Manufacturing Systems – vertical integration and use of information in operations and maintenance

Tik-86.5141 Enterprise Systems Architecture - Lecture 28.9.2005
Kari Koskinen

Contents of the lecture

- Vertical integration and use of information in production and maintenance related business processes
- Reference models of enterprise control system integration (ISA-95)
- Automation systems (DCS) in the factory floor
- MES, Manufacturing Execution System
- Vertical integration between ERP, MES and DCS – interface technologies
- OPC technology in systems integration
- System for field device configuration and condition monitoring (Metso FieldCare)
- Reference model for condition based maintenance (MIMOSA: OSA/CBM)
- Integration of Operations and Maintenance (O&M) related information, Condition Based Operations (MIMOSA: CBO) for Manufacturing
- Conclusions
Manufacturing Systems – vertical integration and use of information in production and maintenance

• **Customer order delivery process:**

 Use of automation system information can improve production and its control. This results to better management and profitability of the whole customer order delivery process.

• **Maintenance process:**

 Use of automation system and condition monitoring system information enables fault diagnosis and predictive maintenance.

 Predictive maintenance can reduce maintenance cost and improve the availability of the production system. The overall profitability of operations and maintenance can be increased.

Reference models

ANSI/ISA-95.00.01-2000
Enterprise-Control System Integration
Part 1: Models and Terminology

Hierarchy models that describe the levels of functions and domains of control associated within manufacturing organizations are defined in clause 5. These models are based on The Purdue Reference Model for CIM, referenced as PRM; the MESA International Functional Model; and the equipment hierarchy model from the IEC 61512-1 (ANSI/ISA-88.01-1995) standard.

A data flow model that describes the functional and data flows within manufacturing organizations is defined in clause 6. This model is also based on The Purdue Reference Model for CIM.

An object model that describes the information that may cross the enterprise and control system boundary is defined in clause 7.
Why reference models?

Reference models are useful for establishing concepts and terminology in the field and they can help:

- **End-users that manufacture products:**
 - What functions can and must be required from commercial information systems.

- **Equipment and system vendors:**
 - What kind of systems, subsystems and components can be offered to the market and how to introduce their functions and benefits.

- **Engineering companies and system integrators:**
 - How to integrate customer specific solutions from systems and components that are in the market.

ANSI/ISA-95.00.01-2000
Enterprise-Control System Integration
Part 1: Models and Terminology

Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Scope</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>Normative references</td>
<td>13</td>
</tr>
<tr>
<td>3</td>
<td>Definitions</td>
<td>13</td>
</tr>
<tr>
<td>4</td>
<td>Enterprise-control system integration overview</td>
<td>16</td>
</tr>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>16</td>
</tr>
<tr>
<td>4.2</td>
<td>Criteria for inclusion in manufacturing operations & control domain</td>
<td>17</td>
</tr>
<tr>
<td>5</td>
<td>Terminology</td>
<td>18</td>
</tr>
<tr>
<td>5.1</td>
<td>Scheduling and control hierarchy</td>
<td>18</td>
</tr>
<tr>
<td>5.2</td>
<td>Equipment hierarchy</td>
<td>22</td>
</tr>
<tr>
<td>6</td>
<td>Functions</td>
<td>27</td>
</tr>
<tr>
<td>6.1</td>
<td>Functions</td>
<td>27</td>
</tr>
<tr>
<td>6.2</td>
<td>Information flows</td>
<td>34</td>
</tr>
<tr>
<td>7</td>
<td>Object model</td>
<td>40</td>
</tr>
<tr>
<td>7.1</td>
<td>Categories of information</td>
<td>40</td>
</tr>
<tr>
<td>7.2</td>
<td>Object model structure</td>
<td>49</td>
</tr>
<tr>
<td>7.3</td>
<td>Product capability information</td>
<td>50</td>
</tr>
<tr>
<td>7.4</td>
<td>Product-definition information</td>
<td>54</td>
</tr>
<tr>
<td>7.5</td>
<td>Production information</td>
<td>57</td>
</tr>
<tr>
<td>7.6</td>
<td>Model cross references</td>
<td>76</td>
</tr>
<tr>
<td>Annex A</td>
<td>Bibliography and abbreviations</td>
<td>81</td>
</tr>
<tr>
<td>Annex B</td>
<td>Business drivers and key performance indicators</td>
<td>93</td>
</tr>
<tr>
<td>Annex C</td>
<td>Overview of Hierarchies</td>
<td>91</td>
</tr>
<tr>
<td>Annex D</td>
<td>Overview of systems and components</td>
<td>95</td>
</tr>
<tr>
<td>Annex E</td>
<td>Model cross references</td>
<td>139</td>
</tr>
</tbody>
</table>
Levels 2, 1, and 0 define the cell or line supervision functions, operations functions, and process control functions. There are several different models for the functions at these levels based on the actual production strategy used.

