
Integrating a Ruby on Rails Application with Siebel
using Java Messaging System

Timo Jalonen, Matti Kokkola

Helsinki University of Technology
Timo.Jalonen@sun.com, Matti.Kokkola@iki.fi

Abstract. This paper presents an integration strategy for integrating a Ruby on
Rails application that has a MySQL database with Siebel customer relationship
management (CRM) -system. We present the problem domain, discuss different
technologies and integration patterns and derive an integration strategy from the
requirements. We also use architecture trade-off analysis method (ATAM) to
evaluate the architecture. In the end a proof-of-concept implementation
validating the architecture is described.

Keywords: Siebel, JMS, integration, Ruby, Ruby on Rails, MySQL,
messaging, EAI

1 Introduction

This paper is the seminar paper for “Special Course in Information Systems
Integration: Business Process Integration” at Helsinki University of Technology,
Software Business and Engineering Institute. This paper is based on an actual project
assignment. The customer in question is Finnish Red Cross.

1.1 Background

The Finnish Red Cross (FRC) uses a Siebel CRM system for a variety of records. One
database is the database of its branch offices including their nominees. The branch
offices need to update this information from time to time, mainly around year-end, but
also occasionally at other times. For this purpose there is a web-application (trust-
registry), which has recently been rewritten. The new application was implemented
using Ruby on Rails.

The Siebel CRM -databases and the trust-registry application need to be integrated
in such a manner that the data displayed in trust-registry is correct, and any
modifications to it are written back to Siebel. Siebel cannot, however, be trusted to be
always available, whereas there is a need for the trust-registry application to be
available to users on more or less 24/7 basis.

Currently the integration of the trust-registry application and Siebel is implemented
using Siebel Enterprise Integration Manager (EIM). EIM is a set of database tables
that can be used to transfer information to and from Siebel together with some tools to
facilitate the transfer (see section ”Integration technologies available to Siebel” for

2 Timo Jalonen, Matti Kokkola

more information on EIM). The current implementation is based on manually
operated periodical batch runs, that extract the information from Siebel and transfer it
to trust-registry, and vice versa. Possible conflicts are resolved manually. Figure 1
shows what types of information are transferred between trust-registry and Siebel.

Fig. 1 Trust-registry's integration with Siebel

The result will be valuable for FRC, as the system built for its branch offices will
be based on the findings of this study. As Siebel is one of the most widely used CRM
systems, the findings of the study can be generalised to some extent. The results of
the actual proof-of-concept (PoC) implementation can also be generalised if other
organisations implement (or have a need for) technologically or functionally similar
systems.

1.2 Research problem and objectives of the research

In this paper we aim to answer the following question: What are the possible means to
integrate Siebel CRM and FRC’s Ruby on Rails -based trust-registry application and
which one of them should be used for the actual integration?

Integrating a Ruby on Rails Application with Siebel Using Java Messaging System 3

To be able to answer this question we set one main objective and a set of sub-
objectives. All the defined sub-objectives only served the main objective. For each
objective, we defined a set of questions, which helped us in achieving the objectives.

The main objective was to define an integration strategy between Siebel CRM and
FRC’s trust-registry application. The first sub-objective was to define quality
attributes for the integration strategy based on FRC’s current and future needs. The
questions to be answered we set as:
 What are the problems of the current integration?
 What are the quality requirements (security, performance, availability, etc.) for the

new integration?
 What are the technology constraints of the integration?
We used interview as the research method to answer these questions.

The Second sub-objective was defined as finding and describing the possible
integration techniques, strategies and patterns available in Siebel CRM. The questions
related to this sub-objective were:
 What kind of integration interfaces does Siebel provide?
 What are the related integration patterns?
For this sub-objective we conducted a literature study.

Our third sub-objective consisted of evaluating the integration techniques,
strategies and patterns against the defined quality attributes and defining a prototype
architecture based on them. To this end we defined the questions as:
 What kind of quality trade-offs does each interface have?
 Which integration patterns will fulfil the selected quality requirements?
The research method for this sub-objective was a trade-off analysis.

Our fourth and final sub-objective was to implement a proof-of-concept
construction of the defined architecture and evaluate it against the defined quality
attributes. The question asked was: Is the proposed architecture feasible? To satisfy
this sub-objective constructive research [6] was used.

1.3 Structure of this paper

This paper is structured as follows: in section 2 the research methods used are
described, section 3 describes functional and quality requirements of the integration,
and section 4 contains general discussion of integration styles and patterns. Section 5
discusses Siebel and integration techniques provided by it. Also the final integration
style selection is introduced in the end of the section. Section 6 contains analysis of
the design decisions and section 7 describes what was done during the proof-of-
concept phase. Section 8 summarises the findings and proposes further research.

2 Research methods

During the project several different research methods were used. A brief summary of
them is given below.

4 Timo Jalonen, Matti Kokkola

2.1 Constructive research

Main method of this work was constructive research. According to Kasanen et al,
constructive research contains the following steps [6]:
1. Find a practically relevant problem which also has research potential.
2. Obtain general and comprehensive understanding of the topic.
3. Innovate.
4. Demonstrate that the solution works.
5. Show the theoretical connections and the research contribution of the solution

concept.
6. Examine the scope of applicability of the solution.

To fulfil steps 1, 2 and 3 we interviewed customer’s representative and made a
small-scale literature study. For step 4, we implemented part of the innovated solution
and demonstrated that it actually works. The solutions was also analytically analysed
by applying the architecture trade-off and analysis (ATAM) method. Step 6 will be
discussed in more detail in section 5.

2.2 Interview

An interview was conducted to elicit requirements of the actual integration. The
interviewed person was Vesa Palmu, the system manager at FRC responsible for
application development. He has very strong hands-on experience in software
development.

The actual interview was made in a semi-informal way. The project team had
prepared a set of questions beforehand. Questions were structured to follow different
quality attributes. The interview was not recorded, but most of the discussion was
written down during the session. In addition to quality requirements, also high-level
functional requirements were elicited.

After the session actual requirements were elicited from the notes made during the
interview. The list of requirements was then sent back to mr Palmu for validation and
possible comments. Mr. Palmu seemed to be very busy during the project and thus our
communication was limited to one meeting and one e-mail dialogue.

