
f2 COCOMO:
Estimating Software Project Effort and Cost

Allan Caine and Anne Banks Pidduck
School of Computer Science, University of Waterloo, Waterloo, Ontario Canada

{adcaine, apidduck}@cs.uwaterloo.ca

Abstract

The COnstructive COst MOdel, COCOMO, was

developed to estimate the effort measured in staff-
months to complete a software project. Given an
estimate of the cost per staff-month, COCOMO can be
used to estimate the cost of developing software. All
business enterprises involved in developing software
must know their costs to maintain their long-term
viability. However, COCOMO has one significant
drawback. It requires that the size of the project be
measured in lines of code, but function points are a
better metric in measuring project size compared to
lines of code. In the event that the size of the project is
measured in function points, COCOMO uses a
function points to lines of code converter. We present
a new model which uses function points as a direct
input into the model. By using actual software project
data, we show that the software project data can be
analyzed on a programming language by
programming language basis. We claim that our
proposed model would take the programming
language into account through pre-computed
constants. We conclude that our model is superior to
the existing model because it eliminates the errors
introduced by arbitrary function point indices and
replaces them with constants that are scientifically and
statistically verifiable.

1. Introduction

This paper begins by briefly explaining the
COCOMO 81 and COCOMO II models. In section 2,
we show that both models have a major deficiency.
They cannot take function points as a direct input. Yet
function points are a superior metric to measuring
project size compared to lines of code [3]. Instead, a
function point index is used to convert the function
points to an equivalent number of lines of code.
Unfortunately, the values of these indices are not

universally agreed upon and any errors in the values of
these indices materially affect the estimate of the
software project effort and consequently the estimated
cost of producing the software.

In section 3, we propose a new model, which we
call f2 COCOMO. Our proposed model takes function
points as a direct input. We claim that our proposed
model is superior because it eliminates the arbitrary
function point indices. With the elimination of the
function point indices in our model, however, we
introduce a problem. The model must have some way
of accounting for the programming languages.

In section 4, we present our experimental results,
which show that programming language can be
accounted for through pre-computed constants. In the
first phase of the experiment, we start with a small data
set from the US Army. Our intent is to show that the
Gauss-Newton method is appropriate for re-computing
the constants used in the COCOMO 81 formula. Our
experimental results confirm that this method is
appropriate. We then go on to analyze Boehm’s data
[1] which consists of 63 software projects. We
separated the data by programming language, and re-
computed the constants in the COCOMO 81 model.
Our experimental results confirm that we can indeed
re-calibrate COCOMO 81 for each programming
language and reduce the sum of the absolute value of
the errors.

We end our paper with our conclusions. First, we
conclude that our proposed model f2 COCOMO is
quite workable. Second, we conclude that analyzing
data on a programming language by programming
basis is a sensible approach to developing a model
which uses function points as its primary input in
estimating project effort. Together with an estimate of
the cost per staff-month, an estimate of the total cost
can be found as the product of the number of staff
months multiplied by the cost per staff month. We
indicate that further research needs to be conducted to
improve COCOMO II. COCOMO II needs to be

To convert function points to lines of code, a
function point index is used. A function point index is
a ratio of the number of lines of code per function
point. The indices are different for different
programming languages. Thayer [5] provides such a
table of indices; however, his table is not in agreement
with the table used in the Model Definition Manual
[2].

improved so that it can take function points as a direct
input.
2. COCOMO 81 and COCOMO II

The COnstructive Cost MOdel, COCOMO, was
developed to better estimate software cost, effort, and
time to development. The formula for COCOMO 81 is
SM = aSb × EAF, where SM is the effort measured in
staff months, S is thousands of lines of code estimated
to complete the project, EAF is the effort adjustment
factor, and a and b are constants to be determined.
The determination of the value of EAF is fully
explained by Boehm [1]. As explained in section 4,
we will assume that EAF = 1.

These differences are no small matter. In their
paper, Musilek et al. [4] demonstrate that the
COCOMO II model is most sensitive to errors in the
size variable, S. So, if the function point index is in
error, the estimate of the project effort, SM, can also be
in error. Since the cost of the software project is a
function of the software project effort, the projected
cost of the software can also be in error.

The values of a and b depend upon the mode of the
software project. For our purposes, we will assume the
project is ‘embedded.’ Using this mode, Boehm
computes a = 3.6 and b = 1.20. Our choice of mode is
arbitrary. However, it is important to choose the same
mode consistently throughout the experiment to
achieve comparable results.

