
T-76.650 SEMINAR IN SOFTWARE ENGINEERING, SPRING 2004 1

Pair Programming Benefits: Claims vs. Evidence
Mårten Jakobsson

Helsinki University of Technology
mjakobss@cc.hut.fi

Abstract— Pair programming, also known as collaborative
programming, is the agile software development practice, where
two programmers jointly develop software side by side on one
workstation. Many claims have been made as to the benefits of
pair programming, but there is also some resistance, especially
from people that have never tried pair programming.

This paper tries to give a clear and objective picture of pair
programming and it’s uses, by gathering the claims made about
pair programming and matching the claims with evidence found
through empirical studies. Information about possible drawbacks
with pair programming and situations when pair programming
should not be used is also gathered from the empirical studies.

People deciding whether or not to incorporate pair program-
ming into their current software development process can use
the results of this study.

Index Terms— Pair programming, benefits, drawbacks, claims,
evidence.

1. INTRODUCTION

1.1. Background and motivation

PAIR programming is one of the twelve practices of
Extreme Programming (XP) and due to the attention XP

has gained in the recent years, pair programming has also
become quite familiar as a concept.

Although pair programming is mostly known from XP, it is
a practice that can be incorporated into any software process
and it is therefore interesting to investigate pair programming
on its own (Williams, 2001).

Pair programming is performed by two developers sitting
side by side at one workstation, writing code jointly, con-
tinuously collaborating on the same design, algorithm, code
or test. One of the developers is the driver, controlling the
keyboard and mouse and writing the code. He is concerned
about writing the current method or piece of code correctly,
both logically and syntactically. The other developer is the
navigator, continuously and actively observing the work done
by the driver. Besides watching for possible errors done by the
driver, he considers the current work from a more abstract and
higher-level viewpoint, planning and thinking about overall
design impacts and decisions.

The roles of the driver and navigator should be changed
regularly. Both participants are considered equal, regardless
of experience level, and they share the ownership of the work
product.

Anecdotal evidence regarding pair programming strongly
suggests that pair programming is effective and outperforms
traditional software development in solo. Pair programmers
have been claimed to complete their tasks faster than solo
programmers, while generating almost error free code. The
claims go even further, saying that the pair programmers enjoy

their work more and that pair programming also increases
programmer satisfaction and confidence, among other things.

There has been an increasing interest in pair programming
during the last few years. Studies have been performed to
investigate different aspects of pair programming and the
amount of empirical data is increasing all the time.

Still, people that haven’t tried the practice are skeptical,
since they have a hard time acknowledging that two developers
working as a pair can be more productive than two developers
working alone. They might feel that the pair would have to
complete the assigned tasks in half the time it would take a
single developer, in order for the pair programming practice
to be beneficial.

Programming has also traditionally been seen as a solo
performance and it can sometimes be hard for programmers
to give up ownership for their code and share the glory of
a successful implementation. Most developers could probably
function well as pair programmers, but it requires an open
mind and a different mindset, compared to solo development.
The pair has to communicate actively and express their ideas
and thoughts continuously, which is quite different from the
traditional programming style.

In order for pair programming to gain public acceptance,
people have to be made aware of the benefits of pair pro-
gramming and empirical evidence is needed to back up the
claims made.

This paper gathers claims made about pair programming and
it’s benefits. The claims are matched to empirical evidence and
possible discrepancies are reported. Problems found during
the use the pair programming practice are also registered and
reported.

People deciding whether or not to incorporate pair program-
ming into their current software development process can use
the results of this study as a base for their decision-making.

1.2. Research problem

The research problem of this study is to find, analyze and
organize the claims made about pair programming and to
investigate if these claims are supported by empirical evidence.
Additionally this study will take notice of problems found
when using pair programming and present them to the reader
in a compiled form.

The research problem is represented by the two research
questions I will try to answer:

• What are the claimed benefits of pair programming and
how do they compare to empirical evidence?

• What drawbacks have been found with pair program-
ming?



T-76.650 SEMINAR IN SOFTWARE ENGINEERING, SPRING 2004 2

1.3. Objectives

The objectives of this study are
• to identify the claims made about pair programming,
• to investigate if there is empirical evidence to back up

the claims,
• to critically evaluate the literature to find problems or

limits in their conclusions and in the way they where
performed,

• to suggest areas that need further investigation.
The results can be used both by managers and developers

that don’t have previous experiences of pair programming, as
a base to found their decisions about pair programming on.

1.4. Scope

The scope of this study is limited by the focus on only one
agile practice, namely pair programming. I will not include
the investigation of distributed pair programming in this study,
since the amount of material on the subject is quite limited, the
tools needed would have to be investigated more thoroughly
and the common use of pair programming involves co-location
of the developers.

The literature search was limited to articles written in
English from the year 1994 until present time. Since the topic
has been investigated actively during this time period this
limitation is necessary in order to get up to date and relevant
information.

1.5. Method

The study was performed as a literature study, with a
classification of the material into to basic groups; material
containing claims made about pair programming in previous
studies and in other literature, as well as material containing
evidence in the form of results from empirical studies. Addi-
tionally some literature was used for background, definitions
and similar purposes.

Most of the literature used was articles found by searching
the following databases: ABI Inform, Proquest Direct, ACM
Digital Library, Computer and Information Systems Abstracts,
IEEE/IEE Electronic Library, INSPEC.

The queries used when searching the databases were the
following: pair programming, quality and combinations of
these. Based on the results from these queries, other articles
were found and used.

