
T-76.5650 SEMINAR IN SOFTWARE ENGINEERING, SPRING 2006: Implementing SOA in an ESB Framework

1

Abstract—this study is an introduction to Service Oriented
Architecture (SOA) and Enterprise Service Bus (ESB). It starts
from business needs; why are SOA and ESB needed in the first
place. Main concepts, related technologies and benefits of SOA
will be introduced. Two typical software engineering problems
are taken as practical examples that could be solved with SOA –
in this case ESB-driven Web Services. For selecting the ESB
framework, an evaluation of the ESB products on the market is
conducted. The approach is practical: two implementations will
be done with the selected frameworks.

Index Terms— Service Oriented Architecture (SOA), Web

Services (WS), Enterprise Service Bus (ESB), Simple Object
Access Protocol (SOAP)

GLOSSARY
EJB Enterprise Java Bean
ESB Enterprise Service Bus
EAI Application Integration
J2EE Java 2 Enterprise Edition
JBI Java Business Integration
JCA J2EE Connector Architecture (also J2CA)
JMS Java Message Service
JNDI Java Naming and Directory Interface
MOM Message Oriented Middleware
PTP Point to Point (also P2P)
QoS Quality of Service
RPC Remote Procedure Call
SOA Service Oriented Architecture
SOAP Simple Object Access Protocol
UDDI Universal Description, Discovery and Integration
W3C World Wide Web Consortium
WS Web Service
WSDL Web Service Description Language
XML eXtensible Markup Language
XSLT eXtensible Stylesheet Language Transformation

Concepts to be explained:

Adaptor
Asynchronous
Auditing
Bean (EJB, XML)
Bridge
Broker
Channel
Cluster
Container (EJB, ESB)
Endpoint
Legacy Application

Listener
Loose Coupling
Message
Orchestration
Persistence
Point-to-Point
Publish-and-Subscribe
Routing
Scalability
Schema
Service
Store-and-Forward
Synchronous
Transformation
XPath

1. INTRODUCTION

1.1 Description of the Environment
As a motivation to this study, we begin by introducing the

company and the various challenges it is facing. For security
reasons, the company and its projects that are discussed are
not mentioned by name. The company is simply referred to as
“the company” and projects are named “Project D” and
“Project M”. Everything is based on reality, but some parts of
the environment and the projects are deliberately simplified
and generalized, to keep the focus in the essential things.

Although the aim is to solve the problems of this company,
the discussion is kept in a generic enough level to be applied
to other environments.

The company in its current form is the result of a recent
merger that united many smaller companies working in the
same business area. This has created a highly heterogenic
environment; the company is distributed geographically and
organizationally. Although the company is working with one
name, it is divided into 21 sites in 8 countries, all of which
have their own projects, processes, technologies, tools and
methods of working. Also the projects inside one site are
somewhat independent of each other, but sometimes would
benefit from reuse between them.

From the technological point of view, the types of variation
between the sites are numerous. Within the company, various
types of architectures, platforms, frameworks, applications,
tools, and programming languages are used. In most cases,
there are no common interfaces to help inter-operation
between the systems. The situation is acknowledged and the
direction is towards integration, but the change is slow.
Concrete actions are needed to help this process and leverage
the existing solutions. Integration is the actual issue that this

Implementing SOA in an ESB Framework
Miikka Lötjönen

T-76.5650 SEMINAR IN SOFTWARE ENGINEERING, SPRING 2006: Implementing SOA in an ESB Framework

2

study addresses; two example scenarios are taken into closer
inspection.

1.2 Project D Overview and Problems
The company is in service business; both of the discussed

projects will result in a service for end users. The end product
of project D is a java-based application, running on an
application server. The importance of the service that this
application is providing is growing in various other projects of
the company, and it is necessary to make it more accessible
from various different systems. The goal is also to make
servers easily replicable, add a possibility for clients to use
multiple servers, and extend to support command line
interface. The main problem is therefore accessibility.

The problem is that if this kind of extensions to support
new ways to access the system is implemented in the
traditional methods, each additional access method will
produce extra cost, extra work and extra maintenance. In the
worst case, the new applications must be implemented as
separate applications. New interfaces and data exchange
methods have to be introduced. Maintenance costs will grow
as new components with dependencies to the old ones are
introduced.