3. Our Proposal—f2 COCOMO

Our alternative model is depicted below in Figure 2.

Function Points Other Model Inputs

f2 COCOMO

SM2 (effort in staff-months)

EM W

For COCOMO II, the formula is SM2 =
2.94S(0.91+W)EM, where SM2 is the effort measured in
staff months, S is the predicted size of the project
measured lines of code, W is an adjustment to the
exponent of S, and EM is the effort multiplier. The
determination of the values of W and EM is fully
explained in the Model Definition Manual [2].

The major deficiency in both models is that the
formulas require that the software project’s size be
measured in lines of code. The paper written by
Albrecht and Gaffney [3] concludes that function
points are a superior metric in measuring project size
compared to lines of code. However, if the project’s
size is measured in function points, the function points
must be converted to an equivalent number of lines of
code.

Figure 2. Our proposed model f2 COCOMO,
which takes function points as a direct input.

In our proposed model, function points, EM, W, and

possibly other model inputs are taken as a direct input.
The function point to lines of code converter is not
used. The box labeled ‘f2 COCOMO’ is the
mathematical formula, which computes SM2 from
function points, EM, W, and possibly other model
inputs.

We graphically depict how the current COCOMO
model works in Figure 1.

Function Points

Function Points
to lines of code

converter

COCOMO IIEM W

SM2 (effort in staff-months)

4. Experimental Results

In our experiments, we considered basic COCOMO
81. Basic COCOMO 81 assumes that EAF = 1. We
chose basic COCOMO for two reasons. First, we
wanted to make the analysis more tractable by having
fewer parameters. Second, we knew that we ultimately
wanted to use Boehm’s original data, which was used
to find the formula for COCOMO 81—not COCOMO
II. To be consistent in our experiment, COCOMO
81’s mathematical formula was the appropriate choice.

Figure 1. COCOMO II as it currently stands
with the conversion of function points to lines

of code.

 The experiment involved re-calibrating COCOMO.
Re-calibration means re-computing the values of the
parameters a and b in SM = aSb × EAF.

4.2 Boehm’s Data Set

The experiment was conducted in two phases. In
the first phase, we wanted to check that the Gauss-
Newton method was appropriate for computing the
parameters a and b of the equation SM = aSb × EAF.
We chose a small set of 15 projects found in Conte et
al [6]. We found that the Gauss-Newton method was
appropriate.

Confident that our method was feasible, we turned
our attention to Boehm’s data set [1]. His data set is
the data he used originally to derive the COCOMO 81
model. It consists of 63 software projects written in
seven different programming languages.

We began this phase of our experiment by
separating the data by programming language. Next,
for each programming language, we recalibrated a and
b using the Gauss-Newton method. Our results are
given in Table 1.

In the second phase of our experiment, we turned to
Boehm’s data set [1]. His data set consists of 63
software projects. We divided his data by
programming language and recalibrated COCOMO for
each programming language. We were successful
except in two cases. The reasons for failure are
explained in section 4.2.

Table 1. Recalibration Results

Language
Number

of
Projects

a b

Fortran 24 46.4489 0.7116
Machine
Languages 20 10.0019 1.1338

Cobol 5 76.6506 0.5635
Jovial 5 0.0066 2.4187
PL\I 4 no results no results
Higher
Languages 3 3.1613 1.1927

Pascal 2 no results no results

Roughly speaking, the Gauss-Newton method
begins by assuming a form of the solution and taking
an initial guess of the parameters a and b. Iteratively,
the method computes the ‘goodness-of-fit’ of the
current parameters, and computes new and better
parameters. As it iterates, the method (hopefully)
converges upon the ‘correct’ solution. Of course, there
will always be differences between the model’s
predicted values and the actual values unless the
assumed form of the solution can entirely explain the
relationship between the independent and dependent
variables.
 Next, we computed the sum of the absolute values

of the errors: first for Boehm’s embedded model and
second for the re-calibrated model. In every case,
other than machine languages, we found that the error
was reduced under calibration. For the machine
languages, the error increased by 2.3%—a negligible
amount.

4.1 US Army Data

The results of the first phase of our experiment are
shown in Figure 3. The o’s represent data points; the
solid line, the recalibrated model; and the dashed line,
Boehm’s embedded model. Through re-calibration
using the Gauss-Newton method, we reduced the sum
of the absolute values of the error by 1.3% from 9,722
staff-months to 9,594 staff-months. The Gauss-
Newton method determined that a = 0.9239 and b =
1.4064 were better constants. We concluded that the
Gauss-Newton method is appropriate.