1.6. Structure

The structure of this paper is the following: In the next chap-
ter the results of this study are presented in two sections. The
first section contains the claimed benefits of pair programming
compiled into seven main areas of improvement. The second
section lists the empirical studies found and explains the idea
of each study and it’s results. In chapter three I discuss the
results of this investigation, namely how the claims and the
empirical evidence match up and potential future investigation
possibilities. Last but not least is a chapter with the summary
and conclusions of this study and its results.

2. RESULTS

In this chapter the results of this study are presented.
The chapter is divided into two sections. The first section
contains the claims made about pair programming and the
second section contains empirical evidence regarding pair
programming.

2.1. Claims

This section identifies the claimed benefits of pair pro-
gramming made in different literature. The claims have been
compiled into seven main areas of improvement that are
described in more detail in separate subsections.

Anecdotal evidence suggests that pair programming is more
effective than traditional practices. One of the first and most
known uses was on Chrysler’s Comprehensive Compensation
(C3) project, where a failing project was put back on track and
completed successfully. Most of the errors that made it through
testing after pair programming was incorporated, originated
from someone programming alone. (Haungs, 2001)

Up front it might seem as a waste of resources to pair
developers two and two for doing development work. Pair pro-
gramming has nonetheless been used successfully in different
contexts and the reason for adopting pair programming is to
take advantage of the claimed benefits.

The claimed benefits of pair programming made in dif-
ferent literature have been compiled into seven main areas
of improvement, shown in table I. The claimed areas of
improvement have one column each. The sources from which
the claims have been gathered are presented one at each row.
If a source supports a given claim, a x is printed in the
corresponding column for that source. Otherwise the space
is left blank. The different areas are explained in more detail
in the following subsections.

2.1.1. Quality: Both the quality of the design and the
quality of the code is improved. Since the code is continuously
reviewed, the defect rate is kept at a minimum (Cockburn and
Williams, 2000; Williams et al., 2000; Williams and Kessler,
2000; Jensen, 2003). Because two minds are always working
at the problem at hand, a larger number of alternative solutions
will be explored, than a single programmer alone might do and
by collaborating the pair might even come up with solutions
that neither of them would have found working individually
(van Deursen, 2001; Williams and Kessler, 2000). If several
solutions to a problem are found, one can assume that the
best solution will be selected and this will in turn increase the
quality of the product.

2.1.2. Cycle time: Having two minds searching for solu-
tions to a problem also speeds up the process of finding a
solution (van Deursen, 2001; Williams and Kessler, 2000). Pair
programmers almost always outperform solo programmers.
The performance gain can be up to 40% to 50% at best.
(Nosek, 1998; Williams et al., 2000) The total amount of
time required is still larger than for a solo developer. The
two developers would have to work twice as fast as a single
developer, in order to spend the same amount of time in total.



T-76.650 SEMINAR IN SOFTWARE ENGINEERING, SPRING 2004 3

TABLE I
CLAIMED AREAS OF IMPROVEMENT WHEN USING PAIR PROGRAMMING

Qua
lity

Cyc
le

tim
e

Sati
sfa

cti
on

an
d

co
nfi

de
nc

e

M
oti

va
tio

n,
mora

le

an
d dis

cip
lin

e

Trus
t an

d tea
mwork

Kno
wled

ge
tra

ns
fer

an
d man

ag
em

en
t

Lea
rni

ng
, tra

ini
ng

an
d men

tor
ing

Williams and Upchurch (2001b) x x x x

Williams and Kessler (2002) x x x x x x

Williams (2003) x x x x x x

Marchesi et al. (2002) x x x x x x

Auer and Miller (2002) x x x x x x

Martin Lippert (2002) x x x x

Williams (2003) x x x x x x

Cunningham and Cunningham (2004) x x x x x

2.1.3. Satisfaction and confidence: Solving problems faster
and more successfully will give the developers satisfaction
and they enjoy the work more. Since the code produced
has been reviewed and accepted by two developers, the pair
programmers have more confidence in their solutions than solo
programmers have. (Williams and Kessler, 2000)

2.1.4. Motivation, morale and discipline: Working side by
side with a partner makes the sessions more intense, since
the developers don’t want to waste each other’s time with
phone calls, reading email, surfing the web or other unpro-
ductive pastimes (Williams and Kessler, 2000; Jensen, 2003).
Pair programming will encourage people to follow guidelines
and not neglect other tasks, especially under pressure (Beck,
2000; Auer and Miller, 2002). Pair programmers are happier
programmers and this helps job retention because employees
who are having fun are less likely to leave (Williams and
Kessler, 2002).

2.1.5. Trust and teamwork: Most people that have tried
pair programming feel that working in pairs is more enjoyable
than working alone. The people also learn to work together
and communicate better, which is good for the team spirit.
(Williams and Upchurch, 2001b,a) Since the pairing is rotated,
everybody on the team get to know each other.

2.1.6. Knowledge transfer and management: Since a pair
of two developers writes all code, none of the project team
members have critical information regarding the project and
thereby pose a threat to the project (Williams et al., 2000;
Cockburn and Williams, 2000; Srinivasa and Ganesan, 2002).
New developers and project members can be made productive
faster, by pairing them with more experienced programmers
(Cockburn and Williams, 2000; Srinivasa and Ganesan, 2002;
Williams et al., 2003).

2.1.7. Learning, training and mentoring: When working
with a pair, knowledge is continuously transferred, both more
fundamental information related to good coding practices and
design methodologies, as well as small tips and tricks, that
usually cannot be taught through formal training methods

(Srinivasa and Ganesan, 2002; Canfora et al., 2003; Wood
and Kleb, 2003).