As only one person was interviewed, there is very strong possibility that the list of
requirements elicited is not complete.

The interview was conducted on 22nd October 2007 in Espoo.

2.3 Literature study

Literature study concentrated mainly on Siebel manuals and literature on integration
patterns. We also made searches to Google Scholar to find out scientific articles
related to our work. The literature study can be seen to be rather small-scale. As focus
of our work was to design and implement concrete integration strategy for a concrete
and strictly scoped problem, the small scale should not be a problem.

Integrating a Ruby on Rails Application with Siebel Using Java Messaging System 5

2.4 Architecture trade-off analysis

All software projects are driven by some set of non-technical goals, usually business
goals. On the basis of these goals another set of project goals are delivered: technical
and quality goals, also known as non-functional requirements. ATAM is a method to
determine whether these goals are achievable by the proposed architecture or not.

Naturally the evaluation of the architecture can not tell anything about the final
product. If architecture has a certain property, can it be ensured that also the
implementation has it? Most of the properties cannot be fully assessed, but indication
of how the system will behave can be provided. [8]

The evaluation should be done before a lot of resources are allocated to the project
to minimise costs caused by failure. For example, if the project was done according to
the unified software development process, the evaluation would be carried out in the
end of each iteration of the elaboration phase. No actual implementation should be
done before the evaluation has proven the architecture suitable for the process.

Because the evaluation is usually based on non-formal architectural models,
ATAM cannot precisely predict behaviour of each quality attribute. Instead, ATAM
aims to identify trends by recording risks, sensitivity points and trade-off points of the
architecture.

Aim of the trade-off analysis was to make structural analysis to validate the
proposed design. ATAM was chosen, because team members had previous experience
on it. Due to small scale and very tight schedule of the project, the ATAM process
was downscaled to fit our case better. The ATAM process we applied contains the
following steps:
1. Present quality goals of the system.
2. Present architecture.
3. Analyse architecture and elicit architectural approaches that address the quality
goals. During this step, also trade-off points are identified

Main difference with the full ATAM process is that we present quality
requirements through a simple list, which is not expanded to contain sub-attributes of
each high-level attribute. For example, sub-attributes of performance are latency,
throughput, capacity and modes. This is why requirements are communicated with a
simple list, not with a utility tree as proposed by the standard ATAM documentation.
Amount of elicited quality requirements was so small, that there was no need to
prioritise them. Also, quality requirements were not specified down to the level of
scenarios with stimuli and response.

2.5 Scope and validity

From the beginning we decided to limit the scope of this research. Firstly, we decided
that only the requirements of FRC would be taken into account. Secondly, we decided
that we would not try to implement the proof-of-concept as a production-quality
system. Thirdly, we decided that only the most relevant features of the integration
would be implemented in the proof-of-concept. Fourthly, we allowed ourselves to use
whatever tools we would find most suitable. Finally, we decided to study only a
subset of Siebel-interfaces in detail.

Because of the constraints and the nature of the project, the results are directly
valid only in the context of FRC’s problem domain. However, as we will demonstrate,

6 Timo Jalonen, Matti Kokkola

we managed to create an integration strategy, which is not directly tied to any
implementation or functionality, and thus the strategy presented in this paper can be
applied to any problem where an application having it’s own relational database needs
to be synchronised in online fashion with Siebel. It is worth noting, that if some of the
most important non-functional requirements of FRC are not present in another
environment, some other strategy may be better suited.

3 Requirements

Before the actual evaluation can take place, all quality attribute requirements have to
be stated. Also a clear architectural specification is needed. This section contains
requirements of the actual integration to be designed. Requirements are structured
according to quality attributes of software architecture. Quality attribute based
requirement list is needed to analyse the resulting design with ATAM. During the
interview the essential quality attributes of this case were elicited. They were:
performance, availability, security, modifiability, manageability, scalability,
reusability, extensibility and data integrity.

3.1 Description of the functionality

FRC's organisation consists of central administration, regional offices and local
branches. Each local branch has a council, which consists of nominees, e.g. chairman,
vice-chairman, members, auditor(s) etc. The main functionality of the trust-registry
application is to allow the local branches to browse, update, add and delete members
of its council and their information. The trust-registry’s database contains replicated
data, the master of which is located in Siebel. Trust-registry is based on Ruby on Rails
technology and data is stored into MySQL database. Ruby on Rails is a free web
application framework based on Ruby programming language.

Data can also be modified directly in Siebel. This will cause possible conflicts, if
the same data is simultaneously modified through the web application and through
Siebel. However, 80% of the updates are at the moment done through the web
interface. Most of the data is usually updated annually, usually during November and
December, after annual elections of each branch. Of course there are some minor
updates during the rest of the year.

During the peak-period, there are roughly 1000 data elements to be synchronised
per week. Structure of the database is rather simple. It consists of four main tables,
namely branches, contacts, nominations and seats. Each of them contains ten to
twenty attributes.

There already is a rough ad-hoc based implementation of the integration
component. It is based on Siebel EIM. EIM is Siebel’s ETL-tool (Extract, transform,
load) and it is used for exchanging data between databases. The current integration is
based on batch jobs, which are run once a week. FRC was interested in hearing
experiences and other integration options.

FRC has about 600 local branches with a total of about 4000 nominees.

Integrating a Ruby on Rails Application with Siebel Using Java Messaging System 7

3.2 Non-functional requirements

From the interview we elicited the following requirements: performance, availability,
security, modifiability, manageability, scalability, reusability, extensibility and
integrity. Each of these is discussed in more detail below.

Performance: As performance has not been an issue so far as the amount of data is
rather small, there is no need for real-time data synchronisation between Siebel and
the trust-registry. There are certain requirements for a web-service, but it is out of the
scope of this project.

Availability: Siebel system is not available 24/7, which limits availability of the
integration component. At the moment the desired availability level is 95%

Security: Siebel and the trust registry are hosted by 3rd parties, but at different
locations from each other. Connection between them is not secure as they are not
located in the same LAN. The data transferred between Siebel and trust-registry must
be secured with SSH or SSL (or some other technology providing at least same
security), as it contains personal information of FRC personnel. That kind of data is
classified to be sensitive by the government. In the existing solution SSH based data
protection has been applied.

Modifiability: FRC continuously develops new self-service systems for their field-
personnel and thus the proposed solution must be easily modified and further
developed.

