3.2 Case: University of Ljubljana

The University of Ljubljana situates university in Slovenia. Designers at university developed

their own SW for university information systems because the systems were so specific that

there were no commercially available solutions in the marketplace. Making SW development

more visible and adaptable they were looking for an agile approach for project management.

Therefore, they decided to pilot Scrum within one project that consisted of three sprints in this

piloting.

During piloting was developed so called maintenance module that enables the maintenance of

all data required for student record information system. Three designers and Scrum Master

(also working with Product Owner related tasks) belong to the piloting team and the project

was managed by above mentioned Scrum Master.

Well-Tried practices related experiences that were noticed during piloting at University of

Ljubljana have been summarized in Table 7. Significant problems regarding this piloting had

not been described in the article.

Table 7. Scrum related experiences according to piloting at University of Ljubljana

Well-tried practices

- Prioritized backlog(s)

- Meetings (e.g. communication and competence sharing increased)

Problems with proposed solutions

 No significant problems were described in the article.

(Mahnic & Drnovscek 2005)

According to the article, only well-tried practices were described and overall benefits of the

Scrum practices seemed to be very useful. The use of Scrum improved communication and

maximized co-operation. Team members were able to organize their work by themselves con-

sidering their preferences and special knowledge. There were prioritized Product Backlog and

 27

Sprint Backlog for planning and estimation of goals. Nobody was allowed to change the

sprint goals. Team members maintained the Sprint Backlog and participated regularly in daily

meetings that allowed everyone in the team to see status of all aspects of the project in real

time. Everything was visible to everyone. The problem resolution and clearing of obstacles

were the best parts of meetings. Observation and advantage of the team’s experience and

ideas became as well possible due to these meetings. Also volunteerism, communication,

competence and motivation within team increased. Furthermore, team members were taking

an interest in each other’s tasks and they were more ready to help each other.

At the end of each sprint, a sprint review meeting was arranged and team demonstrated the

tested increment of product functionality. The team, Scrum master and few end users partici-

pated in these meetings. Consequently, end users saw functionality of increments and were

able to suggest possible elaborations to the product. At the end of the project, team members

felt good about their job and contributions. In their opinions they had done the very best they

possibly could. From management point of view it was good that the SW development proc-

ess became visible, controllable and manageable.

(Mahnic & Drnovscek 2005)

2.3.3 Case: Solystic

The Solystic Corporation builds automated electronic systems for the engineering, manufac-

turing, project management and logistic support personnel. Due to different business critical

reasons the Solystic developed its SW development process with agile practices and piloted

Scrum in their organization. Also other agile methodologies such as Crystal Family had par-

tially been included to that piloting. An average 20 persons participated in the piloting team

that was in charge for developing complex and feature rich information system. The commu-

nication settings, the planning techniques, the development practices and the team structure

had been selected for being major parts of the piloting. Experiences that were noticed during

piloting at Solystic have been summarized in Table 8:

Table 8. Scrum related experiences according to piloting at Solystic

Well-tried practices

- Time-boxed short (30 days) iterations

- Use Case based incrementally SW development

- Iteration planning

- Daily builds (partially succeeded)

 28

- Continuous testing

- Automated regression testing

- Meetings

- Scenario-based software architecture evaluation techniques

Problems with proposed solutions

- Problem: During meetings, it was difficult to tell other team members publicly what

was going wrong.

- Solution: Courage was necessitated and it was necessary to give lot of energy to de-

velop proper culture to inspire confidence in the team. In addition, to handle uncom-

fortable situations, the meetings with simple format were suggested:

o Firstly, address the emotional part by giving each participant the opportunity

to express how they feel about the situation.

o Secondly, try to state the problem and find a solution.

- Problem: The estimation process and techniques had not been well known among

designers in self-organizing team.

- Solution: Time management skills were decided to teach more.

- Problem: Daily builds were not succeeded.

- Solution: Builds after few days seemed to succeed better than daily builds. Almost

daily builds were suggested and configuration management was tried to improve.

- Problem: Short iteration reinforces the risk to be shortsighted.

- Solution: Architecture review addresses possible problems within large-view scope

(overall project and business).

(Derbier 2003)

Piloting of Scrum seemed to bring along many good practices for developing SW process at

Solystic. Also few other practices seemed to be beneficial but mainly Scrum practices had

been piloted. Especially time-boxed short (30 days) iterations, meetings, iteration planning,

face-to-face communication that enabled fast feedback, the (almost) daily build, and auto-

mated regression tests proved to be beneficial practices. The estimation, planning, build and

delivery processes, and scenario-based SW architecture evaluation techniques (i.e. require-

ments can turn into user stories like in XP) were also partially discussed.

A half-day Iteration Retrospective meeting was arranged at the beginning of the each itera-

tion. Initiative iteration planning was done during these meetings. Configuration management

had been one hot topic in the meetings. The team also found that it was necessary to spend

 29

time to discuss very general and fundamental subjects about SW development, what was on-

going and what possible fears (e.g. what was going wrong) were noticed within team.

Approximately 30 minutes Scrum meetings were arranged every other day during these itera-

tions. The meetings were arranged in a dedicated room. Detailed planning and tracking of it-

eration was done with collection of notes on a whiteboard. The notes contained the title of

features that were realized with Use Cases. The Use Cases were estimated in days and were

assigned to someone in the team. There was also the Product Backlog in order to track for the

estimation at completion. Furthermore, the team used whiteboard for writing the decisions

that must be taken outside Scrum meeting. In the next meetings it was discussed what deci-

sions had been taken. This ensured synchronization of decisions. Also different improvements

were written on the whiteboard and discussed during these meetings.

SW was developed incrementally based on above Use Cases. Installing of automated regres-

sion testing practice was suggested to start as early as possible. The unit testing had been

started almost at the beginning of the project and it seemed to work well. Instead automation

of functional tests had been started later. However, testing of SW was continuous and regres-

sion tests were automated. The team was also asked to give percentage estimation of how

much tests had already been automated and this number was made public.

The end of sprint seemed to be hard because it was difficult to find the appropriate level of

pressure in order to meet project deadlines without setting up a new project. On the other

hand, it was noticed that software designers are optimistic and tend to over-commit. It was

suggested that repeatedly make the people understand that the end is duration and not event,

and to understand what happens during the end.

(Derbier 2003)

 30

2.4 Experiences of other corporations – other cases

2.4.1 Case: Philips

Philips is one of the world's biggest electronics corporations. It produces e.g. televisions, au-

dio & video systems, monitors and household products. At one department of Philips it was

decided to achieve certification of Capability Maturity Model (CMM) (Raynus 2002) level 2

and ISO9001:2000 (Schoonmaker 1997) in two years by using agile methodologies. The de-

partment is part of Philips Research organization that carries out SW projects in research do-

main.

Delivering time (release cycle), quality and scope of functionality were identified to be the

critical success factors for their projects. For getting CMM level 2 and ISO9001:2000 also

minimum bureaucracy, usage of practices and process transfer through other Philips organiza-

tions in later phase were starting points for maximizing the success factors and reaching their

CMM and ISO goals. After studying few methodologies they decided to take XP as their start

point and piloting of it started. After one year piloting period and work with XP, also Scrum

was decided to merge with XP. In consequence of merging, combination which is called

XP@Scrum (Schwaber 2007b) was taken into piloting. Reason of merging was that XP fo-

cuses on engineering practices and Scrum focuses on managerial and organizational aspects.

In addition, XP did not give much help regarding documentation, modeling and the use of

UML and design patterns. Complement of XP practices was also studied from books dealing

with e.g. different patterns and other agile methodologies. As a consequence of this, they

learned more about e.g. documentation, modeling, use of UML and design patterns too. Ex-

periences that were noticed during piloting at Philips have been summarized in Table 9:

Table 9. Combination of agile methods related experiences according to piloting at Philips

Well-tried practices

- Time-boxed short (30 days) iterations

- Small teams

- On-site customer

- Small tasks

- Meetings and reflection workshops

- TDD

- Pair programming

Problems with proposed solutions

- Problem: Every designer or customer didn’t appreciate emphasizing verbal over

 31

written communication as XP and Scrum recommended.

- Solution: Respect regarding diversity was suggested.

- Problem: XP and Scrum did not contain direct and adequate support (in CMM and

ISO terms) for Quality & Assurance (Q&A) and configuration management.

- Solution: Quality officer was selected to work as a coach and support management.

- Problem: Proper risk assessment was needed because only risk identification had

been done in the organization.

- Solution: Studying how to improve the assessment of risks with e.g. impact analysis

was started.

(Vriens 2003)

According to article, applying of XP@Scrum practices can be succeeded if organization takes

the combination into use (piloting) without prejudice and adapts practices for needs of their

organization. Piloting proved that applying XP@Scrum practices had mainly succeeded.

Many practices had been proven to be beneficial from perspective of SW process develop-

ment as well as achieving of certifications of CMM and ISO9001:2000.

Both on-site customers and designers appreciated working iteratively making small incre-

ments. Early delivery of business value and learning by experience were mentioned to be cer-

tain senses regarding success of incremental SW development. Both senses decreased stress

and increased confidence as the requested functionality was delivered incrementally. Cus-

tomer decided what was going to be delivered and in what order after hearing feedback from

the designers and accepting the consequences. Therefore, customer made decisions on what

will be implemented in particular iteration and what not. Designers decided how to develop

SW and participated in daily meetings during iterations.

SW was developed within small teams during one month (30 days) time-boxed iterations

which proved to be good rhythm. At the beginning of iteration new requirements in the list of

user stories had to be identified and at the end of the iteration these requirements had to be

approved. Later on, also problem reports and CRs were included to this list. Pair program-

ming was typically used for resolving above mentioned problem reports and for typical pro-

gramming related tasks.

Small design sessions were arranged before a new task. If the conclusion of this session was

that needed code seemed to be relatively simple or routine to implement the code was allowed

to write solo. Otherwise, pair programming was used for writing code and writing tests with

TDD practice. When tests were written first it forced designers to look at the code from the

 32

viewpoint of end user in higher abstraction level. It was practical way to obtain the principle

of low coupling and high cohesion because tests had to be independent.

Although use of pair programming brought many benefits it seemed to cause some extent

prejudice from perspective of customer. At first customer had rejected pair programming be-

cause of the belief that costs would double. However, after seeing the benefits in the form of

higher defect prevention (and removal) and decreased release cycle time customer accepted

pair programming.

At the end of iterations the review meeting was arranged and the team demonstrated currently

implemented functionality to the customer. They discussed about acceptability of functional-

ity during these meetings. In addition, the reflection workshops were arranged to increase ma-

turity and effectiveness of the team. It was suitable way to communicate best practices be-

tween the various teams too.

 (Vriens 2003)

2.4.2 Case: Avain Technologies

Avain Technologies has experienced in building secure digital transaction solutions. The cor-

poration’s strategy focus was to move to the product business and grow the corporation to be-

come a global player in the market. This meant increasing amount of designers and other per-

sonnel and strict requirements for SW quality. The need for more defined SW development

process was evident. However, the corporation did not want to lose its values as flexibility,

efficiency and innovative work culture. About that time, Software Engineering Management

System (SEMS) research project (Rautiainen & Lassenius 2001) had been started at HUT and

participants in different roles from Avain Technologies participated in the project too. Cycles

of Control framework was created in this project and new approach based on that framework

was piloted at Avain Technologies.

The Cycles of Control framework provides a common language which contains the practices,

pacing and phasing of the incremental SW development process. An iterative and incremental

development process recommends that working SW would be delivered early to get user

feedback in good time. At the same time technical feedback with relation to non-functional

aspects (e.g. system performance) can be made available.

 33

The framework consists of cycles that are described in Table 10:

Table 10. The Cycles of Control according to SEMS approach

Name of cycle Description

Portfolio

Management

- provides the interface between business and product development

- provides guidelines for how product development efforts should

be organized in terms of SW development cycle and release cycle

- manages the set of product and services offered by the corpora-

tion, e.g. by product roadmapping

Release Project

Management

- handles the development of individual product versions

Increment

Management

- manages incremental development of product functionality within

release programs

Heartbeats - provides scheduling and monitoring for daily or weekly tasks, and

synchronizing the effort of designers or teams to get an indication

of system status during development

The Cycles of Control framework by SEMS approach is described in Figure 7:

Figure 7. The Cycles of Control framework by SEMS

There is multi-site organization structure at Avain Technologies and the organization consists

of four departments (Business, Development, Services and Administration). Improving of the

communication between Business and Development was a high priority challenge for new

process and emphasized by management. Thus, during process development the Cycles of

Control at Avain Technologies was adapted as Table 11 on next page describes.

 34

Table 11. The Cycles of Control at Avain Technologies

Name of cycle Description

Strategic

Planning Cycle

- Product Backlog and idea pool are used to express the product vi-

sion (Appendix 2: Scrum’s Product Backlog)

Release Cycle - can be either customer related or internal

- contains planning & exploration, development and stabilization

phases

- the lengths of phases are planned at the beginning of the release

program and embedded into sprints

- Release Backlog for goals, themes and prioritized list of items

(e.g. feature) for the release programs is created

Sprint - as in Scrum Sprint (chapter 2.1.3)

Scrum Cycle - as in daily Scrum (chapter 2.1.3)

- daily Scrum can be also e.g. ½ weekly or weekly Scrum

The cycles of improved product development process adapted by Avain Technologies (cf.

also Figure 9) are described in Figure 8:

Figure 8. The cycles of improved process at Avain Technologies

Mainly XP@Scrum (cf. chapter 2.4.1) contained practices were combined into the framework

and these practices were piloted during the cycles. Experiences that were noticed during pilot-

ing at Avain Technologies have been summarized in Table 12 on next page.

 35

Table 12. Combination of agile methods related experiences according to piloting at Avain Technolo-

gies

Well-tried practices

- Automated testing with TDD practices

- Backlogs: Product Backlog, Release Backlog and Sprint Backlog

- Pair programming (mostly for hard tasks)

- CVS

- Coding standards

- Meetings and reflection workshops

- Communication model

- Small tasks

- Prototyping (for estimation the effort of large features)

Problems with proposed solutions

- Problem: The component team could not successfully synchronize their work with

the product teams.

- Solution: Organizational structure of the teams was changed. Product owner was

nominated, customer relationship between designers was improved and designers

were able to work better within their area of expertise.

- Problem: Testing environments and HW were not established during the first release

program so system testing was difficult to start during the first release program.

- Solution: TDD and hand-off documentation for e.g. system testing were used later.

- Problem: Common understanding of future release programs was unclear and types

of the releases had not been described clearly.

- Solution: A product roadmap was created. Content of release programs was de-

scribed in the Release Backlog. Meaning of alpha, beta and commercial releases

were described.

- Problem: The amount of new ideas generated for the product during the first release

program was very low.

- Solution: Continuous product planning and active participation in meetings. New

ideas were stored to idea pool. The idea pool was in specified place where everyone

in the corporation can see it.

- Problem: After first phases of (internal) release cycle, the release project remained

in the development phase without reaching the stabilization phase.

- Solution: Stabilization phase was expected in the later release programs.

(Itkonen et al. 2003)

 36

Overall results regarding use of the adapted Cycles of Control framework seemed to be good

in spite of few problems that had been noticed during this piloting. Use of the new framework

increased understanding of the development process through the corporation. It helped the

linkage between Business and Product Development. The framework also helped in identify-

ing the crucial control points between last mentioned organizations and enabled defining well-

functioning connections between them. The adapted development process seemed to be effec-

tive way to achieve many benefits such as advanced SW development practices.

The development process increased especially communication between Business and Devel-

opment. Also communication model between the different departments of the corporation was

defined. After improving of communication, Business knew the release dates and contents

well in advance. Due to that, Business was able to allow release dates and contents for mar-

keting so that sales could start in right time. Business also clearly saw what kind of possible

changes were done regarding e.g. content of release programs. Besides improved communica-

tion also short duration of cycles helped to see possible changes early. Due to improved

communication and short duration of cycles, the organization’s risk of committing to unrealis-

tic development plans had decreased significantly.

The development process also improved many current practices that were in use within SW

development in the corporation. In addition, it was believed that the process improvement did

not bring unnecessary bureaucracy and improvement had progressed faster with the frame-

work than without it.

All designers agreed on using SW development practices. Especially automated testing with

TDD practices, adapted pair programming mostly for hard tasks (otherwise co-operation be-

tween designers), CVS for version control and coding standards were agreed. XP practices

such as simple design, collective ownership, continuous re-factoring and 40-hour week were

not emphasized to designers as much as other practices. Above XP practices were however

listed in the process definition.

Automated testing was one Q&A practice that had been used with TDD practices from the

first release program. Designers had opinions that automated tests are useful and they felt that

the existence of these tests had made them more confident when making changes to the code.

The TDD practice had been more difficult to adapt and it was used only occasionally. On one

hand the TDD was considered to be troublesome but on the other hand useful.

Different meetings were arranged for e.g. planning, evaluation and estimation of work. No

Scrum daily meetings were needed, instead the Scrum meetings were held twice (on Mondays

 37

and Wednesdays) in week. Release Planning meetings were arranged at the beginning of re-

lease programs and sprint planning meetings were arranged at the beginning of sprints. Re-

lease planning meeting took one day. Whole team and few managers participated in that meet-

ing and all features in the Product Backlog were briefly discussed. The features had been split

and described in the Release Backlog. Each feature from the Release Backlog had generated

several tasks to Sprint Backlog for each sprint. These tasks were estimated roughly by team

members. Therefore, skills concerning estimation and lightweight estimation techniques in-

creased in the team. Estimations regarding tasks were done in man-scrums, i.e. how much ef-

fort is required to complete each of them. Prototyping was used for estimation the effort of

large features because it is not possible to accurately estimate the effort of large features. In-

stead it is possible to approximately estimate how much effort is needed to implement some

prototype and after prototype how much effort is needed to implement real feature. The re-

sults also described that wrong estimations in the beginning are natural and it was suggested

that it should be understood by Business too.

Sprint demonstration session was arranged at the end of each sprint and reflection meetings

were suggested to arrange in the future. Designers considered the meetings a very good prac-

tice regarding e.g. learning. Additionally it was efficient way to find out what others were do-

ing and what has been done. The demonstration session was good way to see and evaluate

new increments of the product. On the other hand, there were problems getting managers

from Business to participate in these meetings. Reasons were e.g. time management related

problems and Business did not consider these meetings to be essential. However, significance

of these meetings was emphasized to managers from Business and they participated in the last

demonstration.

The backlogs seemed to be useful and beneficial practice for content management even

though availability of the backlogs was suggested to be better. Sprint Backlog was used for

managing content of sprints. “Red-Flag”-practice was used in the Sprint Backlog to manage

unexpected work that was not related to achievement of the sprint goal. Constant amount of

effort (40%) had been reserved for Red-Flags related work and non-development work. Prod-

uct Backlog seemed to be suitable for managing content of future release programs and Re-

lease Backlog for managing content of current release programs.

(Itkonen et al. 2003)

 38

2.4.3 Case: Smartner Information Systems

Smartner Information Systems Ltd. (Smartner) is a small software product corporation at mo-

bile technology market. It offers mobile technology for operators and provides application

services for enterprises that need tools for building mobile services and solutions. Smartner

improved its product development process because more flexibility and control were needed

for market needs. At the beginning, the traditional waterfall model was used at Smartner and

later it had been changed to be iterative and incremental. More process development and few

main requirements had been defined for process. The main requirements for the improved

process were: schedule oriented (schedules should be met, adjustments done by dropping

functionality), fast reaction to change (there must be a structured way to change plans often),

customer oriented (customers participate in planning and testing of the products), managed

requirements (long-term planning as well as short-term specifications), and extensive testing.

The cycles of improved product development process adapted by Smartner (cf. also Figure 8)

are described in Figure 9:

Figure 9. The cycles of improved process at Smartner

Adapted agile practices were piloted during the cycles. These practices had been chosen from

four methods: RUP, XP, Scrum and Microsoft’s “Synchronize and stabilize” methods. Ac-

cording to article, the data were collected from process-related documents which personnel

had written and notes that had been made at the meetings. Also semi-structured interviews

had been arranged. Experiences that were noticed during piloting at Smartner have been sum-

marized in Table 13:

Table 13. Combination of agile methods related experiences according to piloting at Smartner

Well-tried practices

- Backlogs: Product Backlog, Release Backlog and Sprint Backlog

 39

- Meetings

- Pair programming (mostly for hard tasks)

- CVS

- Coding standards

- Collective ownership

- Simple design

- Small release programs and short iterations

- Automated daily builds with automated tests and test report

Problems with proposed solutions

- Problem: Outsourcing failed, mainly concerning quality of work and knowledge

transfer between Smartner and the independent subcontractor.

- Solution: Outsourcing was adapted to projects so that would be easier to control.

- Problem: Dependencies between the Sprint Backlog and order in which to perform

the tasks were not written down anywhere.

- Solution: Dependencies were written down.

- Problem: Bottom-up (by designers) approach seemed to succeed only partially be-

cause management was not fully committed to the new process.

- Solution: Management processes were developed.

(Rautiainen et al. 2003)

The case study regarding Smartner’s experiences proved that practices from different agile

methods can be successfully combined to make a coherent entity, as researchers told accord-

ing to article. Also combining of flexibility and control succeeded when the SW development

process was improved. Flexibility was achieved with short sprints, after which new decisions

about project scope could be done when planning the following sprint and scope of sprints

would be frozen until end of current sprint. Control was achieved through mapping sprints to

release cycle control points, in which visibility of process increased. The visibility of SW de-

velopment process increased also due to adapted agile practices e.g. in project planning. Due

to improved process, designers had opportunity to work with assigned tasks. Certain main ac-

tivities and the use of many practices created so called daily rhythm that was a key to more

predictable development during sprints.