As can be seen from table I, two claims are supported by all
sources presented, namely the claim regarding improvements
in quality as well as the claim regarding learning, training
and mentoring. The claim concerning trust and teamwork, the
claim concerning knowledge transfer and management and
the claim concerning cycle time have all been supported by
most of the presented sources. The claim about increased
satisfaction and confidence and the claim about increased
motivation, morale and discipline have only gotten limited
support.

2.2. Empirical Evidence

This section contains the empirical evidence found regard-
ing pair programming. Each study is presented in detail to
show the areas covered, the results found and the impact and
reliability of the study in the context of this investigation.

The last few years a number of experiments and investi-
gations focusing on pair programming have been performed.
During the literature search eleven papers where found that
reported about empirical studies. Of these five where done in
purely educational environments, based on university experi-
ments, four were performed in purely industrial environments
with professional developers and two combined results from
both educational and industrial environments.

A summary of the papers is given in table II. The table
presents the main characteristics of the studies. These charac-
teristics are then used to calculate the importance of each of
the studies for the purpose of this investigation.

The different characteristics and their influence on this study
will be discussed in the following.

The studies belong to one of two types, namely empirical or
case study. The empirical studies are more scientific in the way
they are performed. One of the goals, or the main goal, is to
investigate pair programming and this goal along with the used



T-76.650
SE

M
IN

A
R

IN
SO

FT
W

A
R

E
E

N
G

IN
E

E
R

IN
G

,
SPR

IN
G

2004
4

TABLE II
EMPIRICAL STUDIES INVESTIGATING PAIR PROGRAMMING

Study Type Participants Environment Assignment Other Importance

Nosek (1998) Empirical 15 (5 pairs, 5 solo) Industrial Challenging problem, important to their
organization

Maximum time allowed to solve the
problem was 45 minutes

High

Williams
et al. (2000)

Empirical 41 (14 pairs, 13 solo) Educational
and
industrial

School projects Undergraduate students. An online
survey of professionals incorporated

High

Cockburn
and Williams
(2000)

Empirical 98 (33 pairs, 32 solo) Educational
and
industrial

School projects in the educational studies
and a challenging problem, important to
their organization in the industrial case

Data from three empirical studies are
analyzed, two of which are Nosek
(1998) and Williams et al. (2000)

High

Gehringer
(2003)

Empirical 96 (at most about 30
pairs, the rest solo)

Educational Simulation of three microprocessor parts Senior/masters-level course High

Jensen (2003) Case study 10 (5 pairs) Industrial Multitasking real-time system executive Medium

Lui and Chan
(2003)

Empirical 15 (5 pairs, 5 solo) Industrial Solutions to deduction problems and pro-
cedural algorithms

High

McDowell
et al. (2003)

Empirical 555 (202 pairs, 148
solo, 3 unaccounted)

Educational School projects Introductory course Low

McDowell
et al. (2003)

Empirical 216 (58 pairs, 100
solo)

Educational School projects Data from three studies presented,
with seniors, juniors and sophomores

Low

Nagappan
et al. (2003)

Empirical 495 (162 in pairs, 171
solo)

Educational School projects Freshmen and sophomores Low

Williams
et al. (2003)

Empirical 1215 (401.5 pairsa,
412 solo)

Educational School projects Introductory courses Low

Wood and
Kleb (2003)

Empirical 2 (1 pair) Industrial Software test bed for evaluating the per-
formance of a numerical scheme to solve
a model advection-diffusion problem

XP was evaluated, with pair program-
ming reviewed

Medium

aThere where no actual half pairs. Some ”pairs” consisted of three people in order to manage uneven number of pairers.



T-76.650 SEMINAR IN SOFTWARE ENGINEERING, SPRING 2004 5

metrics are defined before the study is performed. The study
should be repeatable. The case studies are usually papers from
industrial settings, where the achievements are analyzed and
reported on afterwards. The amount of background informa-
tion is detailed enough to give the reader a good picture of the
environment, when evaluating the credibility and consistency
of the results.

The amount of participants is presented, since this affects
the reliability of the results. The larger the amount of partici-
pants is, the more credible the results, from a statistical point
of view.

The environment in which the study is performed is indus-
trial, educational or a combination of both. An industrial study
is performed in an industrial environment with professional
developers. An educational study on the other hand is per-
formed in a university setting with students as participants.
The studies that are both industrial and educational have
some parts of the study performed in one environment and
other parts performed in the other. The division into industrial
and educational environments is important when assessing
the applicability of the results in other contexts. The results
from for example an educational study examining freshmen
or sophomores cannot be directly translated into an industrial
environment. In the educational setting the experience level
of the students vary, since some courses are introductory and
others more advanced, and this is also taken into account when
evaluating the studies.

The assignments performed in the studies are given in order
to clarify the scale and importance of the work produced.
Additionally other information relevant to the assessment of
the study is given in a separate column.

The importance of a study from the viewpoint of this
investigation is given on the scale high, medium and low. The
value is calculated as follows. All studies start out with the
rating medium. If the study is an empirical study it moves
up to high. Case studies don’t change. If the environment
is industrial, the rating moves up a notch from the current
position. If the environment is educational and freshmen or
sophomores have been studied, the rating is decreased, since
many of the lessons learned in that context, will not hold
in the general case. The last factor influencing the rating is
the number of participants. The possible values are divided
into three intervals that span from two to 25, 26 - 100 and
more than 101. The basic idea is that the more participants the
better and therefore belonging the first group will decrease the
importance rating and belonging to the last group will increase
the rating. Due to the importance of the applicability of the
results, however, the environment rating is also considered, so
that if the environment caused a decrease in the importance
rating, then a large amount of participants will also decrease
the rating one step instead of increasing the rating.

