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ABSTRACT 

In this paper we discuss a novel method for estimating the 
expected maintenance savings given a refactoring plan. This work is 
motivated by the increased adoption of refactoring practices as part 
of new agile methodologies and the lack of any prescriptive theory 
on when to refactor.  

1. INTRODUCTION  AND MOTIVATION 
Estimating the cost of future maintenance activities on a working 
application is an important research question. If such an estimate 
were possible, the guesswork would be eliminated from the 
decision of whether to maintain or replace existing software. There 
is some evidence in the literature [1] [4] that perfective 
maintenance accounts for the majority of the overall maintenance 
effort in a project. Perfective maintenance activities aim to improve 
the quality attributes of the software, such as its performance or its 
maintainability. Therefore the problem of “maintenance cost 
prediction” can be recast as “perfective maintenance cost 
prediction”. 

A long-standing method in support of perfective maintenance is 
local source code transformation, more recently re-discovered as 
"Refactoring" [3].  Although there are many tools developed to 
support code transformations there is no general agreement on 
what transformations are beneficial and when these changes should 
be applied. For example, the refactoring catalog contains 
“symmetrical” refactorings, i.e., opposite transformations such as 
“extract method” and “inline method”.  In addition, there are 
alternative refactorings applicable to similar low-level designs, such 
as “extract subclass” and “extract interface”. It is up to  developers 
to decide which type of refactoring to apply in anticipation of 
future development. Furthermore, currently there is only informal 
advice on when to refactor. Fowler [3] suggests that refactoring 
may not be beneficial when there is a deadline coming up or when 
the software is of such poor quality that it would be easier to re-
develop it from scratch. This advice implies an estimate of the cost 
of refactoring vs. the cost of redevelopment. However, no such 
cost-estimate model exists. In spite of the lack of strong prescribed 
methodology, most popular agile methods advocate refactoring as a 
regular practice in the software lifecycle. This practice is becoming 
widely adopted as the method of choice for improving the 
extendibility and maintainability of software.  

In our recent work, we have been investigating several aspects of 
refactoring.  These aspects include understanding the impact of 
long-term code transformations on the quality of software design 
and the nature of developing a cost-benefit model estimating the 
tradeoff between the up-front cost of refactoring and the expected 
downstream maintenance savings. Specifically, we are interested in 
predicting the Return on investment (ROI) for a planned 
refactoring activity.  

If the ROI is greater than or equal to one, then the planned 
refactoring will be cost effective.  

2. ESTIMATING THE REFACTORING ROI  

To calculate the Refactoring ROI according to formula (1) above, 
we need to estimate  

1. the development cost of the planned refactoring activity, and 

2. the anticipated maintenance cost of each of the two software 
versions (i.e., before and after refactoring). 

We adopt COCOMO [2] to calculate the refactoring-plan 
development cost, and we propose a novel method for predicting 
the maintenance effort for the original and restructured designs. 

A fairly common approach to this problem has been to try and 
relate design metrics to observed maintenance costs through 
regression analysis. However, while metrics can be used to identify 
outlier design components and to comparatively evaluate 
alternative designs, there are currently no suitable predictive 
models of maintenance effort. One reason for this is the nature of 
software maintenance. Corrective maintenance effort is directly 
related to latent defects or faults in the system, while perfective 
and adaptive maintenance are directly related to system 
enhancement in response to functional evolution or environmental 
changes. There is evidence that the perfective effort category 
accounts for the majority of maintenance cost [1] [4].  Because this 
type of maintenance is influenced by factors external to the 
system, it is not obvious that such effort can be predicted by 
design metrics. In addition, there is no general agreement regarding 
which metrics can predict system fault density.  

ROI = (Maintenance Savings from Proposed Refactoring) / 
           (Development Cost of Planned Refactoring).         (1) 



Figure 1: Informed Refactoring Decision Making, using Refactoring ROI estimates.

In our work we have been experimenting with an alternative 
strategy for predicting maintenance cost. This strategy is based on 
the following assumptions. 

The anticipated future maintenance cost of a given software system 
is the sum of the costs of each individual future maintenance 
request. 

Maintenance activities occur randomly in the software system, as 
modifications necessitated by new requirements on the software 
system. Therefore the probability that a maintenance request will 
strike an individual module is directly proportional to the size of 
the module relative to the size of the overall system. 

