
T-76.650 SEMINAR IN SOFTWARE ENGINEERING, SPRING 2004

1

Abstract—The focus of literature and debates of agile

methodologies has been on the development activities while
quality assurance practices of different agile methodologies have
received less attention and an overall picture is missing. This
paper collects quality assurance practices of different agile
methodologies together and analyzes them. Accuracy of quality
assessment, costs, information to be gathered, timing, empir ical
evidence, and concrete guidance are analyzed from each quality
assurance practice. Based on the findings, quality assurance is
analyzed at a methodology level from a good enough quality
viewpoint. The findings show that agile methodologies propose a
wide range of quality assurance practices that cover the most
important areas. The biggest problem found was that testing was
not descr ibed in appropr iate detail. The results indicate that most
agile methodologies have focused on validation at the expense of
ver ification. Thus, most of the studied methodologies lack the
balance in quality assurance and are not capable of producing
good enough quality software. In the current situation, it is
recommended to combine quality assurance practices of different
methodologies in order to get good enough software delivered to
the customer.

Index Terms—agile methodologies, quality assurance, software

quality, software ver ification and validation.

1. INTRODUCTION

EVERAL agile methodologies have been developed in
the last few years. Agile methodologies are software

development methodologies that are adaptive and
collaboration-oriented. The focus of literature and debates of
agile methodologies has been on the development activities
while quality assurance practices of different agile
methodologies have received less attention and an overall
picture is missing. However, quality must be addressed if these
methodologies are to be applied to practice in the software
industry. This paper collects quality assurance practices of
different agile methodologies together and analyzes them. The
methodologies are analyzed from a good enough quality
(Bach, 1997) perspective. Good enough quality is a framework
for analyzing the quality of a software product in terms of its
readiness to delivery. The aim of agile methodologies is to
deliver business value rapidly by delivering working software
frequently. Therefore, the good enough quality concept is
suitable for analyzing how agile methodologies have used
quality assurance practices to gain confidence that the
implemented software is of good enough quality before
deliveries. Based on the results, strengths, weaknesses, and
applicability of the methodologies from the quality assurance
viewpoint are discussed and improvement areas as well as

future research areas are suggested.
The research problem can be stated in the following two

questions. What quality assurance practices are proposed in
different agile methodologies? How does the combination of
these practices within a methodology support achieving quality
from a good enough quality perspective?

The main objective of the research is to collect quality
assurance practices from different agile methodologies to a
single paper and analyze them to gain deeper knowledge about
the state of quality assurance in these methodologies. The
analysis of quality assurance practices focuses on the accuracy
of product quality assessment, cost of quality assurance,
information that is gathered to support decision making, and
timing of all these elements. In addition, empirical evidence
and concrete guidance are addressed. Each methodology
should provide these pieces of information in order to be
applicable to practice. The second objective of the research is
to analyze and discuss how the combination of proposed
quality assurance practices aims to achieve good enough
quality at a methodology level. The sub objective of the
research is to suggest improvement areas in quality assurance
for different agile methodologies.

The research studies six agile methodologies: adaptive
software development, Crystal Clear, dynamic systems
development method, extreme programming, feature-driven
development, and Scrum. Quality assurance is only analyzed
from the product quality viewpoint. Process quality and its
improvement are not part of this study because process
improvement is generally driven by organizational policies
instead of a software development methodology. This
limitation of scope also justifies the use of the good enough
quality concept in analyzing quality assurance.

The research was conducted by doing a literature study. The
literature study focused on books that describe the
methodologies. Articles from AbiInform, ACM, CiteSeer,
CSA, IEEE, Link, and ScienceDirect databases were also used
for finding empirical evidence of quality assurance practices.

The results of a literature study are generally not directly
applicable to practice. However, the purpose of this study is
not to show that a certain methodology would be superior in
practice, rather the aim is to present and analyze if quality
assurance is addressed in a methodology well enough to be
applied to practice as such or if other quality assurance
practices should be combined with the ones proposed by the
methodology. Because of the purpose of this paper, a literature
study is a justified method for conducting the research.

Most related studies of agile methodologies have focused

An Overview of Quality Assurance Practices in
Agile Methodologies

Olli P. Timperi

S

T-76.650 SEMINAR IN SOFTWARE ENGINEERING, SPRING 2004

2

either on agile methodologies from other than the quality
assurance perspective (e.g. Abrahamsson et al., 2003) or on
certain quality assurance practices used in some agile
methodologies individually (e.g. Williams et al., 2000). The
lack of studies from the quality assurance perspective is mostly
due to the fact that agile methodologies are relatively new and
they have not yet been widely used in the software industry.
This paper attempts to present an overview of quality
assurance in agile methodologies which is currently missing.

The paper is structured as follows. First, the methodologies
are introduced and described briefly. Second, the analytical
framework and its application are explained. The next chapter
answers the first research question and provides an analysis of
quality assurance practices suggested by different agile
methodologies. Next, based on the findings, the methodologies
are analyzed at a methodology level from the good enough
quality perspective. Strengths, weaknesses, and applicability
are also discussed from the quality assurance viewpoint.
Finally, the results of the paper are summarized and future
research topics are suggested.

2. METHODOLOGIES

This study focuses on six agile methodologies: adaptive
software development (ASD), Crystal Clear, dynamic systems
development method (DSDM), extreme programming (XP),
feature-driven development (FDD), and Scrum. The selection
of these methodologies is based on a study (Abrahamsson et
al., 2003) that analyzed which agile methodologies provide
described processes for different life cycle phases. If at least
the requirements phase and some testing life-cycle phases were
covered, the methodologies were selected to this study in order
to make sure that the studied methodologies have enough
quality assurance related practices. Crystal family (Cockburn,
2001) consists of several methodologies and only Crystal
Clear was chosen because it is intended for relatively similar
sized projects as the other methodologies in this study. The
methodologies are described briefly in the following.

