T–76.3601 — Introduction to Software Engineering

Software Project Management

http://www.soberit.hut.fi/T-76.3601/

Maria Paasivaara
Maria.Paasivaara@tkk.fi
Agenda

- Software projects
- Project planning
- Effort estimation and scheduling
- Risk management
- Monitoring and control
What is a Project?

- A project is a planned activity that involves non-routine tasks and has a clearly defined *beginning* and an *end*.

- Other project characteristics:
 - Specific *objectives* are to be met
 - Specific *resources* are assigned for use on the project
 - A *schedule* should be met
Different Types of Projects

- Projects developing
 - One-of-kind customer specific systems
 - Totally new software products
 - New versions of software products
 - New features or improvements to old systems
 - Products having embedded software

- Projects that are
 - Intra-organizationally distributed
 - Using software subcontractors
 - Using ready-made components
 - Developing or using open-source software

- Their size, length and resources used can differ
Software Development vs. Other Projects

- Many techniques of general project management are applicable to sw project management
- Software development projects are often very hard to manage
- According to Fred Brooks software is different, because of its
 - **Invisibility**
 - **Complexity**
 - **Conformity** – conform to requirements of human clients
 - **Flexibility** – high degree of change
- Other characteristics of software development
 - Doing a perfect requirements specification in the beginning difficult
 - High productivity differences between individuals
 - Division of tasks—adding workforce in late phase can be harmful
 - Lots of changes—their effect on the system often unknown
Software project success rates 2000

(According the Standish Group, based on US data)

- **Successful**: on time, on budget, all features
- **Challenged**: Completed and operational, but over-budget, over time, fewer features
- **Failed**: Cancelled

23% Challenged
28% Succeeded
49% Failed
Reasons for success and failure

(According the Standish Group, based on US data)

• Reasons for failure
 • “Most projects failed for lack of skilled project management and executive support”
 • “Underestimating project complexity and ignoring changing requirements are basic reasons why projects fail”
 • “The problem – and the solution – lay in people and processes”

• Recipe for success
 • Smaller project size and shorter duration
 • More manageable
 • “Growing”, instead of “developing”, software engages the users earlier and confers ownership.
 • -> Iterative and interactive process
Project Planning
Project Stakeholders

- Identify as early as possible
- Recognize their motivation and objectives, and try to reconcile them
- Set communication channels
- Stakeholders can be
 - Internal to the project team
 - External to the project team but within the same organization
 - E.g. marketing department
 - External to both the project team and the organization
 - E.g. users, customers, subcontractors
Setting Objectives and Goals

- Project objectives should be clearly defined
- All involved should be informed about the objectives which have to be acceptable for them
- Objectives guide and motivate participants
- Split the project overall objectives into sub-objectives
- Also developer level sub-objectives, that developers can affect
- Objectives should be such that it is easy to determine whether the project has been successful or not
- Which one is better?
 - ”To improve customer relations”
 - ”To reduce customer complaints by 50 %”
Project constraints

- Projects normally have constraints, such as resources, time, quality and functionality
- These constraints should be addressed when defining objectives
- Quite often one or two are more important than the others, e.g.
 - Time to market
 - Basic functionality
- Let everybody know which are the most important ones!
Uses of the Project Plan

- The project plan is often one of the most important project documents.
- The primary purpose of a project plan is to:
 - document planning assumptions and decisions
 - facilitate communication among shareholders
 - document approved scope, cost and schedule baselines
- In the beginning of the project:
 - writing a project plan requires to agree on and consider many important matters
 - the project plan is used to communicate information to different stakeholders
- During the project, project plan is used for:
 - checking what was agreed on
 - communicating project info e.g. to new project members
Steps for Doing a Project Plan

• The Project manager is often responsible for writing the project plan
• It is important that all team members participate in planning
• Accepting the project plan
 • e.g. project board
• Delivering the plan to all stakeholders
• The project plan can and should be updated, at least the most important changes
 • version history
 • decide who can do / approve changes, e.g.
• project board / steering group
The Contents of a Project Plan

1. **Project overview**
 - background
 - purpose, scope, objectives
 - assumptions, constraints
 - deliverables
 - customer responsibilities
 - schedule and budget summary
 - evolution of the plan
 - references
 - definitions

2. **Project organization**
 - external interfaces
 - internal structure
 - roles and responsibilities

3. **Project partitioning**
 - process model
 - project milestones
 - project phases /cycles
 - release plan

4. **Work plan**
 - work activities
 - schedule
 - resource allocation

5. **Technical plan**
 - methods, tools, techniques
 - infrastructure
The Contents of a Project Plan

6. **Support processes**
 - Staff training
 - Quality assurance, reviews, testing
 - Configuration / version management
 - Documentation

7. **Partnering / subcontracting**

8. **Communication plan**
 - internal communication practices
 - informing

9. **Control plan**
 - project management practices
 - reporting
 - requirements, schedule, quality, budget control
 - change procedure
 - metrics collection