All of the things mentioned above add to the complexity of
the product. A good solution would be if it was possible to use
the same application for everything, and interact with many
different clients through the same interfaces. Even a better
solution would be if these interfaces were standard-compliant.
Much of the effort could be saved through using standard off-
the-shelf tools to handle the interaction between the server and
clients.

1.3 Project M Overview and Problems
The corporation has an online portal with all the

applications bundled into the same platform. Now a new
project created in a subsidiary of the corporation needs to
connect to this system, to be able to access customer
information etc.

The portal is running on a commercial J2EE application
server that the Project M will not be using, and there are no
ways to access the databases from the outside. To add a bit
more challenge, the operation platform for the new project is
yet to be defined. An inter-organizational, platform
independent, and very scalable A2A solution is needed. The
main problem in Project M is therefore integration.

1.4 Field of study
For both of these tasks, Service Oriented Architecture

(SOA) seems to offer a good starting point, and it is actually
the basis of the corporate-wide reference architecture.

SOA is and architectural style whose goal is to achieve
loose coupling among interacting software clients. (viite
jostain ns. Arvostetusta julkasusta) The main business drivers
of SOA are flexibility and efficiency. Flexibility comes mostly
from the abstraction that an SOA offers. Efficiency is the
result of using standards-based approach and reuse. SOA and
the related concepts and technologies are introduced in

chapter 4.
A Web Service is of the possibilities to implement SOA.

Enterprise Service Bus (ESB) is a Service Oriented
Architecture that can be implemented with an ESB
framework.

In both projects it was decided that a Web Service would be
implemented, but the developers weren’t yet assigned for this.
After some discussions it became my responsibility to learn
about the subject, make a decision about the framework to be
used, and then develop the services.

2. OBJECTIVES AND SCOPE OF THE STUDY

2.1 Objectives
The primary objective is to investigate and report the

possibilities of Web services, SOA and ESB. The secondary
objective is to present practical solutions to practical
problems: 1. ESB framework selection, and 2.
implementations of two example scenarios.

Besides this paper to be published, the study process will
also produce source code architectural descriptions as
deliverables to the company.

2.2 Research questions
1. What are the needs and problems of the current

environment (i.e. architectures, tools and methods
currently used in the projects)?

2. How can the current environment be improved
through SOA and ESB?

3. What are the requirements for an ESB framework?
4. Which ESB framework would be the most suitable?

2.3 Scope
The research paper started with a short introduction to the

projects and their needs, followed by some discussion about
the reasons that drive this change towards SOA. The reasons
will be further discussed and later on used as bases when
defining criteria for the evaluation.

Due to the broad range of possible themes, neither SOA nor
Web Services will be covered extensively. There will be an
introduction to both themes that will serve as the motivation
for doing things “the SOA way” in these two example
projects. Enabling technologies such as XML and SOAP will
be discussed in the detail that is necessary to describe the
overall functionality of Web Services.

ESB will be introduced through its relation to SOA. ESB
frameworks will be introduced from two viewpoints; first
describing them in generic terms, and then finding out how
they fulfil the company-specific and project-specific needs.

The details of the ESB frameworks are left outside the
scope. Although the practical part includes digging pretty
deep into the products, the findings are covered only in the
extent that is needed to make the conclusions about which
software package to use. The documentation and examples
that are available online, will be referred to, but not described
as a whole.

T-76.5650 SEMINAR IN SOFTWARE ENGINEERING, SPRING 2006: Implementing SOA in an ESB Framework

3

Although the research will result in source code and
architectural descriptions for both example projects, these will
not be provided except for generic principles behind them.

3. RESEARCH METHODS AND STRUCTURE OF THE REPORT
The structure of the paper is briefly described, linking it to

the objectives of the study and research methods.
The paper will be a constructive study that addresses both

theoretical and practical issues. It is roughly divided into
literature study and empirical work, but due to the practical
nature of the subject, the themes will undoubtedly overlap.