During improvement of the above mentioned process the management processes for road-

mapping, release programs and sprint planning were described and deployed in detail. The

product roadmap was used for upcoming release programs. Customers and partners partici-

pated in strategy release management board by providing and evaluating ideas for future re-

 40

lease programs. The roadmap was updated after each release program and release programs

were scheduled into it. Also high resource allocation could be planned based on Product

Roadmap. All ideas for features were updated to Product Backlog that provides a systematic

way to collect feature suggestions continuously and describes the main scope of the upcoming

release programs. Approximate effort estimation was done to these features into preliminary

Release Backlogs and the features were reprioritized. Reprioritizing was done by product

team and helped refining the scope of release programs. When some new features with higher

priority were added to the Release Backlog it meant that other features must be excluded.

Release cycle lasted three months after which a beta release program of a product was ready.

It was divided into three parts: i) scheduling the sprints and refining the projects’ scope, ii)

decision-making at release cycle control points that were mapped to development process

control points (sprint reviews) and iii) product release program. Features were built during

approximately 30 days sprints. Smartner corporation had got similar results as Avain Tech-

nologies (chapter 2.4.2) regarding progress of sprints. Therefore, those results are not dis-

cussed here in detail. E.g. meetings, communication between different departments (e.g.

Business and Development), Sprint Backlog, CVS and estimating efforts of tasks were used

by similar way in both corporations.

The features were build incrementally with few main activities as typical SW work, synchro-

nizing of effort and code (daily), demonstrations of implemented functionality (short demo

weekly and sprint demo monthly) and adjusting (e.g.. updating the effort estimations) of the

project. Simple design and keeping end-user in mind were two main principles in SW devel-

opment. Also re-factoring, coding standards, collective ownership and certain way of using

pair programming and automated daily builds were noticed to be essential parts of SW devel-

opment. Pair programming was used mostly for hard tasks (i.e. problem solving) and compe-

tence sharing. A build was done automatically every night and code versions for the build

were taken from version control system. The tests were run automatically against the new

build. The test report was generated automatically and it was available the next morning.

Sprint ended with sprint review and sprint demonstration of what had been achieved during

sprint. Sprint demonstrations helped the management team to follow the progress of devel-

opment and make more accurate decisions. These demonstrations also made possible that cus-

tomers had possibility for early access to the new product version. Therefore, they were able

to influence the content of release program if needed.

(Rautiainen et al. 2003)

 41

2.5 Summary of literature review

In consequence of this literature review, theoretical basis of agile SW development was cre-

ated and answers to first research sub-question (chapter 1.3) were found. Those answers con-

sist of basic principles for constructing the XFRC process model that enables faster release

cycle. Overview to agile methods (chapter 2.1) and related experiences of other corporations

(chapters 2.2 - 2.4) brought along such principles. Mostly XP and Scrum methods were dis-

cussed.

The experiences of other corporations clarified which agile practices had been proven to be

beneficial according to piloting of one or more agile method and which not. Firstly, the ex-

periences clarified what kind of well-tried practices concerning use of agile method(s) have

been noticed during piloting agile method(s) in corporations. Secondly, the experiences clari-

fied agile method(s) related problems and most of experiences also suggested possible solu-

tions for solving those problems. Experiences consist of three XP piloting cases, three Scrum

related cases, one XP@Scrum case and two cases concerning adapted Cycles of Control

framework.

XP focuses mainly on engineering practices for agile SW development. Especially collective

ownership, on-site customer, pair programming for mostly hard tasks, Planning Game, simple

design, small release programs and TDD had been proven to be beneficial practices of XP.

Also e.g. code reviews, coding standards, on-site coach, re-factoring, sitting arrangements,

Spike-time for e.g. reading and learning about various issues, and “Zero Feature Iteration”

practices were discussed in XP cases.

Scrum focuses mainly on managerial and organizational aspects regarding agile SW Devel-

opment. Scrum seemed to make SW development process visible, controllable and manage-

able. Most beneficial practices of Scrum seemed to be freezing development scope for a

month (sprint), backlogs, Use Cases and adaptable small teams.

Likewise XP@Scrum and adapted Cycles of Control framework seemed to be way to achieve

many benefits for SW development. Both of them consist of primarily above practices. More-

over, few other well-tried practices were discussed: communication model, reflection work-

shops for increasing team effectiveness, idea pool for continuous planning of product, proto-

typing for large features, and Red-Flag for unexpected work. Automated and continuous test-

ing (TDD included), continuous integration with e.g. daily builds, incremental and iterative

way to develop SW, small release programs, small tasks, and various meetings seemed to be

common denominator to almost all cases that were discussed in this literature review.

 42

3. IMPLEMENTATION AND RESULTS FROM INTERVIEW STUDY

All truths are easy to understand once they are discovered; the point is to discover them.
Galileo Galilei

This interview study was needed in order that answers to second and third research sub-

questions (chapter 1.3) can be found. At first this chapter introduces overview to the interview

method (chapter 3.1) and implementation of interviews within this research. Thereafter the

summarized interview results are described in chapters 3.2 and 3.3, and experiences of Scrum

piloting are discussed in chapter 3.4. The interview results are answers to asked interview

questions (Appendix 9: Interview Questions). These results describe current state of Platform

R&D and Application R&D organizations. Mainly problems with proposed solutions (chap-

ters 3.3.1 - 3.3.11) by interviewees are discussed. Also well-tried practices (chapters 3.2.1 and

3.2.2) were collected from both organizations during interviews. The results are based on

opinions and experiences of individual interviewees. If e.g. many, few or only one inter-

viewee has told something it has been mentioned singly in interview results. Direct quotations

are not used to describe opinions and experiences but interview results are described as nor-

mal text. Proposed solutions by interviewees have been compared with the literature. Com-

parison related references are described by chapter numbers if particular article etc. has al-

ready been referenced in the literature review. Otherwise, current reference system is used.

Comparison of interview results with the literature follows mainly following sequence:

1. Description of the problem

2. Description how the problem correlates with research problem

3. Proposed solution(s) by interviewees

4. Comparison with the literature

5. Additional proposed solutions according to the literature

Figure 10. Introduction to chapter 3

 43

3.1 Overview to the interview method

3.1.1 Motivation

Interview method is one way to collect data during research. Interview method was selected

because it is multipurpose method. Discussion is typically faster than e.g. writing and addi-

tional questions are easier to make than after e.g. mail questionnaires. Assumption was that

response rate could be higher than e.g. in the questionnaires. The assumption came true and

almost all interviewees came to interview sessions. On the other hand, it would have been

possible to send questionnaires to e.g. hundreds of participants through large SW develop-

ment organizations, but in this work collection of research data was accomplished by inter-

views from tens of interviewees as planned.

In addition, interview method has also typically been used during similar researches that con-

cern software process improvement in large organization. Interview method has been used to

collect e.g. experiences that were discussed in chapters 2.2 - 2.4. It has also been used during

many other researches such as research by Aho (2006). In particular research also agile meth-

ods were discussed and data was collected with interviews. Basically the interview method is

well-known method and it has been used during many researches. In consequence of above

explanations, the interview method seemed to be suitable also for this research.

3.1.2 Interview flow

The interviews were conducted in Espoo in Finland. Exact sampling was 24 people from Plat-

form R&D organization and 27 people from Application R&D organization: 20 SW Engi-

neers, 3 SW architects, 4 line managers, 7 project managers, 4 program managers, 8 testing

personnel and 5 Release Content Owners. Interviewees were contacted by a mail invitation.

An average of three people participated in interviews that were arranged in different times

during autumn 2005. Every interview session took about 1.5 hours.

Open-end questions were planned before interviews so the interviews can be called structured

interviews. At first questions concerned the background of interviewees and next questions

were research problem related. Research problem related questions gave rise to lot of discus-

sion about CR related problems. Also a lot of proposed solutions to problems were collected

during interviews. The additional questions were also reserved for discussion after research

problem related questions. This interview method was followed in all interviews and ques-

tions were almost same for every interviewee from different competence areas and roles. The

interview questions are described in Appendix 9: Interview Questions.

 44

3.2 Interview results and comparison with the literature – Well-Tried practices

3.2.1 Platform R&D aspect

During the interviews of personnel from Platform R&D the well-tried practices were col-

lected. These well-tried practices have been summarized in Table 14:

Table 14. Well-tried practices by interviewees – Platform R&D aspect

Well-tried practices by interviewees

- (Re)moving of some feature seems to be quite easy

- Independent SW groups and independent FT group

- Communication has been succeeded in multi-site organization if easy things are

handled

- Workshops

- Split tasks

- Simulation Game

- Project managers managing only one project at a time

- Use of Scrum in SW development (chapter 3.4)

(Re)moving of some feature from release program does not seem to be so big problem as add-

ing of some feature to ongoing release program. According to many interviewees, although

some feature would be (re)moved, SW work could continue if projects would give enough

time to continue. SW work is done in independent SW groups and functional testing is done

by independent FT group. Few interviewees told that independent SW groups and independ-

ent FT group seemed to be good solution albeit co-operation between testing and SW groups

could be improved. Co-operation between above groups is described in detail in chapter 3.3.5.

MT documentation has been good to write while implementation is done, although the docu-

mentation is (case by case) heavy to read. In addition, a few interviewees saw that maybe it is

possible to write MT documents also before implementation (cf. TDD related experiences in

chapters 2.2.2 - 2.2.3 and 2.4.1 - 2.4.2). These opinions proved that there is willingness to use

TDD in the future.

According to many interviewees, communication has been succeeded in multi-site organiza-

tion if easy things are handled. On the contrary, language barrier and handling of complex

things have caused communication problems. When people in multi-site organization famil-

iarize with each other, communication and working is easier. Sometimes project managers

 45

visit in other country and vice versa. Also virtual meeting tool with talking connection via

conference phone has helped communication between international organizations. Further-

more, general opinion was that workshops have been good solution for e.g. competence shar-

ing and increasing communication.

It has been easy to split e.g. feature related tasks to many persons. Thus, tasks can be com-

pleted faster compared with tasks without splitting. Few interviewees told about Simulation

Game that was used for supporting SW work mainly in SD phase. Use of Simulation Game

was succeeded and it was great opportunity to learn and share competence regarding some

feature or part of it. In this case the Simulation Game means that some feature or part of it is

simulated during particular session. E.g. few designers and SW architect(s) participate in the

session. There can be used e.g. some Use Case based sequence of some feature to illustrate

what kind of functionality should be in practice. Deviating from above case, in some other

cases the Simulation Game is suitable also e.g. for change management when different proc-

esses are improved (Taskinen 2002, pp. 70-83).

During discussion about project management arrangements, general opinion was that it has

been good solution that one project manager manages only one project. On the other hand,

one designer suggested that full-time line managers are not necessarily needed. Instead de-

signer suggested that line managers could also manage some project and they could also

partly work as specialist.

3.2.2 Application R&D aspect

Besides Platform R&D aspect the well-tried practices were collected also from Application

R&D. These well-tried practices by interviewees from Application R&D have been summa-

rized in Table 15:

Table 15. Well-tried practices by interviewees – Application R&D aspect

Well-tried practices by interviewees

- Split tasks

- Workshops

- One Release Content Owner per release program

- Small groups

- Iterations from IS phase to MT phase

- Short code review sessions for minor changes of code

- Formal (official) reviews for major changes of documentation and code

 46

- Modularization of code

- CVS

Split of tasks seemed to be beneficial practice in Application R&D as well in Platform R&D.

Many interviewees told that it is easy to split e.g. feature related tasks to many persons. Thus,

tasks can be completed faster compared with tasks without splitting. According to many in-

terviewees, also workshops seemed to be well practices as in Platform R&D.

Furthermore, organizing of Release Content Owners’ work and structure of SW groups

seemed to be succeeded in Application R&D. One Release Content Owner per release pro-

gram has been good solution because it does not cause too much parallel tasks to Release

Content Owners. Small SW groups have been good organizational arrangements according to

few designers and few line managers.

Many designers told that iterations from IS to MT have been beneficial practice. According to

many interviewees, formal code reviews for minor changes have not been arranged. Instead

short code review session in which typically two (or three) designers check that code corre-

spond to original plans has been arranged. In addition, they felt that formal review is typically

needed only for major changes of documentation and code. They also suggested that if minor

changes are done e.g. during four iterations, unofficial review could be enough and formal

review could be arranged after iterations or until next feature or major changes are done.

Also e.g. modularization of code was discussed during interviews. One opinion was that there

is somewhat improving of modularization of code ongoing in Application R&D. In addition,

about version control of code was discussed. According to many interviewees, CVS has been

good solution for above version control.

 47

3.3 Interview results and comparison with literature – problems and proposed
solutions by interviewees

3.3.1 Lot of parallel tasks in daily work

According to the interviews, there seems to be too many parallel tasks in designers’ daily

work. It seems to be the biggest problem in many groups in Platform R&D and Application

R&D organizations. E.g. implementation of new feature(s), CR work, SW work to parallel

projects and related meetings, maintenance, support to other group(s) and general tasks cause

too much parallel tasks in designers’ daily work. Many designers can work in even three pro-

jects simultaneously. These problems are in agreement with the results that were discussed in

chapters 2.2.1 - 2.2.2 and 2.3.1.

From research problem perspective parallel tasks slow down release cycle because of strict

schedules (chapter 3.3.4), re-prioritization of tasks (chapter 3.3.8), and moving from one task

to another during workday. According to many designers, when some higher prioritized task

should be done it causes interruption to ongoing task and the ongoing task is delayed. For ex-

ample, designer is doing CR work for some new feature and only minor changes would re-

main to complete that task. Suddenly comes very high prioritized fault correction that must be

done immediately and there are no other resources available for the job. In consequence of

that, ongoing CR work is interrupted and investigation for solving of fault is started. Some

task is done e.g. in one hour and other task is done e.g. in couple of hours during a workday,

which causes a lot of task switching and additional overhead.

Many designers wish they could concentrate on only one task during day and moving from a

task to another should not happen during day. They also hope better organizing of above

things and general suggestion was that dedicated persons to each task could be good solution.

According to many designers, there could be dedicated responsible person(s) for SW work,

CR work, maintenance, testing support and other possible responsibilities. For example, when

fault correction should be done, one person inside group could prioritize and do all fault cor-

rections without interruptions to other designers’ work. This kind of responsibility sharing

requires also competence and according to many interviewees it should be shared more

through organizations (chapter 3.3.2). On the other hand, they also clarified that if all mem-

bers of team are not experienced enough and competence should be increased it takes time

and it slows down e.g. release cycle. However, they assumed that on the long run their com-

petence could increase and release cycle could become faster.

 48

The results regarding suggestion for dedicated persons are in accordance with Scrum prac-

tices. In Scrum method (chapter 2.1.3) team decides during sprints what it will do and dedi-

cated responsibilities in team are encouraged (Schwaber 2003, pp. 6-7, 101-118, 142-143;

Schwaber & Beedle 2002, pp. 8-9, 28, 31-32, 36, 38, 47-48, 71-72, 118, 140-141, 147-154).

Similar results were also discussed in chapters 2.3.1 and 2.4.3. Last-mentioned chapter de-

scribes also that freezing development scope for e.g. one month sprint has proven to be one

solution to decrease parallel tasks. When the development scope is frozen for e.g. one month

at a time it helps in giving the team a chance to work on their assigned tasks. It seems to be

the fact if team members do not participate in many parallel projects during these sprints.

In XP, team members implement their tasks that they want to be responsible for during itera-

tion. It is possible due to team‘s possibility to make decisions (chapter 2.1.2) regarding pro-

gramming and collective ownership (chapters 2.2.1, 2.2.3 and 2.4.3) that needs competence in

team as dedicated persons (Ambler 2002, pp. 192-196, 214-222). If there are many responsi-

bilities in team so meetings can be arranged before iterations and coach can keep track of

what the team members are doing (chapters 2.2.1 - 2.2.3 and 2.4.1). Thus, knowledge of what

group members are doing, supervision and synchronization of tasks could succeed and delays

in ongoing tasks would decrease.

In addition, Mobile-D approach has been developed by Technical Research Centre of Finland

(VTT) and University of Oulu in co-operation with companies developing mobile SW prod-

ucts and services (Abrahamsson et al. 2004). Adapted Mobile-D could be one alternative to

decrease parallel tasks in daily work because it recommends that iterations could contain few

different types of development days. According to Mobile-D approach, such days would be

Planning Day, Working Day, Release Day and Integration Day (Abrahamsson et al. 2004).

Last mentioned day would be needed if multiple teams are developing same product (Abra-

hamsson et al. 2004). From research problem perspective, parts of Mobile-D approach could

be adapted to be as dynamically scalable periods without parallel tasks. Duration of periods

would depend on how long time some split task has been estimated to take time. If duration

has been estimated to take time e.g. over one day a task can continue on next day(s) without

overtime work. Basically duration of some task is not frequently just e.g. one day. On the

other hand, it is possible to estimate duration to be approximately e.g. one day.

3.3.2 Lack of competence sharing

According to the interviews, competence should be increased through R&D organizations so

that designers could work with different but not parallel tasks (chapter 3.3.1). Also needed

 49

resources (chapter 3.3.4) could be available for any phase of SW process. Therefore, from re-

search problem perspective lack of competence sharing slows down release cycle.

A proposed solution according to interviewees was that job rotation inside group could be

done e.g. couple of time in year. Thus, competence could be increased inside group. Further-

more, when talking about the competence inside the group, risk seemed to be that only one

person knows about some program block because in many cases only one person is responsi-

ble for some program block. However, job rotation could minimize that risk.

According to couple of line managers, job rotation could be extended also to other groups.

Designer would be in same group, but task(s) could also come from some other group. Due to

extended job rotation, learning about other competencies (also e.g. marketing, product man-

agement, testing etc.) would be possible. In that case, core competence should be good (e.g.

specification work is difficult if core competence is not good).

Similar results were described in chapters 2.1.2, 2.2.1 - 2.2.3 and 2.4.1 - 2.4.3. In addition,

similar results are also reported elsewhere in the literature (Aarnio 2001, p. 23; Ambler 2002).

These results are similar because above literature discusses about e.g. pair programming and

pair coaching. Both of them can be considered to partially be as some kind of job rotation.

Pair programming increases competence especially in situation when pair is changed occa-

sionally. Furthermore, it seems to be good alternative to have experienced designer and nov-

ice designer working as a pair so novice’s knowledge can increase regarding e.g. program-

ming. This is called pair coaching (chapter 2.2.2). Due to use of pair coaching, designer(s)

could learn e.g. specification work (cf. job rotation inside team). When pair would be

changed, specification work related competence could be increased through team if e.g. SW

Architect and some designer are working as pair in turn. Furthermore, when designer and e.g.

FT personnel are working as pair, so designer could learn FT and execute FT cases if needed

resources would not be available.

According to FT personnel, generally one people tests one CR related things for one release

program. Their opinion was that they could learn and test it also for other release programs.

According to Application R&D ST personnel, it could be good solution if Use Cases could be

used for planning of ST cases. Thus, it would be possible to see “how customers really use

some feature”. These results are congruent with the results that were discussed in chapter

2.3.3. In addition, RUP practices (Hirsch 2005) suggest that Use Cases are suitable in differ-

ent planning phases. Therefore, Use Cases could also be used for clarifying how some CR re-

lated tests should be executed within different release programs.

 50

The literature describes that the test cases could be planned and written as TDD suggests be-

cause it has proven to be quite beneficial practice according to experiences of other corpora-

tions (chapters 2.4.1 - 2.4.2). Use of TDD probably could increase competence sharing if e.g.

pair programming or coaching would be adapted to testing phases. Testing could also become

more effective because planning of tests would be started early. The TDD practice is dis-

cussed more in chapter 3.3.5 and partially in chapter 3.3.10.

According to experiences of other corporations, other suitable practices for increasing of

competence seem to be: meetings & workshops (chapters 2.2 - 2.4), prototyping for large fea-

tures (chapter 2.4.2), Planning Game (chapters 2.2.1 - 2.2.3), training sessions (chapters 2.2.2

- 2.2.3), Zero Feature Iteration (chapter 2.2.3) and coding standards (chapters 2.2.2 - 2.2.3.

Furthermore, the central process elements in organizational learning, knowledge management

and teamwork have been summarized in the literature (Taskinen 2002, p. 68). Due to all

above agile practices competence could be increased as knowledge increases. After achieving

of enough competence regarding different tasks team members could work with any phase of

SW process.

3.3.3 Bureaucratic decision making

According to many interviewees, decision making related to CRs is sometimes slow regarding

approval/rejection of CR. Due to this SW architects can not start specification work in good

time. From research problem perspective it causes that start of design and implementation

work by designers is delayed too. One alternative according to interviewees was that decision

making could be done by low-level management, i.e. by line managers. Therefore, decision

making related bureaucracy could be decreased. On the other hand, decision making concern-

ing CR requires that overall effects on a product are known. Line managers typically know

these effects concerning part of product that is developed in particular SW group. However,

clarification of overall effects is possible when line managers communicate with relevant

people and those people would share competence in order that above effects can be found.

Similar results concerning CR related decision making done by low-level management was

not very found from the literature. It is possibly because of corporations' internal bureaucracy

why that is not necessarily published. However, similar results were described in chapter

2.4.1 concerning how to achieve CMM level 2 and ISO9001:2000 by taking e.g. minimum

bureaucracy into consideration. In addition, details regarding decision making are described

from organizational aspect in the literature (e.g. Huczynski & Buchanan 2001, pp. 737-767).