2.1 Adaptive Software Development

ASD (Highsmith, 2000) is based on the complex adaptive
systems theory. ASD is intended for high-speed and high-
change projects that are developed by self-organizing teams.
The development is iterative and incremental. The iterations
contain three overlapping phases: speculate, collaborate, and
learn. The emphasis is on enabling emergent behavior which
requires simple rules and rich connections between people.
Many of the proposed development practices are
collaboration-oriented and encourage learning. Time-boxed
iterations are used to obtain frequent results and to force
engineering trade-offs. Quality is mainly handled by planning
software in joint application development sessions and
reviewing the implemented software at the end of iterations.

2.2 Crystal Clear

Crystal Clear (Cockburn, 2001; Cockburn, 2002) is a part of
Crystal family which is a set of methodologies developed for

different situations. Each methodology in the family has a
color that represents how much coordination and quality
assurance guidance is provided. Crystal Clear, the
methodology chosen to this study is aimed for small teams
developing software. It is iterative and incremental in nature. It
defines a set of practices that a process must have to be called
Crystal Clear but the exact practices are not strictly defined
and it is possible for example to use practices from other
methodologies in Crystal Clear. The emphasis is on
collaboration and on process tuning by reflection. Frequent
reviewing of software with customers and an on-site customer
are the main quality assurance practices in Crystal Clear.

2.3 Dynamic Systems Development Method

DSDM (Stapleton, 1997) is developed by the DSDM
consortium in the UK and it originates from rapid application
development. It is intended for building business systems
rapidly with fixed time and resources. DSDM relies heavily on
prototyping in most development activities. Prototyping is
used to elicit functional requirements and to develop working
software. DSDM proposes a pragmatic view to quality; the
emphasis is on early validation while technical quality can be
sacrificed. The cornerstones of DSDM are time-boxing and
frequent deliveries. Iterations are time-boxed and contain
several checkpoints and reviews that force a usable delivery at
the end of iterations.

2.4 Extreme Programming

XP (Beck, 2000; Jeffries et al., 2001) is a combination of
engineering practices that support each other when used
together. XP proposes 12 engineering practices and these
practices provide the stability needed in high-change projects.
XP is based on short iterations and incremental development
with constant feedback from both the customer and other
developers. Most of the practices of XP are aimed at quality
assurance and in particular getting timely feedback. XP
provides concrete guidance to its practices and an off-the-shelf
solution. This distinct feature separates it from other agile
methodologies that are described at a more general level.

2.5 Feature-Driven Development

FDD (Palmer & Felsing, 2002) is a modeling oriented
methodology. FDD is based on several best practices and it
emphasizes design and building activities. The requirements
are captured first by constructing a domain object model and
using it as a basis for requirements elicitation. Development
projects start with requirements gathering and planning phases
which are followed by iterative and incremental development.
The development team is divided into feature teams led by an
experienced chief programmer and assisted by class owners
who are less experienced programmers. Design and
implementation phases are separated and the results of both
phases are inspected. Inspections are the main quality
assurance practice but testing is also mandatory.

2.6 Scrum

Scrum (Schwaber & Beedle, 2001) is an agile methodology

T-76.650 SEMINAR IN SOFTWARE ENGINEERING, SPRING 2004

3

that focuses on the management side of software development.
It is based on empirical management and it does not state
engineering practices. Therefore, it can be superimposed on
top of other agile methodologies that provide engineering
guidelines. Scrum process itself consists of development in
iterations called sprints. The requirements are captured in
prioritized order in a product backlog and in a sprint backlog
for the current sprint. Sprint planning and review practices are
described for managing software projects. Daily management
is handled by scrum meetings in which participants answer
three questions regarding what they have done since the last
scrum meeting, what they will do between now and the next
scrum meeting, and what problems they have.

3. ANALYTICAL FRAMEWORK

This paper focuses on quality assurance practices in agile
methodologies. A practice is defined as a recommended
approach, employed to prescribe a disciplined, uniform
approach to the software life cycle (IEEE, 1996). On the other
hand, quality assurance is defined here as a planned and
systematic pattern of all actions necessary to provide adequate
confidence that the product optimally fulfils customers'
expectations, i.e. that it is problem-free and well able to
perform the task it was designed for. Therefore, a quality
assurance practice is a practice aimed for quality assurance as
defined above. Practices that match this definition were
searched from the literature.

Quality is considered as a business value in several agile
methodologies and the goal is that the software is not perfect
but of reasonably good quality. Some agile methodologies use
good enough quality (Bach, 1997) explicitly as their quality
target. For a piece of software to be of good enough quality
means that it has sufficient benefits, it has no critical problems,
the benefits sufficiently outweigh the problems, and in the
present situation, and all things considered, further
improvement would be more harmful than helpful (Bach,
1997). Basically this means that the piece of software is ready
for a delivery to the customer. Agile methodologies emphasize
delivering working software to customers frequently. Thus, the
good enough quality concept is suitable for analyzing how
agile methodologies have used quality assurance practices to
gain confidence that the implemented software is of good
enough quality before deliveries. The properties of good
enough quality are used for analyzing each methodology.

Good enough testing (Bach, 1998) is closely related to good
enough quality but its focus is on the assessment of a certain
quality assurance practice, testing. The good enough testing
concept focuses on the analysis of the accuracy of quality
assessment, costs of testing, information that is gained through
testing and used for decision making, and the timing of these.
These characteristics can be generally analyzed from most
quality assurance practices with the exception of the accuracy
of quality assessment which can be analyzed only from quality
assurance practices that specifically assess quality. Because the
concept is generally applicable and its context is suitable, the

characteristics of the concept are used in the analysis of quality
assurance practices. In addition, it is important to know if the
quality assurance practices have been applied to practice and is
there empirical evidence that they have been successful. To be
applicable in practice and to gain consistent results, the usage
of the quality assurance practices should be instructed
concretely. The characteristics of good enough testing as well
as empirical evidence and concrete guidance are analyzed
from each quality assurance practice.