Manageability: The servers are located in different LANs separated by firewalls.
The synchronisation sequence must be initiated from the Siebel side, as it is located
behind a stronger firewall, which does not allow inbound connections. The
synchronisation sequence can be started manually, as an administrator must check the
log of the run to solve possible conflicts. There is no need for automation, good
documentation is enough.

Scalability: The amount of synchronised data will diminish in the future, as some
local branches will be merged together. However, if the same integration component
will be used by other applications, the amount of data will be larger.

Reusability: The same integration technique will need to be used by other projects.
This will be the first project, where Siebel is integrated with a web-based application.
If experiences if this integration are encouraging, the same integration strategy will be
applied also by other projects.

Extensibility: All the web-based systems of FRC will be developed with Ruby on
Rails frameworks in the future and thus the integration technology should fit to a
Ruby based framework.

Integrity: As described before, the data can be modified at the same time through
the web interface as well as through Siebel. If these modifications are in a conflict, the
result of the synchronisation must not be broken. I.e. data integrity of the master-data
must not be compromised.

4 Integration styles and patterns

An integration style in the context of a software design is analogous to an
architectural style in buildings. The motivation behind the use of architectural styles -
as well as architectural patterns and design patterns - is to promote design and code

8 Timo Jalonen, Matti Kokkola

reuse. Patterns itself are proven and well-understood solutions to common problems.
[9]

Design of a single integration seldom follows only one integration style. If multiple
styles are followed, the system is called heterogeneous. If two styles are merged, their
constraints may conflict with each other’s and their topologies might totally different
and thus it would be impossible to implement both of them. [2]

According to Hohpe and Woolf [5], the following decision criteria should be
considered when selecting integration style: application coupling, intrusiveness,
technology selection, data format, data timelines, data or functionality, remote
communication and reliability

None of the integration styles can address all criteria equally well and thus
selection of the applied style always causes design trade-offs. The various integration
styles can be summed up as follows [5]:
 File transfer, applications produce and consume files containing data to be shared.
 Shared database, the applications store the data they need to share in a common
database.
 Remote procedure invocation, have each application expose some of its procedures
to other applications, which are able to invoke those procedures.
 Messaging, have each application connect to a common messaging system and
exchange data and invoke behaviour using messages.

An integration pattern is not as predominant as integration style is. The scope of
integration patterns is narrower, as they usually cover a couple of classes forming one
independent module or component. [4]

Integration patterns describe a solution improving re-use and maintainability of
modules. A negative aspect is that they usually make design more complex, which
usually implies some degree of performance penalty making it harder to understand
existing code and design. [2]

5 Siebel

Siebel CRM is the most well known product of Siebel Systems Inc., nowadays owned
by Oracle Corporation. Siebel was founded in 1993 and it has grown very
successfully: in 2002 its CRM market share was 45%. [11]

As of December 2007, the latest version of Siebel CRM is 8.0. In this work,
version 7.8 was used.

5.1 Siebel integration strategies

Siebel provides a multitude of integration possibilities. Several factors have to be
considered while choosing the right integration strategy for integrating Siebel with
other applications. The type of integration can be data replication, data sharing or
presentation layer -integration. In data replication both parties hold their own data
repositories, and data is replicated between them. In data sharing data is always held
in one place, either in Siebel or in the other system, and accessed from both systems.
In presentation layer -integration the user interface of one application is partly or
wholly integrated with the UI of the other application. [10]

Integrating a Ruby on Rails Application with Siebel Using Java Messaging System 9

Data sharing and presentation layer integration are by nature real-time integration
techniques, but with data replication one of the important considerations is whether
the integration should be online (real-time) or batch -based. Online integration is
suitable in cases where there is a need for up-to-date information exchange and the
amount of data exchanged between parties at one time is moderate, whereas batch-
style integration is to be considered when large amounts of data need to be transferred
at one time and/or the information doesn't necessarily need to be up-to-date. [10]

Another important decision is whether the integration style should be a loosely or a
tightly coupled one. Generally loosely coupled integration techniques are to be
preferred because of their greater flexibility, but in some cases, if it is known that the
integration is between certain two applications only, there may be advantages in
choosing a tight integration, such as greater versatility in the integration tools. [10]

One factor also influencing the choice of technologies is whether Siebel is the
client or the service in the integration scenario. [10]

5.2 Integration technologies available to Siebel1

Siebel provides multiple ways to integrate it with other applications. To find out all
the relevant options, Siebel integration manual [10] was studied. Siebel provides the
following techniques: Enterprise Integration Manager (EIM), Object Interfaces for
COM and Java, EAI Connectors, Web-Services, Outbound HTTP, Java Business
Service, Java Connector Architecture (JCA), Application Services Interfaces (ASI),
Virtual Business Components, External Business Components and ActiveX controls.
This section describes each of the interfaces in more detail.

The Enterprise Integration Manager (EIM) is a Siebel tool for loading data from
external sources to Siebel or vice versa. It can also be used to delete data from Siebel
or merge data between Siebel and the other application. EIM uses special EIM tables
in Siebel database to provide this functionality. The auxiliary applications are not
allowed to access Siebel database directly, but the communication must be done
through the EIM tables, and the EIM process is used to transfer data between the
actual Siebel database tables and EIM tables. The EIM process is controlled by a
configuration file, which contains instructions for the EIM process. To use EIM the
EIM tables are populated and the EIM configuration file edited, after which the EIM
process is run. The results can be checked from a log file. [10]

Object Interfaces are interfaces to Siebel objects that are provided for external
programs. Siebel provides five different types of external object interfaces: COM
Data Control, Java Data Bean, Web Client Automation Server, Mobile Web Client
Automation and COM Data Server. The COM Data Control is a component provided
by Siebel that conforms to Microsoft Component Object Model (COM)
specifications. The component can be used in any application that is capable of
including COM components and it provides interfaces to Siebel business objects. The
COM Data Control -component communicates with Siebel Object Manager residing
in Siebel server software. The Siebel Object Manager handles sessions with all COM
Data Controls. [10]

The Java Data Bean is similar to the COM Data Control, but written in Java and
thus usable from any programming environment supporting Java. Web Client