Team’s possibility to make decisions regarding e.g. programming was discussed in chapter

 51

3.3.1. Furthermore, bureaucratic reviews were discussed during interviews and these reviews

concern bureaucratic decision making. This aspect is discussed from research problem per-

spective more in chapter 3.3.10. It is possible that more similar results regarding bureaucratic

decision making can be available e.g. in some other conference articles. In the conference ar-

ticles, that were included in this research, bureaucratic decision making was not discussed

much.

3.3.4 Underestimation of needed resources

General opinion was that there are too much CRs in both R&D organizations. Furthermore,

efforts of CR related work are too optimistic although it is known that CRs are coming con-

tinuously. Many designers proposed that at least 20% of total effort of release programs

should be reserved for CR work and ST personnel from Application R&D told that they need

more time (at least 20% per one person who could share competence (cf. chapter 3.3.2) inside

group) for reading of specifications. They suggested that time could be allocated from end of

ongoing release program or from the beginning of next release program.

Above results are corresponding with Spike-time (chapter 2.2.3) and Red-Flag practices

(chapter 2.4.2). Spike-time means that time is reserved for e.g. reading and learning about

various issues. Red-Flag practice means that unexpected work is described e.g. in Sprint

Backlog to show how much effort should be reserved for unexpected work.

Also resource allocation was discussed during interviews. Resource allocation should be con-

tinuous, according to few managers. In addition, milestones should be noticed in better way

when resource allocations are done. Some projects have been started too early although other

projects are ongoing. Briefly, resources should be in right place where resources are really

needed as one line manager told during interview. According to many managers, “best” re-

sources are typically needed in all projects. Unfortunately, when “best” resources are working

with some other high prioritized task they can not participate in e.g. CR work immediately if

some changes should be done to content of release program in late phase. Late changes to the

content of release programs are discussed more in chapter 3.3.8. Due to above problems, start

of CR work is delayed and therefore also release cycle slows down because a lot of resources

are needed for CR work (cf. also chapter 3.3.1) and those resources are always not available

in time.

Resource allocations related results are similar with the results reported in the literature (Sta-

pleton 1997; Aho 2006). These allocations were also discussed in chapters 2.2.2 and 2.4.3.

 52

According to Stapleton (1997) time and resources can be fixed so that scope of release con-

tent (cf. chapter 3.3.8) can be adjusted. This aspect seems to be good solution at least from

fixed time perspective which is discussed more in chapters 3.3.8 and 3.3.9. Fixed time per-

spective is also discussed along with experiences (chapters 2.3 and 2.4) regarding mostly one

month fixed time sprints. Besides fixed time perspective dynamic length iterations are dis-

cussed in chapters 3.3.8 and 3.3.9.

Grossman’s opinion (chapter 2.2.2) was that designer resources should be increased. From

Platform R&D and Application R&D perspective, increasing of (human) resources is not topi-

cal action in this time because for the time the being, amount of personnel is tried to keep

somewhat current in above R&D organizations. Therefore, those results have not been

adapted within this case. However resources could be moved if resources are needed for some

specified task in somewhere.

Also prioritization of CRs was discussed during interviews and it seems to cause quite much

work. According to many interviewees, participants from Business Area and Product Man-

agement from both Platform R&D and Application R&D should participate in prioritizing of

CRs. Nowadays only Product Management makes prioritization and information is sent to Re-

lease Content Owners.

Similar results are reported in published Master’s Thesis (Aho 2006) and discussed in chap-

ters 2.2.2, 2.3.1 - 2.3.2 and 2.4.2 - 2.4.3. Aho researched suitability of agile methods from SW

process improvement perspective in one R&D organization at Nokia. According to Aho, pri-

oritizing of the most important requirements and features should be done carefully when the

project starts (Aho 2006, p. 62). Having a plan also for CRs enables implementing of those

changes during e.g. next iteration (Aho 2006, p. 23).

Many interviewees told that effort estimations and above mentioned prioritization of CRs take

a lot of time. Due to that, release programs delay because some high prioritized task can inter-

rupt some other task and similar possible risks of upcoming tasks are not necessarily noticed

when planning of estimations. It is a risk that should be noticed when estimations are done.

These results concerning estimations are in accordance with the literature Aho (2006). Risks

of the project usually become true in the late phase of the projects and the planning should be

done so that the most difficult and risky tasks are done in the earliest possible phase moment.

Effort estimations should not be even asked without giving enough time to prepare and the

estimations should be based on the best knowledge about the effort, not just a guess. Also the

challenges and risks related to the tasks should be noticed when estimation planning is done.

 53

It is also good solution to give calendar time estimate with the working hour estimate. In addi-

tion, the management team should concentrate on project monitoring, guidance and resources

while the development team should make the development work related decisions. (Aho

2006, p. 46, 62)

Also Portfolio Management is suitable to provide e.g. guidelines how estimations should be

organized in terms of SW development and release cycle (chapter 2.4.2). In addition, Product

Roadmap and Release Backlog for upcoming release programs seem to be suitable practices

from estimation planning perspective. According to experiences of other corporations (chap-

ters 2.2 - 2.4), also e.g. collective ownership, demo-sessions, prototyping, meetings and small

release programs seem to be suitable practices. Additionally, due to previous sprints related

experiences the estimates become better after each sprint (chapter 2.3.1).

3.3.5 Inadequate co-operation between testing and SW groups

In 2005 there was quite large SW groups in Application R&D. In consequence of organiza-

tional change it was decided to split SW work and MT work to different groups in one Com-

petence Area in Application R&D. At the same it was seen that size of SW groups was too

big so size of SW groups was optimized to consider only three designers and their line man-

ager. MT group consists of less than five MT personnel and their line manager. Therefore,

there is own group for module testing and small SW groups in above Competence Area.

Line managers told that it would be better that module testing would be executed by SW

groups so that supervision would be easier. On the other hand, supervision is done by line

manager of MT personnel in MT group. Or module testing could be executed at least partially

by SW groups, because designers execute at least a bit of MT in any case. MT group could

execute regression and fault testing. Also opposite opinion were expressed by designers and

MT personnel. Their opinion was that MT group seems to be good solution.

E.g. group formation (Huczynski & Buchanan 2001, pp. 275-308) and group (team) structure

(Huczynski & Buchanan 2001, pp. 309-343) are part of organization structures that are dis-

cussed more in the literature (Huczynski & Buchanan 2001, pp. 409-554). Group formation

and team structure seem to also be part of agile methods related practices that are recom-

mended for small groups. Therefore, the results regarding size of groups are in accordance

with the literature that was discussed in chapter 2 because optimal size of groups seems to be

under 10 people from agile method’s perspective and related experiences of other corpora-

tions (chapters 2.2 - 2.4). According to those results, small groups could be suitable also for

 54

Platform R&D and Application R&D organizations. In addition, agile practices encourage

also to communication and fast feedback that seem to be succeeded by e.g. pair programming,

according to mainly XP related experiences (chapters 2.2 and 2.4). Pair programming could

be applicable also for e.g. FT phase when it could be some kind of pair testing.

Also testing support was discussed during interviews. From FT perspective, testing support is

needed from designers. Designers could participate in testing support and FT personnel

should ask if they need some information in test planning phase. According to some FT per-

sonnel and managers, FT and SW work should be done in same place. They also suggested

that SW work and FT work could be combined in same projects so that communication would

be better and support feedback could be fast. FT personnel also told that it would be good if

they would sit in same floor with designers, but FT personnel would not belong to SW group

because in that case they should test only one specified part of some feature and it did not

seem to be good solution according to their opinions.

From ST perspective, fault corrections related feedback should be faster from designers and

other testing personnel to ST personnel. From research problem perspective above means that

needed feedback through SW and testing groups should be faster so that it would not cause

extra delay so much. Thus, co-operation could be improved through SW and testing (MT, FT

and ST) groups.

Above results are in accordance with the results that were discussed in chapters 2.2.1 and

2.2.3. In those chapters were discussed among other sitting arrangements that were proven to

be beneficial practice concerning co-operation. Consequently, different sitting arrangements

could increase co-operation also in Platform R&D and Application R&D organizations. Also

e.g. meetings & workshops (chapters 2.2 - 2.4) increase co-operation.

When above mentioned arrangements have been done the organizing of testing would be

beneficial too. Use of TDD practice could be good solution to plan test cases in effective way

as in chapter 3.3.2 was already discussed. According to experiences of other corporations

(chapters 2.2.2 - 2.2.3, 2.3.3 and 2.4.1 - 2.4.2) and the literature (Maximilien & Williams

2003), TDD practice seems to really be suitable for planning of almost any (e.g. MT, FT and

ST) test case. Maximilien & Williams (2003) have researched TDD in multi-site organization

at IBM. In that organization the team consisted of nine engineers and management resources

were located in two country. According to Maximilien & Williams (2003), TDD reduced de-

fect rate after FT phase, functioned as the basis for quality checks, increased quality of prod-

 55

uct, and increased reuse of automated test cases. Additionally TDD perceived as extendable

asset that will continue to improve quality over lifetime of the software system.

On the other hand, according to some experiences TDD has been succeeded only partially but

training sessions have been arranged for solving of that problem (chapters 2.2.2 and 2.2.3).

According to related experiences (chapters 2.3.3 and 2.4.2) and the literature (Cockburn 2004;

Maximilien & Williams 2003), when test cases are planned and implemented so these test

cases would be worthwhile to be more automated. In addition, in chapter 2.4.3 it was dis-

cussed that SW build could be generated automatically every night and after execution of

automatically tests (e.g. so called basic test set) a test report could be generated automatically.

The test report would be available the next morning as was described in chapter 2.4.3. If test-

ing would be more automated it would probably be quite fast to execute test cases during e.g.

regression testing or acceptance testing. Unfortunately, test cases for e.g. MT, FT and ST are

only partially automated, and it takes time to automate them more as many designers told dur-

ing interviews.

3.3.6 Lacking Feature Owner

According to many interviewees, a Feature Owner would be good solution because it takes

time if right responsible person of feature is not found immediately. From research problem

perspective it delays release cycle in consequence of delayed CR work. The Feature Owner

could own and coordinate a feature through its lifecycle, also during maintenance phase. Ac-

cording to a Release Content Owner’s opinion, ownership was good practice earlier but nowa-

days there are no owners.

Experiences or other research results with relation to Feature Owner were not found from the

literature. However e.g. Product Owner that is described within Scrum roles (chapter 2.1.3),

seems to be similar than Feature Owner. On the other hand, Feature Owner(s) could also be

other person than Product Owner if knowledge of some feature is enough (i.e. competent re-

sources are available) from the perspective of this role. If competent resources would not be

available at least competence sharing (chapter 3.3.2) and improved communication (chapter

3.3.7) are needed. In this case some person of e.g. some SW group could participate in learn-

ing of needed details regarding some feature at least in group level. If competence of some

person in group level would be enough that person could take responsibility of “Chief” Fea-

ture Owner tasks and communicate with other Feature Owners working in group level in other

groups.

 56

3.3.7 Inadequate communication

General opinion was that communication cause a lot of problems between Platform R&D and

Application R&D, and between multi-site organizations (e.g. between Platform R&D in

Finland and Platform R&D in other country). In consequence of communication related prob-

lems through above organizations, it has negative effect on release cycle time. Solutions pro-

posed by interviewees were that specified tasks would be done in same building (at least in

the same country) and there would not be split tasks (e.g. IS work) through multi-site. These

results are similar with related results that were discussed in chapters 2.2.1 - 2.2.3. Related

results describe utilities of pair programming practice and “designers in same room” from

communication perspective. In above cases, communication is easier and faster when distance

between communicating persons is not too big. More details regarding communication from

organizational aspect are described in the literature (Huczynski & Buchanan 2001, pp. 177-

210).

Besides above general problem also other problems concerning inadequate communication

were discussed during interviews. Many designers’ opinion was that line and project manag-

ers ask same things from designers. They suggested that it would better that only one man-

ager, e.g. project manager makes questions to designer, so that same questions are not asked

by both line and project management. From research problem perspective it is faster to re-

spond to some same question once than twice. These results are corresponding communica-

tion model related results that were discussed in chapter 2.4.2.

Also participation in release program meetings should be organized better according to few

designers. They suggested that participation in release program meetings could be better, i.e.

it could be better that one project manager would participate in two meetings instead of that

many designers would participate in many meetings. Also customers could participate in

meetings according to some project and program managers. During meetings they could dis-

cuss about content of release programs. Nowadays only project managers, program managers,

Release Content Owners and SW architect of release program communicate with each other

about content of release program and mostly Product Management and Marketing Manage-

ment communicate with customers. Product Management communicates with Program Man-

agement who communicates with Project Management and Release Content Owners and so

on. These results are in accordance with customer involvement (Baskerville et al. 2003) such

as on-site customer related results and also meetings & workshops related results that were

discussed in chapters 2.2 - 2.4. On the other hand, if meetings etc. would be arranged too of-

ten not enough time would necessarily remain for real work, albeit meetings are part of actual

 57

work too. However, best benefits of meetings could be achieved if persons who have knowl-

edge about the subject of the meeting would be invited and they would participate in those

meetings. Above invitation and participation processes should be noticed concerning e.g. re-

views which are discussed in chapter 3.3.10.

Furthermore, visibility of coming CRs should be better from perspective of designers. Slow

visibility of CRs cause that designers do not know in time what kind of changes are coming,

testing personnel do not know what should be tested and SW architects can not start specifica-

tion work in time. Also multi-site aspect causes delay if some feature related task or part of it

is done in other country. According to many designers, coming CRs should be informed faster

to designers, i.e. mail information should be made in time or visibility of CRs should be

available in intranet in time. In addition, couple of managers proposed that communication

could be increased also between different management levels and customers. These results are

congruent with backlogs (chapters 2.3 and 2.4) and communication model (chapter 2.4.2) re-

lated results. Also e.g. meetings & workshops (chapters 2.2 - 2.4) could increase visibility of

coming CRs.

3.3.8 Late changes to the content of release programs

Content of release programs seemed to be too large according to many interviewees. From

project and program management perspective, every big change (CR) to content causes lot of

re-planning regarding scheduling and causes delay to release cycle. These results are in agree-

ment with the agile practices which recommend small release programs and short iterations

(chapter 2.1).

According to many interviewees, only fault corrections could be taken into release program in

late phase, but not via CRs if amount of work is under 50 hours because bureaucracy takes

extra time for every CR. According to a project manager’s opinion, CRs could also be com-

bined so bureaucracy could be decreased. If CRs are taken into release program in late phase

it causes a lot of work and might interrupt other tasks of designers because CR might be of

higher priority than some other task. In addition, CRs cause lot of changes to content of re-

lease programs and content of release program should not be changed in late phase, i.e. no

major changes after E1 milestone. Project and program managers told that CRs in late phase

causes delays in ongoing release programs and as a consequence next release programs are

delayed too. General opinion was that (re)moving of feature is minor problem than adding of

new feature in late phase, albeit also (re)moving causes re-planning, planning of compatibility

and testing. Other general opinion was that removing of feature is frustrating from perspective

 58

of designers. On the other hand, removing of feature is infrequent. Moving of feature to next

release program seemed to be more general according to designers.

These results deviated from results discussed in the literature review because according to in-

terviewees, freezing content should be done already in E1 phase and the literature proposed

freezing content for only e.g. one month (chapters 2.3 and 2.4) sprint. Sprint can be consid-

ered to be as fixed time whereupon SW is developed iteratively and incrementally (chapter

2.1.3). According to the results described in chapter 2.4.2, it was perceived that Product

Roadmap is useful for specifying of all planned product release programs. Release Backlog

seemed to be useful for specifying of content of release programs. In chapter 2.4.3 it was dis-

cussed that e.g. freezing the development scope for a month at a time helps in giving the team

a chance to work on their assigned tasks and creates a more relaxed atmosphere. All ideas for

features were updated to Product Backlog that provides a systematic way to collect those

ideas continuously. New features were added to the Release Backlog, meaning that other fea-

tures can be excluded due to possible re-prioritization. The Product Roadmap was used for

upcoming release programs and release programs were scheduled into that roadmap. The

roadmap was updated after each release program. High Level resource allocation (cf. chapter

3.3.4) can be planned based on Product Roadmap according to results that were discussed in

chapter 2.4.3. In addition, when (on-site) customers (chapters 2.2.1 - 2.2.3 and 2.4.1) had pos-

sibility for early access to the new product version so influencing the content of release pro-

gram was possible.

From fixed time perspective (Aho 2006; Stapleton 1997), if some high prioritized feature

would be added to some release program it could not be taken until next Sprint (chapter 2.1.3)

is started if competent resources are available (cf. chapter 3.3.2). In this case, other designers

could continue their own tasks and possibly a few of them could start working with above

mentioned feature related tasks if their other tasks have not been prioritized with higher prior-

ity. At the end the codes from development branch(es) would merge to main branch. Merging

could be done with CVS (chapters 2.2.3 and 2.4.2 - 2.4.3) as many designers from Applica-

tion R&D told during interviews.

On the other hand, lengths of iterations do not necessarily need to be fixed. Instead length of

iterations could be adjusted dynamically depending on planned work amount for iteration.

Therefore, length of iterations could be adjusted to be from e.g. few days to few weeks. If

planned work amount concerning the iteration is ready e.g. after few weeks a next iteration

could be started after planning and prioritizing assignments.

 59

3.3.9 Inconsistent synchronization of release programs

The interview results addressed that the release programs of the R&D organizations should be

synchronized. It means that because of e.g. long development time of HW components Plat-

form release programs content is frozen and release planning is made before application re-

lease program has defined its content. E.g. IS can be reached in Platform R&D although con-

tent of Application release program would not have been defined yet. It causes delay to re-

lease cycle because it is probably that content of Application R&D release program(s) is

changed later and it causes changes also to Platform R&D release program(s). Above causes

that generally requirements come from Application R&D to Platform R&D in quite late phase

of release program (cf. chapter 3.3.8).

According to few designers, one solution could be that at least module tested Platform SW

would be released incrementally for Application R&D needs. In that case Platform SW would

be ready only in rough level, i.e. needed procedures without real functionality but with needed

interface(s) would be ready and more functionality could be added later. However, Applica-

tion R&D could test their SW with Platform SW and communicate possible changes to Plat-

form R&D in early phase. At the same time SW work would continue in both R&D organiza-

tions and after possible changes the SW would be tested by Platform R&D also in FT phase.

After iterations from IS to FT (or at least from IS to MT) Platform R&D would release SW

incrementally for Application R&D needs and react possible changes in early phase as above

mentioned. These iterations from IS to MT have been good solution according to couple of

designers. These results regarding iterative development are in accordance with the results

reported in the literature (Boelsterli 2003; Highsmith 2000; Hirsch 2005; Hunt & Thomas

2000; Larman et al. 2003; Rautiainen & Lassenius 2001; Schwaber 2007a). Iterative devel-

opment was also discussed in chapter 2.

In addition, many designers suggested that if requirements are not known clearly, prototyping

and workshops could be good solution. Simulation Game (chapter 3.2.1) was suggested to be

part of prototyping. During Simulation Game a team is thinking about e.g. how some feature

should work (i.e. scenarios). Thus, it would be almost “FT on the table” according to few de-

signers. These results with relation to prototyping are in accordance with the results reported

in the literature (Highsmith 2000; Cockburn 2004; Stapleton 1997). Prototyping was also dis-

cussed in chapter 2.4.2.

Regarding workshops the proposed solutions were: i) Particular specification team could

make IS work only to one release program, not to many release at same time. ii) One or more

 60

SW architect could participate in IS work. IS work would not start until SW architect can par-

ticipate, i.e. they would not have tasks with higher priority in their daily work. Workshops

related results have been reported in the literature (Cockburn 2004; Paetsch, F. et al. 2003;

Vriens 2003). Workshops are quite similar than e.g. weekly meetings because e.g. about new

ideas and design related details etc. can be discussed within both of them. Meetings & work-

shops were discussed in the literature review (chapters 2.2 - 2.4). Overall, results with relation

to above mentioned workshops seem to be consistent with the literature.

Also on-site customer, continuous integration (chapter 3.3.11), prioritized feature list (e.g.

backlog) and small release programs could be good practices for improving of synchroniza-

tion of release programs (Aho 2006; Palmer & Felsing 2002; Schwaber 2003, pp. 5, 8, 133-

136). In addition, fixed time or dynamic length iterations might be suitable for synchroniza-

tion of release programs. All above practices were discussed in chapters 2.2 - 2.4.

3.3.10 Heavyweight documentation and bureaucratic reviews

According to many interviewees, when documentation is heavyweight and amount of docu-

ments is big it takes a lot of time to maintain documents. From research problem perspective

it causes delay to release programs. Many interviewees stated that lightweight documentation

and split tasks seemed to be good solutions for solving these problems. Depending on situa-

tion lightweight documentation seems to be enough and no perfect documentation is needed

according to many designers.

According to experiences of many designers, split of documentation work has succeeded in

their group, i.e. 2 – 3 designers have responsible for one document (e.g. IS, SD, MT and so

on). Split of e.g. SD and MT documentation tasks seemed to be quite easy according to many

designers. Due to split of documentation tasks, the documents have been completed faster

they noticed. On the other hand, split of documentation requires more competence sharing

(chapter 3.3.2) as they told during interviews. Furthermore, few SW architects suggested that

it would be good solution that one SW architect would belong to SW group. In consequence

of that, feedback (cf. chapter 3.3.7) between designers would be fast and the documentation

could be more lightweight than nowadays. Cf. also chapter 3.3.5 in which e.g. group structure

was discussed. These results concerning lightweight documentation and split of e.g. documen-

tation tasks to small increments are in accordance with the practices that are recommended in

agile methods (chapter 2). Moreover, lightweight documentation and split tasks are also re-

ported in the literature (Aho 2006; Ambler 2002).