The accuracy of quality assessment contains coverage of the
assessment as well as its formality. The cost of using a quality
assurance practice will be analyzed either as time per iteration
or as compared to using alternative practices. Information that
is extracted from the application of a quality assurance
practice is analyzed. This can be information that is used either
to make decisions about the readiness of a piece of software or
as an input into other activities. Timing will be explained
either related to activities or generally within an iteration, e.g.
at the beginning of the iteration. If empirical evidence exists
on a quality assurance practice, it will be mentioned and
considered as an advantage in terms of quality assurance
capability. Concrete guidance means that instructions are given
on how to apply the practice, how much it should be applied,
and by whom it should be applied. If these pieces of
information are given, they will be mentioned.

These elements are used to create an analytical framework
for this paper. The framework was chosen because the good
enough concepts are very close to the approach that many
agile methodologies propose to quality assurance. Therefore,
this framework can be used to analyze if agile methodologies
are capable to bring the results they claim from the quality
assurance viewpoint. First, the quality assurance practices are
analyzed separately and then the methodologies are analyzed
from the good enough quality viewpoint.

4. AGILE QUALITY ASSURANCE PRACTICES

Based on the literature study, this section presents what
quality assurance practices were recognized and answers the
first research question: What quality assurance practices are
proposed in different agile methodologies? The findings are
presented in the following with a classification by the purposes
of the practices. First, requirements gathering and validation
practices are analyzed. That is followed by verification
practices and finally practices for achieving internal quality are
analyzed. Summaries of the findings are represented in tables.
Each table presents quality assurance practices, summaries of
analyzing the characteristics stated in the analytical framework
chapter, and methodologies that propose them.

4.1 Requirements Gathering and Validation Practices

Requirements gathering and validation practices answer
what should be done and has the right thing been done. These
are closely connected with customer collaboration which can
be seen as a validation practice. The following requirements
gathering and validation practices were found during the
literature study. The findings are summarized in Table I.

T-76.650 SEMINAR IN SOFTWARE ENGINEERING, SPRING 2004

4

4.1.1 Demonstration of Software
Demonstration of software means that software

implemented during the iteration is demonstrated by executing
the software to customers and management who validate the
results. ASD, Crystal Clear, DSDM, and Scrum suggest using
demonstration of software through executing business
scenarios. In ASD these demonstrations are called customer
focus group reviews but the idea is the same as in the other
methodologies. Demonstration of software is done at a review
point which is at the end of iterations in ASD and Scrum. In
DSDM and Crystal Clear, demonstrations may be held several
times during the iteration. All of these methodologies give
concrete guidance on how these demonstrations should be
conducted and who should be present as well as a few practical
tips. The results of these demonstrations are a list of change
requests and accepted parts of a system. This information is
used for planning the next iteration. The demonstration
sessions last for approximately a day per demonstration. The
assessment of the quality of the software is rather informal and
covers basic business scenarios. Therefore acceptance testing
is required to get an adequate level of confidence of the quality
of the system. No evidence exists that demonstration of
software in review sessions would be better than other
validation techniques.

4.1.2 Joint Application Development
Joint application development (JAD) sessions are

structured, facilitated workshops that bring together cross-
functional people in order to produce high-quality deliverables
in a short period of time (Highsmith, 2000). JAD sessions can
be used to produce many deliverables including requirements
and prototypes. DSDM proposes using JAD sessions for initial
prototyping and requirements gathering. ASD suggests using
JAD sessions for eliciting and outlining requirements as well
as for setting the project’s mission. FDD proposes using JAD
sessions to develop an overall domain model and elicit
requirements from it. JAD sessions are used at the beginning
of iterations. They last usually one day or less and they may be
repeated until the goals have been achieved. Studies have

shown that JAD sessions are a cost effective and fast technique
to develop requirements (Carmel et al., 1992). Concrete
guidance is given on how to prepare and conduct a JAD
session including roles and responsibilities. Evidence exists
(Carmel et al., 1992) that using JAD sessions reduces
requirements and design defects.

4.1.3 Joint Planning Meeting
A joint planning meeting is a requirements gathering

practice used in Crystal Clear, XP, and Scrum. In a joint
planning meeting, customers and developers come together to
discuss requirements, ask questions, and confirm that people
understand the requirements in a similar way. Joint planning
meetings are conducted at the beginning of iterations. Joint
planning meetings last only a day or less except for the
planning meetings of the very first iteration which can take
longer. The cost of using joint planning meetings is relatively
cheap compared to other requirements gathering practices but
the requirements are gathered on a relatively high level. Thus,
all the methodologies that suggest joint planning meetings
suggest also using an on-site customer to achieve the necessary
elaboration of high level requirements. Concrete guidance is
given on roles and responsibilities of the participants of joint
planning meetings. No empirical evidence exists that using
joint planning meetings result in better requirements and
quality than by using other requirements gathering practices.

4.1.4 On-Site Customer
On-site customer is a practice where a customer’s

representative is available for the developers at the
development site full-time. The customer’s representative has
to know what the system should do and the developers should
ask questions concerning requirements when they are not sure
what the system should do exactly. On-site customer is
proposed by XP, Crystal Clear, and Scrum. In addition,
DSDM proposes continuous user involvement which means
together with prototyping that there must be an on-site
customer. Cost of using an on-site customer is high especially
in small projects and this makes its use hard to justify. Part-
time user involvement might be more appropriate from the