10. **Risk management**

11. **Project closeout**
 - acceptance plan and criteria
 - close out plan

12. **Budget**
Effort Estimation and Scheduling
Problems in Effort Estimation

- Basic problem: Predicting the future by looking into the past
- A lack of information on the project to be estimated
 - Most influential decisions are made in the early phases of project, based on inadequate information
- A lack of good historical information
- Estimates are done sloppily
 - "If they cannot be done perfectly, why pay attention to them?"
- Estimates are not followed, respected or trusted
 - An estimate should not be an opinion, as an opinion can be overruled by your superior
Estimates Evolve as the Project Progresses

- As the project progresses you can make better estimates — estimation is a process of gradual refinement.
- Problem: new estimations are not done, but the old ones are followed.
- Update your estimates!
Estimation Techniques

- Algorithmic models
 - Albrecht & MarkII function points
 - COCOMO 81 and COCOMO II
- Expert judgement
- Estimation by analogy
- Top-down estimation
- Bottom-up estimation
Effort Estimation Best Practices

- Use several estimation techniques and compare them
- If they converge, you are probably on the right track
- Find out why the estimates are different
- Combine several expert opinions
- Ask several different estimates – optimistic, probable and pessimistic, and compare them
- Avoid off-the-cut estimates
- Allow time for the estimate, and plan it
- Use documented data from previous projects
- Use developer-based estimates
The Terms Used

- Pay attention to terms used:
 - Use HOURS when talking about efforts
 - Use DAYS when talking about schedule
 - Do not mix estimated efforts and calendar time!!!
Scheduling Software Projects

- The relationship between the number of staff working on a project, the total effort required and the development time is not linear.
 - Increasing staff increases the communication and management costs.
 - Software project work cannot be partitioned infinitely
- A rough estimate: only 60-70% of work time is efficient
- Remember vacations, sick leaves, etc.
- To get a realistic schedule accepted can be the most difficult part of the project (McConnel, 1994)
 - Have a good reasoning behind your schedule estimates
- Do not present over-optimistic schedules
 - They will be accepted & guarantee your project will be late -> if the schedule is fixed, cut the scope
The Reasons for Scheduling

A good schedule will enable us to:

• Ensure that the appropriate resources will be available when required
• Avoid different activities competing for the same resources at the same time
• Produce a detailed schedule showing which staff carry out each activity
• Produce a detailed plan against which actual achievement may be measured – and replanned if needed

Hughes, Cotterell, 2002
Timeline Charts

<table>
<thead>
<tr>
<th>Tasks</th>
<th>Week 1</th>
<th>Week 2</th>
<th>Week 3</th>
<th>Week 4</th>
<th>Week n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Risk Management

“If you don't actively attack the risks, they will actively attack you.”

Tom Gilb
Risk Management Cycle

- Risk Identification
- Risk Analysis
- Risk Prioritization
- Risk Management Planning
- Risk Resolution
- Risk Monitoring
Risk Exposure

- Different ways to measure, e.g.
 - Time:
 - Probability of loss * Size of loss in weeks = Risk exposure in weeks (e.g. 50% * 5 weeks = 2.5 weeks)
 - Suitable when you are concerned only with schedule risks
 - Money:
 - Probability of loss * Size of loss in money = Expected value of loss (e.g. 50% * 100,000 € = 50,000 €)
 - Monetary value is easy to understand, but not always easy to estimate. High loss risks become visible.
 - Scores:
 - Likelyhood (scale 1-10) * Impact (scale 1-10) = Risk exposure (scale 1-100) (e.g. 5*10 = 50)
 - Easy to use
“Top 10 Risks” List

- One of the risk-monitoring tools is the use of "Top-10 Risks” list
- Identify risk, estimate risk exposure and prioritize risks
- List top 10 risks
- List contains:
 - Each risk’s current rank
 - Its previous rank
 - The number of times on the list
 - Summary of the steps taken to resolve the risk since the previous review
- List should contain also risks moved off the list since the last review
- Top-10 list should be reviewed once a week, e.g. project manager and his boss, or in weekly meetings
- Appointing a risk officer can be useful
 - looks for all reasons for project to fail
 - psychological reasons
 - the role is given to a team member
Example of a "Top-10 Risks" List

<table>
<thead>
<tr>
<th>This week</th>
<th>Last week</th>
<th>Weeks on list</th>
<th>Risk</th>
<th>Risk resolution progress</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>5</td>
<td>Feature creep</td>
<td>Staged delivery approach adopted, need training</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>1</td>
<td>Change of CM system</td>
<td>Evaluation under way</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>5</td>
<td>Optimistic schedule</td>
<td>New estimation and functionality prioritization under way</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>5</td>
<td>Program speed</td>
<td>Negotiations about additional resources under way</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>5</td>
<td>Slow customer feedback</td>
<td>Meeting with customer scheduled</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Casper Lassenius
Important in Risk Management

