
Using Risk to Balance Agility and Discipline:
A Quantitative Analysis

Barry Boehm
University of Southern California
Department of Computer Science

boehm@sunset.usc.edu

Keywords
agile, discipline, architecting, risk, sweet spot

We have shown several qualitative analyses [2, 3] indicating that
one can balance the risks of having too little project discipline
with the risks of having too much project discipline, to find a
“sweet spot” operating point which minimizes the overall risk
exposure for a given project. We have shown qualitatively that as
a project’s size and criticality increase, the sweet spot moves
toward more project discipline, and vice versa.

However, these results would have stronger credibility if shown
to be true for a quantitative analysis backed up by a critical mass
of data. Here we show the results of such a quantitative analysis,
based on the cost estimating relationships in the COCOMO II cost
estimation model and its calibration to 161 diverse project data
points [1]. The projects in the COCOMO II database include
management information systems, electronic services,
telecommunications, middleware, engineering and science,
command and control, and real time process control software
projects. Their sizes range from 2.6 thousand lines of code
(KLOC) to 1,300 KLOC, with 13 projects below 10 KLOC and 5
projects above 1000 KLOC.

The risk-balancing analysis is based on one of the calibrated
COCOMO II scale factors, “Architecture and Risk Resolution,”
called RESL in the COCOMO II model. Calibrating the RESL
scale factor was a test of the hypothesis that proceeding into
software development with inadequate architecture and risk
resolution results would cause project effort to increase due to the
software rework necessary to overcome the architecture
deficiencies and to resolve the risks late in the development cycle
– and that the rework cost increase percentage would be larger for
larger projects.

The regression analysis to calibrate the RESL factor and the other
22 COCOMO II cost drivers confirmed this hypothesis with a

statistically significant result. The calibration results determined
that for this sample of projects, the difference between a Very
Low RESL rating (corresponding to an architecting investment of
5% of the development time) and an Extra High rating
(corresponding to an investment of over 40%, here established at
50%) was an extra 7.07% added to the exponent relating project
effort to product size. This translates to an extra 18% effort for a
small 10 KSLOC project, and an extra 91% effort for an extra-
large 10,000 KSLOC project.

The full set of effects for each of the RESL rating levels and
corresponding architecting investment percentages are shown in
Table 1 for projects of sizes 10, 100, and 10000 KSLOC. Also
shown are the corresponding total-delay-in-delivery percentages,
obtained by adding the architecting investment time to the rework
time, assuming a constant team size during rework to translate
added effort into added schedule. Thus, in the bottom two rows
of Table 1, we can see that added investments in architecture
definition and risk resolution are more than repaid by savings in
rework time for a 10,000 KSLOC project up to an investment of
33%, after which the total delay percentage increases.

This identifies the minimum-delay architecting investment “sweet
spot” for a 10,000 KSLOC project to be around 33%. Figure 1
shows the results of Table 1 graphically. It indicates that for a
10,000 KSLOC project, the sweet spot is actually a flat region
around a 37% architecting investment. For a 100 KSLOC project,
the sweet spot is a flat region around 20%. For a 10 KSLOC
project, the sweet spot is at around a 5% investment in
architecting. The term “architecting” is taken from Rechtin’s
System Architecting book [5], in which it includes the overall
concurrent effort involved in developing and documenting a
system’s operational concept, requirements, architecture, and life-
cycle strategic plan. It is roughly equivalent to the agilists’ term,
Big Design Up Front (BDUF) [4]. Thus, the results in Table 1
and Figure 1 confirm that investments in architecting and BDUF
are less valuable for small projects, but increasingly necessary as
the project size increases.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference ’00, Month 1-2, 2000, City, State.
Copyright 2000 ACM 1-58113-000-0/00/0000…$5.00.

Table 1. Effect of Architecting Investment Level on Total
Project Delay

However, the values and sweet spot locations presented in Figure
1 are for nominal values of the other COCOMO II cost drivers
and scale factors. Projects in different situations will find that
“their mileage may vary.” For example, a 10-KSLOC safety-
critical (COCOMO II RELY factor rating = Very High) project
will find that its sweet spot will be upwards and to the right of the
nominal-case 10-KSLOC sweet spot. A 10,000-KSLOC highly-
volatile (COCOMO II Requirements Volatility factor = 50%)
project will find that its sweet spot will be higher and to the left of
the nominal-case 10,000-KSLOC sweet spot, due to the costs of
BDUF rework. Also, various other factors can affect the
probability (and size) of loss associated with the RESL factor,
such as staff capabilities, tool support, and technology
uncertainties [1]. And these tradeoffs are only considering project
delivery time and productivity and not business value, which
would push the sweet spot for safety-critical projects even further
to the right. Clearly, there are a number of further issues and
situations deserving of additional analysis.

Figure 1. How Much Architecting is Enough?

REFERENCES
[1] B. Boehm, C. Abts, A.W. Brown, S. Chulani, B. Clark,

E. Horowitz, R. Madachy, D. Reifer, and B. Steece,
Software Cost Estimation with COCOMO II, Prentice
Hall, 2000.

[2] B. Boehm and W. Hansen, “The Spiral Model as a
Tool for Evolutionary Acquisition,” CrossTalk, May
2001, pp. 4-11.

[3] B. Boehm, “Get Ready for Agile Methods, With
Care,” IEEE Computer, January 2002, pp. 64-69.

[4] P. McBreen, Questioning Extreme Programming,
Addison Wesley, 2003.

[5] E. Rechtin, Systems Architecting, Prentice Hall, 1991.

COCOMO II
RESL Rating

Very
Low

Low
Nomin

al
Hig
h

Very
High

Extra
High

% Architecting
Investment

5 10 17 25 33 >40 (50)

Scale Factor
Exponent for
Rework Effort

1.070
7

1.056
5

1.0424
1.02
83

1.0141 1.0000

10 KDSI Project:
-Added Rework %

18 14 10 7 3 0

-Project Delay % 23 24 27 32 36 50

100 KDSI Project:
-Added Rework %

38 30 21 14 7 0

-Project Delay % 43 40 38 39 40 50

10,000 KDSI Project:
-Added Rework %

91 68 48 30 14 0

-Project Delay % 96 78 65 55 47 50

Percent of Project Schedule Devoted to Initial
Architecture and Risk Resolution

Added Schedule Devoted to Rework
(COCOMO II RESL factor)

Total % Added Schedule

Pe
rc

en
t o

f T
im

e
Ad

de
d

to
 O

ve
ra

ll
Sc

he
du

le

Percent of Project Schedule Devoted to Initial
Architecture and Risk Resolution

Added Schedule Devoted to Rework
(COCOMO II RESL factor)

Total % Added Schedule

Percent of Project Schedule Devoted to Initial
Architecture and Risk Resolution

Added Schedule Devoted to Rework
(COCOMO II RESL factor)

Total % Added Schedule

Pe
rc

en
t o

f T
im

e
Ad

de
d

to
 O

ve
ra

ll
Sc

he
du

le