1 As of December 2007

10 Timo Jalonen, Matti Kokkola

Automation Server and Mobile Web Client Automation provide access to Siebel user
interfaces from Web and Mobile Web clients. The COM Data Server is a dynamic
link library (DLL), which can be embedded in the external application. It contains
Siebel application, business component and business object interfaces to access Siebel
Data. [10]

Siebel EAI Connectors are pre-built connectors that can be used to access certain
other systems such as SAP. These connectors use the external systems protocols such
as SAP Intermediate Documents (IDOC) or Business API (BAPI) to communicate
with the external system. [10]

Siebel can access business logic written Java/J2EE in three different ways. Firstly,
if the external application has a Web Service -interface, this can be imported into
Siebel, where a Business Proxy service representing the external service is created.
When the proxy service is invoked the Object Manager generates a Web Service
message and calls the external service. Secondly, if the external application doesn't
support Web Service interfaces, but provides a proprietary protocol over HTTP, the
Siebel Outbound HTTP Transport Adapter can be used in a similar manner. Thirdly
the Siebel Java Business Service allows sending of messages using Java Message
Service (JMS) -interface. [10]

Similarly, external Java/J2EE applications can access Siebel with a variety of
ways. Siebel provides Web Services interfaces the external applications can use and
JMS can also be used to send messages to Siebel. In addition, Siebel Resource
Adapters are adapters based on the Java 2 Enterprise Edition (J2EE) Connector
Architecture (JCA), which can be used to access Siebel from an application running in
a J2EE application server. [10]

The Siebel business processes can use Application Services Interfaces (ASI) to
both outbound and inbound integration. Inbound ASIs are Web Services interfaces
external applications can use to launch Siebel business processes, whereas outbound
ASIs are used from within Siebel business processes to call external services. Siebel
workflows can be scheduled to be run at a certain time or interval. This way the
business processes and their interaction with the external applications can also be
used to implement batch-based integration. [10]

Virtual Business Components are as their name suggests business components in
Siebel, but they are virtual in the sense that they access data that resides outside
Siebel database. Virtual Business Components can use a variety of standard transports
to access the outside systems data, such as MQSeries, HTTP, MSMQ and the XML
Gateway Service. [10]

External Business Components are similar to Virtual Business Components, but
they are regular Siebel business components that access data in an external database.
External Business Components can use Siebel database connectors to access the data.
[10]

ActiveX Controls can be used to capture the screen of an external application and to
display it within the Siebel user interface. This integration method provides only a
view of the Siebel data to the user. [10]

5.3 Style & technique selection

To choose the most appropriate technique for integrating FRC's Siebel with their
trust-registry application we first examined the type of integration needed. Since both

Integrating a Ruby on Rails Application with Siebel Using Java Messaging System 11

systems are based on the assumption that they have their own database, doing a data
sharing type of integration would most likely involve drastic changes in either of both
applications. Also technical limitations affected this decision: since Siebel cannot be
trusted to be always available and it is protected by a firewall, it would be difficult for
the trust-registry application to access Siebel's services directly. Siebel probably could
access trust-registry's database more easily using External Business Components, but
using that integration technique would mean very profound changes to the core Siebel
functionality. Therefore the data sharing approach was abandoned.

Presentation layer integration would impose some technical limitations on the
trust-registry application. All the means of doing presentation layer integration are
very tied to Microsoft technologies (COM, ActiveX, Internet Explorer -browser), and
not easily – if at all – usable from a Ruby on Rails -application. In addition this
integration style would have at least as severe challenges as using Siebel data from
external application with availability and security, therefore the presentation layer
integration style was also abandoned.

Data replication seemed to be the logical alternative. With data replication the next
question to ponder was whether the integration should be batch-based or online. The
current implementation is a batch-based integration using EIM and it works well.
However, some factors led us to think about implementing online integration instead.
Firstly, as one of the goals of this work is to provide an integration framework that
can later be reused in other applications as well, online integration would seem to be
more widely reusable than batch-style integration. Secondly, using online integration,
if successful, would eliminate the manual steps required in the current EIM-based
solution. Thirdly, the risk of conflicting updates of data is greatly reduced (while not
completely eliminated) with online integration. Finally, the user experience is
somewhat improved with more up-to-date data. A further motivation was also that
this work became more challenging and motivating.

The challenge with online integration is that Siebel cannot be trusted to be always
on, whereas the trust-registry application is required to be. Another important
consideration is the security aspect. Due to the firewall it is advisable to have Siebel
as the party initiating connections to the outside world, and not vice versa. Also, the
connection between the applications must be reasonably secure. Based on these
requirements most of the techniques available in Siebel for real-time integration had
to be abandoned. Of the Siebel object interfaces only Java Data Bean would be
reasonably usable in the Ruby on Rails application, but that would require 24/7
availability from Siebel, and the connection would have to be initiated from the trust-
registry application. The various types of Web Service interfaces partly suffer from
the same limitations, although using only outbound calls from Siebel to trust-registry
would be feasible, in which case the trust-registry application would have to cache all
updates made while Siebel does not call it, and return them on the next call. That
would potentially require implementing quite complex algorithms for resolving
conflicts. However, the use of JMS and a message queue or an EAI platform seemed
to provide quite an elegant solution. Firstly, the JMS implementation can be deployed
on a 24/7 platform, thus making sure it is available whenever either system needs it. If
the JMS implementation is deployed outside the Siebel firewall, all the connections
between it and Siebel can be initiated from Siebel. JMS connections can be secured
with SSL, which should provide strong enough encryption and parties can also be
authenticated using SSL certificates. The use of JMS also solves the problem of
different availability of the two parties: If Siebel is not available when the trust-

12 Timo Jalonen, Matti Kokkola

registry application sends a message to it, the JMS implementation will store the
message and it will be delivered when Siebel becomes available and connects to JMS
queue. Therefore we decided to implement the integration based on JMS messages.

6 Analysis

The designed architecture was evaluated to make sure that it fulfils the customer
requirements. General information about architecture evaluation and assessment was
gathered from books [1] [2] and [3].

The actual evaluation was done by applying ATAM. ATAM is specified in [7]

6.1 Architectural approaches and patterns

Analysis of architectural styles and patterns is based on Enterprise Integration
Patterns books by Hohpe and Woolf. [5]

The principal integration style is Asynchronous messaging. It does not require both
systems to be up and ready at the same time. High frequency of messages will also
reduce many inconsistency problems, which are usually biggest problem with file
transfer based batch integrations. Messaging also allows applications to be de-coupled
from each other.