Source: Ansii/ISA-95.00.01-2000
Functional enterprise-control model

The model is focused on operational activities in production.

The customer order delivery process is the central business process.

Functions as marketing or research and development are therefore described as external entities (rectangle symbol) in this context.

The model is essentially restricted to modelling of one enterprise. Not a network of enterprises nor a supply chain.

The model structure does not reflect an organizational structure within a company, but an organizational structure of functions. Different companies will place the functions in different organizational groups.

Source: Ansi/ISA-95.00.01-2000

Scope for Purdue Reference Model (PRM) for manufacturing

The PRODUCTION FACTORY SYSTEM

Source: Ansi/ISA-95.00.01-2000
PRM: Assumed hierarchical computer control structure for a large manufacturing complex (computer integrated manufacturing [CIM])

Source: Ansii/ISA-95.00.01-2000

PRM: Assumed hierarchical computer control system structure for an industrial plant (continuous process such as petrochemicals)

Source: Ansii/ISA-95.00.01-2000
Enterprise automation and information systems at different levels of the ISA-95 functional model

- Mapping of commercial systems to the different levels of the model is not unambiguous, because the functions of the systems tend to overlap.

- For example ERP system vendors have added functions for the supply chain management and for the detailed scheduling of production. ERP systems thus extend to SMC systems and also to MES systems on the other hand. At the same time MES systems extend to ERP systems and can include many functions that were previously typical to ERP systems only.

- Another example is that automation systems extend to include various functions typical to MES systems: acquisition and storing of data history from production and production equipment, supervisory control of production etc.
Horizontal and vertical integration in operational context

![Diagram showing horizontal and vertical integration in operational context]

Automation hierarchy and function levels

![Diagram showing automation hierarchy and function levels]

Total mill automation can be thought of as a process beginning with field equipment and ending with mill information systems. When moving down the pyramid from top to bottom, the number of functions and time-criticalness increases. At the top of the pyramid, the time scale for process monitoring can range from days to months, while at its base the scale ranges from milliseconds to hours. When moving toward the top of the pyramid, information is refined and decreases in quantity.

General structure of a process automation system

Field buses – Profibus as an example

Communication protocol:
- master/slave stations
- token ring
- overall cycle time is user configurable
Plant wide integrated automation and information system – a paper mill example

The general systems structure of bus networks and computing nodes has many similarities to distributed automation in process type of manufacturing as e.g. in a paper mill.

Many hardware and software modules can be used in both application areas.

Distributed automation in discrete manufacturing – an example
MES, Manufacturing Execution System

- MES is a layer between the ERP system and the factory floor automation system
- Factory floor automation systems today are often based on PLCs (Programmable Logic Controller) and PC-based SCADA systems (Supervisory Control And Data Acquisition)
- DCS (Distributed Control Systems) are mainly used in process type of industries
- MES functionality is often a combination of manual and IT-system functions
- Some of the MES functionality can be included in ERP or SCADA or DCS systems.
- The following definitions of MES core and support functions represent a MES centered and broad view of MES.

MES Core Functions

(From: Applying Manufacturing Execution Systems by Michael McClellan)

Mes

Manufacturing Execution Systems (MES) deliver information that enables the optimization of production activities from order launch to finished goods. Using current and accurate data, MES guides, initiates, responds to and reports on plant activities as they occur.