 61

Besides documentation related problems also bureaucratic reviews were noticed to cause de-

lay to release programs and decreasing of review bureaucratic was suggested by many inter-

viewees. Formal inspections of minor changes take time due to bureaucracy (chapter 3.3.3) so

they proposed that only review with e.g. couple designers would be enough (chapter 3.2.2).

Thus, formal inspections are not needed for minor changes according to many interviewees.

The formal inspections are typically arranged not until major changes have been made to

documentation. One SW Architect from Platform R&D saw that code reviews should be ar-

ranged in SD phase, not later when code is already ready. These results regarding reviews are

concordant with the results that were discussed in chapters 2.2.1 - 2.2.3. In chapter 2.2.2 it

was discussed about code review process in which pairing was used within code review proc-

ess. In addition, there was a sense that using of pairing has already been proven to be a more

effective review process than the traditional code review sessions. Using of pairing within

code review process could be one beneficial practice also in Platform R&D and Application

R&D organizations.

Possibly it can also be used at least partially within document review process if parts of e.g.

SD phase related documents would be split to small tasks. On the other hand, many design

details can be included directly into code and also some temporary (no reviewed) work docu-

ments could be used. Furthermore, many designers and one line manager suggested that if SD

documentation could mainly be included to code the amount of documents or at least content

of SD documentation could be decreased, i.e. lightweight documentation. In such situation

most of SD documentation could be reviewed already during code review sessions by use of

pairing practice, i.e. decreasing of review bureaucratic. Above lightweight documentation im-

provements and decreasing of review bureaucratic could be suitable for other phases of SW

development too.

Besides SD documentation also IS and testing documentation related problems were dis-

cussed during interviews. From MT personnel’s perspective, when MT is planned IS and SD

documents are not always ready which causes problems. If parallel program block’s IS/SD is

ready it helps MT planning, but it would be better that own program block related IS/SD

would be ready. The biggest problem according to MT personnel is that IS documents are

changed and typically those are not completed in time. Their opinion was that the IS docu-

ments should be at least partially done when MT planning is started as incremental develop-

ment practices encourage (chapter 2). In addition, one opinion was that IS documents could

contain FT scenarios as few designers suggested. In chapter 3.3.5 it was discussed that TDD

 62

could be suitable for planning of almost any (e.g. MT, FT and ST) test case. Therefore, if IS

would contain FT scenarios it would mean that TDD partially is applied.

Also review invitation process was one topic during interviews. FT persons are typically in-

vited to participate in reviews of IS documents. According to many designers, FT persons

don’t participate in these reviews every time because time is not reserved enough, although

they should participate when designers invite them (cf. chapters 3.3.5 and 3.3.7). This slows

down release cycle because it causes extra work after reviews due to e.g. solving possible un-

clear things in IS document. Furthermore, few designers noticed that if FT scenarios would be

added to IS documents the above participation should be in major role as for reviews of the IS

documents. The Spike-time (chapter 2.2.3) or Red-Flag practice (chapter 2.4.2) seem to be

beneficial practices in this case. Due to above, FT personnel could more active participate in

reviews of IS documents in the future. On the other hand, it could be possible that reviewing

of IS documentation would be done incrementally by pair or few person e.g. weekly. There-

fore, formal inspections would not necessarily be needed for reviewing of IS documentation.

3.3.11 Lack of versioning knowledge of program blocks

According to some designers, removing of feature from ongoing release program causes extra

work with versioning of program blocks’ modules and from research problem perspective it

causes delay to release programs. Versioning of documents seemed not to be so big problem

according to interviewees.

Designers from Application R&D told that CVS is used for versioning before freezing code

modules and merging of modules from development branch(es) to main branch, i.e. integra-

tion of code. It seems to be quite good solution if many designers are working with the same

program block. Thus, code modules are available and visible to other designers who can up-

date those modules if needed. CVS is partially used also in Platform R&D.

The results regarding CVS correspond to results that were discussed in chapters 2.2.3 and

2.4.2 - 2.4.3. Substitutive alternative for CVS seems to be Subversion that contains most of

features of CVS and many other useful features concerning version control (Mason 2004).

Some Subversion tools seem to already support e.g. continuous integration in larger scale than

CVS (Mason 2004). Continuous integration is one of recommended practices of XP and it

seems to also be one of beneficial practices for organizing of faster release cycle.

XP encourages integration of code could be done daily (chapters 2.1.2 and 2.2) but it seems

not to be good solution according to interviewees because tested code is not necessarily ready

 63

after one workday. On the other hand, if development would be more incremental (chapter 2)

so e.g. daily or at least weekly integration could also be possible in the Platform R&D and

Application R&D organizations. Also generating SW build and test report automatically seem

to be beneficial as in chapter 3.3.5 was discussed. Furthermore, collective ownership (chap-

ters 2.2.1, 2.2.3 and 2.4.3) and coding standards (chapters 2.2.2 - 2.2.3 and 2.4.2 - 2.4.3) could

be beneficial practices too.

According to one designer, also the following solution could be suitable (case by case) and it

would bring at least four benefits: i) When a new feature is added a new code module could

be created. Therefore, less regression module tests are needed. On the other hand, amount of

code modules is not so big problem as extra time needed for regression tests. ii) In this case

the testing is needed only for new module and its interfaces. iii) Modularity of code would

increase, i.e. low coupling and high cohesion would be achieved. If some other interface than

new interface of module or procedure behind that would be changed it does not cause changes

for new module’s interfaces and procedures. iv) Removing (or inactivation) of code would be

easy in case when e.g. some feature should be removed.

Above results regarding modularity are in accord with the results reported in the literature

(Haikala & Märijärvi 1997). In addition, the results are in accord with the results described in

chapter 2.4.1. According to the literature, high cohesion and low coupling are recommended

basic rules in SW development. High cohesion and low coupling increase maintainability and

possibility to reuse of SW modules. (Haikala & Märijärvi 1997, pp. 267-268)

 64

3.4 Experiences of Scrum piloting

According to perceptions, during couple of Scrum Retrospective Meetings (chapter 2.1.3) and

discussion with couple of designers after one daily meeting, the experiences of Scrum piloting

were collected. The meetings and discussion session were arranged between December 2005

and February 2006. Data was collected partially also from internal database that contains

Scrum sprints related material such as memos of above mentioned meetings.

Overall results of Scrum piloting seemed to be very positive. The Scrum piloting group mem-

bers were enthusiastic about use of Scrum method in their daily tasks and they were also

ready to use Scrum practices in the future. Scrum entailed new practices and variety compared

with traditional methods. One expectation was that Scrum makes programming work more

interactive and interesting in the future.

Scrum was evaluated to be suitable for CR work if designers’ tasks could be adapted to their

daily tasks and CR work could be split to many members if needed. CR work typically con-

cerns other groups’ work too. Therefore, it would be good that Scrum would be used also in

other groups. Thus, synchronization between sprints would be adequate to development work

and remaining on schedule would be probable. More Scrum piloting related well-tried prac-

tices and problems that were noticed by discussion during meetings have been summarized in

Table 16.

Table 16. Experiences of Scrum Piloting

Well-tried practices by interviewees

- Sprint Backlog

- Sprint Burn-Down

- Meetings

- Automated tests

- Demo sessions

Problems with proposed solution(s) by interviewees

- Problem: If there are interfaces to other groups (no Scrum in use) so synchroniza-

tion does not follow sprints.

- Solution: Some visitors from other groups have sometimes participated in daily

meetings. It would be good if also other parallel groups would use Scrum.

- Problem: Test automation took time, coverage suffered.

- Solution: More time should be reserved for testing.

- Problem: One concern was that there is not time to make dynamic task selection.

 65

Due to that, people with best knowledge had to take task(s) during sprints.

- Solution: Dynamic task selection is tried to make possible in the future.

Since piloting was started SW was developed incremental and iterative way during one month

sprints. Sprint planning session was arranged at the beginning of each sprint. Piloting group

considered it to be very useful practice because it enabled possible asking of questions regard-

ing requirements. Consequently, requirements become clearer if needed. During these ses-

sions, requirements were given monthly by Product Owner who has good knowledge of prod-

uct. The requirements were clear and all requirements were implemented.

During piloting, sprints had been consisted of mainly from SD phase to MT phase. Tasks for

each sprint were described in Sprint Backlog (Appendix 4: Scrum’s Sprint Backlog) and re-

maining time was shown in Sprint Burn-Down (Appendix 3: Scrum’s Product Burn-Down

chart). During sprints, daily meetings were arranged. There was shown what has been done

and what will be done. Scrum also forced to proceed every day. Furthermore, automated tests

that were executed during sprints were noticed to be useful practice. At the end of sprints the

demo sessions were arranged. Knowledge had been increased due to demo session and above

meetings.

 66

3.5 Summary of results from interview study

For a start this interview study the interview method was introduced in chapter 3.1. The inter-

view method was used to collect well-tried practices (chapter 3.2) and problems with pro-

posed solutions (chapter 3.3) during interviews. Both Platform R&D and Application R&D

aspects were included. Also experiences of Scrum piloting were collected from Scrum pilot-

ing team from Platform R&D and partially from memos in internal database (chapter 3.4).

In consequence of this interview study, answers to second and third research sub-questions

(chapter 1.3) were found. Concerning mainly situation when some feature is added to ongoing

release program in late phase the following problems were discovered during interviewees:

1. Lot of parallel tasks in daily work

2. Lack of competence sharing

3. Bureaucratic decision making

4. Underestimation of needed resources

5. Inadequate co-operation between testing and SW groups

6. Lacking Feature Owner

7. Inadequate communication

8. Late changes to the content of release programs

9. Inconsistent synchronization of release programs

10. Heavyweight documentation and bureaucratic reviews

11. Lack of versioning knowledge of program blocks

According to interviewees, (re)moving some feature from ongoing release program in late

phase seemed to not be so big problem than adding some feature. However, same problems

seem to effect in both cases. E.g. from project and program management perspective, every

CR causes lot of re-planning (chapter 3.3.8) regarding scheduling and causes delay to release

cycle. Re-planning is also caused by (re)moving some feature from ongoing release program

in late phase. To solve all above problems many proposed solutions were collected from in-

terviewees and partially also from the literature.

Also things which appeared as well-tried practices were discussed in the interview study.

These well-tried practices mean such practices that are not necessarily needed to change in

Platform R&D and Application R&D organizations. Overall, results from this interview study

can be used to be part of constructing the XFRC process model.

 67

4. EXTREME FASTER RELEASE CYCLE (XFRC) PROCESS MODEL

Dynamically applicable and scalable process model seems to be a sine qua non of organizing
of faster release cycle. Without adequate process model SW development certainly ends in a
complete shambles one of these days.

Mika Tanskanen

In consequence of the literature review and interview study, answers to three research sub-

questions were found. These answers enabled constructing the XFRC process model that is

made public in this chapter. Constructing of the XFRC process model was needed in order to

find answers to research main question.

At first overview to XFRC process model is introduced in chapter 4.1. Thereafter, construc-

tions are described in chapters 4.2 - 4.5. The constructions consist of XFRC process model

with recommended values, practices, roles and responsibilities for organizing of faster release

cycle from SW development aspect. Values are collection of guidelines for successful use of

practices by different roles and responsibilities.

The XFRC process model is illustrated in chapter 4.5. Constructions as well as interpretations

are based on above answers to sub-questions. Consequently, references are not described sin-

gly in this chapter because used references with relation to this research have already been

described in chapters 2 and 3.

Figure 11. Introduction to chapter 4

 68

4.1 Overview to XFRC process model

Main aspects according to research main question were utilized to construct process model

which was assumed to be the beneficial model for organizing of faster release cycle in SW

product development organizations. It should be beneficial especially in situation such as the

content of ongoing release programs is continuously changing in late phase. Main purpose of

the XFRC process model is that parallel tasks could be decreased, competence sharing and

communication could be increased, and late changes to release programs could be forecasted.

Due to above, SW development in R&D organizations could be organized more efficient and

dynamic way than nowadays. In consequence of better organizing, faster release cycle could

be made possible in the real world.

The XFRC process model consists of recommended values, practices, roles and responsibili-

ties. Recommended values are discussed in chapter 4.2. Compliance with all described values

is recommended in order that the XFRC process model could successfully be used and

adapted through R&D organizations. Compliance of the values requires e.g. commitment

which is one of recommended values.

Recommended practices are discussed in chapter 4.3. These practices are collection of rec-

ommended practices of agile methods that have proven to be beneficial in different organiza-

tions according to the literature review and the interview study. Recommended roles and re-

sponsibilities are discussed in chapter 4.4. Roles and responsibilities are based on applicable

compromise of recommendations that were discussed in the literature review and the inter-

view study. Role differentiation with different and occasionally rotated responsibilities is es-

sential for e.g. decreasing of parallel tasks in daily work. Also many other improvements are

needed.

The XFRC process model is illustrated in chapter 4.5. It describes an alternative approach to

enable faster release cycle along with efficient and agile SW development, without waste

trivia. The XFRC process model is dynamically applicable and scalable through R&D organi-

zations where SW is developed. From usability perspective, SW designers could develop SW

more productively, efficiently and enjoyable to achieve specified goals in specified context

during release programs when their tasks would be organized with the XFRC process model.

That model could be exploited also in other organizations in telecommunication business. At

least parts of that process model could probably be exploited in other industries too.

 69

4.2 XFRC values

The research results suggested that following values could be suitable for daily work in R&D

organizations:

Table 17. XFRC values

Value Description

Adequate communication - increasing co-operation between groups
- multi-site aspect should be noticed
- minimizing of asking same questions by different

management boards
- meetings & workshops are arranged dynamically

only when needed, not necessarily e.g. daily
- possibility to get fast feedback from anyone

Applicable commitment - use of agile methods needs commitment
- also continuous development of own working meth-

ods are encouraged
Continuous and innovative
learning

- dynamical job rotation
- switching competences between groups
- helpfulness to solve problems with colleague

Dynamical resource alloca-
tion

- resource pools for e.g. CR work (also parallel release
programs should be noticed) and maintenance (fault
corrections included) work

- innovative learning, unexpected work and prioritiza-
tion must be noticed when resource allocations are
done

- dynamically adjustable iterations concerning re-
sources and length of iterations

Dynamical SW develop-
ment

- dynamical changing of content of release programs
- no adding of features during an iteration
- (re)moving of feature is possible also during iteration

Dynamical SW process im-
provement

- open SW process improvement
- continuous and dynamical SW process improvement

through R&D organizations
- improvement suggestions could be collected into e.g.

electronic bulletin board in intranet
Minimum bureaucracy - decisions should be made by low-level management

without waste trivia
- bureaucracy concerning documentation and reviews

is recommended to minimize
Modularization - high cohesion and low coupling

- versioning could follow same basic rule during (e.g.
feature specific) release program, i.e. 1.1-0 -> 1.2-0 -
> 1.3-0 -> 1.n-0 during release program x and 2.1-0 -
> 2.2-0 -> 2.3-0 -> 2.n-0 during release program x+1
if there are major differences between them

- due to above, e.g. 1.1-1 etc. version are not necessar-
ily needed except for fault corrections case by case

No parallel tasks - dedicated persons for e.g. CR and maintenance work
- dynamical resource allocation etc.

 70

Adequate communication

Firstly, to enable adequate communication through R&D organizations, designers and testing

personnel are encouraged to co-operate with each other. Marketing, owners (e.g. Product

Owner), managers (e.g. product manager) are also encouraged to communicate with each

other. Every personnel group could have some contact persons for enabling fluent communi-

cation between different personnel groups. Also multi-site aspect should be noticed concern-

ing arrangements for contact persons. In that case there would be contact persons inside re-

lease programs through multi-site. If distance between communicating persons does not en-

able face to face communication they could communicate e.g. by chat, mail or any appropriate

phone. However, it would be better if release programs would be country specific in which

case face to face communication can be enabled at least between persons working in same

building. On the other hand, e.g. video conference meeting is partially comparable with face

to face communication.

Line managers and project managers should communicate with each other. Line managers

could be as primary contact between SW and testing groups (ST group if MT and FT are exe-

cuted in SW groups) and management. Inside SW and testing groups could be named contact

persons between those groups and other SW and testing groups. In consequence of above, it is

possible to minimize asking of same questions by different management boards twice or

more. However, communication could be increased due to above arrangements.

In addition, meetings & workshops could dynamically be arranged only when needed, i.e. the

meetings are not necessarily needed to arrange e.g. daily. It is recommended that meetings

could be arranged immediately when needed if any matter does not prevent arranging of that

meeting. It requires commitment concerning reservation of time for meeting so that all par-

ticipants can arrange their tasks to participate in these meetings. So called wasted and fixed

time meetings are not necessarily appropriate. Instead at same time they could work with

daily tasks without participation in wasted meetings. If e.g. some problem should be solved or

some decision should be done arranging of meeting is typically good alternative. Length of

meeting could be dynamically adjusted until needed actions have been done during meeting.

Of course, length of meeting should not typically be many hours. Also time reservation for

meeting should be reasonable. Furthermore, different sitting arrangements, communication

tools (mail, mobile phone, conference phone, electronic bulletin board, chat etc.) can increase

communication into adequate level. If e.g. language barriers decrease communication, a mail

is typically easier way to communicate with second language than speaking. On the other

hand, language courses are available too.

 71

Applicable commitment

Commitment concerning use of agile methods and continuous development of own working

methods with them are encouraged. Therefore, SW development etc. can become more effec-

tive according to organization needs.

Continuous and innovative learning

Competence sharing by dynamical job rotation inside team is recommended. Job rotation

could be decided by resource pool and prioritization of tasks before iteration starting point.

Therefore, dynamical resources can be allocated also for switching competences according to

organizations needs. After reaching aimed competence expanded learning about challenges

outside team could be one alternative. It is recommended if some person wants to expand

learning about issues outside team. Helpfulness to solve problems with colleague is needed so

that competence is increased and e.g. SW development becomes more efficient within team.

XFRC practices (e.g. pair programming for hard tasks and arranging meetings) can be ex-

ploited concerning problem solving. In addition, e.g. SW work, MT and FT work could be

combined if competence sharing would be increased. Therefore, different MT and FT groups

are not necessarily needed if testing persons are included to SW groups and job rotation

would be used.

Job rotation could also be beneficial when it would be expanded to concern management.

Every group member could have turn to manage group during e.g. iteration. Line manager of

group could work as coach and give examples from management and leadership perspective if

manager has enough knowledge about those aspects. Therefore, every group member could

derive management experiences in long run. It would be possible also from project manage-

ment perspective. Estimations and resource allocations could be done by groups and also re-

source pools could be beneficial. Resource pools are discussed more in “dynamical resource

allocation” section in this chapter. If groups would have enough experiences concerning line

and project management the groups could be as self-organizing groups. It is possible that self-

organized groups will increase in the future. In this case many actual line and project manag-

ers would not necessarily be needed in R&D organizations. Instead, also managers could ex-

pand their knowledge according to their own and organizations needs. Briefly, job rotation

can be utilized through organizations and in spite of current role in organization.

 72

Dynamical resource allocation

Resources could be moved dynamically by using resource pools for e.g. maintenance work

and CR work. Resource pools could also be used for other work such as general SW work

during release programs, HW work and possibly management work. However, it is essential

that parallel tasks are not allocated for anyone. Instead above mentioned dynamical resources

should be allocated and person’s own predilections should be noticed. In addition, e.g. task as

“innovative learning” could be included to be as part of resource planning for release pro-

grams. At least 20% of total work of release programs should be reserved for innovative

learning. E.g. reading CR related specifications, learning about interested and beneficial is-

sues, SW process development improvements etc. can be included to be as innovative learn-

ing. Also unexpected work during release programs should be noticed when resource alloca-

tions are done. Both innovative learning and unexpected work could be estimated in rough

level when release program is started and with details before start of iterations.

Resource pools can be used when allocated work effort concerning future iterations that are

not necessarily periods of certain length, i.e. iterations are dynamical adjustable periods de-

pending on planned work amount for next iterations. Also skills for e.g. splitting tasks and

making estimations affect length of iterations. In brief, when planned work for iteration has

been completed a next iteration can be started. It is possible if resource pools would be used.

It means that person(s) can help colleagues in same or parallel group regarding their tasks if

planned tasks have been completed before end of the iteration. Due to that, all planned work

for the iteration should typically be completed by group at the latest during few weeks. In

other case in which above person(s) are doing last task before end of iteration, other persons

could help them to complete their tasks.

Before starting of iterations resources should be taken into consideration also from prioritiza-

tion perspective when allocating resources for next iteration. Prioritization of work could be

decided within meetings that are arranged when tasks for starting iteration are planned. If a lot

of e.g. high priority CR work is coming, resources could be allocated by priorities and above

predilections. Otherwise, resources can be allocated e.g. by high priority of possible fault cor-

rections. Designer could correct some fault(s) during coming day(s) if the fault(s) have been

prioritized with high priority. When completing above fault correction(s) designer could start

e.g. CR work according to prioritization of the moment work.

 73

Dynamical SW development

Content of release program can be changed dynamically. However, adding feature or certain

part of it is not possible until next iteration is started. Adjustment of content is possible by

dropping feature or part of it to next iteration. In this case (re)moved part of feature can be

implemented during next iterations.

Iterative and incremental SW development is recommended. Length of iterations could vary

from e.g. few days to few weeks. It does not necessarily need to be fixed time such as one

month that is typical length of iteration in Scrum. Increment could be e.g. one or more proce-

dures with needed interface(s). Typically it is not illustrated how large entity increment is

when agile methods are discussed. However, it can be dynamically adjusted part of task that

is part of some feature. Therefore, e.g. one procedure without real functionality but with

needed interface(s) could be smallest and suitable increment in real SW development. Real

functionality could be developed during iterations and hard-coded MT tested functionality

could be as functionality that enables exploiting by Application R&D (in case Platform SW)

or FT by Platform R&D in this case.