The approach to the theme is practical. During the study
process I came to realize that there is a great deal of general
information about SOA and software architectures. Also there
are plenty of documents in practical level, such as tutorials on
how to implement web services.

If you are new to the field, many times the generic
descriptions are too general to serve as understandable
introductions, and the technical details are too narrow and
detailed to provide the overall view. I figured that there is a
gap to fill in. I wanted to present the big picture, starting from
ideological principles, presenting the essential things that are
needed to know and wrapping the presentation up by
implementing useful things following these principles.

3.1 Literature Study
The literature study is an overview of SOA, ESB and

related technologies. Chapter 4 serves as introductory material
to the problem domain, introduces the challenges in traditional
methods and explains the benefits of SOA. The following
chapter 5 is a short market overview of SOA product support.

Now that some background information has been provided,
chapter 6 gives an overview of Enterprise Service Bus and the
implementing products. The relation to SOA is explained,
together with illustrations and examples. The chapter prepares
for the practical part of the study, by giving criteria and
reasoning for ESB product selection. Two candidates will be
selected for further inspection.

Addressed research questions:
- Question 2 in chapter 4.2
- Question 3 in chapter 7.1

3.2 Empirical Work
The case company, projects and problems have already

been analyzed in chapter 1. Most of the actual empirical
material is presented in chapter 7 in the form of evaluation
between two ESB framework candidates. Most of the
discussion is based on the example scenarios that are
implemented.

Addressed research questions:
- Question 1 in chapter 1
- Question 4 in chapter 7

4. SERVICE ORIENTED ARCHITECTURE OVERVIEW

4.1 Introduction
Service oriented architecture is actually nothing new. It is

more of a collection of principles and a way of thinking than a
real technology. (He 2003) explains SOA quite well, with
examples.

List basic concepts, benefits and drawbacks.
(Doernhoefer 2005) is a very high-level description about

SOA and online resources concerning SOA. Another good
source of basic information is IBM’s (Gottschalk et al. 2002).

4.2 Why SOA?
• Company-wide benefits
• Project D benefits
• Project M benefits
• (Moad 2005)describes the benefits of SOA.
• (Linthicum 2003) describes application integration

through Web Services
• (Leymann, Roller & Schmidt 2002) introduces SOA

from the business perspective

4.3 SOA and Patterns
Many features of a SOA can be described by using design

patterns. There are many types of patterns, for different uses.
(Hohpe, Woolf 2005) introduces an extensive set of Enterprise
Integration Patterns that are the basis for many SOA/ESB
concepts, for example messaging patterns.

4.4 SOA and Java Enterprise Edition
SOA is often mentioned in java context. This is only

because of Java’s popularity as a programming language.
SOA itself is an architectural style, and is not bound to any
programming language or protocol. As mentioned before,
SOA doesn’t even have to be implemented with an object
oriented language; internal details of the services are ignored.
Focus is on component level, interfaces, architectures and
integration approach.

4.5 SOA and Web Services
• A short introduction to Web Services, referencing to

(Alesso, Smith 2005).
• A bit more technical point of view in (Farrell, Kreger

2002).
• Mentioning Semantic Web as described in (Daconta,

Orbst & Smith 2003) and (Korotkiy, Top 2006).

4.6 SOA and Supporting Standards
Extensible Markup Language (XML) has become very

popular as a data exchange language, and it is not a big
surprise that it is also an essential part of many SOA
implementations. XML is a simple, text-based, generic use
markup language that is used to describe data through user
defined tags. XML is a cross-platform, software and hardware
independent tool for transmitting information. The universal
nature of XML is also the biggest strength of the language; it
can essentially describe anything you want.

The grammar that defines the allowed tags and their

T-76.5650 SEMINAR IN SOFTWARE ENGINEERING, SPRING 2006: Implementing SOA in an ESB Framework

4

relations is described in separate documents, Either Data Type
Definitions (DTD) or XML Schema Definitions (XSD) that
are defined in (W3 Consortium 2006). XML The focus is on
Schema because it is more expressive and the current W3C
recommendation. Schemas can be used as sort of agreements
between remote applications, and also the validity of the
messages can be verified by checking the received XML
message against its Schema.

