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Abstract 

 
The COnstructive COst MOdel, COCOMO, was 

developed to estimate the effort measured in staff-
months to complete a software project.  Given an 
estimate of the cost per staff-month, COCOMO can be 
used to estimate the cost of developing software.  All 
business enterprises involved in developing software 
must know their costs to maintain their long-term 
viability.  However, COCOMO has one significant 
drawback.  It requires that the size of the project be 
measured in lines of code, but function points are a 
better metric in measuring project size compared to 
lines of code.  In the event that the size of the project is 
measured in function points, COCOMO uses a 
function points to lines of code converter.  We present 
a new model which uses function points as a direct 
input into the model.  By using actual software project 
data, we show that the software project data can be 
analyzed on a programming language by 
programming language basis.  We claim that our 
proposed model would take the programming 
language into account through pre-computed 
constants.  We conclude that our model is superior to 
the existing model because it eliminates the errors 
introduced by arbitrary function point indices and 
replaces them with constants that are scientifically and 
statistically verifiable. 
 
1. Introduction 
 

This paper begins by briefly explaining the 
COCOMO 81 and COCOMO II models.  In section 2, 
we show that both models have a major deficiency.  
They cannot take function points as a direct input.  Yet 
function points are a superior metric to measuring 
project size compared to lines of code [3].  Instead, a 
function point index is used to convert the function 
points to an equivalent number of lines of code.  
Unfortunately, the values of these indices are not 

universally agreed upon and any errors in the values of 
these indices materially affect the estimate of the 
software project effort and consequently the estimated 
cost of producing the software. 

In section 3, we propose a new model, which we 
call f2 COCOMO.  Our proposed model takes function 
points as a direct input.  We claim that our proposed 
model is superior because it eliminates the arbitrary 
function point indices.  With the elimination of the 
function point indices in our model, however, we 
introduce a problem.  The model must have some way 
of accounting for the programming languages.   

In section 4, we present our experimental results, 
which show that programming language can be 
accounted for through pre-computed constants.  In the 
first phase of the experiment, we start with a small data 
set from the US Army.  Our intent is to show that the 
Gauss-Newton method is appropriate for re-computing 
the constants used in the COCOMO 81 formula.  Our 
experimental results confirm that this method is 
appropriate.  We then go on to analyze Boehm’s data 
[1] which consists of 63 software projects.  We 
separated the data by programming language, and re-
computed the constants in the COCOMO 81 model.  
Our experimental results confirm that we can indeed 
re-calibrate COCOMO 81 for each programming 
language and reduce the sum of the absolute value of 
the errors. 

We end our paper with our conclusions.  First, we 
conclude that our proposed model f2 COCOMO is 
quite workable.  Second, we conclude that analyzing 
data on a programming language by programming 
basis is a sensible approach to developing a model 
which uses function points as its primary input in 
estimating project effort. Together with an estimate of 
the cost per staff-month, an estimate of the total cost 
can be found as the product of the number of staff 
months multiplied by the cost per staff month.  We 
indicate that further research needs to be conducted to 
improve COCOMO II.  COCOMO II needs to be 



To convert function points to lines of code, a 
function point index is used.  A function point index is 
a ratio of the number of lines of code per function 
point.  The indices are different for different 
programming languages.  Thayer [5] provides such a 
table of indices; however, his table is not in agreement 
with the table used in the Model Definition Manual 
[2]. 

improved so that it can take function points as a direct 
input. 
2. COCOMO 81 and COCOMO II 
 

The COnstructive Cost MOdel, COCOMO, was 
developed to better estimate software cost, effort, and 
time to development.  The formula for COCOMO 81 is 
SM = aSb × EAF, where SM is the effort measured in 
staff months, S is thousands of lines of code estimated 
to complete the project, EAF is the effort adjustment 
factor, and a and b are constants to be determined.  
The determination of the value of EAF is fully 
explained by Boehm [1].  As explained in section 4, 
we will assume that EAF = 1. 

These differences are no small matter.  In their 
paper, Musilek et al. [4] demonstrate that the 
COCOMO II model is most sensitive to errors in the 
size variable, S.  So, if the function point index is in 
error, the estimate of the project effort, SM, can also be 
in error.  Since the cost of the software project is a 
function of the software project effort, the projected 
cost of the software can also be in error. 

The values of a and b depend upon the mode of the 
software project.  For our purposes, we will assume the 
project is ‘embedded.’  Using this mode, Boehm 
computes a = 3.6 and b = 1.20.  Our choice of mode is 
arbitrary.  However, it is important to choose the same 
mode consistently throughout the experiment to 
achieve comparable results. 

 
3.  Our Proposal—f2 COCOMO 
 

Our alternative model is depicted below in Figure 2. 
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For COCOMO II, the formula is SM2 = 
2.94S(0.91+W)EM, where SM2 is the effort measured in 
staff months, S is the predicted size of the project 
measured lines of code, W is an adjustment to the 
exponent of S, and EM is the effort multiplier.  The 
determination of the values of W and EM is fully 
explained in the Model Definition Manual [2]. 

The major deficiency in both models is that the 
formulas require that the software project’s size be 
measured in lines of code.  The paper written by 
Albrecht and Gaffney [3] concludes that function 
points are a superior metric in measuring project size 
compared to lines of code.  However, if the project’s 
size is measured in function points, the function points 
must be converted to an equivalent number of lines of 
code.   

Figure 2.  Our proposed model f2 COCOMO, 
which takes function points as a direct input. 

 
In our proposed model, function points, EM, W, and 

possibly other model inputs are taken as a direct input.  
The function point to lines of code converter is not 
used.  The box labeled ‘f2 COCOMO’ is the 
mathematical formula, which computes SM2 from 
function points, EM, W, and possibly other model 
inputs. 