Such practice as dynamical integration with e.g. CVS or Subversion makes possible to de-

velop same modules at the same time and by many person. In addition, executable files of

program blocks etc. are needed for generating SW build. CVS is not necessarily suitable for

version control of executable files. It is suitable for version control of code modules and so

called main modules for those. Changes regarding main modules could be listened by auto-

matic compiler that could compile all changed program blocks etc. and generate at least unof-

ficial SW build automatically. Main modules should contain needed definitions so that

changed code modules could automatically be searched and taken automatically into compila-

tion from Subversion because CVS does not necessarily support such operation. In conse-

quence of above, continuous automatic generation of unofficial SW builds after continuous

automatic integration would surely be possible in practice. Therefore, generation of SW build

is not needed to synchronize with e.g. ends of iterations but unofficial SW builds would be

available continuously until official SW build is generated. On the other hand, also official

SW build could be generated at any time automatically if functionality can be proven with

needed tests. It means that after generation of SW builds automatically all needed tests should

be executed automatically. Also test report should be generated automatically. If some test

fails notification to responsible person could be sent automatically. Above is part of automatic

and anticipatory testing which enables finding possible faults during regression testing, i.e.

although some change concerns specified part of some feature it is possible that some secon-

 74

dary effect fault has appeared too. In addition, extra delays with relation to testing can be

minimized by using above recommendations.

If some major changes should be done these changes could be done during next release pro-

gram. Therefore, not many official SW builds are needed during one release program but con-

tinuously automatically generated SW build would be enough for one release program. It

could be generated automatically also during maintenance phase. Briefly, due to increased

automatic concerning SW development, manual phases could be decreased.

Dynamical SW process improvement

From SW process improvement perspective continuous and dynamical SW process improve-

ment is recommended. It makes possible to modify SW process according to dynamic

changes in market and needs of R&D organizations. One part of process can suit for needs of

some organization and some other part can be suitable for needs of some other organization.

In ideal situation overall process can be adjusted to be suitable for both organizations in this

case.

SW process improvement suggestions could be collected e.g. monthly from Platform R&D

and Application R&D organizations. Adequate communication could be exploited and contact

persons in groups could collect improvement suggestions from groups. List of collected im-

provement should be place that is visible to everyone in these organizations. Everyone should

have rights to update that list. The list can be e.g. on electronic bulletin board in intranet. E.g.

Q&P organizations could handle list of improvements e.g. monthly and execute needed ac-

tions through R&D organizations. Actions could be communicated to contact persons of

groups and contact persons could share actions related information through groups.

Alike open source code can be developed by anyone the XFRC process model can be modi-

fied and adapted according to needs of organizations. Use of values and practices etc. depend

on an organization needs. In conclusion it can be stated that possibility to modify process

model through organizations can be concluded to be as open SW process improvement in

brief.

 75

Minimum bureaucracy

Decisions should be made by low-level management without waste trivia. Minimum bureauc-

racy is needed also from documentation perspective. Extra (heavyweight) documents are not

needed. Instead such practice as automatic and lightweight documentation is recommended.

E.g. SD documentation is waste if needed design details are added into code and checked dur-

ing code reviews that should be arranged during iterations.

Reviews of code and documents should be arranged concerning e.g. CR work or maintenance

work related changes. Extra review minutes are not needed but minimum bureaucracy con-

cerning reviews is recommended. Reviewed material should be split so that all participants of

reviews would not need to look through all reviewed material because it takes time if re-

viewed material is large. On the other hand, reviewed material should be compact, i.e. it

should not be too large. However, if reviewed material is large e.g. couple of review session

can be arranged. When the review session is ended it would be enough to mark the “com-

pleted” information to check list with a cross. Instead review sessions reviewing could be ar-

ranged by pair working. In that case reviewing could be continuous without large reviewed

material if reviewing of small part of increment would be done e.g. daily.

Minimum bureaucracy should be noticed perspective of tested functionality too. If some func-

tionality has been tested not much bureaucracy is needed but the “completed” information to

check list with a cross would be enough. In addition, managers can learn about different man-

agement theories and leadership principles by finding related information in the books etc.

They could also ask feedback from SW designers in order to develop their competence re-

garding management and leadership.

Modularization

Due to commitment to high cohesion and low coupling for SW development e.g. versioning

and integration could succeed at least well. Also splitting of specific feature related parts of

code could be easier than of inconsistent code. Furthermore, testing and split test cases for

specific part of some feature could be easier than e.g. case with relation to high coupling.

Overall maintenance of program blocks etc. could probably be easier if modularization per-

spective is taken into consideration.

 76

No parallel tasks

Dedicated persons for e.g. CR work, maintenance and other responsibilities could be named

inside groups. Although some person would have more than one responsibility, daily tasks

should not consist of parallel tasks. Instead some new task should not be started until after

current task has been completed. If any task is interrupted before it has been completed it

takes time to go back to work with that task. By splitting of tasks to suitable entities it does

not take a lot of time to complete it. Suitable entity means not more than couple of days work.

E.g. split daily tasks enables forming suitable entities. If splitting of tasks seem to be not pos-

sible so maybe splitting did not succeeded in the real word. In that case re-estimation is rec-

ommended.

Above splitting and avoidance of parallel tasks are recommended to belong to part of daily

work. Also iterative and incremental SW development, meetings and team’s possibility to

make decisions regarding e.g. programming are recommended. Use of above mentioned dy-

namical resource allocation with resource pools for e.g. CR work and maintenance are rec-

ommended too. In addition, if resources are not available enough according to the resource

pools many parallel release programs are not recommended to start because it surely causes

parallel tasks if resource allocation fails due to some reason. Then release programs should be

started only for major changes concerning existing feature or adding of large feature. Adding

minor changes etc. could be started to ongoing release program in the beginning of next itera-

tion.

 77

4.3 XFRC practices

Every R&D organization can pick agile methods recommended practices to enable efficient

SW development and faster release cycle. These practices are described in Appendix 1: XP

practices, Appendix 8: Scrum practices and Appendix 11: Other practices. Platform R&D and

Application R&D organizations can also pick recommended proposed solutions for use in

daily work from results of interview study. These results are summarized in Appendix 10:

Summarized problems with most essential proposed solutions. Also dependencies between

proposed solutions should be noticed. Furthermore, adding, removing and modification of

above practices and proposed solutions are possible depending on market and needs of or-

ganizations, cf. dynamical SW process improvement which is one of the XFRC process

model recommended values. However, the research results suggested that at least following

practices could be suitable for daily work in R&D organizations:

Table 18. XFRC practices

Practice Description

Incremental and iterative
development

- overall (specification, design, implementation and
testing) SW development is recommended to execute
by incremental and iterative way during dynamical
length (e.g. from few days to no longer than few
weeks) iterations

- prototyping could be used for large features
- Use Cases could be used for planning of test cases

(probably suitable also for other issues) concerning
automatic and anticipatory testing

Small release programs - at least features, release programs and tasks are split
- easier resource allocation and synchronization
- freezing content for dynamical length iterations, i.e.

adding of feature is not possible during iteration
Meetings & workshops - beneficial solutions to solve and decide actually al-

most anything
- meetings can be arranged at least at the beginning

and at the end of iterations
- meetings are recommended to arrange during itera-

tions only if needed, i.e. not necessarily e.g. daily
Automatic and anticipatory
testing

- automated generating SW builds
- automated generating MT, FT, ST and SW build test

reports after automated testing
- TDD practices should be used through all testing

phases
- automated sending of feedback concerning possible

fault (e.g. some program block is not compatible to
new SW build) to responsible person

- regression testing from anticipatory perspective

 78

Practice (continued) Description (continued)

Dynamical integration - continuous integration with e.g. CVS or Subversion
- shared data warehouses (e.g. data types and other

definitions etc. included) for Platform R&D and Ap-
plication R&D) make possible to integrate all defini-
tions etc. that were used in both organizations

- possibility to take integrated and at least MT tested
Platform SW code for FT by Platform R&D

- possibility to take above Platform SW for use in Ap-
plication R&D

- possibility to take integrated and at least MT tested
Application SW for FT (and ST) use in Application
R&D

- possibility to take also late (minor) changes
Pair working - could be used for problem solving, i.e. mainly for

hard tasks → pair programming & pair specification
- could be used for testing → pair testing
- could be used for coaching → pair coaching
- could be used for code and document reviews at least

as part of review arrangements with minimum bu-
reaucracy → pair reviewing

- enables increasing competence sharing
- depending on situation forming pairs is only one al-

ternative, e.g. trio and other alternatives are surely
beneficial in most cases

Automatic and adequate
documentation

- light and simple but exact adequate documentation
with commitment to minimum bureaucracy concern-
ing e.g. reviews

- documents could be generated automatically
- part of documents could be only temporary, i.e. these

non-official documents could be used only for sup-
porting SW development during iterations

Electronic bulletin board - could be used for collecting SW process improve-
ment related suggestions through organizations

- could be used also for other ideas regarding suitable
categories

- could contain list of further actions too
Backlogs - backlogs for e.g. product, features, release programs

(split features), projects (split feature programs), it-
erations during projects and tasks during iterations

- backlogs could be named according to specific pur-
pose of use in order that backlog is easy to find and
associations to specific matter are easy to remember

Above practices have already been discussed partially in chapter 4.2. Descriptions of these

applied practices have already been discussed from their original perspective in above appen-

dices too. The practices are also discussed partially in chapters 4.4 and 4.5. Therefore, more

discussion about these practices is bypassed in this chapter.

 79

4.4 XFRC roles and responsibilities

The research results suggested that following roles and responsibilities could be suitable from

group formation perspective in R&D organizations:

Table 19. XFRC roles and responsibilities

Role Responsibility

SW designers (general SW
work, CR work and MT in-
cluded)

- two SW designers who would typically participate
in general SW work during release programs

- from testing perspective they could execute MT
inside group

- possible CR work can be started in the beginning
of next iteration

- recommended contact person responsibilities
could be split concerning CR work

SW designers (general SW
work, maintenance and FT
included)

- two SW designers who would typically participate
in general SW work during release programs

- from testing perspective they could execute FT
- possible maintenance work (fault corrections) can

be started in the beginning of next iteration
- recommended contact person responsibilities

could be split concerning maintenance work and
FT

- one designer could also work as contact person
concerning CR work done by the other designers
inside group

SW architect (specification
work, pair coaching included)

- two SW architects who would typically participate
in specification work

- they could work also as coach in job rotation case
if needed

- recommended contact person responsibilities
could be split concerning specification work

Line manager - resource allocation by asking estimations from
staff (group members in same groups) and follow-
ing resource situation from resource pools

- recommended contact person responsibilities
could be split concerning management and leader-
ship tasks

- in spite of above tasks, managers would not have
authority regarding group because it would be
self-organizing group

SW group could consist of four SW designers, two SW architects and one line manager. Two

SW designers would typically participate in general SW work during release programs. From

testing perspective they could plan and execute MT. In brief, one (first) designer could plan

and execute MT for code implemented by pair or by other (second, third or fourth) designers

inside group. If CR work concerns group both designers could interrupt general SW work and

 80

start CR work in the beginning of next iteration. One designer could work as contact person

between this group and parallel group concerning CR work. The other (second) designer

could work as contact person between this group and the other parallel group concerning CR

work.

Besides above two designers there could be two SW designers for maintenance work. How-

ever, also they would typically participate in general SW work during release programs. If

some fault correction should be done to program block from which group is responsible for,

they could interrupt general SW work and start maintenance work (fault corrections) in the

beginning of next iteration. From testing perspective concerning general SW work and CR

work they could also plan and execute FT if resources are not needed for maintenance work at

the same time. One (third) designer could work as contact person between this group and par-

allel group(s) concerning case when same fault requires correction done by parallel group(s).

The other (fourth) designer could work as contact person between this group and parallel

group(s) concerning related FT executed by parallel group(s). The other designer could work

also as contact person inside group concerning CR work done by the other designers.

Two SW architects would participate in specification work. They could work as coach when

designers are participating in specification work due to recommended job rotation. On the

other hand, SW architects could participate in other SW work than specification in job rota-

tion case if coaching is not necessarily needed after designers have achieved enough core

competence regarding specification work. One (first) SW architect could work as Group

Owner concerning part of some feature and work also as contact person between persons in

similar positions (e.g. Project -, Release - and Feature Owner). The other (second) SW archi-

tect could work as a contact person between Platform R&D and Application R&D, i.e. SW

with relation to same feature is developed in both groups in different R&D organizations.

Resource allocation by asking estimations from staff (group members in same groups) and

following resource situation from resource pools could be done by line manager. Line man-

ager could work as contact person between project management and this group. In addition,

line manager could work as contact person between line managers in other groups and this

group. Typical management and leadership tasks except authority for self-organizing group

concerning SW development practices could be included in line managers responsibilities.

 81

Above roles and responsibilities are one alternative from group formation perspective. All

other perspectives concerning efficient SW development should also be noticed in daily work.

As conclusion it could be stated that besides above roles and responsibilities all XFRC values

and practices are recommended to exploit in daily work. In addition, above responsibilities

regarding few examples of job rotation and recommended contact persons between groups are

demonstrated in Figure 12:

Figure 12. Examples of recommended contact persons and job rotation

Job rotation related examples are illustrated with thick two-way arrows in Figure 12. One al-

ternative is to exploit job rotation after completed tasks or according to other suitable plans of

actions as completed iterations or completed release programs. Pair working that was recom-

mended to be one of XFRC practices is certainly one essential aspect concerning the success

of job rotation. When job rotation is expanded outside groups, people who form pairs (or e.g.

trio) can come from different groups. Also e.g. adequate communication and dynamical re-

source allocation are necessarily needed.

As above responsibilities described the contact persons could also be named through organi-

zations. In Figure 12 communication between possible contact persons are illustrated with

thin two-way arrows. Communication inside groups was not illustrated in Figure 12. How-

ever, contact persons could be named also inside group as XFRC roles and responsibilities

recommend. These aspects can be decided in detail level by R&D organizations according to

their own needs.

 82

4.5 XFRC process model

When connecting illustrated XFRC values, practices, roles and responsibilities the XFRC

process model can be visualized as Figure 13 shows:

Figure 13. eXtreme Faster Release Cycle (XFRC) process model

In the start of the XFRC lifecycle, some feature is required to add to a product or remove

from a product. Request concerning a feature is made by a customer. Feature is typically re-

lated to some product. Therefore, list of a product related features can be described in backlog

that is owned by Product Owners (e.g. product managers) from both Platform R&D and Ap-

plication R&D organizations. This backlog could be named according to specific product as

e.g. RNC, i.e. name of the backlog would be RNC Backlog in this case. Above backlog can

be split into e.g. two entities, i.e. one feature specific backlog for Platform R&D and one fea-

ture specific backlog for Application R&D because feature specific release programs are illus-

trated in this case. Feature Owners from both organizations (e.g. Senior SW architect with

good knowledge about that feature) could own the feature during its lifecycle and adminis-

trate backlog that is named to be feature specific. In this phase different management boards

and owners (e.g. Release Owner and Feature Owner) start to plan needed estimations and con-

 83

tent for release programs. In any case the feature should be split into smaller entities due to

planning of content of release programs.

If feature has effect on SW developed by both Platform R&D and Application R&D as in this

case the feature could be split into two release programs. Other release program is for Plat-

form R&D and other is for Application R&D in this case. If feature is very large it is possible

to split it into several entities. If feature is small one alternative could be to create a project

and attach it to part of ongoing release program. However, typically release programs are rec-

ommended to be feature specific in both above R&D organizations. Platform R&D can ad-

ministrate release program specific backlog for planning content of release programs that are

started or have already been started in Platform R&D. Also future release programs related

content could be described in release program specific backlog if content is known at least

rough level, i.e. some new feature has already been included in feature specific backlog of

particular organization. Application R&D can administrate own release specific backlog that

contains split features per release programs.

Release Owner (e.g. program manager) could own the organization related part of the feature.

Release programs could be split into projects and content of these projects can be described in

project specific backlogs. Project Owner (e.g. project manager) could own the project related

part of the feature. Faults could be managed by Maintenance Project Managers and faults

could be described in Maintenance Project’s specific Fault Backlogs. Faults could be cor-

rected during dynamically length iterations, i.e. fault has been corrected when correction is

ready. It is not necessarily ready after fixed period such a day despite plans. It is also possible

to include faults into some other backlog(s) that are illustrated in this chapter. Also splitting of

faults could be similar as splitting of CR work if effects concern e.g. many program blocks. If

backlogs are decided to separate from perspectives of maintenance management and CR work

these separated backlogs could be similar for maintenance work as for CR work. However,

detailed discussion concerning maintenance management is bypassed because it belongs out-

side the scope of this research.

Work amount of projects can be split to affected SW groups and testing groups that can ad-

ministrate their own group specific backlogs concerning part of developed feature. E.g. SW

architect in every group could own group related part of the feature. In testing groups some

engineer could take principal responsibility for successful testing of the feature. For iterations

the group specific backlog could be split into Iteration Backlog. The Iteration Backlog could

be generated again after each iteration depending on what has been done and what will be

done during next iteration.

 84

Related work that is described in Iteration Backlog can be split into smaller tasks by group

members. In ideal situation these tasks can be independent of other tasks. Due to above split-

ting, every responsible person can administrate their own backlog that could be e.g. Task

Backlog and therefore own parts of the feature from task level perspective. In consequence of

use of Task Backlog, dividing of tasks can be clear and overlapping between tasks can be de-

creased especially in case when many persons are responsible for same program block. Divid-

ing related planning could be done during meetings in the beginning of iterations.

Prioritization perspective concerning all above backlogs should be noticed too. Depending on

amount of prioritized tasks, iterations could be adjusted to be dynamic length iterations as e.g.

from few days to few weeks as dynamical resource allocation recommends. During these it-

erations SW is developed incrementally by exploiting XFRC values, practices, roles and re-

sponsibilities. This can be understood as dynamically length period which contains many dy-

namically iterations to complete adapted development phases of SW development. One com-

pleted task or collection of completed tasks can form increment when IS, (SD), MI and test

phases concerning task(s) have been completed during dynamic length iteration. Concept of

increment depends on backlog level in the XFRC process model, i.e. one completed small

task can form one small increment and many completed small tasks can form many small in-

crements e.g. in task level. In last mentioned case it is also possible to find one or more large

increments e.g. in group level and so on.

One example to produce workable and suitable increment is to invite required SW develop-

ment persons (see chapter 4.4) to participate in meeting. During meeting it could be split re-

sponsibilities regarding IS, (SD), MI and at least MT test phases to participants. Cf. job rota-

tion. Duration of meeting could be e.g. few hours including needed breaks. In consequently of

above, all participants could participate in any phase to complete workable increment in the

real world. If couple of SW architects with one or more designer would specify some part of

feature as a small increment of product it enables possibility to make needed test cases con-

cerning the increment. When test cases would be ready for testing of functionality of the in-

crement so possible faults could be found even during same working day. MT with exploiting

TDD practices could be used at the same time with MI when specification would have been

ready due to group work during above meeting. After first iteration, it would be enough that

above would be ready on rough level. More details could be added during next iterations and

so on.

From integration perspective implemented and at least MT tested code is integrated dynami-

cally. It can be dynamically integrated after suitable increment is ready for later tests that have

 85

already been planned and implemented by exploiting automatic and anticipatory testing. It

means that tested code is integrated many times during week because increments consist of

small parts of functionality. Depending on compatibility of code regarding other parallel re-

lease programs e.g. pre-compiler directives (i.e. compiling switches) such as #ifdef and #endif

can be used so that major changes for versioning is not necessarily needed. In addition, if

many persons are responsible for same program block, code should be regularly integrated.

Therefore, other responsible persons can take the integrated code into use and make possible

changes also to modules that are administrated by other designers.

From automatic and anticipatory testing perspective all (MT, FT and ST) tests should be auto-

mated although it takes time to automate them. SW builds should be generated automatically.

All essential tests should be automated and TDD should be used. Also updating of test cases

should be automated, i.e. if e.g. some data type has been changed in data warehouse it should

be possible to update test cases automatically or at least by command which starts automatic

updating function. Above makes possible that all automated tests can be executed whenever

necessary. Test reports should be generated automatically as the practice automatic and ade-

quate documentation recommends. Also generation of other documents should be automated

as much as possible and generating useless documents should be avoided. E.g. code and FT

cases could probably be generated at least partially automatically from sequence diagrams

that are typically generated during IS phase. SD could be included in code and test plans

could be included in test cases.

If some fault is noticed during tests automatically feedback and request to correct some fault

should be transferred to right responsible person(s) in a team. Notification could be sent auto-

matically if location of fault could be proven automatically, albeit it takes time to prove direct

location of fault that can be located in one or more program block. From anticipatory testing

perspective, regression testing should be executed during iterations if possible. It is better to

find faults as soon as possible in the beginning of release program rather than in late phase of

that program. Therefore, it is essential to try to emphasize the importance of testing at early

stage. In addition, small release programs enable above.

When SW has dynamically been integrated and tested, Application R&D could take at least

MT tested Platform SW into use during their own tests. That SW could be implemented and

tested more detailed in Platform R&D during iterations. Release programs could be started

somewhat earlier in Platform R&D than Application R&D. It enables that above SW would

be developed and MT tested before starting developing by Application R&D. Therefore,

 86

probably few increments developed and MT tested by Platform R&D would be ready before

start of release program in Application R&D.