XML helps in transfer of arbitrary data, but still it is just a
data storage format. A communications protocol is needed to
provide the actual transfer services. Also this can be
implemented in XML: Simple Object Access Protocol
(SOAP) is a commonly used communications protocol that
delivers XML-encoded SOAP messages on top of HTTP
protocol. It is a platform and language independent way to
communicate between applications and send messages.

For describing web services, there is a separate language,

Web Services Description Language (WSDL), which is also
XML-based. Due to limited space, I will not introduce more
code examples. An example of a WSDL and related SOAP
envelopes can be found from (Prud'hommeaux 2001).

For locating the services, there is a protocol called UDDI
(Universal Description, Discovery and Integration).

4.7 SOA Criticism
SOA is a nowadays a fairly well-known way of thinking,

but it does not solve all the problems of developing complex
systems.

The first obstacle is that it takes time to learn it. While
learning, the solutions may be far from perfect; it is easy to
misunderstand or misuse the tools. When starting from an
object-oriented viewpoint, designing a SOA requires a slight
change of mindset, and the process can be time consuming.

It is not self-evident where to use SOA approach and where
not. In some cases, such as some time-critical real-time
systems, it may not work at all.

Reusable services sound very good in principle, but in
practice, the maintenance may turn out to be more of a
challenge than expected, especially if the services go through
lots of changes.

5. SOA PRODUCT SUPPORT
It is possible to implement an SOA from scratch, but there

are also standard based tools to help with the process.

5.1 J2EE Application Servers
General description. Motivation is that these will be used in

the project M, and also that these products are common
platforms for SOA development. Include references to all the
company websites (currently not listed in the references).

Most of the major vendors of application servers and
similar products have introduced or announced to introduce
their ESB solution.

• BEA Weblogic
• IBM WebSphere (referencing (Cuomo 2005))
• Oracle Application Server
• Visual Studio .NET
• JBoss
• Caucho Resin
• Apache Tomcat

5.2 Middleware
• What is the purpose of middleware?
• Some architectural diagrams
• ESB frameworks, general description about what

ESB is. Based on (Chappel 2004).
• Apache Axis, implementation of the Simple Object

Access Protocol (SOAP).

5.3 Other tools
While the commercial development software packages

normally come with a extensive set of tools, the situation with
open source development is a bit different.

Usually things can be done with very basic tools but the
workload can be dramatically decreased with proper tools.
There is no point in writing hundreds of lines of XML with
notepad, if there is a good XML editor available, or better yet,
a tool that will write these XML files for you.

XML Spy is a great tool when writing XML code. It
simplifies work and takes care of many routine tasks, such as
creating schemas for XML-documents.

Eclipse is a popular, free and powerful integrated
development environment (IDE) that has a wide and active
community extending the functionality by developing Eclipse
plug-ins. The number of plug-ins is impressive, with new ones
being developed all the time. From the ESB point of view,
Eclipse is a good platform also; many vendors have their
future tools implemented as Eclipse plug-ins. For example
Mule IDE, ServiceMix IDE, and even the upcoming BEA
Weblogic Workshop 9.2 are Eclipse plug-ins.

6. ESB FRAMEWORKS

6.1 What is an ESB?
ESB is not an easy term to define. Just like with SOA, the

definitions vary a lot from person to person, and from vendor

<?xml version="1.0"?>
<soap:Envelope
xmlns:soap="http://www.w3.org/2001/12/soap-
envelope"
soap:encodingStyle="http://www.w3.org/2001/12/soa
p-encoding">
<soap:Header>
 ...
 ...
</soap:Header>
<soap:Body>
 ...
 ...
 <soap:Fault>
 ...
 ...
 </soap:Fault>
</soap:Body>
</soap:Envelope>

T-76.5650 SEMINAR IN SOFTWARE ENGINEERING, SPRING 2006: Implementing SOA in an ESB Framework

5

to vendor. (Silver 2004) discusses this confusion.
In most publications, ESB is seen as a lightweight

alternative to monolithic and centralized Enterprise
Application Integration (EAI) broker architecture. An ESB
framework is an example of Message Oriented Middleware
(MOM).