One of the first empirical studies in an industry setting
was reported by Nosek (1998). The participants were 15 full-
time system programmers. Five developers worked solo and
10 developers worked in 5 pairs. All of them worked on the
same problem, a challenging problem important to their orga-
nization. The work was performed in their own environments
and with their own equipment. The maximum time allowed for

solving the problem was 45 minutes. The results of the study
show that the pairs produced more readable and functional
solutions and that the programmers working in pairs had
greater confidence in their work and enjoyed the process more.
It also showed that more experienced programmers performed
better, than less experienced programmers. Although the aver-
age completion time for pair programming groups was smaller
than for individual developers, the result was not statistically
significant. It was stated that pair programming is beneficial
for speeding up the development rate and decreasing time to
market, as well as for improving the quality of the software.

The empirical paper by Williams et al. (2000) explains
an experiment in a university setting with 41 participating
students (13 individuals and 14 pairs) working on the same
problem. The investigation is complemented with an online
survey of professional developers. The results show that the
pairs passed more test cases than the individual developers
and that the difference is statistically significant. The pairs
completed their programs 40% to 50% faster than the indi-
viduals. A vast majority of the students and the participants
in the online survey stated that they enjoyed working in pairs
more than working alone and that they were more confident
in their solutions. There are a few things in the execution of
this experiment that decreases the reliability of the results.
During the university experiment, the division into pairers
and solo developers was done based on an opinion survey at
the beginning of the course. In an industry environment this
is not possible however, since everybody either follows the
practice or nobody does. The problematic people are seldom
the ones that are interested and motivated to make the pair
programming practice work and therefore the results of this
study might not be accurate, when considering developers in
general. Since the participants in the university experiment
were students, all the results are probably not directly trans-
ferable to an industrial environment.

The empirical paper by Cockburn and Williams (2000)
investigated further the results from Nosek (1998), Williams
et al. (2000) and one other study in order to further explain
why pair programming is beneficial. The first study was
performed in and industrial setting, as noted earlier and the
two other studies were performed in educational environments.
The total amount of participants was 98, divided into 33 pairs
and 32 solo developers. The results show that many mistakes
are noticed and corrected during the coding sessions. The
defect rate is therefore very low and the number of defects
found during quality assurance or in the field is kept small. It
was shown that the designs used by pair programmers are
better and the resulting code is shorter. The reported that
problems are solved faster when using pair programming and
that knowledge about the system and software development in
general is transferred more effectively and as a consequence
multiple people understand each piece of the system. The
also reported that pair programmers learn to work together
and communicate better, which is good for the team spirit
and that pair programmers enjoy their work more. The paper
also points out that the required increase in total time due to
these benefits was only 15%, not 100% as might be expected
and that the extra cost should be repaid in shorter and less



T-76.650 SEMINAR IN SOFTWARE ENGINEERING, SPRING 2004 6

expensive testing, quality assurance and field support. Since
this paper was based partly on the results by Williams et al.
(2000), the critique for that paper also applies here.

The empirical paper by Gehringer (2003) investigates the
use of pair programming in a course that used, but didn’t
teach, programming skills. The course contained three projects
for creating simulations of three microprocessor parts. All
96 students of the class were surveyed after the end of the
semester and 59 of them responded. The results show that
a majority of the students that had pair programmed liked
the pair programming experience and that the cooperation and
communication with the other team member was good. The
participants complained, however, that scheduling was a prob-
lem in the university environment. A large amount of students
paired for the first project, but the amount decreased for the
following two projects. Besides the scheduling problems, it
was believed that the students didn’t perceive the benefits of
pair programming to be large enough once the computing
environment was familiar. The last two projects were also
easier than the first one, which was believed to have influenced
the decision. Due to the educational environment the study
was performed in, the results cannot be directly transferred to
an industrial environment. Especially the scheduling problems
should not occur in a professional setting, where people work
full-time at the same location.

In the case study by Jensen (2003), industry experiences
regarding pair programming are reported. The project team
consisted of 10 programmers (5 pairs) with expertise in
different areas and one manager. The team developed a
50000-line multitasking real-time system from scratch. The
results from the experiment are compared to historical data
from the company and show that the productivity measured
as lines / person-month increased 127% and the error rate
dropped to one thousandth of the normal value, which is quite
remarkable. During the project they experienced that it was
counter-productive to pair developers with the same experience
level, since they didn’t function smoothly together. Pairing
developers with different experience levels usually worked
better and they experienced the benefits of on-the-job training.
The pairs were put in two person cubicles and they found that
this limited the communication between pairs. The study also
discussed the importance of having open-minded managers
that are supportive of the pair programming process.

The empirical study by Lui and Chan (2003) investigates
when a pair of programmers can outperform two individuals.
Fifteen professional programmers were tested. The division
between pairers and non-pairers changed during the test, but
both the number of pairs and solo developers was always five.
The assignments consisted of finding solutions to deduction
problems and procedural algorithms. The results show that the
pairs excel in procedural problems and deduction questions
and are therefore more useful when writing more challenging
programs with critical design issues. They also found that the
pairs, due to better problem learning and exploring of larger
solution spaces, solved new problems faster. This benefit is not
as noticeable when the pair solves problems they are familiar
with.