MES Core Functions

Planning System Interface
Work Order Management
Workstation Management
Inventory Tracking and Management
Material Movement Management
Data Collection
Exception Management

Figure 4. MES Core Functions
Manufacturing Execution Systems (MES) deliver information that enables the optimization of production activities from order launch to finished goods. Using current and accurate data, MES guides, initiates, responds to and reports on plant activities as they occur.

MES Support Functions

- Maintenance Management
- Time and Attendance
- Statistical Process Control
- Quality Assurance
- Process Data/Performance Analysis
- Documentation / Product Data Management
- Genealogy / Product Traceability
- Supplier Management

Figure 5. MES Support Functions

MES is a layer and a link between ERP and automation system.

- Enterprise Resource Planning System (ERP)
- Manufacturing Execution System (MES)
- Programmable Logic Controller (PLC)
- Transducers, Actuators, Machines
MES level functionality simplified: information processing and information exchange

- ERP to MES: **production order** including product types, quantities and due dates
- MES **schedules** the use of production resources and **supervises** the automation system operation
- MES **monitors** the automation and production systems operation and **reports** to ERP

Vertical integration between ERP, MES and DCS – interface technologies

- One possible class of technologies is based on **distributed object middleware solutions** as e.g. CORBA (Common Object Request and Broker Architecture), DCOM (Distributed Component Object Model) and Java RMI (Java Remote Method Invocation).
- CORBA is a specification by OMG (Object Management Group) while DCOM is a proprietary specification by Microsoft.
- CORBA has not been applied considerably at the automation system level or between the automation system and MES levels.
- Today DCOM and OPC (based on DCOM and later also on XML and Web Services) have gained a lot of ground in multivendor automation system environment and in communication with the MES level.
Integration vision. Published with the first OPC specification (OPC DA 1.0) in 1997.

Source: OPC Data Access Specification 1.0 (OPC = OLE for Process Control)

OPC Foundation

(OPC, OLE for Process Control was the original meaning of the OPC abbreviation)

Goals

- Develop an open and interoperable interface standard (specifications)
- based upon the OLE/COM and DCOM technology,
- that fosters greater interoperability between
 - business/office applications and
 - automation/control applications
 - field systems/devices
- easy to understand and use
- easy to implement
- open

OPC Foundation membership

History:
- 1995: OPC task force
- 1996: 1st Specification
- 2003: 314 Members

Geographic Distribution 2003
- Europe: 46%
- North America: 37%
- China: 10%
- Japan: 5%
- Other: 5%

OPC - what it is

- standard software interface used in automation industry
- based on DCOM and Web Services
- provides interoperability on the application level
- Plug & Play
- follows Client / Server (DX: Server / Server) approach
- multiple Servers and multiple Clients at the same time
- remote access

Source: Jürgen Lange: OPC technical update on the latest extensions. Slide presentation. SoftSympo'03, Helsinki
OPC - what it is (2)

- a number of specifications for different areas
- different basic technologies
- vertical and horizontal integration
- OPC is organized by the OPC Foundation
- OPC Foundation is responsible for technical enhancement and marketing

Source: Jürgen Lange: OPC technical update on the latest extensions.
Slide presentation. SoftSympo'03, Helsinki

OPC Specifications

- Version 1.0A Data Access Specification 09/97
- Version 3.0 Data Access Specification 03/03
- Version 1.0 OPC XML DA 07/03
- Version 1.0 OPC Data eXchange 03/03
- OPC Complex Data ongoing

- Version 1.0/1.1 Alarms and Events Specification 01/99 and 10/02
- Version 1.0 Historical Data Access Specification 09/00
- Version 1.0 Security Specification 09/00
- Version 1.0 Batch Specification 04/00
- Version 2.0 Batch Specification ongoing

- Version 1.0 Compliance Testing 09/00
- Version 2.0 Compliance Testing ongoing

Source: Jürgen Lange: OPC technical update on the latest extensions.
Slide presentation. SoftSympo'03, Helsinki
OPC Basic Principles - DCOM the technological Basis of OPC

- object model for Client-Server applications
- access to services via interfaces
- specifications describe semantics
- IDL file describes syntax
- use of GUID for identification (CLSID, IID, CATID,...)
- the lifetime of the object is managed via reference counters

Source: Jürgen Lange: OPC technical update on the latest extensions. Slide presentation. SoftSympo'03, Helsinki