- Risks management should not be forgotten right after identifying the risks in the beginning of the project -> MONITORING
- More important than exact calculations of risks is to identify the most important risks early enough and react to the findings
- Remember that all numbers used are only ESTIMATES and they can give only direction
- A simple method of following the risks is better than nothing (e.g. updated “Top-10 Risks” list that is checked regularly)
- Separate FACTS from RISKS
Monitoring and Control
Monitoring and Control

- Monitoring:
 - What is happening?
 - Compare to the plan

- Control:
 - Use monitoring information
 - React to slippage
 - Replan to bring the project back on target or revise the target

- Plan monitoring and control in the beginning of the project and state in the project plan
 - Define practices, e.g. progress reports, meetings
 - Assign roles and responsibilities, e.g. reporting responsibilities, reacting to deviations
 - To follow the progress you need a detailed plan against which to compare the progress!
Levels of Control

- **Project board**
 - Consists of e.g. higher level managers and customers
 - Progress reports and/or meetings, e.g. monthly
 - Inform often enough
 - Inform about possible problems early enough: dividing responsibility
- **Project manager reports**
 - Project manager & project team
 - Meetings and/or progress reports, e.g. weekly or even daily
Reporting Progress

- Achievements in reporting period: finished tasks
- Future outlook: Planned tasks, how things are likely to progress during next period
- Problems encountered
 - Focus on real problems - exceptions to planned activity
- Costs — actual costs compared to budgeted (earned value)
- Staffing — joiners, leavers, sickness etc.
- Risk monitoring — Top-10 Risks
- Avoid ‘information overload’
- When information goes to higher management levels summarize more
- Use visualizations
 - graphical representation
 - highlight problems
A Problem

- 90% completion syndrome
- job reported as ‘on time’ until last scheduled week
- job reported as ‘90% complete’ for each remaining week until task is completed
Solution?

- Control on deliverables: report only finished tasks (e.g. tested functionality)
- Estimation & WBS: tasks small enough (a few hours – a few days)
- Define what is meant by ”completed”, e.g.
 - developer has tested it
 - integration testing is another task
 - possible corrections are separate tasks
- An alternative, when tasks larger:
 - Ask how many hours are already used to accomplish a task
 - Ask for an estimation of hours still needed to complete a task
 - Compare to the original estimate
Visualizing Progress

- Enables to see the project progress quickly and notice the possible slippage
- Stakeholders need the transparency
 - Team members -> motivation
 - Management -> possibility to react
 - Customer -> e.g. payments
- Many possible charts etc.
 - Choose the one best suitable for your project
 - Update frequently
 - React to problems

E.g. Traffic-lights
- Red not on plan: recoverable only with difficulty
- Yellow not on plan: recoverable
- Green: on schedule

<table>
<thead>
<tr>
<th>Week</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Important in Monitoring and Control

- Plan monitoring and control practices in the beginning of the project
- Monitor the progress very frequently, e.g. daily or weekly
- Give immediate feedback to
 - managers
 - team members
- React to deviations fast
Software Development Teams

”It is the People – not the procedures and techniques, that are critical to accomplishing the project objectives.”
What is a Team?

• A team consists of
 • at least two people, who
 • are working towards a common goal/objective/mission, where
 • each person has been assigned specific roles or functions to perform, and where
 • completion of the mission requires some form of dependency among group members (Dyer)

• Team size
 • Less that 20 people
 • Optimal size is 4-8 persons for software teams
 • In a larger project add the number of teams
 • It is optimal that a person works only in one project team at the time
How to Build Effective Teams

• Team **cohesion** (=yhtenäisyys, yhteenkuuluvuus)
 • Collocation
 • Sense of team identity
 • Give frequent, easy opportunities for the team to succeed together and celebrate the achievement (e.g., team dinner after achieving a milestone)

• Challenging **goals**
 • “Establish a vision”
 • Goals must be specific and measurable, represent a significant challenge, be achievable and accepted by team members
 • All team members should participate in defining the team goals
 • Goals should be followed and adjusted if needed
How to Build Effective Teams

- **Establishing plans**
 - Agreeing together a strategy for achieving the goals
 - Team members must
 - feel that the tasks are achievable
 - understand their role and responsibilities
 - agree on how to accomplish them

- **Feedback**
 - Goals must be tracked and progress visibly displayed
 - Frequent and precise feedback motivates

- **Maintaining communication** among team members
 - Most common team problem is poor communication
 - Both formal and informal communication is needed
 - Formal: e.g. regular meetings once a week
 - Informal: Daily contact among team members
Working as a Team Member

• Participate actively in project planning – it is a common task
• Help your fellow team members when they have problems or questions – ask if they need help even they might not ask for that
 • -> They are happy to help you when needed
• Ask help right away when you have problems or don’t understand something
• Remember: team goals are your goals -> the project can be successful only when everybody works towards common goals
• Give feedback to your fellow team members and to your project manager – also positive!
• Think about how you could make your project a fun place to work in!
Questions?