The empirical paper by McDowell et al. (2003) investigates

the impact of pair programming on student performance,
perception and persistence in an introductory computer science
course. The study had a total of 555 participants. The number
of pairs was 202 and the number of solo developers was 148.
The status of three students was not known. The course was
performed in four sections and had a compulsory programming
project. The results show that a significantly larger amount
of pair programmers passed the course and that the pair
programmers achieved higher grades for their projects, than
individual programmers. The pairs also got more satisfaction
from their work, they showed a higher confidence in their work
and they enjoyed the work more than individuals. The results
also show that pair programming did not negatively affect the
grades in the final exams. A larger percentage of individually
working students also dropped out of the course than paired
students. The participants were allowed to suggest whom they
wanted to pair with at the start of the course. During the
course the pairs were not rotated, with the exception of a few
cases where schedule changes and drops made reassignments
necessary. Regarding the reliability if the results, the pairing
scheme may have had an effect on the results, since people
that know each other from before a more likely to get along.
Because this was an introductory course, the participants were
novice programmers and this limits the applicability of these
results in other contexts quite a lot.

The empirical study by McDowell et al. (2003) combined
the results from three studies at UCSC with students partici-
pating in computer science courses containing a programming
project. The total number of participants was 216, divided into
58 pairs and 100 solo developers. The participants ranged from
sophomores to juniors and seniors. The results show that pair
programmers get higher scores for their projects on average,
but the score in the final exam was not significantly affected
by the use of pair programming. The study did however not
show that the pair programmers completed the assignments
faster than solo programmers. Accurate time tracking was not
required and this is believed to be one of the reasons for
this finding. They also found that students that claimed to be
strong programmers liked pair programming the least. Since
the study was performed in an educational environment, partly
using quite inexperienced programmers, the results cannot be
directly translated to an industrial context.

The efficacy of pair programming in several introductory
computer science courses was investigated in the empirical
paper by Nagappan et al. (2003). The number of participants
was 495, divided into 162 pairs and 171 individuals. The re-
sults show that pair programming students performed better in
many projects and that pair programming reduced the burden
of the class and that the attitude towards collaboration was
more positive among the pairs than among the solo students.
Pair programming was not deterrent to student performance
and it helped the retention of students in computer science.
There were some incompatible pairs. The pairs also had to
monitored in order to avoid one dominating and the other
carrying the whole burden. Since this was an introductory
course, the participants were novice programmers and this
limits the applicability of these results in other contexts quite
a lot.



T-76.650 SEMINAR IN SOFTWARE ENGINEERING, SPRING 2004 7

In the study by Williams et al. (2003) the required time and
cost of using pair programming was studied by investigating
empirical data from several courses at UCSC and NCSU. The
total number of participants was 1215 for these studies. The
number of solo developers was 412 and the rest worked in
pairs, theoretically forming 401.5. There were no actual half
pairs of course, but sometimes the number of pairers was
uneven. Letting some groups contain three students solved
this problem. The results show that a greater percentage of
pair programmers pass the course than solo programmers and
the pairs produced better project results. The pairs performed
at least equally well as solo students on the exams. The
paired students had a more positive attitude towards pair
programming and they stated afterwards that they enjoyed the
pair programming experience. It was also shown that using
pair programming in a course did not affect performance in
further courses, but pair programming students were more
likely to pursue a computer science related major. Since
these courses were introductory courses, the participants were
novice programmers and this once again limits the applicabil-
ity of these results in other contexts.

In the paper by Wood and Kleb (2003), Extreme Pro-
gramming is explored for scientific research in an industrial
environment. The purpose of the project was to deliver a
software test bed for evaluating the performance of a numerical
scheme to solve a model advection-diffusion problem. The
team size was only two, so pair programming seemed be a bad
fit at first, but as it turned out, it worked well. The results show
that the performance of the team was good, and the produced
code was clean. The size of the program was smaller than
for previous similar projects and the programming sessions
were more intense, due to pair pressure. They also noticed
some cross-fertilization of tips and tricks. They implemented
functionality at the historical rate, but also supplied an equal
amount of supporting test, which had not been done before.
The reliability of the results is quite poor. The number of
developers was small and since the study explored the use
of Extreme Programming, some of the benefits reported may
also partly be due to the other XP practices and this has to be
regarded.

When studying and experimenting with pair programming,
the results of solo developers working in isolation are quite
often compared to the results of pairs. In an industrial en-
vironment, however, the developers usually have colleagues
and other experts they can turn to, if they have problems
(Matt Stephens, 2003). Therefore forcing developers to work
totally isolated is not representative of the way work usually
is done and will therefore affect the correctness of the results.
All the studies presented above that compare solo developers
with pairs suffer from this problem.

3. DISCUSSION

In this chapter the claims are matched up with the empirical
evidence, to see which claims are backed up by evidence and
which areas need more investigation. Additionally drawbacks
and possible future investigation areas will be discussed.

In table III all empirical studies are presented, one at each
row. The claims made about pair programming are placed as

columns and if a study verifies the given claim, an x is printed
in the corresponding column for that study. If a claim is not
supported an o is printed and if the claim was not investigated
the cell is left empty.

As can be seen in the table, all claims have been verified by
some study. The claim concerning quality has been verified by
almost all studies and can be considered a true benefit of pair
programming. The study by Gehringer (2003) could not sta-
tistically verify improvements in quality, but this was believed
to stem from the overall high level of the results in the study.
Higher product quality is one of the most important benefits
of pair programming. Even though pair programming usually
requires more resources in total, the time and energy saved
by minimizing the error correction efforts and by simplifying
further development, will probably make up for the additional
cost (Nosek, 1998). This is especially true in mission-critical
systems where human lives or large businesses are dependent
on the software. It is unclear, however, if this benefit could be
achieved by a less personnel intensive approach such as pair
inspections (Müller and Tichy, 2001).

The claim regarding improvements in satisfaction and con-
fidence is also verified by most of the studies, especially
the important ones, so this claim can also be considered a
true benefit of pair programming. Even though an employee’s
satisfaction and confidence don’t directly affect a company,
the improvements are beneficial in the long run, since they
will increase self-esteem and motivation.