After selecting the messaging style, we had to decide what type of message
channel type to use. There are two main channel types: publish-subscribe and point-
to-point. Publish-and-subscribe channels are used in one-to-many style integrations,
while point-to-point channel is used in one-to-one style integrations. Our case was
purely one-to-one integration, thus point-to-point channel was selected.

To make sure that messages are delivered even the messaging system fails,
Guaranteed delivery pattern was applied. This means that the messaging system uses
a data-store to persist messages. When the sender sends a message, the send operation
does not complete until the message is stored in the data-store. Also, the message is
not deleted from the data-store until it is successfully received the other endpoint.

Message translator pattern was applied in both ends of the messaging system to
enable communication between two different system using different data formats. In
our case, we needed to translate between Siebel’s internal format to an XML format,
which was then parsed to internal format of trust-registry. Structures of data were
similar, but its representation was different between the endpoints.

Contents of messages were formed according to the Document message pattern.
Document message passes data and lets the receiver decide what to do with it. The
data is single unit of data. Another option was to use Command message patterns,
which tells the receiver what to do: the sender expects something to happen on basis
of the sent message. Timing is not important in context of Document message.

Content-based router pattern was applied to enable delivery of all changes in
queue. In both end-points, the receiving process uses JMS message headers to decide
which object type is encapsulated in the message. On basis of this information, the
message passed to the correct translator component.

Both end-points also obey the Event-driven consumer pattern: incoming messages
are consumed as soon as they become available. Other options would be Polling

Integrating a Ruby on Rails Application with Siebel Using Java Messaging System 13

consumer or Competing consumers. There was no need for Competing consumers, as
we expect that one consumer can handle all the update messages. We also want to
guarantee that messages are handled strictly in the same order as they are sent.

6.2 Trade-off analysis

As a result of trade-off analysis, we discovered the following sensitivity points and
possible trade-offs for each quality attribute. Also some risks were identified.

Performance
Perf-1 As performance has not been an issue so far as the amount of data

is rather small, there is no need for real-time data synchronisation
between Siebel and the trust-registry. There are certain requirements
for the web-service, but they are out of the scope of this project.

Sensitivity
points

The solution enables almost real-time based integration. Delay
between database update and corresponding JMS message signalling
the update to the other endpoint, is configurable. Minimum delay is
1 second. When amount of updated data increases, the minimum
delay also increases.

Availability
Avail-1 Siebel system is not available 24/7, which limits availability of the

integration component. At the moment desired availability level is
95%

Sensitivity
points

The communication between Siebel and Trust-registry is based on
persistent JMS queues, also known as store and forward model.
Messages are stored either in memory or in a persistent storage, such
as database. If either of the endpoints is down, the queue will hold
all the messages until the endpoint recovers. JMS communication is
asynchronous and thus the other endpoint is not aware whether or
not the other endpoint is down.

If the network connection between the endpoints is down, the
JMS system will still hold all the messages in the queue until the
network comes available again.

Trade-off The solution needs 3rd party implementation of JMS, as it is not part
the standard Java runtime environment. This increases complexity of
the whole system and need of administrative work.

Risk If Siebel is not able to contact to JMS Queues, the JMS Transport
service will be shutdown and must be started again manually.

Security
Sec-1 Siebel is hosted by a different 3rd party than the trust-registry server.

Connection between them is not secure as they are not located in the
same LAN. The data transferred between Siebel and trust-registry
must be secured with SSH or SSL (or some other technology

14 Timo Jalonen, Matti Kokkola

providing at least similar security), as it contains personal
information of FRC personnel. That kind of data is classified to be
sensitive by the government. In the existing solution SSH based data
protection has been applied.

Sensitivity
points

JMS implementation is based on the Java Socket technology. In
default mode, sockets are insecure, but they can be easily modified
to apply SSL technology to secure the transport layer. The
communication can be also tunnelled through a SSH tunnel.

Trade-off Managing TCP/IP ports reserved by JMS is implementation
dependent. If the JMS provider is changed, the firewall must be
reconfigured.

Modifiability
Mod-1 FRC continuously develops new self-service systems for their field-

personnel and thus the proposed solution must be easily modified
and further developed.

Sensitivity
points

The solution is based on standard messaging technology with Java-
APIs. Siebel-side is based on standard Siebel features.

Trade-off If Ruby on Rails will be FRC’s preferred technology, the still need
some Java-skilled people to modify and manage the integration
component.

Manageability
Man-1 The servers are located in different LANs separated by firewalls.

The synchronisation sequence must be initiated from the Siebel side,
as it is located behind a stronger firewall, which does not allow
inbound connections.

Sensitivity
points

In the current configuration, only the Siebel-endpoint establishes
connections. The other endpoint opens listener ports, but does not
establish any outgoing connections. This configuration makes it
possible to allow the firewall to allow these outgoing connections
and thus enable the integration.

The problem with this approach is that Siebel does not behave
well, if there is a network problem when it tries to connect to the
JMS queues located in the trust-registry server. To avoid this kind of
problems, a dedicated message forwarder application was designed.
It is a standalone Java application run on the Siebel server. Its only
task is to forward messages from the local (i.e. located on the Siebel
server) queues to the remote queue (located on the trust-registry
server) whenever the network connection allows communication
between the servers.

Siebel connects to queues of the local JMS provider. If the
forwarder application is able to connect to the queue in the trust-
registry server, it will read the local queue and forward messages to
the actual queue. Otherwise the messages will stay in the local queue
until the connection can be made. JMS provides transaction
management over multiple queues and thus the whole operation can

Integrating a Ruby on Rails Application with Siebel Using Java Messaging System 15

be done inside a persistent transaction to guarantee that no message
is lost.

Similar sequence takes place when the trust-registry server sends
a JMS message to the Siebel server. The message is sent to the JMS
queue in the trust-registry server, which is listened by a stand-alone
Java-application on the Siebel server. If the network connection is
down, the message remains in the JMS queue until the Java
application is able to read it. When Java application reads the
message, it will be forwarded to the local JMS queue, which is
listened by Siebel.