At the end of iterations demo sessions could be arranged. For example, one group in Platform

R&D has developed one part (increment) of the feature during iteration. That increment could

be utilized by customer as e.g. couple groups from Application R&D in this case. Therefore,

few participants from related groups could arrange meeting and group from Platform R&D

could demonstrate functionality of increment. On the other hand, many increments maybe de-

veloped by many groups during iteration of release program. It depends on size of increments

and length of iterations. On the other hand, iteration of release program can also include sub-

iterations if size of increment is e.g. only one procedure and needed interface(s).

At the beginning of next iterations the related backlogs should be updated and needed plans

for next iterations should be done. If some minor changes are needed to implement in late

phase or any phase of release program those changes can be taken into starting iteration.

Above changes should not be taken to ongoing iteration because it causes waste interruptions,

parallel tasks and other waste work concerning ongoing development. When some minor

change is taken into release program at the beginning of the next iteration, it does not cause

too much waste work because e.g. planning is done then in any case.

(Re)moving related changes concerning release programs can be take into consideration in

case when some minor feature should be dropped from ongoing release program. On the other

hand, if (re)moving is not done due to unconditional necessity (e.g. request by customer) so

e.g. dynamic iterations make possible that (re)moving is not necessary. If only one major fea-

ture is developed during release program and that major feature should be (re)moved it means

that release program should be ended. In this case above major feature could be taken into fu-

ture release program if it is decided to implement later.

For major changes new release program is recommended to be established if those changes

are not with high priority. If those major changes are with high priority the changes can be

split and prioritized. After that those changes can be done during next iterations. In this case

designers who are working with maintenance tasks could interrupt maintenance work after

they have completed ongoing incomplete corrections. Therefore, they could participate in CR

work during next iterations until high prioritized CR work is completed. If priority of some

fault is occasionally higher than ongoing CR work some designers could start to correct those

faults after ongoing tasks have been completed and next iteration is started. Designers could

 87

take fault corrections into SW build along with dynamic integration. They could participate in

CR work after completion of those tasks.

Priorities concerning CR work can be followed by resource pools. Resource pools and all

other recommendations that were discussed in this chapter could be suitable for general SW

work and maintenance work too. Also parallel release programs should be noticed when re-

source pools are used but tasks done by e.g. designer should not be parallel. Either many par-

allel release programs are not recommended to start because it typically causes parallel tasks

from SW development and resource allocation perspectives. In conclusion, it can be stated

that above recommendations that were discussed in this chapter concerning exploit of the

XFRC process model are profitable when overall SW development is made more effective

and along with it release cycle is made faster through organizations.

 88

4.6 Summary of XFRC process model

For constructing the XFRC process model many beneficial experiences such as well-tried

practices and problems with proposed solutions concerning efficient SW development were

collected from the literature. In addition, these experiences were collected during interviews

in Platform R&D and Application R&D organizations. Due to above, it was possible to con-

struct the XFRC process model. In consequence of constructing the XFRC process model

(chapter 4.5), answers to research main question were found. Overall, exploiting the XFRC

process model with recommended values (chapter 4.2), practices (chapter 4.3), roles and re-

sponsibilities (chapter 4.4) the SW development could be made more efficient than in current

situation of Platform R&D and Application R&D organizations. More efficient SW develop-

ment enables also faster release cycle that was initiated as research main question of this re-

search. In conclusion, recommended XFRC values are stated as follows:

1. Adequate communication
2. Applicable commitment
3. Continuous and innovative learning
4. Dynamical resource allocation
5. Dynamical SW development

6. Dynamical SW process improve-
ment

7. Minimum bureaucracy
8. Modularization
9. No parallel tasks

Recommended practices are stated as follows and other practices can be added according to

the needs of organizations:

1. Incremental and iterative develop-
ment

2. Small release programs
3. Meetings & workshops
4. Automatic and anticipatory testing
5. Dynamical integration

6. Pair working
7. Automatic and adequate documen-

tation
8. Electronic bulletin board
9. Backlogs

Different roles by the XFRC process model can consist of mainly SW designers, SW archi-

tects and line manager. Depending on prioritization of tasks, designers in group could partici-

pate in CR work, MT, general SW work, maintenance work or FT during iterations. Also con-

tact persons between groups are recommended and owners (e.g. Product Owners and Feature

Owners) in different roles in Platform R&D and Application R&D organizations.

From perspective of appraisal of benefits it can be stated that the XFRC process model bring

along many beneficial recommended values, practices, roles and responsibilities. These can

be exploited through organizations where dynamic behavior and flexible adaptation for con-

tinuous changes regarding market needs are needed. In addition, if every group through R&D

organizations commits itself to follow and exploit the XFRC process model in their daily

work release cycle can become faster in the real world.

 89

5. CONCLUSIONS

We can't solve problems by using the same kind of thinking we used when we created them.
Albert Einstein

Although agile methods alone are not necessarily enough for faster release cycle, the agile

methods could be next step to an avenue of success. The literature review proved that e.g.

Scrum and XP practices combining best practices of other agile methods could be suitable

combination. Overall, many principles were found from the literature and these principles

were discussed in literature review. The principles consist of overview to agile methods and

related experiences of other corporations.

The literature review created basis for research of research problem related aspects. It also

brought along answers to first research sub-question and related conclusions are discussed in

chapter 5.1. The answers found during interview study were compared with the results from

the literature review. The results from interview study consist of well-tried practices and quite

many problems with proposed solutions in Platform R&D and Application R&D organiza-

tions. The results from interview study are based on interview results and collecting experi-

ences of Scrum piloting. Due to interview study, the answers to second (chapter 5.2) and third

research sub-questions (chapter 5.3) were found.

The answers to all research sub-questions were used as part for constructing the XFRC proc-

ess model. Therefore, answers to research main question were found. Conclusions concerning

answers to research main question are partially discussed in chapter 5.4. Detailed conclusions

regarding the XFRC process model were already discussed in chapter 4. There is illustrated

how thinking and attitude concerning overall SW development would be worthwhile to

change through organizations so that discovered problems could be solved in the real world.

Figure 14. Introduction to chapter 5

 90

5.1 Answers to first research sub-question

In consequence of the literature review (chapter 2), theoretical basis of agile SW development

was created and answers to first research sub-question were found. First research sub-question

was as follows:

Which are the basic principles for constructing the process model that enables faster re-

lease cycle?

Basic principles for constructing the XFRC process model that enables faster release cycle

were found due to research overview to agile methods and related experiences of other corpo-

rations. In this research mainly XP and Scrum were selected for scientific study because many

experiences from other corporations, which have piloted agile method(s) as among others

both above methods for improving their SW process in their organizations, were available. In

addition, Scrum was already under pilot process in one SW development group in Platform

R&D organization. Furthermore, the hypothesis was that e.g. combination of XP and Scrum

might be suitable for organizing of faster release cycle. In spite of emphasis of XP and Scrum,

about few other agile methods were discussed too. Overall, many agile methods suggested

practices were found and those seemed to be beneficial and applicable also for constructing

XFRC process model. Also agile methods encouraged values that can be exploited for con-

structing the process model were discussed. Such values are e.g. openness, commitment, sim-

plicity, feedback and courage.

Briefly, XP focuses mainly on engineering practices for agile SW development. Especially

collective ownership, on-site customer, pair programming for mostly hard tasks, Planning

Game, simple design, small release programs and TDD have been proven to be beneficial

practices of XP. Also Spike-time for e.g. reading and learning about various issues, code re-

views, coding standards, on-site coach, re-factoring, sitting arrangements, and “Zero Feature

Iteration” practices were discussed in XP cases. Also those practices seemed to mainly be

beneficial.

Scrum focuses mainly on managerial and organizational aspects regarding agile SW Devel-

opment. Scrum seemed to make SW development process visible, controllable and manage-

able. Most beneficial practices of Scrum seemed to be freezing development scope for a

month (sprint), backlogs, Use Cases and adaptable small teams.

Also XP@Scrum and adapted Cycles of Control framework were discussed in the literature

review. Both of them consist primarily of above practices. Moreover, few other well-tried

 91

practices were discussed. Such practices seemed also to be communication model, reflection

workshops for increasing team effectiveness, idea pool for continuous planning of product,

prototyping for large features and Red-Flag for unexpected work. Automated and continuous

testing (TDD included), continuous integration with e.g. daily builds, incremental and itera-

tive way to develop SW, small release programs, small tasks and various meetings seemed to

be common denominator to almost all cases that were discussed in the literature review.

Also problems concerning agile methods suggested practices had been noticed in almost all

experiences of other corporations. Typical problems seemed to concern e.g., estimation proc-

ess, lack of experience with some practices (e.g. TDD), outsourcing, parallel projects, plan-

ning workload and unclear common understanding of future release programs. However,

many possible solutions for solving those problems were suggested in the discussed cases.

According to the cases, corporations had also started some further actions for developing their

SW development process in compliance with their piloting results.

All above aspects, values, practices and solutions for noticed problems are essential basic

principles for constructing the XFRC process model. These principles were discussed in detail

in the interview study when interview results were compared to the literature. Interview re-

lated conclusions are briefly discussed in next chapters 5.2 and 5.3. In addition, basic princi-

ples with entailed benefits are summarized in appendices 1, 8 and 11. Principles concerning

XP practices are summarized in Appendix 1: XP practices. Furthermore, Scrum practices are

summarized in Appendix 8: Scrum practices and other practices are summarized in Appendix

11: Other practices. In consequence of avoidance of extra repetition, detailed conclusions

concerning basic principles were bypassed in this chapter.

 92

5.2 Answers to second research sub-question

5.2.1 Well-tried practices

Before discussion about answers to second and third research sub-questions the things which

appeared as well-tried practices by interviewees are discussed in this chapter. These well-tried

practices were discussed in detail in the interview study in chapter 3.2 and used as part of or-

ganizing of faster release cycle. It means that most of them are used as proposed solutions for

problems that were noticed in Platform R&D and Application R&D organizations. Problems

with proposed solutions are discussed in next chapters.

The well-tried practices mean such practices that are not necessarily needed to change in Plat-

form R&D and Application R&D organizations. From Platform R&D organization perspec-

tive e.g. split tasks, workshops and use of Scrum had been proven to be good practices. Also

independent SW and FT groups seemed to be beneficial arrangements. On the other hand, the

literature recommended that SW development and testing could be combined. Interviewees

from Application R&D clarified that e.g. small groups, iterative development, code reviews

and use of CVS had been good practices in their organization.

Situation regarding above well-tried practices might be partially similar concerning other

R&D organizations that were excluded from the scope (chapter 1.4) of this research. Also

situation concerning problems in other R&D organizations might be partially similar. On the

other hand, also exactly same well-tried practices and problems have been noticed at least in

few organizations as the literature review proved.

5.2.2 Discovered problems

In consequence of the interview study (chapter 3), answers to second research sub-question

were found. Second research sub-question was as follows:

What kind of problem(s) pertain to ongoing product release program when some feature

is added to that program in late phase and how to solve the possible problem(s)?

Results from interview study appeared that a lot of improvements are needed to achieve ade-

quate basis for organizing of faster release cycle. Concerning mainly situation when some fea-

ture is added to ongoing release program in late phase the many problems were discovered

during interviews.

 93

Discovered problems are described here:

1. Lot of parallel tasks in daily work

2. Lack of competence sharing

3. Bureaucratic decision making

4. Underestimation of needed resources

5. Inadequate co-operation between testing and SW groups

6. Lacking Feature Owner

7. Inadequate communication

8. Late changes to the content of release programs

9. Inconsistent synchronization of release programs

10. Heavyweight documentation and bureaucratic reviews

11. Lack of versioning knowledge of program blocks

All above problems cause that release cycle slows down. According to many interviewees, the

biggest problem seemed to be many parallel tasks in SW designers’ daily work. Amount of

parallel tasks should be decreased through R&D organizations. Problem that concerns late

changes to release programs seemed to be big problem too. Also e.g. increasing of communi-

cation and increasing of competence sharing through organizations were emphasized to be

essential actions in the future. These are essential in order that enabling agile SW develop-

ment although feature(s) would be added to release program in late phase. Along with agile

SW development it could be possible to organize faster release cycle.

5.2.3 Proposed solutions

To solve all above problems that were described in chapter 5.2.2 many proposed solutions

were collected from interviewees. In addition, proposed solutions were partially collected

from the literature. Combined proposed solutions for above problems are described in detail

in chapter 3.3. Because the results were already analyzed during the interview study proposed

solutions are described only with few words in next sections. Assorted list of solutions pro-

posed by interviewees vs. literature are unambiguously described in Appendix 10: Summa-

rized problems with most essential proposed solutions.

Lot of parallel tasks in daily work -> decreasing of parallel tasks

For decreasing of parallel tasks one proposed solution was that dedicated persons for each

task could be selected inside team. Dedicated persons could be named for SW work, CR

 94

work, maintenance etc. possible responsibilities. Decisions with relation to dedicated persons

could be done by line management or team could decide their responsibilities themselves.

Names of dedicated persons could be described in a backlog, e.g. iteration specific backlog.

Also freezing development scope for e.g. one month has been proven to be one solution to

decrease parallel tasks. In addition, specific periods for e.g. planning and implementation etc.

could be included to phases of iterations. Furthermore, arranging meetings before iterations

seemed to be one good solution if there are many responsibilities in a team. Meetings could

separately be arranged for e.g. CR work and fault correction. Due to above, e.g. synchroniza-

tion of tasks could succeed and delays in ongoing tasks would decrease.

Lack of competence sharing -> increasing of competence sharing

For increasing of competence sharing job rotation could be one alternative. Job rotation could

be done e.g. couple of time in a year in which case core competence would increase. Later on

job rotation could be extended also to other groups. In this case designer would be in same

group but task(s) could concern about other competencies from other group(s).

E.g. pair programming and pair coaching can be considered to partially be as job rotation

when pairs are changed. When pairs are sitting in the same room it has been noticed to also be

good solution from competence sharing perspective. Typical suggestion according to the re-

sults was that pair programming would be used mostly for difficult tasks as problem solving.

Also Use Cases were suggested to be solution to increase competence sharing. Use Cases

could be used for planning e.g. FT and ST cases. Due to use of Use Cases for planning of

tests, it would be possible to clarify how some CR related tests should be executed within dif-

ferent release programs. Therefore, use of TDD practices would probably succeed too. Use

Cases seem to be suitable also for other phases in SW development. In addition, the results

suggested few other practices whose use could increase competence sharing through organiza-

tions. Such practices are e.g. meetings & workshops, prototyping for large features, Planning

Game, training sessions, Zero Feature Iteration and coding standards. E.g. during meetings,

tacit and explicit knowledge can be found and perceive better due to knowledge sharing. In

consequence of all above agile practices, competence could be increased as knowledge in-

creases.

Bureaucratic decision making -> decreasing bureaucracy

Decision making regarding approval/rejection of CRs should be faster than in current situa-

tion. According to the results, decision making could be done by low-level management.

 95

However, it requires that overall effects on a product are known from low-level management

perspective too. Adequate communication and competence sharing could increase knowledge

of these effects. Therefore, line managers could make decisions concerning CRs at least in

case where effects are concentrated on own or parallel SW group.

Bureaucracy could also be decreased with relation to reviews and possibility to e.g. compe-

tence sharing should be allowed by management boards. Furthermore, minimum bureaucracy

seems to be beneficial aspect when level 2 or higher of CMM is decided to achieve.

Underestimation of needed resources -> continuous resource allocation and prioritizing

of tasks etc.

At least 20% of total effort of release programs should be reserved for CR work. In addition,

at least 20% of total effort should be reserved for ST personnel for possibility to e.g. reading

specification documents or participation in possible meetings as reviews. Time for reading

and learning about various issues could be allocated from end of ongoing release program or

from the beginning of next program. Also amount of unexpected work should be noticed

when estimations are planned.

Resource allocation should be continuous, risks should be noticed and prioritization of the

most important features should be done carefully when release programs and projects during

them are started. Prioritization should be done e.g. at start of iterations. Thus, some new fea-

ture could be added to release program even if in late phase.

Needed resources could be available dynamically and due to right prioritization of tasks. The

results also suggested that e.g. Portfolio Management, Product Roadmap and Release Backlog

for upcoming release programs seem to be suitable practices from estimation planning per-

spective. Furthermore, e.g. collective ownership, fixed time and scope concerning changes to

release program content, demo-sessions, prototyping, meetings and small release programs

seem to be beneficial for making estimation easier according to the results. Moreover, experi-

ences concerning estimations become better after each sprint.

Inadequate co-operation between testing and SW groups -> sitting arrangements and

increasing of co-operation

The results discussed about individual SW and (MT & FT) testing groups vs. combined SW

and testing groups. Co-operation between them and beyond through ST groups was recom-

mended in order that e.g. testing support and fast feedback would be enabled. Therefore, de-

signers and testing personnel could sit near each other, e.g. in same floor. Also meetings &

 96

workshops could be arranged. In addition, Use Cases could be used for planning test cases as

in discussion about competence sharing was described. Above arrangements would increase

co-operation between testing and SW groups in R&D organizations.

Increased co-operation makes also competence sharing between above groups possible. Due

to competence sharing it would be possible that designers could execute e.g. FT cases if

needed. Competence sharing could be succeeded if designer and testing personnel are work-

ing as pair, i.e. some kind of pair testing in this case. Also organizing of testing with e.g. TDD

practices would be beneficial. Furthermore, continuous integration with suitable version con-

trol system (e.g. CVS or Subversion) and continuous automated tests with automatically gen-

erated test reports could make testing and release cycle faster. It takes time to automate tests

but automated tests are quite fast to execute during e.g. regression testing.

Lacking Feature Owner(s) -> named Feature Owner(s)

Feature Owner could own and coordinate a feature through its lifecycle, also during mainte-

nance phase. Therefore, needed information concerning some feature would be available im-

mediately if named Feature Owner has good core competence. Designers already own part(s)

of feature(s) in program block level. There could also be one owner in every SW group and

that owner would own part of some feature in group level. Owners in group level could co-

operate with each other and communicate with Feature Owner. Also meetings between differ-

ent participants could be arranged if needed. During those meetings, possible problems etc.

could be discussed. In consequence of above, delays regarding availability of feature related

information and finding right responsible person of some feature would not necessarily cause

slow down of release cycle in the future.

Inadequate communication -> increasing of communication through organizations

Communication is in major role in agile methods. Multi-site organization causes communica-

tion problems especially in case when there are split tasks through multi-site. The results sug-

gested that specified tasks would be done in same building or at least in same country. In con-

sequence of above, communication is easier and faster when distance between communicating

persons is not too long. Also meetings & workshops increase communication. E.g. problem

solving and planning all manner of things seem to usually be easier and faster during meet-

ings than e.g. by mails. On the other hand, if e.g. meetings would be arranged too often so

time does not remain enough for real work, albeit meetings are part of actual work too. How-

ever, best benefits of meetings could be achieved if persons who have knowledge about the

subject of the meeting would be invited and they would participate in those meetings.

 97

In addition, the results proved that due to use of agile practices increased communication can

be achieved. E.g. communication model, on-site customer and backlogs are aspects that make

communication more effective. Backlogs could increase visibility of coming CRs at least

from designers’ and testing personnel’s perspective. Communication model and compliance

with it could minimize same questions by different management boards in matrix organiza-

tion. Customers could participate in meetings and they could discuss with managers from dif-

ferent boards about content of release program. Therefore, communication could be increased

through different management boards and customers. On the other hand, amount of customers

is big and resources in R&D organizations are limited. Consequently, arranging meetings with

representatives from customers’ organizations is not necessarily appropriate alternative in the

real world.

Late changes to the content of release programs -> freezing content of release programs

for fixed or dynamical length time

Late changes to the content of release programs cause that release content is typically too

large and scheduling must be re-planned. Furthermore, major changes cause delays in ongo-

ing release programs and next release programs are delayed too. According to the results, ma-

jor changes to content of release program should not be done in late phase. It means that new

feature should not be added to ongoing release program after E1 milestone. Only fault correc-

tions could be taken into release program in late phase.

However, if any changes to content are done in late phase the results suggested that e.g. freez-

ing content of release programs for fixed time could be beneficial. Small release programs

combined with iterative and incremental SW development enable it in practice. Iteration such

as e.g. one month sprint is one example of fixed time practice. It seemed to be good solution

according to the results because it seems to make possible adding and (re)moving of features

also in late phase of release programs. In this case, some high prioritized feature could be

taken into coming iteration but not into ongoing iteration. In addition, availability of compe-

tent resources should be taken into consideration when some feature is planned to add into

coming iteration. For example, if some SW designer is working with low priority fault correc-

tion so designer could interrupt fault correction and start working with e.g. new feature when

next sprint is started. On the other hand, iterations could be adjusted dynamically depending

on planned work amount for iteration. Consequently, length of iterations could be adjusted to

vary from e.g. few days to few weeks. If planned work amount concerning the iteration has

been done e.g. after few weeks a next iteration could be started after planning and prioritizing

assignments.

 98

To manage content of release program and to plan upcoming release programs Product Road-

map and the backlogs seemed to be beneficial. Product Roadmap seemed to be useful for

specifying of all planned release programs that are scheduled into it. Features can be de-

scribed in e.g. Product Backlog. It seemed to be beneficial to collect ideas concerning features

too. The features can be split and described in Release Backlog that seemed to be useful for

specifying of content of release programs. New features can be added to the Release Backlog,

meaning that other features can be excluded due to possible re-prioritization. Each feature in

Release Backlog can generate several tasks to Sprint Backlog for each sprint. E.g. planning,

evaluation and estimation of work can be done during different meetings as the results

proved.

Inconsistent synchronization of release programs -> consistent synchronization

A lot of improvements are needed that release programs could be synchronized and due to

this release cycle could be made faster also from synchronization perspective. At least module

tested SW could be released incrementally by Platform R&D for Application R&D needs.