The claim regarding improvements in cycle time has been
verified by several important studies, but not by all. The
study Nosek (1998) could not verify this claim. The average
completion times for pair programming groups where smaller,
but the difference was not statistically significant. The study
McDowell et al. (2003) could not either verify the claim. The
results indicated that pair programmers spent less time on the
project development, but the difference was not statistically
significant, but since accurate time tracking was not required,
the resulting times are not reliable and cannot be taken into
account. All in all it seems like pair programming can speed
up development in some cases. Still the total amount of time
required is always larger than the time required by a single
developer and this cost has to be offset by the other advantages,
for the practice to be profitable. If the schedule is tight and
the time to market critical for the success of the product, this
additional cost can well be worthwhile (Nosek, 1998). The
big differences in measured speed gains for pair programmers
in the empirical studies are a cause of concern, however,
and suggest that there are more factors at play. It has been
shown that pair programming is more efficient when facing
new and complex problems and that the advantage is smaller
fore simple repetitive work (Lui and Chan, 2003). It has also
been noticed that simple programming tasks that don’t require
mind crunching are better done alone than in pairs (Müller
and Tichy, 2001; Williams and Kessler, 2000). These are
interesting discoveries and areas that should be investigated
further, in order to find out what kind of work should be done
in pairs and what kind of work is more effectively done alone.

The claim regarding learning, training and mentoring has
also been verified by several important studies and can be



T-76.650 SEMINAR IN SOFTWARE ENGINEERING, SPRING 2004 8

TABLE III
CLAIMED AREAS OF IMPROVEMENT SUPPORTED BY THE EMPIRICAL STUDIES

Im
po

rta
nc

e

Qua
lity

Cyc
le

tim
e

Sati
sfa

cti
on

an
d

co
nfi

de
nc

e

M
oti

va
tio

n,
mora

le

an
d dis

cip
lin

e

Trus
t an

d tea
mwork

Kno
wled

ge
tra

ns
fer

an
d man

ag
em

en
t

Lea
rni

ng
, tra

ini
ng

an
d men

tor
ing

Nosek (1998) High x o x

Cockburn and Williams (2000) High x x x x x x

Williams et al. (2000) High x x x x

Gehringer (2003) High o x x x

Jensen (2003) Medium x x x

Lui and Chan (2003) High x x x x

McDowell et al. (2003) Low x x

McDowell et al. (2003) Low x o

Nagappan et al. (2003) Low x x

Williams et al. (2003) Low x x

Wood and Kleb (2003) Medium x x x x x x

considered valid in most cases. Still, is can also be irritating
for the mentor to get interrupted all the time and this has to
be considered.

The claim regarding improvements in knowledge transfer
and management has also been verified by several important
studies, mostly industrial. The reason why this claim hasn’t
been verified in many educational environments is probably
that it cannot easily be done in that context. One or two
students do the school projects once and the projects have
a very short lifespan. Therefore the knowledge transfer and
management aspect is not needed. All the industrial studies
presented that verify this claim have had only a limited amount
of participants, so it is unclear how well this benefit will scale
for larger numbers of developers. From a professional point of
view, the knowledge sharing and transferring from one project
team member to another is important, in order for the team
to not be too dependent on a single developer. Therefore this
area deserves more investigation.

The claim regarding motivation, morale and discipline as
well as the claim regarding trust and teamwork have only been
verified by a couple of studies. The claims have not been
investigated very actively and the reason for this is unclear.
It might be that the claims are considered self-evident or thay
they are considered to be of lesser importance at this time.

Only a few areas of concern were reported in the studies.
In one study it was reported that in a university setting it
could be hard to schedule the pair programming sessions,
when the team members didn’t always have compatible timeta-
bles (Gehringer, 2003). In another case the pairs had to be
monitored to avoid one dominating the other and to make
sure the development burden was distributed evenly (Nagap-
pan et al., 2003). Two studies reported that there had been
some incompatible pairs that had to be dealt with (Jensen,

2003; Nagappan et al., 2003). In one of the studies the pair
programmers were placed in two person cubicles and it was
noted that this limited the communication between pairs. As an
afterthought they realized that an open space would probably
have been even more productive. (Jensen, 2003)

The amount of problems reported in the studies is small.
The reason for this may be that the pair programming practice
works very well. It may also be that the authors are reluctant
to bring forth negative aspects too strongly, since this could
affect the general opinion about pair programming negatively.
Still the drawbacks of the practice are worth noticing. It is not
acceptable to have people suffer due to bad personal chemistry
and forcing people to work in a way that doesn’t suit them.

On the whole, the results thus far look promising and pair
programming will probably be beneficial to many projects.

Many of the studies examined where performed in a univer-
sity setting. Although the results from university experiments
are valuable, they can’t always be transferred to industry
settings as is. The surrounding factors, background and expe-
rience of the participants and so on usually differ somewhat.

Many studies that investigate the performance of pair pro-
gramming conclude that pair programming requires more
developer resources, but that this is compensated due to the
smaller defect rate and the better design accomplished (Nosek,
1998; Williams et al., 2000; Cockburn and Williams, 2000).
They ask “Can an a partner ever be of any value?”, when the
proper questions should be “Is a partner of sufficient value
to justify the cost?” and “Does the partner cause additional
problems?” (Matt Stephens, 2003). At the moment there are
no studies that have shown the true value of these code
improvements, or if they could be achieved with smaller
resource requirements or inconveniences. In order to make a
good decision found on solid evidence regarding the use of pair



T-76.650 SEMINAR IN SOFTWARE ENGINEERING, SPRING 2004 9

programming, the true value of the pair programming benefits
will be needed. This includes the total cost of developing a
software product using pair programming and the total cost
of developing an equivalent software product using only solo
programmers. This calculation should also include the cost
caused by bug fixes and other alterations needed, in order to
get the software product to the same quality level as the one
developed with pair programming. Errors in the developed
systems will have to be corrected at one point or another
anyway.