Integration with OPC

Source: Jürgen Lange: OPC technical update on the latest extensions. Slide presentation. SoftSympo'03, Helsinki
Vertical Integration with OPC

- Integration of business-/IT- and industrial application
- Continuous data flow from the customer to the device

Source: Jürgen Lange: OPC technical update on the latest extensions. Slide presentation. SoftSympo '03, Helsinki

OPC Specifications

Custom interface: clients can be written in C/C++
Automation interface: clients can be written in Visual Basic

J. Lange: OPC Technical Survey, OPC Roadshow, Finland, 21.5.2002, Helsinki University of Technology
Data Access Specification

Object Hierarchy and Name Space

![Diagram showing object hierarchy and name space in Data Access Specification](image)

Source: Jürgen Lange: OPC technical update on the latest extensions. Slide presentation. SoftSympo'03, Helsinki

Data Access Specification

Data Format

- **Process Data Value**
 - Data Types: char, short, long, boolean, float, double, Array, String

- **Time Stamp of the Value**
 - UTC Time Stamps
 - Example: 1743.876
 - 07.07.1998 11:53:01.100

- **Status of the Measuring**
 - System
 - Quality (2 Bit)
 - Status (4 Bit)
 - Limit (2 Bit)
 - Example: 00000100 11000000

- **Quality**
 - good, bad, uncertain

- **Status**
 - not connected, ...; last usable value,

- **Limit (diagnostic information)**
 - The value is located at a limit.

Source: Jürgen Lange: OPC technical update on the latest extensions. Slide presentation. SoftSympo'03, Helsinki
OPC Complex Data

- Defining possibilities of structure description
 - Type descriptions defined within the OPC Specification
 - Type descriptions defined outside the OPC Foundation (e.g. in fieldbus organizations)
- Information on complex data is mapped to defined properties.
- Defining the procedure if values are written to structures

Source: Jürgen Lange: OPC technical update on the latest extensions. Slide presentation. SoftSympo’03, Helsinki

Data eXchange (DX)
Scope of Application and Model

- Configurable interactions between servers
 - No use of clients or proprietary bridges is necessary
 - Data exchange between sections of a plant
- What is not included in the specification?
 - Replacement of fieldbus systems
 - Deterministic real-time control
- Vision
 - Direct data exchange between fieldbuses
 - OPC DX Servers in field devices

Source: Jürgen Lange: OPC technical update on the latest extensions. Slide presentation. SoftSympo’03, Helsinki
Scope of application
- Horizontal data exchange between (DA/DX) Servers
Model
- DX Server implements:
 - DA Server functionality
 - DA Client functionality for interaction with other servers
 - Configuration and monitoring functionality
- Support of DCOM DA and XML DA
OPC Data eXchange

OPC XML DA
Motivation

- OPC DCOM is widely used in PC based SCADA, DCS and Visualization systems, but:
 - OPC DCOM Servers can not be accessed from Non-MS-Systems
 - OPC DCOM Clients can not interact with Non-MS-Systems
 - OPC DCOM interactions over the internet are not possible
- XML technology can be used to close these gaps, since
 - XML support is available on any platform
 - XML is used in a lot of application areas
OPC XML DA

- Application area
 - Access to data over the Internet
 - OPC applications in non-Microsoft environments
- Model
 - Corresponds to OPC DCOM DA
 - Use of Web Services = XML + HTTP
 - Great freedom of implementation
 - Parameters on request, list and item levels
 - Monitoring of the connection between client and server and vice versa

Source: Jürgen Lange: OPC technical update on the latest extensions.
Slide presentation. SoftSympo’03, Helsinki

OPC XML DA

Technologies

Source: Jürgen Lange: OPC technical update on the latest extensions.
Slide presentation. SoftSympo’03, Helsinki
OPC - development

- New specifications increase scope of application
- Vertical integration with DA, horizontal integration with DX
- OPC connectivity via Internet with XML-DA
- OPC becomes standard bridge between different OS with XML-DA
- Vision of interoperability on device level becomes reality with OPC XML-DX
- New development of OPC Unified Architecture (OPC UA) will combine all OPC interfaces (DA, Alarms&Events, Batch, Historical Data, DX etc.) to one server interface.