Application R&D could test their SW with Platform SW and communicate possible changes

to Platform R&D in early phase. At the same time SW work would continue in both R&D or-

ganizations and after possible changes the SW would be tested by Platform R&D also in FT

phase. Iterations could contain phases from IS to FT or at least from IS to MT. Iterative and

incremental way to develop and release SW for Application R&D needs enable to react to

possible changes in early phase as above was mentioned.

Also Simulation Game with prototyping, prioritized feature list (e.g. backlog), meetings &

workshops, continuous integration and small release programs seemed to be beneficial prac-

tices to synchronize release programs. In addition, on-site customer practice could be applica-

ble when persons from Application R&D act as a representative concerning requirements for

Platform R&D. Representatives from both organizations could participate in e.g. prioritizing

of features during meetings. Furthermore, customers could act as an on-site customer con-

cerning requirements for Application R&D if customers know what they really want. There-

fore, features related decisions etc. could be done by participants from related organizations.

Heavyweight documentation and bureaucratic reviews -> lightweight documentation

Lightweight documentation and split tasks to small increments concerning documentation

seemed to be good practices in order that maintaining different documents would not take too

much time. Specific design details can be included into code and also some temporary work

documents could be used. Due to that, e.g. SD documentation could be decreased. Further-

 99

more, IS documentation could contain FT scenarios that make possible to start planning FT

cases in early phase as TDD encourages. TDD could be used also in other test phases. To en-

able that updating for documentation would be fast enough also feedback through organiza-

tions should be fast. Above incremental way to split documents to small increments supports

that perspective too. Iterations make possible to change documentation faster than in current

situation.

As the results suggested there is too bureaucratic reviews in Platform R&D and Application

R&D organizations. Therefore, formal inspections are not needed for minor changes but re-

views are enough so that documentation review process would be faster. Also continuous pair

reviewing could be used when minor changes are reviewed. Formal inspections concerning

documentation are needed only for major changes. When inspections and reviews are ar-

ranged participation of invited persons in those sessions is essential so that possible unclear

things could be discussed. Especially reviewing IS documentation is essential according to the

results. It requires commitment and time reservation to participate. To enable more active par-

ticipation in above sessions the Spike-time and Red-Flag practices seemed to be beneficial

alternatives in practice. On the other hand, reviewing of IS documentation could be done in-

crementally by pair or few person e.g. weekly whereupon reviewed material would not be too

large. In addition, possible faults could be noticed as early as possible.

Lack of versioning knowledge of program blocks -> increasing knowledge of versioning

High cohesion and low coupling should be noticed and learned within SW development. The-

refore, better maintainability and reuse of SW components could be achieved as basic rules of

SW development recommend. If many designers are working with same program block the

CVS and Subversion seemed to be good solutions concerning continuous integration of tested

code incrementally and iteratively. CVS could be used for versioning before freezing of code

modules and to integrate code from development branch(es) to main branch. On the other

hand, if compatibility of program blocks is assured, high cohesion and low coupling are used

so many development branches are probably not needed. Subversion could replace freezing of

code modules into separated databases at least partially. In addition, Subversion seems to en-

able continuous integration better than CVS.

 100

5.2.4 Dependencies between proposed solutions

Dependencies between proposed solutions have been appraised according to the results. These

dependencies are based on interpretations of the results. Due to interpretations, the dependen-

cies could be appeared as Figure 15 shows:

Figure 15. Interpreted dependencies between proposed solutions

As above figure shows the arrows point prerequisites that are required for enabling an avenue

to success concerning starting point. For example, if arrow from starting point has been drawn

to point some solution so last mentioned solution has been interpreted to be as required solu-

tion for enabling source solution. According to interpretations, at least following seem to be

essential solutions as well as targets for development that affect almost all other solutions and

enable them in practice i) decreasing of parallel tasks, ii) increasing of communication, iii)

increasing of competence sharing and iv) improving of decision making. Exactly all proposed

solutions should be taken into consideration to enable organizing of faster release cycle. E.g.

forecasting of late changes to release programs seem to require taking all proposed solutions

into consideration so that forecasting would be successful. Late changes are necessarily not

required by enabling other proposed solutions that are illustrated in Figure 15. However, at

least customers require those changes in practice.

 101

Although dependencies are based on mainly interpretations there are described few dependen-

cies based on suggestions by interviewees. Such dependencies were noticed concerning e.g.

competence sharing, decreasing of parallel tasks and forecasting of late changes to content of

release programs. Competence sharing is needed that dedicated persons could be named and

in consequence of that parallel tasks could be forecasted. Therefore, at least forecasting of late

changes requires decreasing of parallel tasks. On the other hand, decreasing of parallel tasks is

probably required concerning many other tasks in order that some high prioritized task could

be executed.

According to interpretations, to enable decreasing of parallel tasks many other actions are re-

quired, e.g. improving of estimations and decision making. Without decision making actually

anything can not improved. Also improving of decision making requires itself in order that

decision for improving decision making could be done in practice. E.g. improving of commu-

nication requires decision making that as well requires improving of communication and so

on. Other interpretations by reader are certainly possible.

Although there seem to be many dependencies between proposed solutions all proposed solu-

tions can not be implemented immediately in R&D organizations. Instead improvements

could be done incrementally. For example, above mentioned decreasing of parallel tasks re-

quires at least i) increasing of competence sharing, ii) improving of decision making, iii) im-

proving of estimation planning iv) increasing of co-operation between groups and v) increas-

ing of communication. At first, e.g. communication could be increased. If increasing commu-

nication seems to be difficult so competence sharing regarding successful communication

could be started. When communication is succeeded without major problems competence

sharing should be increased. It requires at least decision making etc. that competence could be

really shared e.g. inside group. Later on competence could be expanded to parallel groups and

e.g. to testing groups and vice versa. Also estimations for release programs should be planned

thereby that there would be enough time for increasing of competence sharing in this case.

Suitable effort could be e.g. 20% of total time of release programs as the results suggested.

Also estimation planning requires competence sharing and decision making and so on. Above

mentioned things could be first increment to an avenue of success. Next steps could be speci-

fied according to R&D organizations own needs.

 102

5.3 Answers to third research sub-question

Besides answers to second research sub-question, answers to third research sub-question were

found during interview study (chapter 3). Third research sub-question was as follows:

What kind of problem(s) pertain to ongoing product release program when some feature

is (re)moved from that program in late phase and how to solve the possible problem(s)?

Interview results that relate to (re)moving some feature from ongoing release program in late

phase seemed not to be so big problem than adding some feature. However, same problems

seem to effect in both cases. Also proposed solutions for solving these problems that are re-

lated to (re)moving case are mainly equal to case when adding feature to release program in

late phase.

Most essential differences between adding and (re)moving cases are just actions and focus of

multiplicative effects. For example, when designer’s parallel tasks probably temporarily de-

crease due to (re)moving some feature from release program it causes more parallel tasks to

managers in matrix organization(s). From designer’s perspective it causes mainly frustration

and only minor changes to e.g. documentation and versioning. On the other hand, removing of

feature is infrequent. Moving feature to next release program seemed to be more general ac-

cording to designers.

In (re)moving case, management have to change estimates, plan resources for coming tasks,

plan prioritization of tasks and content of release programs. When some feature is removed

testing personnel close related tests for removed feature and remaining functionality is tested

in order that compatibility can be ensured. When some feature is moved to next release pro-

gram the ongoing tasks can be continued.

According to interviewees, mainly above problems were noticed concerning (re)moving case.

Moreover, in general terms the solutions that were proposed to solve adding case related

problems seem to be applicable to solve (re)moving case related problems. Therefore, detailed

discussion about above and other (minor) problems that concern (re)moving case is bypassed.

 103

5.4 Answers to research main question

Due to finding answers to above research sub-questions, finding answers to research main

question was possible. Needed answers were found and finding these answers enabled con-

structing the XFRC process model in practice. Research main question was as follows:

What kind of SW process model would enable the faster release cycle when content of on-

going release programs is continuously changing in late phase?

Answers to research main question consist of the XFRC process model with recommended set

of values, practices, roles and responsibilities. These all aspects concerning the XFRC process

model are illustrated in chapter 4. Therefore, detailed discussion about above is bypassed in

this chapter and only other conclusions concerning the XFRC process model are discussed.

The XFRC process model is similar to other process models such as suggested by XP and

Scrum agile methods. It contains also similar and same aspects than other process models.

Briefly, it is one combination of few agile methods recommended values and practices etc. In

addition, the XFRC process model contains combination of suggestions that were found dur-

ing interview study.

E.g. XP and Scrum contain some similarities although XP consist of mainly engineering as-

pect and Scrum contains mainly managerial aspect. The XFRC process model has mainly

been constructed to be combination of above aspects that have already been proven to be

beneficial practices according to the literature. Also aspects concerning few problematical

practices have been noticed. These problematical practices mean use of such practices that

were noticed to cause few problems according to the literature review. Many problems were

discussed during the interview study too. Problems noticed by interviewees are not in direct

relation to agile methods. However, with agile methods and proposed solutions by interview-

ees and the literature these problems can be solved or at least consideration of those possible

problems can be done. Therefore, combination of discovered beneficial aspects and considera-

tion of possible problems proved to be good solution for constructing the XFRC process

model within this research.

Actually, the XFRC process model does not solve all problems concerning more efficient SW

development. In spite of that, it enables more efficient SW development without waste time

on trivia. Due to efficient SW development, it describes alternative approach to enable faster

release cycle. Furthermore, it could be dynamically scaled and exploited depending on R&D

organizations needs. Scalability requires, indeed, e.g. commitment.

 104

6. DISCUSSION

That is what learning is. You suddenly understand something you've understood all your life,
but in a new way.

Doris Lessing

This chapter collects aspects concerning this research. Firstly, learning experiences are dis-

cussed in chapter 6.1. Learning experiences describe what went well and what could have

been done better during this research.

Reliability of research describe that if almost same results have been achieved after collection

of data by iterations reliability can be confirmed to be good. Validity refers to whether the re-

search questions that were selected in the beginning have been answered. Briefly, above as-

pects describe how the aims of research were achieved concerning this research. These as-

pects are discussed in chapter 6.2.

Further actions for organizing of faster release cycle are suggested in chapter 6.3. Finally,

suggestions for further research are discussed in chapter 6.4.

Figure 16. Introduction to chapter 6

 105

6.1 Learning experiences

Research in R&D organizations was fascinating and it also seemed to provide reliable way to

solve problems. During this research many new things were learned. One of them was use of

constructive research approach in practice. Also knowledge of agile methods advanced and

understanding of interview method became deeper as it was utilized in this research.

A fewer amount of interviewees would have been enough because saturation of research was

achieved before latest interviews. Also e.g. query could have been suitable for collecting of

more research data instead or in addition to many interviews.

Surprisingly lot of discussion arose also about many other issues than just research problem

related issues during interview sessions. Thus, interview method seems to be practical for col-

lecting of tangential data besides research problem related data. Probably as much data would

not have been able to collect via queries because people do not always want to write long an-

swers within queries and asking of further questions is not so easy within queries than within

interviews.

6.2 Reliability and validity of research

Reliability means that almost same results are achieved after collection of data by iterations,

i.e. if similar results are achieved for a research with same (measured) characteristics then re-

liability is good (Järvenpää & Kosonen 2003, pp. 28-30). In this research the literature used

for literature review is mostly reliable because the literature has been approved by different

committees. In addition, the experiences of corporations were collected concerning different

industries, not only corporations in same industry. On the other hand, it is possible that all the

problems are not mentioned in the literature which was used to collect experiences of other

corporations. However, maybe at least most of (major) problems were mentioned. Further-

more, only “experiences concerning use of agile methods in large organizations” could have

been searched. On the other hand, experiences concerning mainly small and medium-sized

organizations can be scaled and adapted to large organizations too. The literature seems to

contain also claims that some practices have been succeeded and e.g. success of scalability

concerning use of agile methods is obviousness. Probably e.g. scalability is possible in small

organizations but it is not necessarily easy to adapt through large organizations. However, it is

possible that more researches will be done in the future and possible scalability problems will

be solved in practice.

 106

Meanwhile interview results can be addressed to be reliable only partially, because it is possi-

ble that many people have not actually same opinions than participants of this research. How-

ever, most results are similar or in accordance with the literature review results. If interviews

would have been arranged through more widely area (i.e. development sites in other coun-

tries) so results could have been different because there are different cultures in R&D organi-

zations. In addition, larger amount of interviewees could have produced more different opin-

ions than sampling in this research. Same situation is possible if similar research will be ar-

ranged in the future and interviewees would participate from different groups in multi-site or-

ganizations. On the other hand, also query could have been dedicated through organizations

and it would have been more suitable alternative than increasing the amount of interviewees

because the organizations include hundreds of people and answering to queries would proba-

bly have been produced enough results from this research aspect.

For example, when interviewee was authorized representative of later phase of SW process so

interviewee’s general opinion was that previous phases of SW process should be completed

before own phase. E.g. ST personnel’s opinions were that faults should be found in FT phase

and the FT phase should be completed 100% before ST phase and so on. Also adding and re-

moving of features seemed to be possible before own phase but not generally within own

phase. Additionally it can not be assumed that every people have same opinion in organiza-

tions, although few people would have same opinion about some specified thing – as men-

tioned above. Thus, reliability of this research seems to be good only partially. In spite of that,

the results suit for use in organizations discussed in this research and probably in many other

organizations as well.

Validity refers to whether the research questions that were selected in the beginning have

been answered (Järvenpää & Kosonen 2003, pp. 30-32). In this research validity seems to be

good, because needed answers to research main question and sub-questions were found. Due

to above, research problem was solved as aimed at the beginning of this research.

6.3 Suggestions for Further Actions

The XFRC process model has been constructed during this research. It enables efficient ap-

proach to develop SW in R&D organizations. Due to above, it enables organizing of faster

release cycle. In addition, it is possible to scale the XFRC process model from small product

release programs to large product release programs. In addition, projects that are included in

release programs are scalable too. Therefore, this process model can be used in all R&D or-

ganizations and in other corporations too. The construction might be incipience of a golden

 107

opportunity to elaborate appropriate dynamically scaled SW process for many corporations

regardless of line of business.

The construction for organizing probably brings along many benefits for R&D organizations

if results of possible piloting of the XFRC process model will be beneficial as expected. As

incremental development way encourages, thus also the process model can be split to incre-

ments and parts of model which might be classified into highest priority group in R&D or-

ganizations could be taken into further actions. E.g. increasing of communication, increasing

of competence sharing and decreasing of parallel tasks could be implemented at first and the

rest of other increments of the process model could be implemented later. If the XFRC proc-

ess model is taken into consideration during SW Process Improvement (SPI) activities it

might cause resistance concerning changes. Furthermore, the factors such as improvement

tactics, process complexity, volume of initiative, organizational culture and individual skills

affect SPI outcome (Börjesson 2004).

However, e.g. organizing and SW development methods related changes are essential to im-

prove SW process for continuous changes regarding market needs. As initially was discussed

it requires dynamical behavior and flexible adaptation for above continuous changes regard-

ing market needs in contemporary growing global market area. Improving processes for inte-

grating performance, competence and knowledge management, managers will be able to find

more answers to e.g. organizing related questions and more, clearing the path to the ultimate

intelligent organization (Sydänmaanlakka 2002).

If corporation’s mission and vision contain e.g. SPI it is possible to improve process that

would be suitable from corporation and customers perspective. SPI takes time and money in

the short and of course also in the long term, but it can also be beneficial, fascinating and

funny, and bring money to corporation in the future.

One possible point for further actions within SPI could be e.g. IDEAL-model (Initiating, Di-

agnosing, Establishing, Acting and Learning) that has successfully been used e.g. at Ericsson

corporation (Börjesson 2004). The IDEAL-model (McFeeley 1996) that was developed by

Software Engineering Institute (SEI) is illustrated in Figure 17 on next page. Also detailed

research results how to enable SPI in organizations would be beneficial to learn as part of fur-

ther actions. Salo (2006) has researched above perspective at VTT.

 108

Figure 17. IDEAL model

6.4 Suggestions for Further Research

Besides the selected research problem, also many other improvement needs, opportunities and

proposals came up during the research. Organizing problem was only one of them. E.g. priori-

tizing of customer requirements (in that case customers would be “users” from usability per-

spective) and improving of product management would be other issues. Organizing related

issues with SW development aspect were selected for this research because it seemed to be

relevant alternative to both organization and the author of this thesis. Other issues need fur-

ther research that might be done in the future. Other improvement needs, opportunities and

proposals that have been collected during interviews have been archived to corporation’s in-

ternal database for confidentiality reasons. Thus, also decision making for possible further

research and other issues related details will be discussed outside this research.

When other issues are decided to research or solving of e.g. organizing problem is decided to

continue with details one alternative would be to arrange further research for collection of

more detailed data. From literature review perspective the different research results are found

from e.g. books and conference articles. Because scope of this research was limited to concern

mainly XP and Scrum the other agile methods and suitability of them could be researched in

the future. E.g. FDD and many other agile methods (chapter 2.1.4) could be taken under de-

tailed research. Also Lean (Poppendieck et al. 2006) SW development could be taken into

consideration during possible research. In addition, applicability of e.g. Acceptance Test-

Driven Development (ATDD) (Koskela 2007) could be researched. ATDD extends TDD to

 109

the overall software development process and recommends that tests for features should be

implemented first (Koskela 2007).

Agile methods will probably be developed in the future. Also new agile methods will proba-

bly created even increasingly in the future. These methods can be adapted and taken into use

through R&D organizations so that SW development could be made more effective and re-

lease cycle could become faster. In addition, new experiences and learning portals will proba-

bly be available in the future and these experiences could be exploited in R&D organizations.

One of those learning portals has been published by VTT and partners in co-operation (Abra-

hamsson et al. 2007).

From query perspective, focused query could be good solution and it could contain e.g. multi-

ple choices of typical answers that were got in the interviews. The query could be focused to

both Platform R&D and Application R&D organizations so more detailed data and opinions

would be collected through both multi-site organizations. Finally, due to all suggestions that

were described in this thesis, release cycle can be organized to become faster than in current

situation in R&D organizations.

 110

LIST OF REFERENCES

Aarnio, L. 2001. Automated testing as a part of extreme programming methodology. Hel-
sinki: University of Helsinki, Department of Computer Science. Master’s Thesis.

Abrahamsson, P., Warsta, J., Siponen, M. T., and Ronkainen, J. 2003. New directions on
agile methods: A comparative analysis. Proceedings of the 25th International Conference on
Software Engineering (ICSE ’03). Oulu: Technical Research Centre of Finland, VTT Elec-
tronics. pp. 244-254.

Abrahamsson, P., Hanhineva, A., Hulkko, H., Ihme, T., Jäälinoja, J., Korkala, M., Kos-
kela, J., Kyllönen, P. & Salo, O. 2004. Mobile-D: An Agile Approach for Mobile Applica-
tion Development. Proceedings of the Conference on Object-Oriented Programming, Sys-
tems, Languages and Applications (OOPSLA ’04). NY: ACM Press. pp. 174-175.

Abrahamsson, P. et al. 2007. House of Agile, www-document. [Cited: 9.12.2007]. Available:
http://www.houseofagile.org/

Aho, S. 2006. Improving the Software Development Process of a Research and Development
Team. Tampere: Tampere University of Technology, Department of Information Technol-
ogy. 69 p. Master’s Thesis.

Ambler, S.W. 2002. Agile modeling: effective practices for eXtreme Programming and the
unified process. NY: Wiley. 384 p. ISBN: 0-471-20282-7

Ambler, S.W. 2007. Agile Modeling home Page, www-document. [Cited: 27.11.2007]. Avail-
able: http://www.agilemodeling.com/

Auvinen, J., Back, R., Heidenberg, J., Hirkman, P. & Milovanov, L. 2005. Improving the
Engineering Process Area at Ericsson with Agile Practices – A case study. Turku: Turku
Centre for Computer Science (TUCS), Laboratory of Data Mining and Knowledge Man-
agement Software Construction. 24 p. ISBN: 952-12-1616-6

Baskerville, R. & Ramesh, B. 2003. Is "Internet-speed" software development different?.
Proceedings of the Institute of Electrical and Electronics Engineers (IEEE) Software, Vol.
20, No. 6. pp. 70-77.

Beck, K. 1999. Embracing Change with Extreme Programming. Proceedings of the IEEE
Computer, Vol. 32, No. 10. pp. 70-77.

Beck, K. 2000. Extreme Programming Explained: Embrace Change. MA: Wesley. 190 p.
ISBN: 0-20-161641-6

Boelsterli, B. S. 2003. Iteration Advocate. Small sampling of New agile Techniques Used at a
Major Telecommunications Firm. Proceedings of the Agile Development Conference
(ADC ’03). CO: WaveFront. pp. 109-113.

Börjesson, A. 2004. Successful Process Implementation. Proceedings of the IEEE Software,
Vol. 21, No. 4. pp. 36-44.

Cockburn, A. 2004. Crystal Clear: A Human-Powered Methodology for Small Teams. MA:
Wesley. 336 p. ISBN: 0-201-69947-8

Cusumano, M. A. & Selby, R. W. 1997. How Microsoft builds software. NY: ACM Press.
pp. 53-61.

Cusumano, M. A. & Yoffie, D. B. 1999. Software development on Internet time. Proceedings
of the IEEE Computer, Vol. 32, No. 10. pp. 60-69.

 111

Derbier, G. 2003. Agile Development in the old economy. Proceedings of the Agile Devel-
opment Conference (ADC ’03). pp. 125-131.

Grossman, F., Bergin, J., Leip, D., Merritt, S. & Gotel, O. 2004. One XP Experience: In-
troducing Agile (XP) software Development into a Culture that is willing but not ready.
Proceedings of the conference of the Centre for Advanced Studies on Collaborative re-
search. Canada: IBM Press. pp. 1-13.