According to (Silver 2004), an ESB has these four essential
capabilities:

1. Universal connectivity of services via XML messaging,

interconnecting requesters and providers across diverse
platforms and data models, providing a common backbone for
requests, messages, and events.

2. Vendor-independent communications standards, such as
SOAP and Java Messaging Service (JMS).

3. Quality of service features, including reliable delivery,
transaction management, and scalable performance.

4. Service mediation features, providing loose coupling
between requesters and providers.

A list of common characteristics (adapted from (Chappel

2004)) follows:
• Pervasiveness, serves for building integration

solutions that can span through the whole
organization

• Highly distributed, event driven SOA.
• Selective deployment of integration components.

Adapters, distributed data transformation services,
and content-based routing services can be
selectively deployed when and where they are
needed

• Security and reliability are basic functionalities of
ESB messaging

• Orchestration and process flow, for managing both
local and remote services.

• Autonomous yet federated managed environment,
brought by loose coupling.

• Incremental adoption. An ESB can be used for
small projects by separately adding them to the
ESB.

• XML as a native data type
• Real-time insight. For example monitoring the

data.

6.2 Why ESB
• General Description of ESB Pattern, using

(Newcomer, Lomow 2004) chapter 4.
• Benefits

6.3 Available ESB Framework Products
• Commercial Products

o BEA Aqualogic Service Bus
o Oracle ESB
o IBM WebSphere ESB (referencing (Cuomo

2005))
o Fiorano ESB (50 000€ / processor)

o Sonic ESB (10 000€ / processor)
o Cape Clear ESB

• Open Source Products
o SymphonySoft Mule
o Apache ServiceMix (JBI)
o Project Open ESB
o Sun Java Enterprise Service Bus (JBI)

These are just examples of ESB offerings, and for sure not

the only possibilities. In addition, for example Microsoft
Visual Studio .NET and BizTalk can also be used in a fashion
similar to ESB.

The power of commercial ESB products is that they can be
integrated easily to the other products of the same vendor.
One might imagine that this leads to faster learning due to the
similarity of concepts, easier coordination of projects’
components because of well-defined and well-known
interfaces, and more automated and streamlined development
because of well-thought integration between the tools.

The definite downside of the commercial products is that
they are costly. When making decisions about integrating all
the systems of the company into an ESB solution, investing
tens of thousands of euros for an ESB framework may be
justified, but for a proof-of-concept application or a single
task, it does not seem feasible. This is why all commercial
products are excluded from this evaluation.

6.4 Selection of Two Candidates for Evaluation
Based on previous discussion, two ESB frameworks are

selected for further evaluation. Since the two example
implementations are pilot projects by nature, the company
does not want to invest in the ESB framework, especially
since good open source candidates are available. In this case
there are at least two good free options, SymphonySoft Mule
and Apache ServiceMix.

Mule is based on Universal Messaging Objects (UMO),
while ServiceMix is slightly more Java-oriented with its Java
Business Integration (JBI) approach. Both frameworks are
feature-rich, and include support for various types of
messaging through generic endpoints. Both are java
frameworks, but as ESB products they support applications
written in any other language. Essentially, they are made for
the same purpose, but solve the problems in slightly different
ways. They can also be made to co-operate; Mule has a JBI
binding that enables it to interact with ServiceMix JBI
container, and also Mule code can be reused in ServiceMix
just like any other JBI components.

In addition to these two open source products, a commercial
option may be evaluated later on. The company is evaluating
BEA Weblogic to be the future development platform, and
considering this, it may make sense to invest in BEA
Aqualogic Service Bus. Since Weblogic already supports
many features that ESB frameworks offer, there is no hurry to
do this either. Also open-source frameworks can be used with
Weblogic. ESB products are mostly used with existing
applications. This means that if the need arises, migration to

T-76.5650 SEMINAR IN SOFTWARE ENGINEERING, SPRING 2006: Implementing SOA in an ESB Framework

6

use the Aqualogic ESB should not be difficult. The benefits of
an ESB increase when the framework is used throughout the
company.

6.5 ESB Frameworks Feature Comparison
In terms of technology support, the two are almost

identical. No critical differences can be found. Both either
currently support or will support soon most of the major
technologies.