Source: Jürgen Lange: OPC technical update on the latest extensions. Slide presentation. SoftSympo’03, Helsinki

Conclusions – enhancement of the customer order delivery process

- Real-time information from the factory floor can greatly help in achieving better management of the production process that is one key part of the whole customer order delivery process.
- New technologies like OPC and XML will ease systems integration in multivendor environment.
- DCOM based OPC is mainly used for tight integration within a process plant and its systems while XML and Web Services based OPC is better suited for more loose integration in heterogenous networks.
Maintenance paradigms

- Reactive maintenance
 Equipment is repaired after breakdown.

- Preventive maintenance
 Maintenance is based on a preplanned schedule.

- Predictive maintenance
 Maintenance is based on real-time information of the equipment condition. This is provided by a condition monitoring system.

- Reactive and preventive maintenance or their proper combination are mainly used as maintenance paradigms today.

- Predictive maintenance is an interesting new paradigm. However, implementing condition measurements and condition monitoring increases investment cost.

- The most cost-effective maintenance solution can be a combination of the three maintenance paradigms depending on the nature and characteristics of the production system. The primary application targets of the predictive maintenance are the most critical equipment or sub-processes in the production system.
Acquisition and processing of condition, diagnostic and performance information in a production plant

- **"Service center" - level**
 - Communication networks (Internet, etc.)

- **Plant management and operating level**
 - Plant level LAN (wired, wireless)

- **Process level**
 - Fieldbus systems (wired, wireless)
 - Equipment level
 - Eq1, EqN

- **Equipment level**
 - Self-diagnosis (equipment, embedded IT)
 - Data preprocessing (trends, histograms, performance factors)
 - Test procedures
 - Communication of operational
 - Raw data acquisition, local DB and control parameters and data

Example of remote expert services

- **Metso Future Care**
 - Remote Services

Tik-86.5141 Enterprise Systems Architecture
Kari Koskinen 28.9.2005
51

Tik-86.5141 Enterprise Systems Architecture
Kari Koskinen 28.9.2005
52
System for field device configuration and condition monitoring (Metso FieldCare)

- FieldCare from Metso Automation is a new, universal FDT-based software for the operation and monitoring of intelligent field devices.

- FDT (Field Device Tool) is an open software specification supported by major instrument and control system suppliers. FieldCare can be used within a process control system or as a device management tool.

- It consists of an FDT frame application and DTMs (Device Type Managers). It is independent of communication protocol. A DTM is a user interface for device operation that is developed by the device vendor and can be used in any frame application.

Source: http://www.metsoautomation.com/

Preventive Maintenance Costs

Real life example
- Over 500 valves taken off line during shut down for maintenance
- Over 400 did not need maintenance
- About 100 needed maintenance and were properly serviced
- TOTAL COST $1,000,000 of which 70% spent on valves that did NOT need any maintenance

With automatic condition monitoring installed the figures would have been totally different

Source: Metso Field Systems presentation material 3/2001
Condition and performance monitoring can improve process quality

Even a small improvement in process variation may result to considerable cost savings in terms of energy and materials during the life cycle of the process.

Modified from: Ismo Niemelä, Metso Automation Inc. 25.9.2003

FDT and DTM

Source: Ismo Niemelä, Metso Automation Inc. 25.9.2003
Each device has its own DTM in the factory network

An example of DTM – a digital valve controller ND9000

Source: Ismo Niemelä, Metso Automation Inc. 25.9.2003
Simple fault diagnostics at a glance

- Three level Device Status for simplified information
 - OK - Warning - Alarm
- Unambiguous valve package diagnostics on:
 - Positioner internal alerts
 - Communication alerts
 - Valve on-line alarms
 - Trend based warnings
 - Inadequate supply pressure

Source: Ismo Niemelä, Metso Automation Inc. 25.9.2003

Collected Trends

- Deviation
 - For determining valve accuracy
 - Steady and dynamic states separately
- Stiction (static friction)
 - For determining pneumatic load of valve operation
 - Open direction, closed direction and stable state cases separately

Source: Ismo Niemelä, Metso Automation Inc. 25.9.2003
Collected histograms

Benefit:
- Quick analysis of application suitability, e.g. valve operation and sizing can be verified.