TABLE I
REQUIREMENTS GATHERING AND VALIDATION PRACTICES

Practice Coverage and
Formality

Cost Information Timing Concrete
Guidance

Empirical
Evidence

Methodologies

Demonstration of
software

Business
scenarios,
informal

One day per
demonstration

Change requests
and data for
planning next
iteration

At the end of
iterations or in the
middle at
checkpoints

Yes No ASD, DSDM,
Scrum, Crystal
Clear

Joint application
development

Functionality
with some
detail,
facilitated

Few days per
iteration

Requirements At the beginning
of iterations

Yes Yes ASD, DSDM,
FDD

Joint planning
meeting

Functionality
on a high
level,
informal

One day per
iteration

Requirements At the beginning
of iterations

Yes No XP, Scrum,
Crystal Clear

On-site customer Ambiguous
requirements,
informal

Full-time
customer

Confirmation of
ambiguous
requirements

Full-time Not
meaningful

No XP, Scrum,
DSDM, Crystal
Clear

Prototyping Most of the
functionality,
informal

Cheaper than
traditional
methods

Requirements All the time
during
development

No Yes DSDM

T-76.650 SEMINAR IN SOFTWARE ENGINEERING, SPRING 2004

5

cost perspective. Guidance is not given on how much
developers should use the on-site customer but this is an
almost impossible practice to be concretely instructed. Thus,
the lack of concrete guidance is not a problem with this
practice. No empirical evidence exists that using an on-site
customer would improve quality but studies have shown that
the distance between people influences how often they
communicate. One can deduce that an on-site customer should
therefore improve communication and informal validation.

4.1.5 Prototyping
Prototyping is a practice that is used to create quickly a

look-alike of the actual system with limited functionality and
capabilities. DSDM uses prototyping as its requirements
gathering method as well as development method. In DSDM
prototypes are not thrown away, but instead evolved into the
actual system. The development of other agile methodologies
can be seen also as evolutionary prototyping, but prototyping
is considered here as an explicitly defined practice rather than
feedback from incremental deliveries. Using prototyping is
cheaper than spending time on requirements specification in a
traditional way (Boehm et al., 1984). Prototyping is used
throughout the development but concrete guidance is not given
on how prototyping should be done. Empirical evidence exists
in several studies (Gorden & Bieman, 1995) that prototyping
can be used to produce quality software with few defects.

4.2 Verification Practices

Verification practices are intended to check that a given
artifact conforms to its specifications. The verification
practices that were found are summarized in Table II and are
analyzed next.

4.2.1 Automated Acceptance Testing
Automatic acceptance testing means that all acceptance tests

should be automated rather than manually executed.
Acceptance tests are defined by customers as in traditional

acceptance testing. XP and DSDM propose using automated
acceptance testing. Automation must be gained by using tools,
for example record and replay tools for user interface (DSDM)
and tools for executing the system against an application
programming interface (XP). Tests in DSDM should not be
scripted, but rather recorded at the user interface level when
users execute the system. On the other hand, XP relies on
scripted tests that should preferably not be executed at the user
interface but at the application programming interface. Tests
should cover everything that should work like normal
acceptance testing. Costs of using automated testing depend on
the amount of retesting and regression testing compared to
changing existing tests. DSDM’s approach of using non-
scripted tests that are recorded at user interface is a cost
efficient technique because tests are fast to modify and run.
XP’s style of using scripted tests makes updating tests costly
but running the tests cheap compared to manual testing. Passed
tests are used as a measure of project progress in XP. DSDM
uses automated tests mainly to make sure that nothing has
broken, i.e. for regression testing. Automated acceptance tests
should be ready by the middle of iterations in XP and run daily
after that. DSDM uses checkpoints within iterations for timing
acceptance tests. No evidence exists that automated acceptance
tests were superior to manual testing or vice versa. The benefit
of automation in agile methodologies comes from the fact that
software is changed frequently and it is likely that retesting
and regression testing should be done often. Therefore, using
automated tests may save both time and money.

4.2.2 Daily Builds with Testing
Daily builds with smoke and regression testing is a practice

that has been used in the software industry for a long time and
can be considered as a best practice (Cusumano & Selby,
1997). Daily builds refer here to building the whole software
system frequently, at least daily but preferably several times a
day. When the build is completed, it is tested by running

TABLE II
VERIFICATION PRACTICES

Practice Coverage and
Formality

Cost Information Timing Concrete
Guidance

Empirical
Evidence

Methodologies

Automated
acceptance testing

Everything that
should work,
automated

Cheap to run,
costly to create
and update

Project progress
measure,
regression
testing

Tests should be ready
by the middle of
iterations and run at
least daily afterwards

Yes No DSDM, XP

Daily builds with
testing

Varies Usually not
significant but
depends on the
speed of build
and tests

Find integration
and regression
defects

Every day or several
times a day

Varies No FDD, Scrum,
XP, Crystal
Clear

General testing Unknown Unknown Unknown During iterations,
detailed timing left to
developers

No No ASD, DSDM,
FDD, Scrum,
Crystal Clear

Inspections Representative
sections, formal

Good defect
removal-cost
ratio

Find defects
and propose
changes

After inspected artifact
has been completed

Yes Yes ASD, FDD

Pair programming All
programming,
informal

Similar to
programming
alone

Knowledge
transfer, defect
prevention

All the time during
development

Yes Yes XP

Test-driven
development

Everything that
could break,
automated

Similar to
testing
afterwards

Find defects
immediately,
integration
readiness

All the time during
development

Yes Yes XP

T-76.650 SEMINAR IN SOFTWARE ENGINEERING, SPRING 2004

6

usually automated tests that check that the core of the system
works as previously and new features work together with the
old ones. Crystal Clear, FDD, Scrum, and XP propose that
daily builds should be used and the builds should be tested.
Scrum and FDD do not take a stand on how thorough testing
should be done but XP requires that all unit tests should be
run. Crystal Clear suggests automated regression testing to be
used. Costs of using daily builds depend on the time spent on
building and running tests. To decrease the costs XP suggests
making tests fast or even optimizing their execution time
(Jeffries et. al). However, the cost of using daily builds with
testing is likely to pay its costs back by giving feedback early.
Some anecdotal evidence (Karlsson et al., 2000) has been
presented but the effect of using daily builds versus not using
them is left to common sense, although one can guess that
using daily builds is a good way for finding integration defects.