We graphically depict how the current COCOMO 
model works in Figure 1. 
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4. Experimental Results 
 

In our experiments, we considered basic COCOMO 
81.  Basic COCOMO 81 assumes that EAF = 1.  We 
chose basic COCOMO for two reasons.  First, we 
wanted to make the analysis more tractable by having 
fewer parameters.  Second, we knew that we ultimately 
wanted to use Boehm’s original data, which was used 
to find the formula for COCOMO 81—not COCOMO 
II.  To be consistent in our experiment, COCOMO 
81’s mathematical formula was the appropriate choice. 

Figure 1.  COCOMO II as it currently stands 
with the conversion of function points to lines 

of code. 
 



 The experiment involved re-calibrating COCOMO.  
Re-calibration means re-computing the values of the 
parameters a and b in SM = aSb × EAF. 

4.2 Boehm’s Data Set 
 

The experiment was conducted in two phases.  In 
the first phase, we wanted to check that the Gauss-
Newton method was appropriate for computing the 
parameters a and b of the equation SM = aSb × EAF.  
We chose a small set of 15 projects found in Conte et 
al [6].  We found that the Gauss-Newton method was 
appropriate. 

Confident that our method was feasible, we turned 
our attention to Boehm’s data set [1].  His data set is 
the data he used originally to derive the COCOMO 81 
model.  It consists of 63 software projects written in 
seven different programming languages. 

We began this phase of our experiment by 
separating the data by programming language.  Next, 
for each programming language, we recalibrated a and 
b using the Gauss-Newton method.  Our results are 
given in Table 1. 

In the second phase of our experiment, we turned to 
Boehm’s data set [1].  His data set consists of 63 
software projects. We divided his data by 
programming language and recalibrated COCOMO for 
each programming language.  We were successful 
except in two cases.  The reasons for failure are 
explained in section 4.2. 

 
Table 1.  Recalibration Results 

Language 
Number 

of 
Projects 

a b 

Fortran 24 46.4489 0.7116 
Machine 
Languages 20 10.0019 1.1338 

Cobol 5 76.6506 0.5635 
Jovial 5 0.0066 2.4187 
PL\I 4 no results no results 
Higher 
Languages 3 3.1613 1.1927 

Pascal 2 no results no results 

Roughly speaking, the Gauss-Newton method 
begins by assuming a form of the solution and taking 
an initial guess of the parameters a and b.  Iteratively, 
the method computes the ‘goodness-of-fit’ of the 
current parameters, and computes new and better 
parameters.  As it iterates, the method (hopefully) 
converges upon the ‘correct’ solution.  Of course, there 
will always be differences between the model’s 
predicted values and the actual values unless the 
assumed form of the solution can entirely explain the 
relationship between the independent and dependent 
variables.  
 Next, we computed the sum of the absolute values 

of the errors: first for Boehm’s embedded model and 
second for the re-calibrated model.  In every case, 
other than machine languages, we found that the error 
was reduced under calibration.  For the machine 
languages, the error increased by 2.3%—a negligible 
amount. 

4.1  US Army Data 
 

The results of the first phase of our experiment are 
shown in Figure 3.  The o’s represent data points; the 
solid line, the recalibrated model; and the dashed line, 
Boehm’s embedded model.  Through re-calibration 
using the Gauss-Newton method, we reduced the sum 
of the absolute values of the error by 1.3% from 9,722 
staff-months to 9,594 staff-months.  The Gauss-
Newton method determined that a = 0.9239 and b = 
1.4064 were better constants.  We concluded that the 
Gauss-Newton method is appropriate. 

For the PL\I language, we found that the Gauss-
Newton method did not converge.  So, no results are 
available.  For the Pascal language, there were not 
enough data points.  The error results are given in 
Table 2. 
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Table 2.  Errors under re-calibration 

Language 
Error not 
Calibrate

d 

Error 
Calibrated Change 

Fortran 2,947.1 2,080.5 29% 
Machine 
Languages 2,804.4 2,868.9 (2.3%) 

Cobol 3,021.3 2,130.3 29% 
Jovial 4,377.6 894.0 79% 
PL\I no results no results no 

 
Figure 3. Results of our analysis of the US 

Army Data. 



results 

Higher 
Languages 219.1 153.3 30% 

Pascal no results no results no 
results 
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Figure 4 presents the results of re-calibration 
graphically.  The o’s represent data points; the solid 
line represents the re-calibrated model; and the dashed 
line represents Boehm’s embedded model. 
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Figure 4.  The o’s are data points; the solid 
line, the re-calibrated model; and the dashed 

line Boehm’s embedded model (a) Fortran; (b) 
Machine Languages; (c) Cobol; (d) Jovial; and 

(e) Higher Languages. 
 

 
 
 
5.  Conclusions 
 

By experimentation, we see that software project 
data can be analyzed on a programming language 
basis.  The different programming languages are 
reflected in the constants a and b. 

This suggests that f2 COCOMO is quite workable.  
We regret that Boehm’s data [1] does not include 
function point information.  Otherwise, we would have 
continued our analysis to show what, if any, 
relationship exists between function points and project 
effort. 

In this paper, we show that a model can be derived 
for each programming language by simply separating 
the data on a programming language basis.  Suppose 
we have project data which relates function points  to 
project effort.  If that data is separated by 
programming language and analyzed, then a function 
point model, f2 COCOMO, can be derived for each 
programming language. 

Further research needs to be conducted to improve 
COCOMO II so that it can take function points as a 
direct input. 
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