Trade-off As both of the servers have their own toSiebel and fromSiebel
queues, complexity of the system (and thus need of administration)
increases.

Man-2 The synchronisation sequence can be started manually as the log of
the run must be checked by an administrator to solve possible
conflicts. There is no need for automation, good documentation is
enough.

Sensitivity
points

The current configuration can be run either automatically or
manually.

Trade-off None

Scalability
Scal-1 The amount of synchronised data will diminish in the future, as

some local branches will be merged together.
However, if the same integration component will be used by other

applications, the amount of data will be larger.
Sensitivity
points

The integration technology will scale very well.
Average JMS system can easily handle 100 messages per second,

where one message contains one data-change.
Trade-off If size of the synchronised data item is greater than JMS messages

maximum payload, the proposed solution will not work anymore.
Both endpoints will need some extensive re-factoring.

Reusability
Reus-1 The same integration technique will be used by other projects. This

will be the first project, where Siebel is integrated with a web-based
application. If experiences if this integration are encouraging, the
same component will be applied also by other projects.

Sensitivity
points

The same integration technology can be applied to other
applications. At the moment it does not have any trust-registry
specific components. Only the Siebel-side configuration is bound to
the Contact business service.

The integration logic is fully separated from the application logic,
the only interface between them being the database.

16 Timo Jalonen, Matti Kokkola

Trade-off Full separation of the integration logic from the application logic
makes real-time integrations impossible. Communication between
logics is based on database and polling, which is never optimal.

If the application logic needs to be notified after successful data
synchronisation, the Java-endpoint needs to be modified. And in
case of Ruby applications, implementation of such a call-back
interface is difficult due to different technologies. JRuby allows
Ruby applications to be run inside a Java Virtual Machine and to
integration Java and Ruby applications seamlessly. It should be
considered, if notification is needed.

Extensibility
Ext-1 All the web-based systems of FRC will be developed with Ruby on

Rails frameworks in the future and thus the integration component
should fit to a Ruby based framework.

Sensitivity
points

The application end-point is implemented with Java-technology, but
it can be integrated with any database based application as the
integration logic is fully separated from the actual application logic.
Only the database is used for communication.

Trade-offs Some changes to database structure and application logic might be
needed when the technology is applied to a new application. The
database table is used for keeping track of which data elements have
been synchronised

Integrity
Integ-1 As described before, the data can be modified at the same time

through the web interface as well as through Siebel. If these
modifications are in a conflict, the result of the synchronisation must
not be broken. I.e. data integrity of the master data must not be
compromised.

Sensitivity
points

Conflicts are resolved by Siebel’s “upsert”-service. It will decide
whether or not the requested operation should be insert or update.

In the Ruby side, conflicts are not solved: if transferred entity
contains ID that already exists, it will be overwritten. Otherwise the
entity will be added as a new element.

Risks If the same element is updated at the same time in Siebel and in
Ruby application, there is a possibility for conflict. After that, the
databases are not consistent.

7 Proof-of-concept

The proof-of-concept was designed based on the findings described in previous
sections. In order to be able to completely de-couple the integration components from
the actual trust-registry application, we decided to implement a separate process, that
polls the changes in the trust-registry's database and sends them to Siebel via a

Integrating a Ruby on Rails Application with Siebel Using Java Messaging System 17

message queue implementation and another process that listens to another message
queue for updates coming from Siebel and writes them to trust-registry database.
There are several possible implementation techniques for this, but to keep things as
simple and straightforward as possible, we chose to use an Enterprise Application
Integration (EAI) platform. There are several EAI platforms available in the market,
and we chose to use Sun Microsystems' Java Composite Application Platform Suite
(JavaCAPS), since we already had some knowledge of it and it was easily available
for this PoC. JavaCAPS has its own message queue implementation, but for the sake
of the exercise we decided to use another message queue implementation, the Sun
Java System Message Queue, that comes bundled with the Sun Java System
Application Server. This way we were able to demonstrate that practically any JMS-
compliant message queue implementation can be used for communicating with
Siebel.

On the Siebel side the possibilities were a bit more limited because of the
capabilities of Siebel and our knowledge of them. To receive data from the queue and
update it to the Siebel Database we decided to implement a JMS Subsystem that
listens to the queue and upon receiving a message starts a workflow to process it. This
workflow transforms the message from XML to Siebel's internal representation and
updates a business object, which will internally handle the persistence to a database.
To send the changes made in Siebel to queue one has to implement a trigger that will
detect the changes and start another workflow that will create a message in the XML
format and write it to the queue. The actual writing is done using the JMS Business
Service in Siebel, which in turn uses the JMS Subsystem to communicate with the
queue. We did not implement the local message forwarder in the PoC.

The PoC environment consisted of two servers, one running the Siebel applications
and another running the Siebel database, which in this case was Microsoft SQL
Server. Both machines were running Microsoft Windows Server 2003 operating
system. The Siebel version used was 7.8. We decided to use the database server
machine to represent the server running the trust-registry application. Therefore we
installed a MySQL database into it. We also installed JavaCAPS and Sun Application
Server (for message queues) on the server. On the Siebel server we installed the
necessary JMS libraries to connect to the message queues. Figure 2 shows the PoC
environment.

18 Timo Jalonen, Matti Kokkola

Fig. 2 PoC-environment

The processes that read data from trust-registry-database and write it to Siebel and
vice versa were implemented as business processes with the eInsight Business
Process Management -tool within JavaCAPS.

The process that polls the changes in the database is initiated by a scheduler
component that can be configured to start a new business process instance at a given
time or between given intervals. In our PoC we chose to initiate the process every 60
seconds, since we thought that this interval is sufficiently short provide almost real-
time updates to Siebel, and yet it is so long, that the performance penalty on the
system should be very little. Each time the business process instance is started, it
reads all records from the database where the “exported on” column is null. This
column already exists in trust-registry database, and it is used to signal whether new
or changed data has already been exported to Siebel. The trust-registry application
should set it to null when the row is updated. After reading the records they are
transformed to XML message(s) and sent to Siebel. Here we had two possible
implementation strategies: we could send several records in one message or each
record in a separate message. Clearly, the first method is more efficient, but since the
amount data and changes to it is fairly small, we thought that sending several small
messages wouldn't be too inefficient in this context. Also, we were unsure of how
Siebel handles messages with multiple records, so we decided to play safe, and only
send one record per message. Secondly, as we chose to send only one record in each
message, we could implement the business process so, that each instance handles all
the records that need handling at that time and sends several messages, or so, that
each instance only handles one record and sends one message, and the next instance

Integrating a Ruby on Rails Application with Siebel Using Java Messaging System 19

handles the next record and so forth. The latter method is too inefficient for real-life
implementation, but because it is simpler to implement and we were on a tight
schedule we chose it. Thus the process is very simple and depicted in figure 3.