4.2.3 General Testing
General testing refers to many agile methodologies’

approach to testing. They propose that testing should be done
throughout the development but the details are not stated.
General testing covers all types and levels of testing. Because
neither concrete guidance, level of coverage and formality, nor
information to be gathered are given, costs and efficiency of
this kind of testing depend completely on the development
team. Neither can evidence be presented for this kind of
unclearly described practice. ASD, Crystal Clear, DSDM
(except for acceptance testing), FDD, and Scrum have this
approach to testing. They simply state that testing must be
done and suggest doing it regularly throughout the iterations,
but that is all. Crystal Clear proposes using automated tests
that should be run frequently but no concrete guidance is
given. FDD goes as far as suggesting that most organizations
have already a working system testing process and it can be
used as such with FDD (Felsing & Palmer, 2002). However,
no proof for the claim is given. This leaves a major area of
verification open to questions and speculations with the
methodologies that suggest only testing at a general level.

4.2.4 Inspections
An inspection is a formal evaluation technique in which

software requirements, design, or code are examined in detail
by a person or group other than the author to detect faults,
violations of development standards, and other problems. The
participants must prepare for the inspection by inspecting an
artifact beforehand according to inspection guidelines. ASD
and FDD suggest using inspections. FDD proposes both design
and code inspections while ASD suggests only code
inspections. Inspections are used for achieving also internal
quality of the source code as well as promoting knowledge
transfer and learning. FDD and ASD propose using checklists
that determine which kinds of defects inspectors are looking
for. The content of these checklists determine how detailed
and comprehensive assessment of the inspected artifact is
performed. FDD suggests using inspections for representative
sections of each programmer’s source code and only if several
serious defects are found, the other sections of the

programmer’s code are inspected. This reduces costs of using
inspections while keeping the comprehensiveness of quality
assessment high. ASD does not take a stand on what should be
inspected. Several studies have shown that inspections are a
cost-effective practice to find defects (Fagan, 1976; Jones,
1996). In addition, some defects found in inspections are
different from the defects found with testing (Jones, 1996).
Both FDD and ASD suggest doing code inspections directly
after the implementation rather than waiting to the end of
iterations. Both ASD and FDD give concrete guidance on how
to do inspections. In FDD inspections are done within a
feature team while in ASD the participants of inspections are
not as clearly stated. The results of an inspection in both
methodologies are changes suggested to the inspected artifact
and a decision if the artifact is accepted or if it should be
reinspected after the found defects are corrected.

4.2.5 Pair Programming
Pair programming is a practice where programming is done

by two people sitting at a single computer. The other person is
called a driver and his responsibility is to write the code and to
focus on the current matters at hand. The other person is called
a partner or a navigator and his responsibility is to check that
the code written by the driver is correct and to think ahead. XP
suggests using pair programming for all production code all
the time. The cost of doing this is relatively equal to the
traditional way of programming alone according to some
studies (Williams et al., 2000). In addition, using pair
programming has reduced the amount of defects in several
studies (Williams et al., 2000; Jensen, 2003). However, there
is a huge difference in the reduction of defects between these
studies which makes their reliability questionable. Pair
programming is suggested by XP to replace inspections but
few studies (Müller, 2003) have been made that would support
this idea and more studies are needed to justify the
substitution. Pair programming is not used to create
information for decision making but instead reducing defects
and transferring knowledge. Concrete guidance is given on
pairs’ roles and rotation of pairs which is used for achieving
knowledge transfer within the development team.

4.2.6 Test-Driven Development
Test-driven development is a practice in which unit tests are

written before the source code and ran directly after the
implementation is complete. Test-driven development forces
the source code to be testable and guarantees that unit tests are
written. XP proposes using test-driven development for all
production code. XP suggests writing tests for everything that
could break which is a very high coverage. Because tests are
written before source code, the resulting code is different than
if tests were written after the implementation and there is
evidence that test-driven development reduces defects (George
& Williams, 2003; Williams et al., 2003). The cost of doing
test-driven development is relatively similar to writing tests
afterwards (George & Williams, 2003; Williams et al., 2003).
The information from the unit test results is used to determine
whether the implemented code is good enough to be integrated

T-76.650 SEMINAR IN SOFTWARE ENGINEERING, SPRING 2004

7

which requires that the implemented code passes all unit tests.
XP provides concrete guidance on what should be tested. Tests
should be automated which requires tool support.

4.3 Practices for Achieving Internal Quality

In addition to validating and verifying that software
functions as it should, the internal quality of the software must
be taken care of. Internal quality means here mainly
maintainability of software. The practices found are
summarized in Table III and are analyzed next. Some of the
verification practices are also used for the same purpose but
the following practices focus only on internal quality.

4.3.1 Coding Standard
Coding standard is a set of rules that developers must adhere

to and it states how everyone is expected to format the source
code. It contains for example naming and indentation rules.
This practice improves maintainability because everyone is
familiar with the style of source code. Coding standard is used
in XP, Crystal Clear, DSDM, and FDD. The latter two
combine using static analysis tools with this practice to
automate checking that everyone follows the coding standard.
Introducing the use of a coding standard increases
development costs temporarily but as developers get used to it,
the coding standard decreases costs of changing other
developers’ code, e.g. during maintenance. Information as
such is not gathered by using a coding standard but existing
code can be evaluated against a coding standard and parts that
should be fixed may be found out by using e.g. a code
analyzing tool. Crystal Clear, DSDM, FDD, and XP provide
guidance on how to use a coding standard by saying that a
language specific coding standard should be used and state the
main contents that the coding standard should have. Evidence
exists (Fang, 2001) that using a coding standard improves code
quality and makes maintenance of software easier and cheaper.

4.3.2 Collective Code Ownership
Collective code ownership is a practice where anyone can

change any piece of code anytime. XP uses this practice to its
source code. Costs of using collective ownership come from
potential conflicting changes but otherwise it is similar to
using personal code ownership. By using collective code
ownership developers can do changes faster and learn from
what other developers have done. XP guides using a version

control system and active communication among developers
while applying this practice. No evidence exists that collective
code ownership would be superior compared to personal code
ownership but some studies (Nordberg, 2003) discuss different
situations where either one might be a better choice. Crystal
Clear has taken a similar approach and mandates using a code
ownership model which may be collective, personal, or some
other code ownership model.

