
Understanding the Economics of Refactoring
Rob Leitch

MacDonald, Dettwiler and Associates, Ltd.
13800 Commerce Parkway

Richmond, BC, V6V 2J3, Canada
1 (604) 231 2184

rleitch@mda.ca

Eleni Stroulia
Department of Computing Science

221 Athabasca Hall, University of Alberta
Edmonton, AB, T6G 2E8, Canada

1 (780) 492 3520
stroulia@cs.ualberta.ca

ABSTRACT

In this paper we discuss a novel method for estimating the
expected maintenance savings given a refactoring plan. This work is
motivated by the increased adoption of refactoring practices as part
of new agile methodologies and the lack of any prescriptive theory
on when to refactor.

1. INTRODUCTION AND MOTIVATION
Estimating the cost of future maintenance activities on a working
application is an important research question. If such an estimate
were possible, the guesswork would be eliminated from the
decision of whether to maintain or replace existing software. There
is some evidence in the literature [1] [4] that perfective
maintenance accounts for the majority of the overall maintenance
effort in a project. Perfective maintenance activities aim to improve
the quality attributes of the software, such as its performance or its
maintainability. Therefore the problem of “maintenance cost
prediction” can be recast as “perfective maintenance cost
prediction”.

A long-standing method in support of perfective maintenance is
local source code transformation, more recently re-discovered as
"Refactoring" [3]. Although there are many tools developed to
support code transformations there is no general agreement on
what transformations are beneficial and when these changes should
be applied. For example, the refactoring catalog contains
“symmetrical” refactorings, i.e., opposite transformations such as
“extract method” and “inline method”. In addition, there are
alternative refactorings applicable to similar low-level designs, such
as “extract subclass” and “extract interface”. It is up to developers
to decide which type of refactoring to apply in anticipation of
future development. Furthermore, currently there is only informal
advice on when to refactor. Fowler [3] suggests that refactoring
may not be beneficial when there is a deadline coming up or when
the software is of such poor quality that it would be easier to re-
develop it from scratch. This advice implies an estimate of the cost
of refactoring vs. the cost of redevelopment. However, no such
cost-estimate model exists. In spite of the lack of strong prescribed
methodology, most popular agile methods advocate refactoring as a
regular practice in the software lifecycle. This practice is becoming
widely adopted as the method of choice for improving the
extendibility and maintainability of software.

In our recent work, we have been investigating several aspects of
refactoring. These aspects include understanding the impact of
long-term code transformations on the quality of software design
and the nature of developing a cost-benefit model estimating the
tradeoff between the up-front cost of refactoring and the expected
downstream maintenance savings. Specifically, we are interested in
predicting the Return on investment (ROI) for a planned
refactoring activity.

If the ROI is greater than or equal to one, then the planned
refactoring will be cost effective.

2. ESTIMATING THE REFACTORING ROI

To calculate the Refactoring ROI according to formula (1) above,
we need to estimate

1. the development cost of the planned refactoring activity, and

2. the anticipated maintenance cost of each of the two software
versions (i.e., before and after refactoring).

We adopt COCOMO [2] to calculate the refactoring-plan
development cost, and we propose a novel method for predicting
the maintenance effort for the original and restructured designs.

A fairly common approach to this problem has been to try and
relate design metrics to observed maintenance costs through
regression analysis. However, while metrics can be used to identify
outlier design components and to comparatively evaluate
alternative designs, there are currently no suitable predictive
models of maintenance effort. One reason for this is the nature of
software maintenance. Corrective maintenance effort is directly
related to latent defects or faults in the system, while perfective
and adaptive maintenance are directly related to system
enhancement in response to functional evolution or environmental
changes. There is evidence that the perfective effort category
accounts for the majority of maintenance cost [1] [4]. Because this
type of maintenance is influenced by factors external to the
system, it is not obvious that such effort can be predicted by
design metrics. In addition, there is no general agreement regarding
which metrics can predict system fault density.