It has also been shown that the variations in productivity
between the most productive and the least productive program-
mers can be as large as 200:1 (Bryan, 1994). Additionally the
cognitive ability of the individual team members, faithfulness
to the methodology, different types of conflicts and the way
the conflicts are handled are all significant to development
success (Domino et al., 2003). More thorough investigations
into how these and other factors impact the productivity of pair
programming pairs is needed in order to take full advantage
of the pair programming practice.

Pair programming does bring some benefits, as have been
shown. The successfull implementation of the practice many
times depends on the people involved and their mindset. A
good side of the practice is that you don’t have to convert
everybody at once, but you can try it out on a few developers
or use it only for certain challenging tasks. If the practice
works out well, the usage level can be increased. Developers
don’t have to change their whole way of doing work, since pair
programming can be incorporated into any current software
development process (Williams, 2001).

4. SUMMARY AND CONCLUSIONS

This paper has identified the claims made about pair pro-
gramming. It has found and critically evaluated empirical
studies regarding pair programming and it has matched the
claims to the empirical data in order to investigate if the claims
are backed up. It has also pointed out areas that need more
investigation.

In a time when time to market is getting more and more im-
portant, without sacrificing quality, effective ways of produc-
ing high-quality software are needed. The pair programming
practice claims to deliver these benefits and more. Several
studies have been performed to investigate and measure the
benefits of pair programming and today there is empirical
evidence to back up at least the most important claims of
higher quality in shorter time.

This paper has shown that the quality of the final product
will be better when using pair programming and that the
programmers will have more confidence in their solution and
feel a higher level of satisfaction. It has also been shown that
the cycle time will decrease in most cases, decreasing time to
market.

Based on the results found, pair programming can be
highly recommended for increasing the overall productivity in
projects, where high quality and time to market is critical for
the success of the project. The pair programming practice can
also be used in other circumstances with good results, but the

advantages might not necessarily be as big. Even though this
study only focuses on pair programming, without considering
other software development practices, the recommendation is
valid, since pair programming can be incorporated into any
current software development process.

There are however still a number of areas that should be
investigated further, especially in industry settings:

• How effective is the knowledge transfer when pair pro-
gramming?

• Does the benefits of pair programming scale to larger
project teams?

• Is pair programming the most beneficial practice for all
kinds of development work?

• How does different pairing strategies impact the produc-
tivity of a pair programming pair? What kind of persons
cannot and should not participate in pair programming?

• Could the main benefit of pair programming, higher qual-
ity, be achieved by a less personnel intensive approach
such as pair inspections?

• What are the real costs of producing software products
with equal quality using traditional software development
practices compared to using pair programming? This
investigation should include the costs caused by bug fixes
and other alterations to the system in order to get products
of equal quality.

REFERENCES

Auer, K. and R. Miller (2002). Extreme programming applied:
playing to win. Addison-Wesley Longman Publishing Co.,
Inc.

Beck, K. (2000). Extreme programming explained: embrace
change. Addison-Wesley Longman Publishing Co., Inc.

Bryan, G. E. (1994). Not all programmers are created equal.
In Aerospace Applications Conference, 1994. Proceedings.,
1994 IEEE, pp. 55–62. GEB Software, Pacific Palisades,
CA, USA: IEEE.

Canfora, G., A. Cimitile, and C. A. Visaggio (2003). Lessons
learned about distributed pair programming: what are the
knowledge needs to address? In Proceedings of the Twelfth
IEEE International Workshops on Enabling Technologies:
Infrastructure for Collaborative Enterprises, Los Alamitos,
CA, USA, pp. 314–319. Res. Centre on Software Technol.,
Sannio Univ., Benevento, Italy: IEEE Comput. Soc.

Cockburn, A. and L. A. Williams (2000). The costs and
benefits of pair programming. In Proceedings of the
First International Conference on Extreme Programming
and Flexible Processes in Software Engineering (XP2000),
Cagliari, Sardinia, Italy. Addison-Wesley.

Cunningham, W. and K. Cunningham
(2004). Pair programming benefits.
http://www.c2.com/cgi/wiki?PairProgrammingBenefits.

Domino, M. A., R. W. Collins, A. R. Hevner, and C. F. Cohen
(2003). Conflict in collaborative software development. In
Proceedings of the 2003 SIGMIS conference on Freedom
in Philadelphia: leveraging differences and diversity in
the IT workforce, Philadelphia, Pennsylvania, pp. 44–51.
University of South Florida, Tampa, FL: ACM.



T-76.650 SEMINAR IN SOFTWARE ENGINEERING, SPRING 2004 10

Gehringer, E. F. (2003). A pair-programming experiment in
a non-programming course. In Companion of the 18th
annual ACM SIGPLAN conference on Object-oriented pro-
gramming, systems, languages, and applications, Anaheim,
CA, USA, pp. 187–190. North Carolina State University,
Raleigh, NC: ACM.

Haungs, J. (2001). Pair programming on the C3 project.
Computer 34(2), 118–119.

Jensen, R. W. (2003). A pair programming experience.
CrossTalk, The Journal of Defense Software Engineer-
ing 16(3), 22–24.

Lui, K. M. and K. C. Chan (2003). When does a pair
outperform two individuals? In Lecture Notes in Computer
Science, Volume 2675, pp. 225–233. Springer-Verlag Hei-
delberg.