For the PL\I language, we found that the Gauss-
Newton method did not converge. So, no results are
available. For the Pascal language, there were not
enough data points. The error results are given in
Table 2.

0 50 100 150 200 250 300 350 400 450
0

1000

2000

3000

4000

5000

6000

kLOC

S
ta

ff
M

on
th

s

US Army Data

o = data points
sold line = recalibrated model
dashed line = Boehm’s model

Table 2. Errors under re-calibration

Language
Error not
Calibrate

d

Error
Calibrated Change

Fortran 2,947.1 2,080.5 29%
Machine
Languages 2,804.4 2,868.9 (2.3%)

Cobol 3,021.3 2,130.3 29%
Jovial 4,377.6 894.0 79%
PL\I no results no results no

Figure 3. Results of our analysis of the US

Army Data.

results

Higher
Languages 219.1 153.3 30%

Pascal no results no results no
results

0 200 400 600 800 1000 1200
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

kLOC

S
ta

ff−
m

on
th

s

FOR Language

o = data points
solid line = recalibrated model
dashed line = Boehm’s embedded model

0 10 20 30 40 50 60 70
0

200

400

600

800

1000

1200

kLOC

S
ta

ff−
m

on
th

s

MOL Language

o = data points
solid line = recalibrated model
dashed line = Boehm’s embedded model

0 50 100 150 200 250 300
0

500

1000

1500

2000

2500

3000

3500

kLOC

S
ta

ff
−

 m
on

th
s

COB Language

o = data points
solid line = recalibrated model
dashed line = Boehms embedded model

0 50 100 150 200 250 300
0

1000

2000

3000

4000

5000

6000

7000

kLOC

S
ta

ff
−

 m
on

th
s

JOV Language

o = data points
solid line = recalibrated model
dashed line = Boehm’s embedded model

20 30 40 50 60 70 80
0

100

200

300

400

500

600

700

kLOC

S
ta

ff
−

 m
on

th
s

HOL Language

o = data point
solid line = reclaibrated model
dashed line = Boehm’s embedded model

Figure 4 presents the results of re-calibration
graphically. The o’s represent data points; the solid
line represents the re-calibrated model; and the dashed
line represents Boehm’s embedded model.

(a) (b)

(c) (d)

(e)

Figure 4. The o’s are data points; the solid
line, the re-calibrated model; and the dashed

line Boehm’s embedded model (a) Fortran; (b)
Machine Languages; (c) Cobol; (d) Jovial; and

(e) Higher Languages.

5. Conclusions

By experimentation, we see that software project
data can be analyzed on a programming language
basis. The different programming languages are
reflected in the constants a and b.

This suggests that f2 COCOMO is quite workable.
We regret that Boehm’s data [1] does not include
function point information. Otherwise, we would have
continued our analysis to show what, if any,
relationship exists between function points and project
effort.

In this paper, we show that a model can be derived
for each programming language by simply separating
the data on a programming language basis. Suppose
we have project data which relates function points to
project effort. If that data is separated by
programming language and analyzed, then a function
point model, f2 COCOMO, can be derived for each
programming language.

Further research needs to be conducted to improve
COCOMO II so that it can take function points as a
direct input.

6. References

[1] Boehm, B.W: Software Engineering Economics.
Prentice-Hall, Englewood Cliffs, NJ (1981)
[2] Center for Software Engineering, Computer Science
Department, University of Southern California: Overall
Model Definition. (2003) ftp://ftp.use.edu./pub/
soft_engineering/ COCOMOII/cocomo99.0/modelman.pdf
Accessed November 19, 2003.
[3] Albrecht, A.J., Gaffney, J.E.: Software function, sources
lines of code, and development effort prediction: A software
science validation. In IEEE Transactions on Software
engineering, SE—9(6):639 – 652, November 1983.
[4] Thayer, R.H.: Software Engineering Project
Management. 2E. Edwards Brothers Inc. (2003)
[5] Musilek, P., Pedrycz, W., Sun, N., Succi, G.: On the
sensitivity of COCOMO II software cost estimation model.
In IEEE Symposium of Software Metrics. (2002) 13 – 20
[6] Conte, S.D., Dunsmore, H.E., Shen, V.: Software
Engineering Metrics and Models. Benjamin/Cummings
Pub., Menlo Park (1986)

	1. Introduction
	2. COCOMO 81 and COCOMO II
	3. Our Proposal—f2 COCOMO
	4. Experimental Results
	4.1 US Army Data
	4.2 Boehm’s Data Set

	5. Conclusions
	6. References