ROI = (Maintenance Savings from Proposed Refactoring) /
 (Development Cost of Planned Refactoring). (1)

Figure 1: Informed Refactoring Decision Making, using Refactoring ROI estimates.

In our work we have been experimenting with an alternative
strategy for predicting maintenance cost. This strategy is based on
the following assumptions.

The anticipated future maintenance cost of a given software system
is the sum of the costs of each individual future maintenance
request.

Maintenance activities occur randomly in the software system, as
modifications necessitated by new requirements on the software
system. Therefore the probability that a maintenance request will
strike an individual module is directly proportional to the size of
the module relative to the size of the overall system.

A substantial part of the cost of any single modification is the cost
of the regression testing necessitated after the modification is
completed. We assume that the regression-testing savings brought
about by refactoring can be substantial enough to bring the ROI
fraction above 1. With these assumptions we can restate formula
(1) as follows:

The regression-testing cost of a particular modification is directly
proportional to the amount of code that has to be examined as a
result of the change. This in turn can be estimated based on the
dependencies of the modified module with the rest of the system.

The ROI estimation process implied by these assumptions, as well
as the informed refactoring decision-making process it enables, are
depicted in Figure 1. Given a legacy system, its expected
regression-testing cost is first calculated based on the occurrence of
a random maintenance activity. Next, a number of alternative

refactoring plans can be formulated and their respective
development costs estimated using COCOMO. The predicted
regression-testing costs of the proposed new designs are then
calculated. At this point, the ROI of each alternative refactoring
plan can be computed. These estimates are then used to decide
whether refactoring the system is beneficial, and what sort of
refactoring plan should be implemented.

3. EXPLORATORY CASE STUDY

Let us now illustrate our ROI estimation method with an
exploratory case study using a simple Java system. The trial
system was created in a student environment as part of a graduate
course in Object-oriented (OO) analysis and design. The code
followed a typical OO development cycle, including user
requirements definition through use-case analysis, development of
a class model, and dynamic state modeling prior to implementation.
The application is a real-time traffic light control system for a four-
way intersection, including a graphical simulation of the
intersection operation. We refer to this system as “TrafficApp”.

For the purposes of counting “Source Lines of Code” (SLOC) in a
procedure, we use the definition of a logical source statement as
defined in the COCOMOII.2000 model [3]. Using this definition,
the trial case study program contains 740 SLOC, broken down into
6 classes and 29 procedures. Table 1 shows the distribution of code
and procedures within TrafficApp.

3.1. Refactoring Plan

A source code walkthrough was performed on TrafficApp to
identify candidate refactoring opportunities according to the criteria
defined in [3]. The result of this walkthrough is a list of suggested
refactorings presented in Table 4, along with the projected source
code impact for each affected procedure. The data in Table 4

Legacy System
Maintenance

Cost Prediction

…..

Refactoring
Plan

Maintenance
Cost
Prediction

…..
Refactored System

Maintenance
Cost Assessment

Legacy
Code

Refactoring
Analysis

Maintenance
Cost
Prediction

ROI
estimation

COCOMO …..

Refactoring Plan
Cost Assessment

…
..

ROI

Refactoring
Decision

ROI = (Regression-Testing Savings from Proposed Refactoring) /
 (Development Cost of Planned Refactoring). (2)

indicates the amount of code to be added or deleted for each
procedure. Note that the recommended restructuring will add new
procedures to the system. Table 1 shows the predicted impact of
the restructuring at the class level, including changes in code size
and the number of procedures.