4.3.3 Personal Code Ownership
Personal code ownership means that the person who writes a

piece of code is responsible for changing and developing the
piece of software in the future as well. This practice is used to
keep the internal quality of the source code at a good level
because it is believed that responsibility makes it more
motivating to keep code quality high. Both Scrum and FDD
suggest using this practice and it should be used always when
programming. Negative cost impacts of using this practice may
occur if changes are postponed when a person responsible for
a piece of software is busy. The benefit of using personal code
ownership is that impacts of doing changes are understood
well and negative impacts can be avoided. Both Scrum and
FDD give simple guidance regarding personal code ownership;
the person who writes the code is responsible for updating it in
the future. As mentioned, there is no evidence that personal
code ownership would be better than the other code ownership
models (Nordberg, 2003).

4.3.4 Refactoring
Refactoring means changing the source code without

changing its observable behavior. XP uses refactoring to keep
internal quality of source code good when code is changed
frequently to avoid degrading code quality. In practice, the
other methodologies may also need to use refactoring but that
is not stated explicitly. Any part of source code can be
refactored anytime when a developer sees an opportunity in
XP. However, XP gives concrete guidance on how and when
to do refactoring which helps to make only important and
helpful refactorings. After refactoring, all the unit tests should
be run and passed like after every change in XP. The cost of
refactoring depends on how often refactorings are done and
how much they improve the source code. If only necessary
refactorings are made, the cost of using refactoring is similar
to development without them because the time spent in

TABLE III
PRACTICES FOR ACHIEVING INTERNAL QUALITY

Practice Coverage and
Formality

Cost Information Timing Concrete
Guidance

Empirical
Evidence

Methodologies

Coding Standard Full code
coverage, formal
(DSDM, FDD),
informal (XP,
Crystal Clear)

Initial adaptation Parts of code that
need to be changed

All the time Yes Yes DSDM, FDD,
XP, Crystal
Clear

Collective code
ownership

Not applicable Potential
conflicting
changes

Knowledge transfer All the time Yes No XP

Personal code
ownership

Not applicable Potential waiting
before changes
implemented

Deep understanding
of impacts of
changes

All the time Yes No FDD, Scrum

Refactoring As needed,
informal

Potential
unwanted changes

Keeping design
simple

As needed Yes Yes XP

T-76.650 SEMINAR IN SOFTWARE ENGINEERING, SPRING 2004

8

refactoring is saved later with better maintainability. No
information is gathered during refactoring but it is used to
keep the design simple and the source code readable. Evidence
exists (Kataoka et al., 2002) that refactoring helps improving
maintainability of source code.

5. METHODOLOGY LEVEL QUALITY ASSURANCE

In this section, the agile methodologies are analyzed from
the good enough quality viewpoint and the implications of the
analysis are discussed. This analysis and discussion answers
the second research question: How does the combination of
these practices within a methodology support achieving quality
from the good enough quality perspective. The methodologies
are analyzed and discussed separately and the results are
summarized in the next chapter. The discussion focuses on
strengths, weaknesses, and applicability of the methodologies
from the quality assurance viewpoint. In addition, ideas are
presented on what areas should be improved within the
methodologies to achieve better overall quality assurance from
the good enough quality perspective. Table IV presents which
quality assurance practices the methodologies suggest to give
an overview of the methodologies’ quality assurance.

5.1 Adaptive Software Development

ASD uses joint application development to make sure that
developers implement features that provide benefits to the
customer. At the end of iterations a demonstration of software
is arranged to make a check that the results actually provide
the benefits that were agreed during joint application
development sessions. ASD uses mainly code inspections to
find out critical problems and enforce internal quality. Testing
is left mandatory but vague because its level and coverage are
not instructed. At the demonstration of software meetings,
benefits and problems should be known and their effects can
be judged. The result of the meeting is a change request list
which is used for further improvement. However, if the
proposed quality assurance practices have been used
thoroughly, the situation at the end of iterations should be such
that benefits sufficiently outweigh problems and further
improvement would not be beneficial from a business point of
view. Thus, at the end of iterations ASD should be capable of
providing software that is of good enough quality.

The strengths of ASD from the quality assurance viewpoint
are that inspections are an efficient and proven technique to
find defects and validation is well handled by combining joint
application development with demonstration of software.
Together these should be enough to achieve confidence that
the piece of software has sufficient benefits and the most
critical problems are found. However, ASD does not provide
guidance on what, how, and how much should be tested. This
is a weakness that must be resolved in an organization using
ASD to have confidence that defects that are not found in
inspections are found in other ways. Because ASD emphasizes
validation rather than verification, from a quality perspective it
is not applicable to life-critical systems, but instead business
systems that can afford defects in software. To improve ASD

testing should be described more concretely or testing from
other agile methodologies could be combined with ASD to
improve the effectiveness of verification.

5.2 Crystal Clear

Crystal Clear relies on the combination of joint planning
meetings and an on-site customer to make sure that
requirements are understood correctly. At the end and in the
middle of iterations, implemented software is validated by
demonstrating the software. If these practices are correctly
used, the product should have sufficient benefits to the
customer at the end of iterations. Crystal Clear relies on
frequent integration and automated regression testing to find
out defects. However, the level and coverage of testing is not
given and this leaves verification vague. Thus, by using only
quality assurance practices of Crystal Clear, the methodology
should be capable of guaranteeing benefits but problems might
not be known. Therefore at the end of iterations, it is hard to
know if the implemented software is of good enough quality.

The strength of Crystal Clear is well-handled validation but
the weakness is poorly described verification. As the creator
(Cockburn, 2002) of Crystal Clear admits, the methodology is
primarily applicable to projects whose quality criteria are loss
of discretionary moneys, not stricter quality requirements.
Other methodologies of the Crystal family are aimed for such
projects. If Crystal Clear was combined with better instructed
verification from other methodologies, its weakness could be
solved. Especially XP suits well with Crystal Clear because it
provides concrete testing guidelines but does not propose
practices that would not be considered as being Crystal Clear.
In addition, the validation practices of these two
methodologies fit well together.