Based on (ServiceMix.org 2006) some differences can be
found, though. The biggest difference is in the approach: Mule
existed well before ServiceMix, which started as a Java
Business Integration (JBI) container and extended into a full
ESB.

Mule started before JBI even existed, and a new API called
UMO (Universal Messaging Objects) was introduced. Mule’s
architectural design is based on a services container and
configuration of message endpoints.

Mule is endpoint centric, while ServiceMix also offers
integration to Apache Geronimo Application server.

In practice, many differences will probably come up due to
the different approach. But on paper, both products have a
similar feature set.

7. EMPIRICAL EVALUATION OF SELECTED ESB FRAMEWORKS

7.1 Basis for Evaluation
Criteria Reason
Compatibility with
current technology
(“legacy systems”)

This is actually the reason why
ESB is taken into use

Compatibility with the
technology of future
products

To not start using something that
cannot be used with future
products

Learning curve Many people will need to learn to
use the framework, and it should
not cause much extra work.
Quality of documentation is also a
thing worth noting.

Extendibility and
flexibility

The technologies of future
projects are yet to be undefined,
and the framework should stretch
to fulfil the future needs

Robustness The services that will be running
on the ESB are critical for the
success of the company. In many
cases, 99,999% uptime is required.
The ESB must be stable enough to
meet these requirements.

Performance Many of the systems that the
company is developing are
performance-critical, both in terms
of throughput and response time.
The ESB should not add too much
extra overhead.

Performance and robustness testing would require so much

effort that it can not be done in the timeframe of this paper.
They are important things, but for now it is assumed that the
serious candidates (that are in production use in many
companies) will meet the requirements.

7.2 Experience from practice
As mentioned before, starting learning SOA and ESB

without any training, just reading online materials is not
necessarily easy. Both from ideological and practical
perspectives, it is a bit of a challenge at first.

My first attempt designing a SOA ended up with nothing
but a series of synchronous Web services that were point-to-
point remote procedure calls (RPC) in nature, and actually the
system didn’t benefit at all from the ESB. It didn’t perform
content based routing, message brokering, or in fact any of the
advanced features that make ESB worthwhile.

Also the first steps writing XML Schemas, WSDL files and
ESB configuration files by hand can prove to be trickier than
it sounds when started from zero. Once you start
understanding how everything works, it becomes more routine
and you learn things that save time.

7.3 Suitability for Project D
Due to schedule-related reasons, ESB could not be tested

with project D.

7.4 Suitability for Project M
Some preliminary testing has been done with project M and

it seems that both of the frameworks would be equally
functional, with Mule maybe being a bit easier to implement.

7.5 Subjective Evaluation
ServiceMix with its JBI support is a natural step for

companies that have their current products running with Java.
Mule is configured by its own configuration files, making it a
bit “less standard”, but in the other hand, this approach makes
the service orchestration almost invisible. No special
annotations or any other ESB-specific things need to be
programmed in java code. This is closer to the “ESB spirit” of
favouring configuration over programming. The framework is
the invisible glue that connects the endpoints together, but is
separated from the implementation.

In the end, both candidates are viable solutions; they have
been proven to do their work well in practice. In terms of
development work, they are both in a mature state, and still
evolving rapidly. Their support for different technologies is
similar; both of them can be used with the existing software in
the company. One might even say that it is a matter of taste
which one to start using.

An important thing in this case is the learning curve.
Neither of them is really difficult to learn, but it takes time,
and many questions arise on the way. Mule has already been
successfully used in one branch of the company, so if
problems with Mule occur, there is “support personnel” that
may be able to help in the same building.

• Ease of use, learning curve
• Intuitive interfaces

T-76.5650 SEMINAR IN SOFTWARE ENGINEERING, SPRING 2006: Implementing SOA in an ESB Framework

7

• Programming model

8. RESULTS
Answers to research questions are still mostly open at this

point of the study when not all the necessary practical parts
have been done.