Haikala, I. & Märijärvi, J. 1997. Ohjelmistotuotanto. Jyväskylä: Gummerus. 357 p. ISBN:
951-762-497-2

Hedin, G., Bendix, L. & Magnusson, B. 2003. Introducing Software Engineering by means
of eXtreme Programming. Proceedings of the 25th International Conference on Software
Engineering (ICSE ’03). Lund: Lund Institute of Technology. pp. 586-593.

Highsmith, J. A. 2000. Adaptive Software Development: A Collaborative Approach to Man-
aging Complex Systems. NY: Dorset House. 358 p. ISBN: 0-932633-40-4

Hirsch, M. 2005. Making RUP Agile. Proceedings of the Conference on Object-Oriented
Programming, Systems, Languages and Applications (OOPSLA ’02). NY: ACM Press. pp.
1-8.

Huczynski, A. & Buchanan, D. 2001. Organizational Behaviour – An Introductory text.
London: Prentice-Hall. 916 p. ISBN: 0-273-65102-1

Hunt, A. & Thomas, D. 2000. The Pragmatic Programmer: From journeyman to Master.
MA: Wesley. 352 p. ISBN: 0-201-616222-X

ISO 9241-11. 1998. Ergonomic requirements for office work with visual display terminals
(VDTs) – Part 11: Guidance on usability. Switzerland: International Organization for Stan-
dardization. 26 p.

Itkonen, J., Sulonen, P. & Vanhanen, J. 2003. Improving the Interface Between Business
and Product Development Using Agile Practices and the Cycles of Control Framework.
Proceedings of the Agile Development Conference (ADC ’03). Espoo: Helsinki University
of Technology, Department of Computer Science. pp. 71-80.

Järvenpää, E. & Kosonen, K. 2003. Johdatus tutkimusmenetelmiin ja tutkimuksen tekemi-
seen. Espoo: Otamedia Oy. 101 p. ISBN: 951-22-3321-5

Kasanen, E., Lukka, K. & Siitonen, A. 1993. The Constructive Approach in Management
Accounting research. Journal of Management Accounting Research, Fall.

Koskela, L. 2007. Test Driven - TDD and Acceptance TDD for Java developers. Greenwich:
Manning Publications Co. 544 p. ISBN: 1-932394-85-0

Larman, C. & Basili, V. R. 2003. Iterative and incremental developments: A brief history.
Proceedings of the IEEE Computer, Vol. 36, No. 6. pp. 47-56.

Mahnic, V. & Drnovscek, S. 2005. Agile Software Project Management with Scrum. Pro-
ceedings of the 11th International Conference of European University Information Systems
(EUNIS). Manchester: University of Manchester. pp. 1-6.

Mason, M. 2004. Subversion for CVS users, www-document. [Cited: 9.12.2007]. Available:
http://osdir.com/Article203.phtml

Maximilien, E.M. & Williams, L. 2003. Assessing Test-Driven Development at IBM. Pro-
ceedings of the 25th International Conference. NC: IBM and North Carolina State Univer-
sity. pp. 564-569.

 112

McFeeley R. 1996. The Ideal Model, www-document. [Cited: 9.12.2007]. Available:
http://www.sei.cmu.edu/ideal

Mugridge, R. 2003. Test Driven Development and the Scientific Method. Proceedings of the
Agile Development Conference (ADC ’03). New Zealand: University of Auckland, De-
partment of Computer Science. pp. 47-52.

Nonaka, I. & Takeuchi, H. 1995. The Knowledge Creating Company: How Japanese Com-
panies Create the Dynamic of Innovation. Oxford: Oxford University.

Paetsch, F., Eberlein, A. & Maurer, F. 2003. Requirements Engineering and Agile Software
Development. Proceedings of the 12th IEEE International Workshops on Enabling Tech-
nologies: Infrastructure for Collaborative Enterprises (WETICE-2003), Linz, Austria. Cal-
gary: University of Calgary. pp. 308 -313

Palmer, S. & Felsing, J. 2002. A practical guide to Feature-Driven Development. NJ: Pren-
tice Hall. 271 p. ISBN: 0-13-067615-2

Poppendieck, M. & Poppendieck, T. 2006. Implementing Lean Software Development:
From Concept to Cash. MA: Wesley. 304 p. ISBN: 978-0-321-43738-9

Rautiainen, K., Vuornos, L. & Lassenius, C. 2003. An Experience in Combining Flexibility
and Control in a Small Company’s Software Product Development Process. Proceedings of
the International Symposium on Empirical Software Engineering (ISESE ’03). Rome, Italy.
Espoo: Helsinki University of Technology, Department of Computer Science. pp. 28-37.

Rautiainen, K. & and Lassenius, C. 2001. Pacing Software Product Development: A Fram-
ework and Practical Implementation Guidelines. Espoo: Helsinki University of Technol-
ogy, Software Business and Engineering Institute.17 p.

Raynus, J. 2002. Software Process Improvement with CMM. Artec House. 222 p. ISBN: 1-
580-53474-0

Rising, L. & Janoff, N. S. 2000. The Scrum Software Development Process for Small Teams.
Proceedings of the IEEE Software. AZ: AG Communication Systems. pp. 26-32.

Royce, W. 1970. Managing the Development of Large Software Systems. Proceedings of the
IEEE CS Press (Reprinted from proceedings of the IEEE WESCON, August 1970, pp. 1-9).
pp. 328-339.

Salo, O. 2006. Enabling Software Process Improvement in Agile Software Development
Teams and Organisations. Oulu: University of Oulu and VTT Technical Research Centre
of Finland. Dissertation. 149 p. ISBN 951-38-6869-9

Schatz, B. & Abdelshafi, I. 2005. Primavera Gets Agile: A Successful Transition to Agile
Development. Proceedings of the IEEE Software, Vol. 22, No. 3. pp. 36-42.

Schoonmaker, S. J. 1997. ISO 9001 for engineers and designers. NY: McGraw. 238 p.
ISBN: 0-070-57710-2

Schwaber, K. 2003. Agile project management with SCRUM. WA: Microsoft Press. 163 p.
ISBN: 0-7356-1993-X

Schwaber, K. 2007a. Scrum home page, www-document. [Cited: 21.1.2007]. Available:
http://www.controlchaos.com/

Schwaber, K. 2007b. XP@Scrum home page, www-document. [Cited: 21.1.2007]. Available:
http://www.controlchaos.com/about/xp.php

 113

Schwaber, K. & Beedle, M. 2002. Agile software development with SCRUM. NJ: Prentice
Hall. 158 p. ISBN: 0-13-067634-9

Stapleton, J. 1997. Dynamic Systems Development Method: The method in practice. MA:
Wesley. 192 p. ISBN: 0-201-17889-3

Sydänmaanlakka, P. 2002. An Intelligent Organization: integrating performance, compe-
tence and knowledge management. Oxford: Capstone. 234 p. ISBN: 1-84112-048-0

Taskinen, L. T. 2002. Measuring Change Management in Manufacturing Processes - A
Measurement Method for Simulation Game based Process Development. Espoo: Helsinki
University of Technology, Department of Industrial Engineering and Management. Disser-
tation. 254 p. ISBN: 951-38-6381-6

Vriens, C. 2003. Certifying for CMM Level 2 and ISO 9001 with XP@Scrum. Proceedings of
the Agile Development Conference (ADC ’03). Netherland: Philips Research – Software
Engineering Services (SES). pp. 120-124.

 114

APPENDICES

Appendix 1: XP practices

XP practices (Aarnio 2001, pp. 19-24; Beck 1999) are described with entailed benefits in the

following Table:

Name of practice Description, benefits included

Planning Game - customer decides scope and timing according to estima-
tions by designers

- can be used during Planning and Iterations to Release
phases

Small release programs - content of releases is small and releases are made often
Metaphor - metaphors are shared between customer and designers

- helps everyone to understand basic elements and their
relationships

Simple Design - light documentation
- better testability and readability etc.

Testing - Test Driven Development (TDD)
- unit and acceptance testing
- continuous and automated testing

Re-factoring - improving structure of code without affecting its exter-
nal behavior

Pair Programming - pair programming with each other at a single computer
- changing pairs occasionally

Continuous integration - code is integrated (with e.g. CVS) and tested at least
daily

Collective Ownership - everyone team member is responsible for code
On-Site Customer - customer is part of XP team and makes business deci-

sions and prioritizes user stories (features) nearby XP
team

40-hours weeks - no overtime work, 40 weekly hours is maximum
- maximum can also be e.g. 37.5 hours (typically weekly

working period in Platform R&D and Application R&D
organizations is 37.5 hours)

Open workspace - team works in large room with small cubicles
- sitting arrangements

Just rules - team members must follow rules, but they can change
them if they agree how they will assess possible effects
of the changes

 115

Appendix 2: Scrum’s Product Backlog

An adapted Product Backlog appears as follows:

Prioritization Item # Feature Release Estimation

(in days)

Estimated

by

Very High

1

<name of
feature>

<e.g. name of
release in which
a feature related
functionality is
developed>

<estimation> <name of
person>

Very High 2

High 3

High 4

High 5

High 6

Medium 7

Medium 8

Medium 9

Medium 10

Medium 11

Medium 12

Medium 13

Medium 14

See also Schwaber (2003, p. 10)

 116

Appendix 3: Scrum’s Product Burn-Down chart

An example of the Product Burn-Down chart appears as follows:

See also (Schwaber 2003, pp. 11-12).

 117

Appendix 4: Scrum’s Sprint Backlog

An adapted Sprint Backlog appears as follows:

Item # Task Responsible

person

Status Hours

remaining

(week 1)

Hours

remaining

(week 2)

Hours

remaining

(week n)

1

<name of
task >

<responsible
person>

<e.g. not
started,
ongoing
or com-
pleted>

<hours> <hours> <hours>

2

3

4

5

6

7

8

9

10

11

12

13

14

See also (Schwaber 2003, p. 13).

 118

Appendix 5: Scrum’s Release Backlog

An adapted Release Backlog appears as follows:

Prioritization Item # Feature Estimation (in

sprints)

Assigned to team

Very High

1

<name of fea-
ture>

<estimation, i.e.
how many sprints
has been esti-
mated to need that
feature related
functionality
would be ready>

<name of team that is
responsible for devel-
opment work for a fea-
ture>

Very High 2

High 3

High 4

High 5

High 6

Medium 7

Medium 8

Medium 9

Medium 10

Medium 11

Medium 12

Medium 13

Medium 14

See also Schatz & Abdelshafi (2005, p. 39).

 119

Appendix 6: Scrum’s Sprint Burn-Down chart

An example of the Sprint Burn-Down chart appears as following chart that was used during

Scrum piloting in Platform R&D organization:

 120

Appendix 7: Scrum Retrospective Meeting chart

An example of the Scrum Retrospective chart appears as follows:

 121

Appendix 8: Scrum practices

Scrum practices that were discussed in chapters 2.1.3 and 2.3 are described with entailed

benefits in the following Table:

Name of practice Description, benefits included
Sprint - fixed period (30 days iteration)

- SW is developed iteratively and incrementally during above period
- requirements etc. are as input of sprint
- increment of product is as output of sprint
- freezing the development scope for sprint, i.e. content of release

program can be added until start of next sprint
Small tasks - e.g. features are split into small tasks

- the tasks are prioritized for each sprint and sorted by team mem-
bers

- small tasks are easier to estimate more specific than large tasks
Small teams - flexible and adaptable alternative from organizing perspective
Sprint Planning Meeting - first part of meeting: Product Owner presents a Product Backlog to

team and team decide what it must to do during sprint
- second part of meeting: Sprint Backlog and possible Release Back-

log are constructed
Daily Scrum Meeting - team members tell what they have done since last daily meeting

and what they will do before next meeting
- also about possible obstacles are discussed during daily meetings
- effort estimations are written by team members to Sprint Backlog
- also tacit and explicit knowledge can be found and perceived better

due to knowledge sharing during daily meetings
Sprint Review Meeting - developed and (automatically) tested functionality (increment) of

product is demonstrated to Product Owner and stakeholders
- timely adaptation to the project can be made
- end users are able to tell possible elaborations to the product

Sprint Retrospective Meeting - team discusses about experiences regarding completed sprint and
plans how to make things better during next sprint

Meetings (all Scrum related
meetings in brief)

- communication and knowledge are increased
- problem solving and clearing of obstacles, fast feedback
- finding new ideas become possible
- volunteerism and motivation can be increased within self-

organizing team etc.
Use Cases - SW is developed incrementally based on e.g. Use Cases that are

used e.g. in RUP method
- Use Cases can be assigned to someone in the team
- can be e.g. sequence of some feature to illustrate what kind of

functionality should be in practice
- also e.g. test cases can be illustrated to be as Use Cases

Continuous integration - code is integrated (with e.g. CVS) and tested at least daily
Product Backlog - list of changes that will be made to the product for future release

programs
- above changes can be e.g. functions, technologies, enhancements

and bug fixes etc.
- Product Owner owns Product Backlog

Release Backlog - subset of Product Backlog that is selected for a release program
- Release Backlog is estimated in hours

Sprint Backlog - estimations and task names for development work to be done dur-
ing sprint

- Sprint Backlog is estimated in hours and team members maintain it
Product Burn-Down - can be used to indicate days the work remaining during sprint

- due to above, managing the anticipated end date and progress of
the entire project is easier

Sprint Burn-Down - can be used to indicate hours the work remaining during sprint
- cf. Product Burn-Down

 122

Appendix 9: Interview Questions

The interview questions are described below. The questions have been described in Finnish

because the interviews were arranged in Finnish.

Taustaa (background related questions) koskevat kysymykset:

• Kuinka kauan olet ollut Nokian palveluksessa?
• Millainen koulutustausta sinulla on?
• Millaisia työtehtäviä olet tehnyt viime aikoina?

Tutkimusongelmaan (research problem related questions, i.e. questions to collect answers
to second and third research sub-questions) liittyvät kysymykset skenaarioineen:

Ajatellaan seuraavaksi sellaista skenaariota, että johonkin meneillään olevaan release-
programmiin on päätetty ottaa loppuvaiheessa mukaan jokin uusi ominaisuus, niin:

• Liittyykö sellaiseen tilanteeseen ongelmia, (ts. hidastaako jokin asia prosessin etene-
mistä)? Millaisia? Miten kyseisiä ongelmia voitaisiin ratkaista?

• Mahdollisia muita ongelmia? Millaisia? Miten kyseisiä ongelmia voitaisiin ratkaista?
• Minkä tahon toimesta uuden ominaisuuden mukaan ottamista koskeva pyyntö yleensä

tulee?
• Päätöksenteko (mielipide asiasta ja mahdolliset kehittämisideat)?
• Ominaisuuksien mukaan ottamiseen liittyvä priorisointi (mielipide asiasta ja mahdolli-

set kehittämisideat)?
• Mitkä kriteerit vaikuttavat siihen, että otetaanko jokin ominaisuus johonkin meneillään

olevaan release-programmiin tai vasta seuraavaan release-programmiin?
• Asiakkaan taholta tulevien muutospyyntöjen käsittelyn sujuvuus (mielipide asiasta ja

mahdolliset kehittämisideat)? Entä yrityksen sisältä tulevien muutospyyntöjen käsitte-
lyn sujuvuus (mielipide asiasta ja mahdolliset kehittämisideat)?

• Missä vaiheessa (milestone) uusia ominaisuuksia ei pitäisi enää ottaa mukaan johon-
kin release-programmiin, vaan siirtää ne seuraavaan?

• Testaushenkilöstölle, projekti- ja programpäälliköille lisäksi kyseisiin toimenkuviin
liittyviä lisäkysymyksiä kuten mm. seuraavat:

o Testauksen organisointi? Mahdolliset ongelmat? Mahdolliset kehittämisideat?
o Projektin organisointi? Mahdolliset ongelmat? Mahdolliset kehittämisideat?
o Programmin organisointi? Mahdolliset ongelmat? Mahdolliset kehittämisideat?

Ajatellaan seuraavaksi sellaista skenaariota, että jostakin meneillään olevasta release-
programmista päätetään ottaa loppuvaiheessa pois (siirretään esim. seuraavaan release-
programmiin) jokin ominaisuus, niin sovelletaan em. kysymyksiä.

Muut (other questions) kysymykset:

• Millaiseksi koet nykyisten työtehtäviesi määrän?
• Työympäristön viihtyvyys?
• Motivointitekijät?
• Työtehtäviin liittyvä kommunikointi?
• Muita mahdollisia kehittämisideoita?
• Asioita, jotka on järjestetty organisaatiossa jo riittävän hyvin?
• Mahdollisia muita kysymyksiä.

 123

Appendix 10: Summarized problems with most essential proposed solutions

Assorted list of solutions proposed by interviewees vs. literature are unambiguously described

in following Table:

Problem Proposed solution(s)
by interviewees

Proposed solution(s)
found from the literature

Lot of parallel tasks in daily
work (chapter 3.3.1)

- Dedicated persons for CR work
- Dedicated persons for maintenance
(e.g. fault correction) work etc. pos-
sible responsibilities

- Iterative and incremental SW de-
velopment: e.g. freezing develop-
ment scope & fixed time
- Team possibility to make decisions
regarding e.g. programming
- Meetings & workshops
- On-site coach
- Backlogs etc.

Lack of competence sharing
(chapter 3.3.2)

- Job rotation through organization
- Use Cases could be used for plan-
ning of test cases

- Pair programming
- TDD with training sessions
- Meetings & workshops
- Prototyping for large features
- Planning Game etc.

Bureaucratic decision making
(chapter 3.3.3)

- Minimum bureaucracy
- Decision making could be done by
low-level management.

- Minimum bureaucracy
- Basics of decision making etc.

Underestimation of needed
resources (chapter 3.3.4)

- Time allocations (20% of total ef-
fort) for CR work
- Continuous resource allocation
- Prioritization of CRs should be by
both R&D organizations

- Spike-time for e.g. learning
- Red-Flag for managing unexpected
work
- Portfolio Management
- Product Raodmap & backlogs
- Meetings & workshops etc.

Inadequate co-operation be-
tween testing and SW groups
(chapter 3.3.5)

- Combined FT and SW work
- Sitting arrangements
- Structure of teams could be organ-
ized

- Pair programming → pair testing
- TDD
- Automated testing with test reports
- Meetings & workshops etc.

Lacking Feature Owner
(chapter 3.3.6)

- Feature Owner could own a feature
through its lifecycle
- Fast feedback by Feature Owner

- Product Owner → Feature Owner
- Meetings & workshops etc.

Inadequate communication
(chapter 3.3.7)

- Specific tasks would be done in
same building
- Meetings & workshops
- Increasing communication through
organizations

- Communication model
- On-site customer
- Meetings & workshops etc.

Late changes to the content of
release programs (chapter
3.3.8)

- Small content of release programs
- Major decreasing CRs
- No CRs for minor (under 50 hours)
changes
- No CRs after E1 milestone

- Small release programs
- Iterative and incremental SW de-
velopment
- Product Raodmap & backlogs
- on-site customer etc.

Inconsistent synchronization
of release programs (chapter
3.3.9)

- Iterative and incremental SW de-
velopment
- Prototyping and Simulation Game
- Meetings & workshops

- Iterative and incremental SW de-
velopment
- Small release programs
- Backlogs etc.

Heavyweight documentation
and bureaucratic reviews
(chapter 3.3.10)

- Lightweight documentation
- Formal inspections only for major
changes
- Incremental development
- Group formation
- Design details can be added into
code as comments

- TDD
- Red-Flag
- Spike-time etc.

Lack of versioning knowl-
edge of program blocks
(chapter 3.3.11)

- Modularization
- CVS

- Iterative and incremental SW de-
velopment
- High cohesion and low coupling
- Continuous integration etc.

 124

Appendix 11: Other practices

The practices of other agile methods were discussed in chapters 2.1.4 and 2.4. Part of them

already included discussion about XP and Scrum. Such practices have been excluded from the

following Table. Only other practices that were found due to the literature review are de-

scribed with entailed benefits in the following Table:

Name of practice Description, benefits included

Code reviews - quality increases
- SW design related things can be added to comments in code

and therefore no SD documentation is necessarily needed
Coding standards - consistent way to produce code
Spike-time - time is allocated for e.g. reading and learning about various

issues
Red-Flag - Red-Flag practice is used to describe e.g. in Sprint Backlog

how much effort should be reserved for unexpected work
during sprint

Zero Feature Iteration - makes possible to get early information on the system archi-
tecture before real First Iteration

- possible to evolve the architecture at early stage before too
much time had been used to build functionality

On-site coach - on-site coach can track what team members are doing and
help them solving their possible problems

Prototyping - prototyping can be used for large features
- it is easier to estimate how much effort is needed to imple-

ment real feature when prototype is in view
Continuous and automated
testing

- automated regression testing is suggested to start as early
phase as possible

- estimation how much tests have already been automated
could be given as percentage and number should be public

- testing could be automated
- after execution of automatically tests (e.g. so called basic test

set) a test report could be generated automatically
- see more information also from description of TDD (practice

by XP)
Reflection workshops - similar than meetings

- can be arranged to increase maturity and effectiveness of
team

Idea pool - part of Strategic Planning Cycle in Cycles of Control frame-
work, i.e. continuous planning of product

- should be in specified place where everyone (e.g. team
members) can see it

Portfolio Management - provides the interface between business and product devel-
opment

- provides guidelines for how product development efforts
should be organized in terms of SW development cycle and
release cycle

- manages product roadmap
Release Project Manage-
ment

- handles the development of individual product versions

Increment Management - manages incremental development of product functionality
within release programs

Heartbeats - provides scheduling and monitoring for daily or weekly tasks

