
Finalizing a PhD Thesis in Architectural Evolution

Josef Nedstam
Department of Communication Systems

Box 118, SE-221 00 Lund, Sweden
josef.nedstam@telecom.lth.se

Abstract
This Student Paper describes work in progress within
the field of architectural evolution. The research done
for this PhD Thesis has involved study of individual
architectural changes, a view that is now integrated to
study how companies have evolved with their software
architectures. Participation in EDSER will provide
opportunity to discuss the relation between an organi-
zation’s business model and software architecture;
and to discuss how architectural initiatives are best
funded and organized.

1. Introduction

An architectural approach to reuse has emerged in
literature, with technical and also managerial aspects
of architecture receiving attention. Two examples are
the Product Line Practice initiative by SEI [1], and the
framework of maturity levels for software product
lines proposed by Bosch [2]. SEI’s initiative can guide
companies on how to implement a software product
line, while Bosch extends this evolutionary view by
providing guidelines for which assets and organiza-
tional entities must be in place to successfully reach
any state in his framework.

Companies will have different business goals, will
have different resources to fulfill these, and will have
to do so under different external circumstances. The
view of the author of this paper is therefore that com-
panies may require different architectural strategies.
For example, Kruger [3] makes the case for a product
line explicit, when saying that the objective of a soft-
ware product line is to optimize software engineering
efficiency by exploiting commonalities among prod-
ucts. However, a company with other objectives may
have to employ different architectural approaches. The
underlying assumption of this paper is hence that any
particular company will at any given time be favored
by a particular architectural approach. The research
goal of this work is to provide guidelines and recom-
mendations for companies on how to determine their

most suitable architectural approach, and how to im-
plement this approach.

Current work on this PhD Thesis has yielded pre-
liminary results from a study of how 13 companies
have evolved along with their software architectures.
These results are in the form of a framework for archi-
tectural evolution [4], which extends Bosch’s frame-
work for software product line maturity. This frame-
work now has to be finalized by analyzing the busi-
ness motives for architectural change and evolution,
and on a more concrete level how architectural initia-
tives should be funded and managed.

A qualitative approach has thus far been taken to
this research [5], as it is exploratory in nature. Most of
the work has been performed in the form of open
ended interviews in a workgroup focusing on the con-
cept of platforms, hosted by SPIN-Syd [6], a Swedish
node of the Software Process Improvement Network.

2. A Framework for Architectural
Evolution

Results from the interview material analysis were
mapped to Bosch’s framework. As a result new states
and transitions had to be included in the framework.
This section gives an overview of these results, and
also presents findings regarding linkage between busi-
ness goals and architectural initiatives, and how the
participating companies funded their initiatives.

2.1 States of Architectural Evolution

The maturity levels for software product lines that
Bosch presents are a useful framework for companies
to employ in order to increase their product line matur-
ity. All companies in this study did not, however, see
this as their business goal. When their evolution was
compared to the framework, additional states were
identified in the framework, in order to properly de-
scribe the options a company can have. The reworked
framework is shown in Figure 1, consisting of the fol-
lowing states:

 Independent products. Products are stand-alone,
without any reusable assets.

 Standardized infrastructure. Products are built
on a standardized, externally developed generic in-
frastructure, such as an operating system, middle-
ware infrastructure or database manager.

 Internal platform. Products are based on an in-
ternally developed and managed domain specific
platform.

 Platform as product. The company markets this
domain specific platform as a product.

 Platform customer. This state is similar to Stan-
dardized Infrastructure, but implies domain spe-
cific platforms, rather than generic infrastructures.

 Software product line. The platform also includes
functionality that is not used by all products, and
several products within the product line are mar-
keted simultaneously.

 Configurable product base and Configurable
product base (unmanaged). Products are devel-
oped by configuring a product base, which can ei-
ther be adhering to an enforced architecture, or
not.

 Consultants. This was the initial state of some of
the studied companies, and not a proper architecture
strategy.

 Consecutive releases from stable architecture.
One company in particular was able to produce new
versions of their product on a regular basis, based
on the previous version, but without clearly visible
architectural assets.

One company also decided to develop a platform as
product from startup, a state which is not depicted in
Figure 1, although it is very similar to Consultants in
this framework.

2.2 Transitions between Architectural Approaches

Figure 1 also shows the transitions between states en-
countered in this work. These are presented here:
 New product generation: Consecutive releases

from stable architecture → Independent products.
One company was able to develop new versions of
their product at regular intervals for an extended pe-
riod of time. Eventually the architecture of the
product did not support new market requirements,
and the company had to develop a new product
generation, i.e. go back to Independent Products.