Marchesi, M., G. Succi, D. Wells, and L. Williams (2002).
Extreme Programming Perspectives. Addison Wesley.

Martin Lippert, Stefan Roock, H. W. (2002). eXtreme Pro-
gramming in Action: Practical Experiences from Real World
Projects. John Wiley & Sons.

Matt Stephens, D. R. (2003). Extreme Programming Refac-
tored: The Case Against XP. Apress.

McDowell, C., B. Hanks, and L. Werner (2003). Experi-
menting with pair programming in the classroom. In ACM
SIGCSE Bulletin , Proceedings of the 8th annual confer-
ence on Innovation and technology in computer science
education, Volume 35.3, Thessaloniki, Greece, pp. 60–64.
University of California, Santa Cruz, CA: ACM.

McDowell, C., L. Werner, H. E. Bullock, and J. Fernald
(2003). The impact of pair programming on student perfor-
mance, perception and persistence. In Software Engineering,
2003. Proceedings. 25th International Conference on, Pis-
cataway, NJ, pp. 602–607. Comput. Sci. Dept., California
Univ., Santa Cruz, CA, USA: IEEE Computer Society.

Müller, M. M. and W. F. Tichy (2001). Case study: Extreme
programming in a university environment. In Proceedings of
the 23rd International Conference on Software Engineering.
ICSE 2001., Los Alamitos, CA, USA, pp. 537–544. Dept. of
Comput. Sci., Karlsruhe Univ., Germany: IEEE Computer
Society.

Nagappan, N., L. Williams, M. Ferzli, E. Wiebe, K. Yang,
C. Miller, and S. Balik (2003). Improving the CS1 ex-
perience with pair programming. In Proceedings of the
34th SIGCSE technical symposium on Computer science
education, Volume 35.1, Reno, Navada, USA, pp. 359–362.
North Carolina State University, Raleigh, NC: ACM.

Nosek, J. T. (1998). The case for collaborative programming.
Communications of the ACM 41(3), 105–108.

Srinivasa, G. and P. Ganesan (2002). Pair programming: ad-
dressing key process areas of the people-cmm. In D. Wells
and L. A. Williams (Eds.), Extreme Programming and Agile
Methods - XP/Agile Universe 2002. Second XP Universe
and First Agile Universe Conference. Proceedings Lecture
Notes in Computer Science, Volume 2418, Berlin, Germany,
pp. 221–230. Dept. of Comput. Sci., North Carolina State
Univ., Raleigh, NC, USA: Springer-Verlag.

van Deursen, A. (2001). Program comprehension risks and
opportunities in extreme programming. In E. Burd, P. H.

Aiken, and R. Koschke (Eds.), Proceedings Eighth Working
Conference on Reverse Engineering, Los Alamitos, CA,
USA, pp. 176–185. CWI, Amsterdam, Netherlands: IEEE
Computer Society.

Williams, L. (2003). XP practices ... or best
practices? An examination of the XP practices.
”http://sunset.usc.edu/events/2003/March 2003/
Agile Methods Perspective ARR Laurie Williams.pdf”.

Williams, L., R. R. Kessler, W. Cunningham, and R. Jeffries
(2000). Strengthening the case for pair programming. IEEE
Software 17(4), 19–25.

Williams, L. A. (2001). Integrating pair programming into a
software development process. In D. Ramsey, P. Bourque,
and R. Dupuis (Eds.), Proceedings 14th Conference on
Software Engineering Education and Training ‘In search
of a software engineering profession” Cat. No.PR01059,
Los Alamitos, CA, USA, pp. 27–36. Dept. of Comput.
Sci., North Carolina State Univ., Raleigh, NC, USA: IEEE
Computer Society.

Williams, L. A. and R. R. Kessler (2000). All I really need
to know about pair programming I learned in kindergarten.
Communications of the ACM 43(5), 108–114.

Williams, L. A. and R. R. Kessler (2002). Pair Programming
Illuminated. Boston, MA, USA: Addison-Wesley Longman
Publishing Co., Inc.

Williams, L. A., C. McDowell, N. Nagappan, J. Fernald, and
L. Werner (2003). Building pair programming knowledge
through a family of experiments. In Empirical Software
Engineering, 2003. ISESE 2003. Proceedings. 2003 Inter-
national Symposium on, Los Alamitos, CA, USA, pp. 143–
152. Dept. of Comput. Sci., North Carolina State Univ.,
Raleigh, NC, USA: IEEE Computer Society.

Williams, L. A., A. Shukla, and A. Anton (2003). Pair
programming and the factors affecting brooks’ law. Techni-
cal Report TR-2003-04, Department of Computer Science,
North Carolina State University.

Williams, L. A. and R. L. Upchurch (2001a). Extreme
programming for software engineering education? In 31st
Annual Frontiers in Education Conference. Impact on En-
gineering and Science Education. Conference Proceedings.
Cat. No.01CH37193., Volume 1, Piscataway, NJ, USA, pp.
12–17. Dept. of Comput. Sci., North Carolina State Univ.,
Raleigh, NC, USA: IEEE.

Williams, L. A. and R. L. Upchurch (2001b). In support of
student pair programming. In Proceeding of the Thirty-
second SIGCSE Technical Symposium on Computer Sciense
Education (SIGCSE-01), Volume 33.1 of ACM Sigcse Bul-
letin, New York, pp. 327–331. Dept. of Comput. Sci., North
Carolina State Univ., Raleigh, NC, USA: ACM.

Wood, W. A. and W. L. Kleb (2003). Exploring xp for
scientific research. IEEE Software 20(3), 30–36.