A substantial part of the cost of any single modification is the cost 
of the regression testing necessitated after the modification is 
completed. We assume that the regression-testing savings brought 
about by refactoring can be substantial enough to bring the ROI 
fraction above 1. With these assumptions we can restate formula 
(1) as follows: 

The regression-testing cost of a particular modification is directly 
proportional to the amount of code that has to be examined as a 
result of the change. This in turn can be estimated based on the 
dependencies of the modified module with the rest of the system. 

The ROI estimation process implied by these assumptions, as well 
as the informed refactoring decision-making process it enables, are 
depicted in Figure 1. Given a legacy system, its expected 
regression-testing cost is first calculated based on the occurrence of 
a random maintenance activity. Next, a number of alternative 

refactoring plans can be formulated and their respective 
development costs estimated using COCOMO. The predicted 
regression-testing costs of the proposed new designs are then 
calculated. At this point, the ROI of each alternative refactoring 
plan can be computed. These estimates are then used to decide 
whether refactoring the system is beneficial, and what sort of 
refactoring plan should be implemented. 

3. EXPLORATORY CASE STUDY 

Let us now illustrate our ROI estimation method with an 
exploratory case study using a simple Java system. The trial 
system was created in a student environment as part of a graduate 
course in Object-oriented (OO) analysis and design. The code 
followed a typical OO development cycle, including user 
requirements definition through use-case analysis, development of 
a class model, and dynamic state modeling prior to implementation. 
The application is a real-time traffic light control system for a four-
way intersection, including a graphical simulation of the 
intersection operation. We refer to this system as “TrafficApp”. 

For the purposes of counting “Source Lines of Code” (SLOC) in a 
procedure, we use the definition of a logical source statement as 
defined in the COCOMOII.2000 model [3]. Using this definition, 
the trial case study program contains 740 SLOC, broken down into 
6 classes and 29 procedures. Table 1 shows the distribution of code 
and procedures within TrafficApp. 

3.1. Refactoring Plan 

A source code walkthrough was performed on TrafficApp to 
identify candidate refactoring opportunities according to the criteria 
defined in [3]. The result of this walkthrough is a list of suggested 
refactorings presented in Table 4, along with the projected source 
code impact for each affected procedure. The data in Table 4 
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ROI = (Regression-Testing Savings from Proposed Refactoring) / 
           (Development Cost of Planned Refactoring).         (2) 



indicates the amount of code to be added or deleted for each 
procedure. Note that the recommended restructuring will add new 
procedures to the system. Table 1 shows the predicted impact of 
the restructuring at the class level, including changes in code size 
and the number of procedures. 

Table 1: Code and procedures in TrafficApp. 
Size (SLOC)

Class Before After Change
Class 1 411 343 -17%
Class 2 164 81 -51%
Class 3 95 108 14%
Class 4 23 23 0%
Class 5 23 23 0%
Class 6 24 24 0%
TOTAL 740 602 -19%

No. of Proc.
Class Before After Change

Class 1 4 11 175%
Class 2 7 8 14%
Class 3 6 7 17%
Class 4 5 5 0%
Class 5 2 2 0%
Class 6 5 5 0%
TOTAL 29 38 31%

Avg. Proc. Size (SLOC)
Class Before After Change

Class 1 103 31 -70%
Class 2 23 10 -57%
Class 3 16 15 -3%
Class 4 5 5 0%
Class 5 12 12 0%
Class 6 5 5 0%
TOTAL 26 16 -38%  

3.2 Impact on the Dependency Structure 

Two sets of data and control dependency graphs were constructed 
for TrafficApp. One set of graphs represents the system state 
before refactoring (based on a manual code inspection). The second 
set of graphs represents the predicted state of TrafficApp after 
refactoring. The plot of Figure 2 illustrates the difference between 
these sets of graphs, showing changes in the dependency structure 
of the system resulting from the proposed restructuring.  

3.3. Mean Re-test Impact  

Table 5 shows the calculation of the mean re-test impact for 
TrafficApp before and after restructuring based on the overall 
dependency graphs and the source code distribution in the system. 
The mean re-test impact before refactoring is 408 SLOC, while the 
predicted mean re-test impact after refactoring is 216 SLOC. 

3.4. Effort Calculations  

Table 2 summarizes the example calculations performed using the 
COCOMOII.2000 model to predict maintenance costs before and 
after refactoring as well as the cost of the restructuring. As well, 
this table presents the COCOMO re-use model parameters 
assumed for TrafficApp. The net result is a predicted savings of 
0.225 person-months per maintenance activity as a result of the 

proposed restructuring. This compares with a restructuring cost of 
1.18 person-months. 