Table 1: Code and procedures in TrafficApp.
Size (SLOC)

Class Before After Change
Class 1 411 343 -17%
Class 2 164 81 -51%
Class 3 95 108 14%
Class 4 23 23 0%
Class 5 23 23 0%
Class 6 24 24 0%
TOTAL 740 602 -19%

No. of Proc.
Class Before After Change

Class 1 4 11 175%
Class 2 7 8 14%
Class 3 6 7 17%
Class 4 5 5 0%
Class 5 2 2 0%
Class 6 5 5 0%
TOTAL 29 38 31%

Avg. Proc. Size (SLOC)
Class Before After Change

Class 1 103 31 -70%
Class 2 23 10 -57%
Class 3 16 15 -3%
Class 4 5 5 0%
Class 5 12 12 0%
Class 6 5 5 0%
TOTAL 26 16 -38%

3.2 Impact on the Dependency Structure

Two sets of data and control dependency graphs were constructed
for TrafficApp. One set of graphs represents the system state
before refactoring (based on a manual code inspection). The second
set of graphs represents the predicted state of TrafficApp after
refactoring. The plot of Figure 2 illustrates the difference between
these sets of graphs, showing changes in the dependency structure
of the system resulting from the proposed restructuring.

3.3. Mean Re-test Impact

Table 5 shows the calculation of the mean re-test impact for
TrafficApp before and after restructuring based on the overall
dependency graphs and the source code distribution in the system.
The mean re-test impact before refactoring is 408 SLOC, while the
predicted mean re-test impact after refactoring is 216 SLOC.

3.4. Effort Calculations

Table 2 summarizes the example calculations performed using the
COCOMOII.2000 model to predict maintenance costs before and
after refactoring as well as the cost of the restructuring. As well,
this table presents the COCOMO re-use model parameters
assumed for TrafficApp. The net result is a predicted savings of
0.225 person-months per maintenance activity as a result of the

proposed restructuring. This compares with a restructuring cost of
1.18 person-months.

Table 2: COCOMOII.2000 cost predictions for TrafficApp.

Parameter
Refact.

Cost

Maint.
Cost

Before

Maint.
Cost
After

Maint.
Savings

Size (KSLOC) 0.740 0.740 0.602 -
EAF 1.000 1.000 1.000 -

Scale Factor 18.970 18.970 18.970 -
Exponent 1.100 1.100 1.100 -

SU 30.000 30.000 30.000 -
AA 4.000 4.000 4.000 -

UNFM 0.400 0.400 0.400 -
DM 13.800 5.000 5.000 -
CM 29.700 5.000 5.000 -
IM 100.000 55.100 35.900 -

Equiv. KSLOC 0.437 0.213 0.131 -
Effort (p-months) 1.180 0.538 0.313 0.225

3.5. ROI Calculation

From Table 2, we can see that the ROI will be greater than one if
there are greater than or equal to six maintenance activities after the
design restructuring. This is determined by dividing the refactoring
cost by the maintenance savings per activity (=1.18/0.225=5.2).

3.6. Results Discussion

Table 3 provides a comparison between the dependency graphs
before and after refactoring, measuring the number of dependency
paths shown in each graph. This result shows that the density of
dependency paths in the restructured graphs is lower than for the
original design.

Table 3: Dependency graphs before and after refactoring.

BEFORE AFTER

Graph
No.

Dep.
Fill

Ratio
No.
Dep.

Fill
Ratio Chng.

Data 112 13.3% 147 10.2% -23.6%
Control 73 8.7% 101 7.0% -19.4%
Overall 179 21.3% 241 16.7% -21.6%

In Figure 3, each data point represents the re-test impact of a single
procedure versus the probability of that impact occurring for a
random maintenance event. Note that the impact data is expressed
as a percentage of the total SLOC in the system rather than as an
absolute SLOC number. For the combined graph in Figure 3, the
code size reference is the original, unchanged version of
TrafficApp.

From the above analysis, the proposed refactoring is predicted to
decrease the overall code size by 19% and increase the number of
procedures in the system by 31%. In addition, the density of
dependency paths in the system is predicted to decrease by
approximately 22%. This decrease in density appears to result
from the introduction of new procedures into the system
possessing relatively few external dependencies. These new
procedures are created by extracting code from larger original
procedures (using the Extract Method and Move Method
transformations defined in [3]).