Features:
- Valve Travel Histogram

Source: Ismo Niemelä, Metso Automation Inc. 25.9.2003

Innovative Valve Diamond as diagnostics visualisation

Benefit:
- Valve Diamond as a visualizer for the total control valve package performance.

Features:
- Shows at a glance the problem areas in a valve performance
- Areas for improvement easily defined
- Fast and easy maintenance planning

Source: Ismo Niemelä, Metso Automation Inc. 25.9.2003
Multi-variable monitoring

Benefit:
- Easier problem solving using multi-variable monitoring

Features:
- Instant on-line measurement on:
 - Supply pressure and actuator pressure difference
 - Temperature
 - Deviation from setpoint and valve position
- Multi-variable monitoring enables to analyze valve package performance and behaviour in control duty on-line

Source: Ismo Niemelä, Metso Automation Inc. 25.9.2003

FieldCare integration with Metso DNA, Profibus

DNA OPS DNA Info system FieldCare

Smart Field Devices

Source: Ismo Niemelä, Metso Automation Inc. 25.9.2003
Example of information logistics from production plants to corporate level systems

WHAT IS MIMOSA?

MIMOSA is an Operations and Maintenance Information Open Systems Alliance Organized as a Non-profit Trade Association

Vendors
Integrators & Service Providers
End-Users

Collaboratively Develops and Promotes Open Standards for Operations and Maintenance (OpenO&M™)

Fleets
Plants
Facilities

Produces Vendor-Neutral Open Information Exchange Standards

Open Systems Architecture for Enterprise Application Integration (OSA-EAI™)
Open Systems Architecture for Conditioned-Based Maintenance (OSA-CBM™)

Finalized standards are publicly available at: http://www.mimosa.org

Source: MIMOSA and OpenO&M™ Executive Overview, August 2004
MIMOSA Strategy

- Enable a win/win O&M Solutions Environment for end-users & solutions providers
- Enable Condition Based Operations (CBO) through Asset Capabilities Management (ACM)
- Enable Collaborative Asset Lifecycle Management (CALM) through use of OSA-EAI and OSA-CBM open asset management information standards
- Strongly brand and leverage OpenO&M™ Open Information Standards
 - A single branded “Language” for Operations and Maintenance integration
 - Enable Solutions that are Open & Interoperable
- Achieve critical mass standards consensus both through organic efforts and through collaboration with other key industry and public sector associations. Avoid standards proliferation.
- Collaboration strategy more fully defined in conjunction with collaboration partners
 - Horizontal OpenO&M™ strategy across all industries and public sector in conjunction with OPC Foundation
 - Choose other OpenO&M™ strategically aligned collaboration partners

Source: MIMOSA and OpenO&M™ Executive Overview, August 2004

OSA/CBM development architecture

Tik-86.5141 Enterprise Systems Architecture Kari Koskinen 28.9.2005
MIMOSA CRIS schema

MIMOSA CRIS (Common Relational Information Schema) defines a relational database schema for machinery maintenance information. The schema provides broad coverage of the types of data that need to be managed within the CBM domain:

- A description of the configuration of the system/equipment being monitored
- A list of specific assets being tracked, and their detailed characteristics
- A description of equipment functions, failure modes, and failure mode effects
- A record of logged operational events
- A description of the monitoring/measurement system (sensors, data acquisition, measurement locations, etc.) and the characteristics of monitoring components (calibration history, model number, serial number, etc.)
- A record of sensor data (and its characteristics) whether acquired on-line, manually logged, or manually acquired using hand held roving instrumentation.
- A means of describing signal processing algorithms and the resulting output data
- A record of alarm limits and triggered alarms
- A means of describing diagnoses of evolving equipment faults and projections of equipment health trends.
- A record of recommended actions and the basis of those recommendations
- A record of work requests from initiation through completion.

CBM open system data flow

Generalized inputs and outputs for an OSA prognostic module

What Is OpenO&M™?