5.3 Dynamic Systems Development Method

DSDM uses mainly extensive prototyping as its
requirements gathering practice. Some formality is gained to
prototyping by using JAD sessions in initial prototyping. In
addition, continuous user involvement and demonstration of
software several times during iterations should be enough to
make sure that the software does what it is intended to and
contains sufficient benefits. Verification and internal quality
are not as well handled. Even though coding standard should
be used for achieving internal quality, design and
maintainability issues are not emphasized. Verification is done
through executing the software at the user interface level and
retesting the same scenarios automatically. Other testing is not
described although the importance of other testing is admitted
by the authors of the methodology. Thus, at the end of
iterations, benefits are well known and problems should not
exist in tested business scenarios. If problems lie elsewhere,
they are not known and therefore DSDM is not capable of
satisfying the criteria of good enough quality.

The strengths of DSDM are proven requirements gathering
and validation techniques. The weaknesses lie in verification
which is left to the development organization to decide upon.
From a quality perspective DSDM suits best in situations

T-76.650 SEMINAR IN SOFTWARE ENGINEERING, SPRING 2004

9

where the correctness and benefits of software can be seen
from the user interface. If DSDM was to be applied to other
types of software, verification practices should be taken from
other methodologies. However, this might not be a good idea
because the methodology is specifically designed for building
user interface centric software and it might not be at its best in
other situations. DSDM could be improved by instructing
testing in more detail and by introducing daily builds.

5.4 Extreme Programming

XP uses joint planning meetings, automated acceptance
testing, and an on-site customer to ensure sufficient benefits.
On-site customer and joint planning meetings are used to make
sure that the developers know what should be done. However,
the only practice that is actively used to make sure that
benefits exist is using automated acceptance testing that has
been instructed by the customer. If the tests cover the
functionality well, it should be possible to make sure that
sufficient benefits exist in the software. To find critical
problems XP proposes test-driven development with
automated unit testing, daily builds with full regression testing,
pair programming, and automated acceptance testing. In
addition, collective code ownership, coding standard, and
refactoring are used to guarantee internal quality. These
practices should be enough to verify that there are no critical
problems in the software. The only doubt comes from the
substitution of inspections with pair programming. Currently
there is only little evidence (Müller, 2003) that this
substitution works which leaves space for speculation.
Anyway, XP has a wide range of quality assurance practices
whose usage is guided concretely which means that XP should
be capable of producing good enough quality software.

The strength of XP is that it has a good balance between the
different quality assurance practices and the most important
areas are covered. There are no obvious weaknesses but
replacing manual validation with automated testing leaves
possibly a gap in the validation. XP can be virtually applied to
any kind of situation that does not require formal proofing of
correctness. Basically this means everything but life-critical

systems. XP could be improved by combining it with other
agile methodologies that have more validation emphasis while
retaining XP’s approach to testing and verification. Potential
methodologies that could be used with XP in this way are
Crystal Clear and Scrum because the fit between the quality
assurance practices is excellent.

5.5 Feature-Driven Development

FDD resembles the waterfall style development in its
approach towards assessing that benefits exist in the software.
JAD sessions are used at the beginning of the project to
develop an overall domain model and elicit requirements from
it. After that point, customers are involved as necessary. The
main purpose of testing and inspections is to verify that the
system meets the agreed requirements. Therefore, making sure
that the software has sufficient benefits is not handled well.
Design and code inspections are used extensively and they are
used for assuring internal quality together with coding standard
and individual code ownership in addition to assessing
functionality. However, FDD does not give guidance on
testing but rather it suggests using the process already in place.
This may be enough to find the critical problems. But because
FDD lacks validation, it does not fulfill the criteria of good
enough quality software at the end of iterations.

The strength of FDD is its well instructed use of inspections
which are a proven technique. The weaknesses are the lack of
validation after initial requirements gathering and vaguely
described testing. Because of these factors, FDD is applicable
to situations where validation is not as important as
verification. To improve validation, FDD could be combined
with practices from other methodologies. Perhaps the best
fitting candidate would be ASD which has a similar approach
to verification but adds feedback and validation in the form of
demonstration of software.

5.6 Scrum

Even though Scrum focuses on the management side of
software development, it proposes several quality assurance
practices that support decision making. Scrum uses joint

planning meetings, an on-site customer,
and demonstration of software during a
review meeting at the end of iterations to
validate and to make sure that sufficient
benefits exist in the software. Scrum
proposes using daily builds with some
testing and some sort of testing
throughout the iterations. Because the
level and comprehensiveness of testing is
not specified, these are not enough to get
confidence that critical problems do not
exist in the software. Because the
knowledge of problems is potentially
vague, Scrum does not fulfill the criteria
of good enough quality.

The strength of Scrum from the quality
assurance point of view is that validation

TABLE IV
QUALITY ASSURANCE PRACTICES BY METHODOLOGY

Quality Assurance Practice ASD Crystal
Clear

DSDM FDD Scrum XP

Demonstration of software X X X X
Joint application development X X X
Joint planning meeting X X X
On-site customer X X X X
Prototyping X
Automated acceptance testing X X
Daily builds with testing X X X X
General testing X X X X X
Inspections X X
Pair programming X
Test-Driven development X
Coding Standard X X X X
Collective code ownership X
Personal code ownership X X
Refactoring X

X = the practice is used in the methodology

T-76.650 SEMINAR IN SOFTWARE ENGINEERING, SPRING 2004

10

is handled well. The weakness of Scrum is that it leaves too
many things open about verification and testing. Therefore, as
the authors of the methodology suggest, Scrum should be
combined with another agile methodology. If Scrum is used
independently, it is applicable to situations where validation is
emphasized and verification is not important. Scrum can be
easily combined with other methodologies because it leaves
most engineering practices open. It is best combined with XP
because the validation practices are easily combined and XP
provides verification practices that Scrum lacks.