8.1 Selection of the Framework with Rationale
To sum up chapter 7, a final selection of a framework will

be made.
Mule is selected as the framework for doing the new proof-

of-concept implementations. This is partly because of its
features, but mostly because there is more Mule-experience in
the company. Since I started experimenting with Web services
in Mule framework, I got familiarized with it first.

8.2 Two Example Implementations Using an ESB Framework
This chapter will introduce the implementations as UML

diagrams and architectural drawings in the detail that is
needed to give a practical view of the benefits and
functionality of ESB frameworks. Some excerpts of source
code will be generalized and explained.

9. SUMMARY AND CONCLUSIONS
Conclusion will gather the lessons learned during the study

and sum up the results from Chapter 8.

REFERENCES

Alesso, H.P. & Smith, C.F. 2005, Developing Semantic Web
Services, 1st edition edn, A K Peters, Canada.

Chappel, D. 2004, Enterprise Service Bus, 1st edition edn,
O'Reilly, United States of America.

Cuomo, G.(. 2005, "IBM SOA "on the edge"", SIGMOD '05:
Proceedings of the 2005 ACM SIGMOD international
conference on Management of dataACM Press, , pp.
840.

Daconta, M.C., Orbst, L.J. & Smith, K.T. 2003, The Semantic
Web: A Guide to the Future of XML, Web Services, and
Knowledge Management, 1st edition edn, Wiley
Publishing, United States of America.

Doernhoefer, M. 2005, "Surfing the net for software
engineering notes", SIGSOFT Softw.Eng.Notes, vol. 30,
no. 6, pp. 5-13.

Farrell, J.A. & Kreger, H. 2002, "Web services management
approaches", New Developments in Web Services and E-
commerce, vol. 41, no. 2, pp. 212-227.

Gottschalk, K., Graham, S., Kreger, H. & Snell, J. 2002,
"Introduction to Web services architecture", New
Developments in Web Services and E-Commerce, vol.
41, no. 2, pp. 170-178.

He, H. 2003, 2003-09-30-last update, What Is Service-
Oriented Architecture [Homepage of www.xml.com],
[Online]. Available:
http://www.xml.com/pub/a/ws/2003/09/30/soa.html
[2006, 2006-04-22 19:22] .

Hohpe, G. & Woolf, B. 2005, Enterprise Integration Patterns,
5th edition edn, Pearson Education, USA.

Korotkiy, M. & Top, J. 2006, "Onto-SOA: From Ontology-
enabled SOA to Service-enabled Ontologies",
Telecommunications, 2005. AICT-ICIW '06.
International Conference on Internet and Web
Applications and Services/Advanced International
Conference on, vol. vol. 00, no. -, pp. 124-131.

Leymann, F., Roller, D. & Schmidt, M.T. 2002, "Web
services and business process management", New
Developments in Web Services and E-commerce, vol. 41,
no. 2, pp. 198-211.

Linthicum, D.S. 2003, Next Generation Application
Integration - From Simple Information to Web Services,
2nd edition edn, Addison-Wesley, United States of
America.

Moad, J. 2005, "Software architecture", Managing
Automation, vol. 20, no. 5, pp. 28-30.

Newcomer, E. & Lomow, G. 2004, Understanding SOA with
Web Services, 1st edition edn, Addison-Wesley, United
States of America.

Prud'hommeaux, E. 2001, 2001-03-26 11:12:20-last update,
Annotated WSDL Examples [Homepage of W3
Consortium], [Online]. Available:
http://www.w3.org/2001/03/14-annotated-WSDL-
examples.html [2006, 2006-04-22 23:22] .

ServiceMix.org 2006, 2006-01-01 00:00:00-last update, How
does ServiceMix compare to Mule? [Homepage of The
Apache Software Foundation], [Online]. Available:
http://servicemix.org/How+does+ServiceMix+compare+
to+Mule [2006, 2006-04-21 13:12] .

Silver, B. 2004, Enterprise Service Bus Technology for Real-
World Solutions, Bruce Silver Associates.

W3 Consortium 2006, 2006-02-05 16:44:46-last update,
Extensible Markup Language (XML) [Homepage of
W3C], [Online]. Available: http://www.w3.org/XML/
[2006, 2006-03-16 12:31] .

LIST OF FIGURES