Table 2: COCOMOII.2000 cost predictions for TrafficApp. 

Parameter
Refact.

Cost

Maint.
Cost

Before

Maint.
Cost
After

Maint.
Savings

Size (KSLOC) 0.740 0.740 0.602 -
EAF 1.000 1.000 1.000 -

Scale Factor 18.970 18.970 18.970 -
Exponent 1.100 1.100 1.100 -

SU 30.000 30.000 30.000 -
AA 4.000 4.000 4.000 -

UNFM 0.400 0.400 0.400 -
DM 13.800 5.000 5.000 -
CM 29.700 5.000 5.000 -
IM 100.000 55.100 35.900 -

Equiv. KSLOC 0.437 0.213 0.131 -
Effort (p-months) 1.180 0.538 0.313 0.225  

3.5. ROI Calculation 

From Table 2, we can see that the ROI will be greater than one if 
there are greater than or equal to six maintenance activities after the 
design restructuring. This is determined by dividing the refactoring 
cost by the maintenance savings per activity (=1.18/0.225=5.2). 

3.6. Results Discussion 

Table 3 provides a comparison between the dependency graphs 
before and after refactoring, measuring the number of dependency 
paths shown in each graph. This result shows that the density of 
dependency paths in the restructured graphs is lower than for the 
original design.  

Table 3: Dependency graphs before and after refactoring. 

BEFORE AFTER

Graph
No. 

Dep.
Fill 

Ratio
No. 
Dep.

Fill 
Ratio Chng.

Data 112 13.3% 147 10.2% -23.6%
Control 73 8.7% 101 7.0% -19.4%
Overall 179 21.3% 241 16.7% -21.6%  

In Figure 3, each data point represents the re-test impact of a single 
procedure versus the probability of that impact occurring for a 
random maintenance event. Note that the impact data is expressed 
as a percentage of the total SLOC in the system rather than as an 
absolute SLOC number. For the combined graph in Figure 3, the 
code size reference is the original, unchanged version of 
TrafficApp. 

From the above analysis, the proposed refactoring is predicted to 
decrease the overall code size by 19% and increase the number of 
procedures in the system by 31%. In addition, the density of 
dependency paths in the system is predicted to decrease by 
approximately 22%. This decrease in density appears to result 
from the introduction of new procedures into the system 
possessing relatively few external dependencies. These new 
procedures are created by extracting code from larger original 
procedures (using the Extract Method and Move Method 
transformations defined in [3]). 



Table 4: Proposed refactoring plan and design impact for TrafficApp. 

 Table 5: Mean re-test impact before and after restructuring. 

Proc. 
No. Code Problems Refactoring Add. Del.

Proc. 
No. Code Problems Refactoring Add. Del.

1

Long Method, 
Duplicated Code, 

Feature Envy Extract Method 24 225 33 N/A (new proc.) Extract Method 27 0
2 Duplicated Code Extract Method 4 28 34 N/A (new proc.) Extract Method 81 0

10

Switch Statement, 
Duplicated Code, 

Feature Envy Move Method 4 49 35 N/A (new proc.) Extract Method 17 0

11

Long Method, 
Switch Statement, 
Duplicated Code Extract Method 4 56 36 N/A (new proc.) Extract Method 9 0

30 N/A (new proc.) Extract Method 4 0 37 N/A (new proc.) Move Method 13 0
31 N/A (new proc.) Extract Method 9 0 38 N/A (new proc.) Extract Method 14 0
32 N/A (new proc.) Extract Method 10 0 - - - - -

SUBTOTAL: 59 358 SUBTOTAL: 161 0
TOTAL: 220 358

BEFORE REFACTORING AFTER REFACTORING

Class 
No. Proc. No.

Size 
(SLOC)

Test 
Impact 
(SLOC) Prob.

Mean 
(SLOC) Proc. No.

Size 
(SLOC)

Test 
Impact 
(SLOC) Prob.