 Company split along platform interface: Internal
platform → Platform as product & Platform cus-
tomer. A company struggling with the balance of
distributing resources between the internal platform
and the product oriented projects decided to split in
two, where the company that supplied the platform
was free to sell it to other customers.

 Packaging consultancy knowledge as product:
Consultants → Independent products. One consul-
tancy company saw the opportunity of packaging
their domain knowledge into a product, and could
do so by an injection of venture capital.

 Generalizing product into Platform as product:
Independent products → Platform as product. The
company mentioned in the previous bullet realized
that their domain knowledge was more suitable for
a platform than a proper application, and general-
ized their product into an application server.

 Generalizing product into Internal platform:
Independent products → Internal platform. Since
the workgroup was focused on platforms, this was
the most common transition. The company that split
did this as their first step; another company imple-
mented a GUI framework to support multiple oper-
ating systems; and in other examples the platform
was the initial step to implement a product line.

 Packaging consultancy knowledge as Platform as
product: Consultants → Platform as product. In
one case a consultancy company decided to take the
step directly to a platform packaged as a product.

 Startup platform as product. A similar transition
was performed by a startup company, whose first
product was a platform packaged in a development
tool. Their business idea is that it is not feasible for
companies to fund internal platforms, but should
package them as products or acquire them from
external sources.

 Increased scope leading to product line: Internal
platform → Software product line. Companies in

Platform as
product

Consultants

Internal
platform

Standardized
infrastructure

Independent
products

Consecutive
releases from

stable
architecture

Platform
customer

Software
product line

Configurable
product base
(unmanaged)

Configurable
product base

Figure 1. States of architectural evolution

the study in some cases found opportunities to dif-
ferentiate their product portfolio based on the plat-
form they had, leading them into a software product
line. This transition also appears in Krueger’s tax-
onomy of software product lines [3].

 Decreased scope for existing product line: Soft-
ware product line → Internal platform. One of the
product line companies later reduced their scope,
and might now have too extensive architectural as-
sets.

 Outsource existing IT resources: Standardized
infrastructure → Platform customer. One organiza-
tion decided to reduce risk by outsourcing their IT
resources, and becoming a customer rather than a
developer for internal use.

 Synchronization between applications and plat-
form in product line setting. This is a constant
evolution in the Software Product Line state, where
development of architectural assets has to be syn-
chronized with development of products from these
assets, and a cause of constant frustration for man-
agers of these assets. Krueger [3] refers to this tran-
sition as enhancement, and allows for variation in
architectural maturity within the Software product
line state.

 From contractual development to off-the-shelf
products: Independent products → Configurable
product base (unmanaged). Products developed un-
der contract are often independent from each other
since there is no incentive for managed reuse. The
company in this situation has a product that can be
made into an off-the-shelf product, if the proper
generalizations are made.

 Packaging project-internal platform without
organizational support structure: Independent
products → Internal platform. The developers in
the aforementioned case have themselves imple-
mented a framework capturing domain knowledge,
which could be the base for such generalizations,
but no organization exists to manage such assets.

2.3 Relating Architectural Approaches to Business
Goals

The study has included architectural initiatives imple-
mented in response to changing business strategies,
implemented as integral parts of business strategies,
and initiatives that have been more or less unrelated to
any business decisions. None of these scenarios can be
said to be better or worse. Developers have to make
technical decisions, and should pursue opportunities of
cost reductions and reuse. Managers on the other hand
should pursue opportunities of mergers, acquisitions
and entering new markets, ventures that often will
have technical impact. However, increased awareness

and communication between the managerial and tech-
nical side of the companies in this study could in many
cases have led to both management decisions that
were more aligned to the capabilities of the develop-
ment department, and developer decisions that were
more targeted at the current business strategies. These
issues have been affirmed by Hohmann [7] and Faulk
et al [8]. Further work from these initial results should
therefore focus on finding the links between business
goals and strategies, over quality attributes, to not only
architectural strategies, but also to ways for how to
organize development around selected strategies.

2.4 Funding and Resources

The major development management difficulty in
most of the cases under study has been to find the bal-
ance between investments in reusable assets and in-
vestments in products sold to customers, i.e. the bal-
ance between long term and short term investments.
The problem is one of funding, but also has other
important aspects such as resources, organization, and
how to synchronize work.

In their framework for software product line prac-
tice, the SEI presents 9 strategies for funding product
line activities, along with guidelines for their appro-
priateness. Some of these were identifiable and appli-
cable to the studied cases. The collected material in-
cludes some interesting patterns that could extend the
SEI guidelines:
 Architects often found it very easy to get funding

for initiatives related to growth strategies. Cost-
saving initiatives were on the other hand harder to
fund – such funding was especially sensitive if the
initiative would delay release of products, and
therefore delay short term revenues.