- MIMOSA and OPC Foundation have collaborated to develop a comprehensive, open information architecture for Operations & Maintenance (O&M) information that enable:
 - Condition Based Operations (CBO)
 - Collaborative Asset Lifecycle Management (CALM)
- OpenO&M™ leverages existing enabling technology standards
- OpenO&M™ leverages a combination of existing OPC and MIMOSA Standards that will continuously improve over time
 - OPC XML DA & OPC Complex Data
 - MIMOSA OSA-EAI
- The standards are vendor, platform and application neutral and they are applicable to manufacturing, fleet and facilities O&M applications integration
- ISA SP95 has now joined with OPC and MIMOSA in a 3-way Joint Working Group to collaborate in the development and application of OpenO&M™ Standards for Process Industries
 - MIMOSA – What (Content)
 - OPC Foundation – How (Transport)
 - ISA SP95 – Why (Manufacturing Process Flow Models)

Source: MIMOSA and OpenO&M™ Executive Overview, August 2004
OPC Provides Industry-Standard interoperability Performance & Connectivity

ERP, SAP … Corporate Enterprise

OPC – (XML & .NET)

Manufacturing, Production and Maintenance (Rockwell, Emerson, Siemens, MRO, Indus...)

OPC – (XML & .NET)

Adv. Control

HMI

MES

SCADA

PC-Based Control

Batch

Source: MIMOSA and OpenO&M™ Executive Overview, August 2004

MIMOSA Open Systems Architecture for Enterprise Application Integration (OSA-EAI) Architecture Overview

EAI Interoperability

XML Content

MetaData Taxonomy

Implementation Model

Conceptual Model

Semantic Definitions

Source: MIMOSA and OpenO&M™ Executive Overview, August 2004
Forecasting of production capacity – decreasing visibility into the future

Condition Based Operations (CBO)

- Condition based maintenance (CBM) enhances the maintenance operations and increases the availability of the production system.

- The condition and maintenance information can also be used for improving the forecast of production capacity within the planning horizon.

- Improved forecast enables condition based production planning and condition based operations which can improve the management of production and of the whole supply chain.
O&M integration without standards

From An Integration Nightmare

O&M integration with standard interfaces

Figure 2 – Interfaces Required for O&M Integration without Standards

Figure 3 – OpenO&M™ Framework Greatly Reduces the Number of Interfaces
OpenO&M model of systems integration and information exchange supporting enterprise and supply chain operations

![Diagram of OpenO&M model](http://www.mimosa.org/papers/OpenOM%20Whitepaper.pdf)

MIMOSA O&M terminology

Abbreviations and special terms

- **CALM**: Collaborative Asset Lifecycle Management
- **CBM**: Condition Based Maintenance
- **CBO**: Condition Based Operations
- **CM**: Condition Monitoring
- **DSS**: Decision Support System
- **EAM**: Enterprise Asset Management
- **ERP**: Enterprise Resource Planning
- **HMI**: Human Machine Interface
- **I&C**: Instrument & Control
- **IEC**: International Electrotechnical Commission
- **ISA**: Instrumentation, Systems and Automatio Society
- **ISA-95**: Multi-part ISA standard for Enterprise-Control System Integration
- **ISO**: International Organization for Standardization
- **MES**: Manufacturing Execution System
- **MIMOSA**: Machinery Information Management Open Systems Alliance
- **O&M**: Operations and Maintenance
- **ODHS**: Operational Data Historian System
- **OPC**: OLE for Process Control
- **OSA-EAI**: Open Systems Architecture for Enterprise Application Integration
- **PAM**: Plant Asset Management
- **PLC**: Programmable Logic Controller
- **RTU**: Remote Terminal Unit
- **SP95**: ISA’s Standards & Practices Committee number 95
- **XML**: World Wide Web Consortium’s eXtensible Markup Language

![Diagram of MIMOSA O&M terminology](http://www.mimosa.org/papers/OpenOM%20Whitepaper.pdf)
Operations and Maintenance (O&M) - conclusions

- Condition monitoring can enhance the maintenance process by enabling predictive maintenance operations. This can improve the availability of the production system and the process up-time.

- The potential of the integration of operations and maintenance (O&M) related information has not yet been fully realised nor utilised.

- The MIMOSA concepts and reference models of OpenO&M and CBO are aimed to facilitate reaching of that goal.