Mean 
(SLOC)

Class 1 1 306 677 41.4% 279.9 1 105 539 17.4% 94.0
2 80 106 10.8% 11.5 2 56 91 9.3% 8.5
3 18 84 2.4% 2.0 3 18 32 3.0% 1.0
4 7 7 0.9% 0.1 4 7 7 1.2% 0.1
- - - - - 30 4 116 0.7% 0.8
- - - - - 31 9 121 1.5% 1.8
- - - - - 32 10 122 1.7% 2.0
- - - - - 33 27 139 4.5% 6.2
- - - - - 34 81 193 13.5% 26.0
- - - - - 35 17 129 2.8% 3.6
- - - - - 36 9 91 1.5% 1.4

Class 2 5 27 530 3.6% 19.3 5 27 228 4.5% 10.2
6 3 203 0.4% 0.8 6 3 141 0.5% 0.7
7 1 201 0.1% 0.3 7 1 139 0.2% 0.2
8 3 120 0.4% 0.5 8 3 64 0.5% 0.3
9 15 99 2.0% 2.0 9 15 61 2.5% 1.5
10 49 133 6.6% 8.8 10 4 18 0.7% 0.1
11 66 120 8.9% 10.7 11 14 82 2.3% 1.9
- - - - - 38 14 61 2.3% 1.4

Class 3 12 29 677 3.9% 26.5 12 29 539 4.8% 26.0
13 7 447 0.9% 4.2 13 7 222 1.2% 2.6
14 18 562 2.4% 13.7 14 18 253 3.0% 7.6
15 18 99 2.4% 2.4 15 18 61 3.0% 1.8
16 1 188 0.1% 0.3 16 1 97 0.2% 0.2
17 22 106 3.0% 3.2 17 22 54 3.7% 2.0
- - - - - 37 13 49 2.2% 1.1

Class 4 18 9 357 1.2% 4.3 18 9 156 1.5% 2.3
19 3 605 0.4% 2.5 19 3 310 0.5% 1.5
20 3 605 0.4% 2.5 20 3 310 0.5% 1.5
21 1 1 0.1% 0.0 21 1 1 0.2% 0.0
22 7 614 0.9% 5.8 22 7 319 1.2% 3.7

Class 5 23 3 336 0.4% 1.4 23 3 135 0.5% 0.7
24 20 20 2.7% 0.5 24 20 20 3.3% 0.7

Class 6 25 7 321 0.9% 3.0 25 7 120 1.2% 1.4
26 5 111 0.7% 0.8 26 5 96 0.8% 0.8
27 1 401 0.1% 0.5 27 1 176 0.2% 0.3
28 1 1 0.1% 0.0 28 1 1 0.2% 0.0
29 10 11 1.4% 0.1 29 10 11 1.7% 0.2

MEAN RE-TEST IMPACT: 408 MEAN RE-TEST IMPACT: 216
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Figure 3: Procedure-level re -test impact versus the probability of 
that impact occurring for a random maintenance event. 

Figure 2: The changes in the dependency structure of TrafficApp before and after the proposed restructuring. 



The refactoring appears to reduce the peaks along both axes of the 
impact probability distribution of Figure 3. Compared to the 
original distribution, the refactored distribution appears shifted 
down and to the left. 

Procedure-level dependency analysis predicts that the mean 
regression testing impact (in terms of affected SLOC) of a random 
maintenance activity will decrease by approximately 47% due to the 
proposed design restructuring. 

Cost estimation modeling using COCOMOII.2000 suggests that the 
restructuring will be cost effective if six or more maintenance events 
occur after the refactoring investment. 

The results of the procedure-level analysis are not duplicated by a 
class-level analysis of the same design transformations. In general, 
the class-level analysis yields more conservative results regarding 
cost-effectiveness. It appears that the class-level approach is not as 
sensitive to the proposed design restructuring activities. 

4. DISCUSSION 
This work is at a very early stage, however we have applied our 
refactoring ROI method to two exploratory Java case studies: a trial 
academic system with 740 SLOC and a commercial database 
application containing 2.5 KSLOC.  The case study results provide 
measurements of the effects of restructuring on parameters such as 
mean code re-test impact, number of system data and control 
dependency paths, and system size. In addition, we estimated the 
break-even point in terms of the number of maintenance activities to 
achieve ROI > 1 for the proposed design transformations. Our 
results show that common low-level source code transformations 
can change the system dependency structure in a beneficial way, 

allowing recovery of the initial refactoring investment over a number 
of maintenance activities simply on the basis of regression-testing 
savings.  

This early experience has generated several interesting “research 
leads” that we would like to pursue. For example, it would be 
interesting to explore other metrics to estimate maintenance benefits 
in addition to examining regression-testing costs. Furthermore, we 
are currently estimating regression-testing cost based on procedure-
level dependencies; would other more or less precise metrics be 
better predictors? Could the refactoring decision-making process be 
influenced by previous refactorings applied to the system, i.e., can 
some refactorings preclude other refactorings from occurring in the 
future? 
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