Table 4: Proposed refactoring plan and design impact for TrafficApp.

 Table 5: Mean re-test impact before and after restructuring.

Proc.
No. Code Problems Refactoring Add. Del.

Proc.
No. Code Problems Refactoring Add. Del.

1

Long Method,
Duplicated Code,

Feature Envy Extract Method 24 225 33 N/A (new proc.) Extract Method 27 0
2 Duplicated Code Extract Method 4 28 34 N/A (new proc.) Extract Method 81 0

10

Switch Statement,
Duplicated Code,

Feature Envy Move Method 4 49 35 N/A (new proc.) Extract Method 17 0

11

Long Method,
Switch Statement,
Duplicated Code Extract Method 4 56 36 N/A (new proc.) Extract Method 9 0

30 N/A (new proc.) Extract Method 4 0 37 N/A (new proc.) Move Method 13 0
31 N/A (new proc.) Extract Method 9 0 38 N/A (new proc.) Extract Method 14 0
32 N/A (new proc.) Extract Method 10 0 - - - - -

SUBTOTAL: 59 358 SUBTOTAL: 161 0
TOTAL: 220 358

BEFORE REFACTORING AFTER REFACTORING

Class
No. Proc. No.

Size
(SLOC)

Test
Impact
(SLOC) Prob.

Mean
(SLOC) Proc. No.

Size
(SLOC)

Test
Impact
(SLOC) Prob.

Mean
(SLOC)

Class 1 1 306 677 41.4% 279.9 1 105 539 17.4% 94.0
2 80 106 10.8% 11.5 2 56 91 9.3% 8.5
3 18 84 2.4% 2.0 3 18 32 3.0% 1.0
4 7 7 0.9% 0.1 4 7 7 1.2% 0.1
- - - - - 30 4 116 0.7% 0.8
- - - - - 31 9 121 1.5% 1.8
- - - - - 32 10 122 1.7% 2.0
- - - - - 33 27 139 4.5% 6.2
- - - - - 34 81 193 13.5% 26.0
- - - - - 35 17 129 2.8% 3.6
- - - - - 36 9 91 1.5% 1.4

Class 2 5 27 530 3.6% 19.3 5 27 228 4.5% 10.2
6 3 203 0.4% 0.8 6 3 141 0.5% 0.7
7 1 201 0.1% 0.3 7 1 139 0.2% 0.2
8 3 120 0.4% 0.5 8 3 64 0.5% 0.3
9 15 99 2.0% 2.0 9 15 61 2.5% 1.5
10 49 133 6.6% 8.8 10 4 18 0.7% 0.1
11 66 120 8.9% 10.7 11 14 82 2.3% 1.9
- - - - - 38 14 61 2.3% 1.4

Class 3 12 29 677 3.9% 26.5 12 29 539 4.8% 26.0
13 7 447 0.9% 4.2 13 7 222 1.2% 2.6
14 18 562 2.4% 13.7 14 18 253 3.0% 7.6
15 18 99 2.4% 2.4 15 18 61 3.0% 1.8
16 1 188 0.1% 0.3 16 1 97 0.2% 0.2
17 22 106 3.0% 3.2 17 22 54 3.7% 2.0
- - - - - 37 13 49 2.2% 1.1

Class 4 18 9 357 1.2% 4.3 18 9 156 1.5% 2.3
19 3 605 0.4% 2.5 19 3 310 0.5% 1.5
20 3 605 0.4% 2.5 20 3 310 0.5% 1.5
21 1 1 0.1% 0.0 21 1 1 0.2% 0.0
22 7 614 0.9% 5.8 22 7 319 1.2% 3.7