6. SUMMARY AND CONCLUSIONS

The aim of this paper was to give an overview of quality
assurance in agile methodologies. A wide range of quality
assurance practices are proposed by agile methodologies as
presented in Tables I-III. The problems are mainly associated
with testing in many methodologies because concrete guidance
and instructions are not given. In addition, there is no evidence
that many of the proposed quality assurance practices have
been applied successfully in practice. Timing is well described
in most practices which is important in the tight development
rhythm of agile methodologies.

Agile methodologies were also analyzed and discussed from
the good enough quality perspective. The results indicate that
most agile methodologies have focused on validation and
making sure that benefits exist in the software at the expense
of verification. The exceptions are XP and FDD that
emphasize verification over validation. Both approaches lead
to problems when it comes to good enough quality that
requires balance between the two. Thus, most of the studied
methodologies are not capable of producing good enough
quality software individually but if quality assurance practices
of different agile methodologies were combined suitably, the
problems could be solved.

However, none of the methodologies had empirical
evidence that the proposed quality assurance practices work
together or even that all of the practices worked on their own.
Therefore, the methodologies should be studied as whole
entities from the quality assurance viewpoint. There is also
room for studying the individual quality assurance practices
especially in the agile context. Another interesting research
topic would be combining quality assurance practices of
different agile methodologies and finding out the impacts
because the methodologies are presently unbalanced. In the
current situation, it is recommended to combine quality
assurance practices of different methodologies in order to get
good enough software delivered to the customer.

REFERENCES

Abrahamsson, P., Ronkainen, J., Siponen, M., Warsta, J., "New Directions on
Agile Methods: A Comparative Analysis", 25th International Conference on
Software Engineering, 2003.

Bach, J., "Good enough quality: Beyond the buzzword", IEEE Computer,
1997, vol. 30, no 8, pp. 96 – 98.

Bach, J., "A framework for Good Enough testing", IEEE Computer, 1998,
vol. 31, no 10, pp. 124 – 126.

Beck K., "Extreme Programming Explained: Embrace Change", Addison-
Wesley, 2000.

Boehm, B., W., Gray, T., E., Seewaldt, T., "Prototyping versus Specifying: A
Multiproject Experiment", IEEE Transactions on Software Engineering, Vol
SE-10, No. 3, May 1984.

Carmel, E., George, J.F., Nunamaker, J.F., Jr., "Supporting joint application
development (JAD) and electronic meeting systems: moving the CASE
concept into new areas of software development", Proceedings of the Twenty-
Fifth Hawaii International Conference on System Sciences, 1992, Volume: iii,
7-10 Jan. 1992, pp. 331 -342 vol.3

Cockburn A., "Agile Software Development", Addison-Wesley, 2001.

Cockburn A., "Crystal Clear: A Human-Powered Methodology for Small
Teams", http://alistair.cockburn.us/crystal/books/cc/crystalclear.zip, 2002,
referenced 25.3.2004.

Cusumano, M. A., Selby, R., W., "How Microsoft builds software", June
1997, Communications of the ACM, Volume 40, Issue 6.

Fagan, M., "Design and Code Inspections to reduce Errors in Program
Development", IBM Systems Journl, Vol 15, no. 3, pp.182-211, 1976.

Fang, X., "Using a coding standard to improve program quality", 2001,
Proceedings.Second Asia-Pacific Conference on Quality Software, pp. 73-78.

George, B., Williams L., "An Initial Investigation of Test-Driven development
in Industry", Proceedings of the ACM symposium on applied computing,
March 2003.

Gorden, V.S., Bieman, J.M., "Rapid prototyping: lessons learned", IEEE
Software, Volume: 12 Issue: 1, Jan. 1995, pp. 85-95.

IEEE, "IEEE guide for software quality assurance planning", IEEE Std.
730.1-1995, 10 April 1996.

Highsmith J., "Adaptive Software Development: A Collaborative Approach to
Managing Complex System", New York, Dorset House Publishing, 2000.

Jeffries R., Anderson, A., Hendrickson, C., "Extreme Programming Installed",
Boston: Addison-Wesley, 2001.

Jensen, R. W., "A Pair Programming Experience", CrossTalk, The Journal of
Defense Software Engineering, March, 2003.

Jones, C., "Software defect-removal efficiency", IEEE Computer, April 1996,
Volume: 29 Issue: 4, pp. 94-95.

Karlsson, E.-A., Andersson, L.-G., Leion, P., "Daily build and feature
development in large distributed projects", 2000, Proceedings of the 2000
International Conference on Software engineering, pp. 649-658.

Kataoka, Y., Imai, T., Andou, H., Fukaya, T., "A quantitative evaluation of
maintainability enhancement by refactoring", 2002. Proceedings of the
International Conference on Software Maintenance, 3-6 Oct. 2002.

Müller, M. M., "Are Reviews an Alternative to Pair Programming?",
Conference on Empirical Assessment In Software Engineering, April 2003.

Nordberg, M. E., III, "Managing code ownership", Software, IEEE , Volume:
20 Issue: 2 , March-April 2003, pp. 26-33.

Palmer S. R. and Felsing J. M., "A Practical Guide to Feature-Driven
Development", 2002.

Schwaber K, Beedle M., "Agile Software Development With Scrum", Upper
Saddle River, NJ: Prentice-Hall, 2002.

Stapleton J., "Dynamic systems development method – The method in
practice", Addison-Wesley, 1997.

Williams, L., Cunningham, W., Jeffries, R., Kessler, R., "Strengthening the
case for pair programming", IEEE Software, 2000, vol. 17, no 4. pp. 19-25.

Williams, L., Maximilien, M., Vouk, M., "Test-driven development as a
defect-reduction practice", 14th International Symposium on Software
Reliability Engineering, 2003, 17-20 Nov, pp. 34 - 45.