In the PoC we only implemented the process for updating the contacts, but similar
processes for other database tables can be implemented as easily.

The process that reads data from Siebel and updates the database is also very
simple. A process instance is started for each new message that appears in the queue.
The process instance first checks the type of message and then queries the appropriate
database table to see whether we are updating an existing record or inserting a new
one. Then the update or insert is done and the process instance ends. In the update or
insert the both the “imported_on” and “exported_on” fields are set to current time. If
the “exported_on” field was left null, the other process would immediately send the
record back to Siebel. This process is shown in figure 4.

Fig. 4 The process to read data from Siebel

Fig. 3 The process to send data to Siebel

20 Timo Jalonen, Matti Kokkola

In the Siebel side, the design was constrained by Siebel’s architecture as well as our
limited knowledge of it. A significant amount of time was consumed while studying
Siebel’s documentation and learning Siebel’s way to implement integrations and
handle external interfaces.

The design is based on Siebel’s EAI Java Business Service (JBS). The EAI Java
Business Service is a service framework that allows custom business services to be
implemented in Java and run from a Siebel application.

Even though Java Business Service can be used to implement very complex Java
components and embed them inside Siebel, we needed it only to integrate Siebel with
an existing JMS provider. For that, JBS provides a ready-made service component,
namely EAI JMS Transport service. EAI JMS Transport service can be used to
communicate with external JMS queues. Queue references are fetched through Java
Naming and Directory Server, which was run along the application server.

EAI JMS Transport service can be integrated with Siebel’s workflow service to
invoke workflow processes and to allow workflow processes to invoke operations of
EAI JMS Transport service.

For incoming messages, the JMS Transport service was configured to wait for
messages from the toSiebel queue. When a message was received, it was
automatically dispatched to workflow process named FRC-Import.

The FRC-Import workflow is shown in figure 5.

Workflow’s first task is to convert the contents of the received JMS message into
an internal data representation format of Siebel. The resulting internal object is then
forwarded to a dedicated Siebel business service to update or insert (“upsert”) the
received data into Siebel database. Siebel itself decides whether an update or insert
operation is needed.

The process can be generalised by adding object type information to JMS message
headers and using this information to guide the XML translator. Also the Contact
Upsert step must be replaced with a generic Siebel Upsert service and guide its
functionality with the same object type information.

For outgoing messages we first needed to define a Workflow policy. In Siebel
terminology, a Workflow policy means a set of policies that can act as triggers to
execute a workflow process. A policy consists of one or more policy conditions and a
policy action. When the policy conditions are met, the policy action is executed.

A policy condition is a boolean expression. One policy can contain multiple
conditions. All the conditions of the policy must be met before an action can occur. In
our case, we defined a simple condition that is met when any changes to Siebel’s
Contact business object are done.

On basis of the defined conditions, related SQL database triggers were generated
with Siebel’s Generate Triggers service. These triggers will observe the actual

Fig. 5 Import workflow

Integrating a Ruby on Rails Application with Siebel Using Java Messaging System 21

underlying database and copy identifiers of all matching data to a dedicated work
area.

Siebel itself will poll this work area can further pass all found data to the
corresponding Workflow policy and start the associated policy action. The polling is
done by Siebel Workflow monitor agent service, which also invokes the defined
policy action.

In our case, the policy action was defined to invoke a Siebel workflow process
manager service to run a dedicated FRC-Export workflow process. The workflow is
described in figure 6.

Process receives a unique ID of the changed object as an incoming parameter. The
first workflow step will query the changed object from Siebel database and further
pass it to the next step, which will convert the internal object to an XML
representation. The resulting XML document is then passed to Send JMS step, which
uses the underlying EAI JMS Transport service to send the XML document to the
fromSiebel queue. The FRC-Export workflow is invoked separately for each changed
object, i.e. Siebel database row.

Also this process can be generalised by replacing Contact Query element with
generic Siebel Query element and adding type information to the JMS message
headers. The header information will be used in the other end-point to dispatch the
message to correct database handler.

7.1 Outcome of the proof-of-concept

As a result of PoC, we have a very basic integration implementation which can be
used to communicate Contact updates and inserts between Siebel CRM and MySQL
database used by the Ruby on Rails application.

When an update or insert operation is done in Siebel, the following sequence is
executed:
1. Siebel workflow monitor notices the changed data and passes its ID to the export

workflow.
2. The export workflow reads the changed entity (all attributes, not only the changed

ones) and translates it to XML message.
3. The resulting XML message is put inside a JMS message and sent to remote JMS

queue.
4. The EAI tool running in the same environment as the trust-registry application

notices the arrival of the message and starts the receive workflow.
5. The receive workflow reads the message, unmarshals the XML and updates the

local MySQL database.

Fig. 6 Export workflow

22 Timo Jalonen, Matti Kokkola

Similarly, when the trust-registry's local database is updated, the following
sequence is executed:
1. An export workflow that is started periodically queries the local database for

entries that have the “exported_on” flag set to null.
2. If such a record is found, it's contents are marshaled into an XML message.
3. The resulting XML message is sent to a JMS queue.
4. Siebel’s import workflow notices the incoming JMS message.
5. The XML message is converted into Siebel’s internal object format.
6. The resulting object is passed to “upsert” service, which decides whether there is

need for an update or an insert (i.e. are we updating an existing contact or inserting
a new one).
At the moment, deletion is not handled. If a contact is removed from the master

database (Siebel), a notification and ID of the removed contact will be passed to the
export workflow. As the first actual step of the workflow tries to query corresponding
contact entity, it will fail in this case as there is no more contact with the given ID.
Support for removes can be implemented by designing a dedicated export workflow
and a corresponding policy agent for the delete operation. In the trust-registry deletion
is not handled either. Once the row is deleted from the database it can no longer be
found with the query, and therefore the deletion is not propagated to Siebel. To
overcome this shortcoming the trust-registry application should be modified to handle
the XML creation and sending of the messages without external scheduled workflow.
Another approach that would handle deletions in both systems would be using a
deletion flag in the database instead of actually deleting records. After the changing of
the flag is propagated to other system, the record may be physically deleted in both
systems, and the physical deletion doesn't have to propagated.