Class 5 23 3 336 0.4% 1.4 23 3 135 0.5% 0.7
24 20 20 2.7% 0.5 24 20 20 3.3% 0.7

Class 6 25 7 321 0.9% 3.0 25 7 120 1.2% 1.4
26 5 111 0.7% 0.8 26 5 96 0.8% 0.8
27 1 401 0.1% 0.5 27 1 176 0.2% 0.3
28 1 1 0.1% 0.0 28 1 1 0.2% 0.0
29 10 11 1.4% 0.1 29 10 11 1.7% 0.2

MEAN RE-TEST IMPACT: 408 MEAN RE-TEST IMPACT: 216

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30 35 40

Dependency TO (Proc. No.)

D
ep

en
de

nc
y

FR
O

M
 (P

ro
c

.N
o.

)

Data Removed Data Added Control Removed Control Added

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Re-test Impact (% of Total Original SLOC)

P
ro

b
ab

il
it

y

Before After

Figure 3: Procedure-level re -test impact versus the probability of
that impact occurring for a random maintenance event.

Figure 2: The changes in the dependency structure of TrafficApp before and after the proposed restructuring.

The refactoring appears to reduce the peaks along both axes of the
impact probability distribution of Figure 3. Compared to the
original distribution, the refactored distribution appears shifted
down and to the left.

Procedure-level dependency analysis predicts that the mean
regression testing impact (in terms of affected SLOC) of a random
maintenance activity will decrease by approximately 47% due to the
proposed design restructuring.

Cost estimation modeling using COCOMOII.2000 suggests that the
restructuring will be cost effective if six or more maintenance events
occur after the refactoring investment.

The results of the procedure-level analysis are not duplicated by a
class-level analysis of the same design transformations. In general,
the class-level analysis yields more conservative results regarding
cost-effectiveness. It appears that the class-level approach is not as
sensitive to the proposed design restructuring activities.

4. DISCUSSION
This work is at a very early stage, however we have applied our
refactoring ROI method to two exploratory Java case studies: a trial
academic system with 740 SLOC and a commercial database
application containing 2.5 KSLOC. The case study results provide
measurements of the effects of restructuring on parameters such as
mean code re-test impact, number of system data and control
dependency paths, and system size. In addition, we estimated the
break-even point in terms of the number of maintenance activities to
achieve ROI > 1 for the proposed design transformations. Our
results show that common low-level source code transformations
can change the system dependency structure in a beneficial way,

allowing recovery of the initial refactoring investment over a number
of maintenance activities simply on the basis of regression-testing
savings.

This early experience has generated several interesting “research
leads” that we would like to pursue. For example, it would be
interesting to explore other metrics to estimate maintenance benefits
in addition to examining regression-testing costs. Furthermore, we
are currently estimating regression-testing cost based on procedure-
level dependencies; would other more or less precise metrics be
better predictors? Could the refactoring decision-making process be
influenced by previous refactorings applied to the system, i.e., can
some refactorings preclude other refactorings from occurring in the
future?

5. REFERENCES
[1] Basili, V., Briand, L., Condon, S., Kim, Y., Melo, W. y Valett,

J.D., Understanding and Predicting the Process of Software
Maintenance Releases", Proceedings of the International
Conference on Software Engineering, IEEE Computer Society,
Los Alamitos, CA (USA), 1996, pp. 464-474.

[2] Boehm, B., Horowitz, E., Madachy, R., Reifer, D., Clark,
B.D., Steece, B., Brown, A.W., Chulani, S., and Abts, C.,
Software Cost Estimation with COCOMO II, Prentice Hall
PTR, 2000.

[3] Fowler, M., Beck, K., Brant, J., Opdyke, W., and Roberts, D.,
Refactoring: Improving the Design of Existing Code, Addison-
Wesley, 1999.

[4] Polo, M., Piattini, M., Ruiz, F. Using code metrics to predict
maintenance of legacy programs: a case study, IEEE ICSM
2001, Florence, Italy.