Also, the designed message forwarder application and local queue model was not
implemented during the PoC project. Mapping data tables and attributes between
Ruby and Siebel databases was not thoroughly designed, as we did not have adequate
documentation of the trust-registry database.

If either of the Siebel workflows encounters an error, the workflow will not
recover. In the case of import workflow, the JMS receiver is stopped and it must be
restarted manually. In the case of export workflow, the workflow monitor is stopped.
Implementation of a decent error handler would need much more Siebel knowledge
than was possible to obtain during this project.

8 Conclusions and Future work

In our work we set out to answer this question: ”What are the possible means to
integrate Siebel CRM and FRC’s Ruby based trust-registry and which one of them
should be used for the actual integration?” In order to answer this question, we set one
main objective and several sub-objectives. The main objective was to define an
integration strategy for integrating the Ruby on Rails based application with Siebel. In
order to satisfy this objective, the research was phased into four sub-objectives.

Our first sub-objective was to define the important quality attributes for the
integration. The main quality requirements for the integration were availability,
security, reusability and integrity. The trust-registry application has to be available
more or less 24/7, and it's availability must not be constrained by the fact that Siebel

Integrating a Ruby on Rails Application with Siebel Using Java Messaging System 23

has lesser availability requirements. There is personal data transferred between the
systems, so reasonable protection must be used. Also the Siebel system is more
strongly protected than the trust-registry application, and the integration must not
compromise this protection. There are similar systems to be implemented in the
future, so the integrations strategy must be reusable in other contexts as well. The data
integrity must be maintained at all times. We found out, that the current
implementation that is based on Siebel's EIM-tool satisfies these requirements quite
well. The only problem was, that since the EIM batch jobs that transfer information
are run manually, they are not run very often, and there can be conflicting changes in
both systems that have to be solved manually. Therefore we concluded, that in order
to improve current practices, we would have to improve the integrity of the solution,
whilst keeping the other important qualities at least at the same level.

Our second sub-objective was exploring and describing the integration techniques
available in Siebel. We based our exploration on Siebel manuals, and although we
didn't make a very thorough analysis of all the technologies, we think it is safe to say
that we managed to create a good overview of Siebel's capabilities, which is also
documented in this report. We also conducted a cursory literature study of general
integration patterns to match Siebel's capabilities to more general concepts.

The third sub-objective was to analyse the technologies and patterns available in
Siebel against the documented requirements. We did the analysis rather informally to
reach our integration architecture, but after formulating the strategy we did an ATAM
analysis to verify it. Our conclusion was that rather than trying to improve the EIM-
based integration already in place, we should implement a different strategy. The
chosen strategy is based on sending messages between the systems in almost real-time
every time that some data is changed. This way the integrity can be improved and
manual labour eliminated still honouring the availability and security requirements
and constraints.

The fourth and final of our sub-objectives was to analyse the feasibility of chosen
approach by implementing a PoC. We were unable to complete the PoC as we have
planned it on the given timeframe. However, the most critical parts were done, so we
can confidently make some statements about the chosen integration strategy and
technology.

Our conclusion is that message-based integration between a Ruby on Rails
application that has a relational database and Siebel CRM is a very viable strategy in
an environment, where the amount of data and changes to it is moderate, the systems
have different availability characteristics, data integrity is important and there are
privacy considerations regarding the data. Ruby on Rails application can use JMS
directly in several different ways, but a strategy of manipulating the data store directly
has the advantage of not requiring changes to the existing application. The
implementation can be based on coding the logic by hand in Java, but modern EAI-
tools and the features they provide shorten the implementation cycle significantly.

Future work on this subject should concentrate on building a more complete PoC
implementation and analysing the different quality attributes more thoroughly by
means of measurements instead of theoretical analysis. A special attention should be
paid to analysing how the actual implementation copes with different kinds of
conflicts.

24 Timo Jalonen, Matti Kokkola

9 References

[1] Len Bass, Paul Clements and Rick Kazman: Software Architecture in Practice, Addison
Wesley, 1998, 452 pages.

[2] Jan Bosch: Design and Use of Software Architectures, Addison Wesley, 2000, 368 pages.

[3] Jan Bosch and Peter Molin: Software Architecture Design: Evaluation and Transformation,
Proceedings of the 1999 IEEE Engineering of Computer Based Systems Symposium
(ECBS99), Mar 1999, pp. 4-10.

[4] Erich Gamma, Richard Helm, Ralph Jonhson and John Vlissides, Design Patterns -
Elements of Reusable Object-Oriented Software, Addison Wesley, 1995, 416 pages.

[5] Gregor Hohpe and Bobby Woolf: Enterprise Integration Patterns: Designing, Building, and
Deploying Messaging Solutions, Addison-Wesley 2005, 736 pages.

[6] Kasanen E, Lukka K, Siitonen A: The constructive approach in management accounting
research, Journal of management accounting research, Fall 1993, volume 5, pp. 243-265.

[7] Rick Kazman, Mark Klein and Paul Clements: ATAM: Method for architecture evaluation,
CMU/SEI, 2000, Technical report CMU/SEI-2000-TR-004.

[8] Nenad Medvidovic and Richard N. Taylor: Separating Fact from Fiction in Software
Architecture, Proceedings of the Third International Software Architecture Workshop, 1998,
pp. 105-108.

[9] Robert T. Monroe, Drew Kompanek, Ralph Melton and David Garlan: Stylized
Architecture, Design Patterns, and Objects, IEEE Software, Jan 1997, pp. 43-52.

[10] Siebel Systems Inc.: Overview: Siebel Enterprise Application Integration, Version 7.8,
October 2005, http://download.oracle.com/docs/cd/B31104_02/books/PDF/EAI1.pdf,
referenced on 9.12.2007.

[11] Wikipedia article: Siebel Systems, http://en.wikipedia.org/wiki/Siebel_Systems, referenced
on 9.12.2007.