 Venture capitalist funding gives more liberties for
long term investments, compared to being funded
by sales and customer projects.

 How does a customer specific project determine the
value provided by using the architectural assets?
Three approaches not conforming to the traditional
product line approach were found among the stud-
ied cases: the company which split in two, enabling
the market to set the price of the platform; the com-
pany that from startup decided to build a platform
packaged as a product, since their business proposal
assumes that it is too difficult for companies to
manage development of internal platforms; and the
organization that instead decided to outsource most
development. An important lesson they learnt was
that requirements engineering capacity cannot be
outsourced.

Independent of funding strategy, the companies still
had organizational and resource difficulties. The con-

tract driven company had no organization that could
package the developed framework in order for it to be
reused internally. The company that had the most ma-
ture software product line in this study had a constant
problem of balancing resources between reusable as-
sets and product-specific assets: product projects
would not wait for new releases of reusable assets, but
rather do their own implementations of common but
not yet developed functionality. One solution to this
problem was to not have a separate development unit
for reusable assets. Two of the companies only used
what Bosch calls development departments that were
mainly responsible for product development, but
would evolve architectural assets when necessary or
between projects; they were therefore not using the
suggested domain engineering unit, to avoid synchro-
nization problems. One company that did have a do-
main engineering unit constantly had some of its
members as apprentices on the product-developing
projects, to simplify requirements elicitation for the
reusable assets and set the correct expectations on
these assets among other developers.

2.5 The Case for an Architectural Investment

A problem for initiators of architectural initiatives is to
make the business case for it [9]. ROI is often said to
be the metric to focus on when making such decisions,
and this might be true if the initiator or decision maker
is a product manager [10]. The priorities of a project
manager would on the other hand be to stay on time
and on budget, while the role of the architect seldom is
tied to any such particular responsibility. Other met-
rics, such as time to break-even, as discussed by SEI,
or market share, might be more suitable cornerstones
of a business case for any architecture initiative. As
previously stated, the goal of the initiative will deter-
mine how to make the business case; a business case
for growth will be very different from a business case
for cost reduction. None of the development level ini-
tiators in this study made a formal business case, or
even produced any figures supporting the initiatives.

3. Discussion

A PhD Thesis based on these and previous results
would focus on describing the process of architectural
evolution, in order to guide companies and individual
architects in how to apply the benefits of an architec-
tural approach to reuse. In relation to the EDSER
workshop, this would involve more work on analyzing
the relation between business goals and strategies, and
architectural initiatives. This would also on a more
detailed level involve analysis of the most preferable

ways to make business cases for different types of
architectural initiatives.

The work is currently geared towards finding a
link between overall business goals, and the architec-
tural approaches that suit these goals best. A suggested
position statement is under development: A company
needs or wants a sustainable competitive advan-
tage [11], which is based on the way the company
competes (strategies, tactics), its basis for competition
(resources, competencies), the market it competes in,
and the competitors in that market. A strategy for sus-
tainable competitive advantage can be derived from
analysis of these factors, and part of that strategy is the
positioning strategy. If this positioning strategy is
known to all parts of the organization, and aligned to
available resources, competencies and architectural
assets, an architect should be able to determine the
driving quality attributes for the products being devel-
oped. These quality attributes then determine which
architectural approaches are most favorable.

In order to conclude this PhD Thesis, some addi-
tional special cases of software evolution might have
to be studied, but the bulk of the work is in analyzing
available information, and subjecting the conclusions
to the scrutiny of peer researchers. EDSER participa-
tion is hoped to provide just that type of discussion.

References

[1] Clements, P., Northrop, L., Software Product Lines:
Practices and Patterns, Addison-Wesley, 2002

[2] Bosch, J., “Maturity and Evolution in Software Prod-
uct Lines: Approaches, Artefacts and Organizations”,
SPLC2, San Diego, Cal., 2002

[3] Krueger, C. W., “Towards a Taxonomy for Software
Product Lines”, 5th Intl. Workshop on Product Family
Engineering, Siena, Italy, November 2003

[4] Nedstam, J., Karlsson, E.-A., ”Experiences from Ar-
chitectural Evolution”, AWSA’04, Melbourne, Aus-
tralia, 2004

[5] Patton, M. Q., Qualitative Evaluation and Research
Methods, 2nd Ed., Sage Publications 1990

[6] SPIN-Syd, http://www.spin-syd.org
[7] Hohmann, L., Beyond Software Architecture: Creat-

ing and Sustaining Winning Solutions, Addison-
Wesley 2003

[8] Faulk, S. R., Harmon, R. R., Raffo, D. M., “Value-
Based Software Engineering (VBSE): A Value-Driven
Approach to Product-Line Engineering”, SPLC1,
Denver, Colorado, 2000

[9] Nedstam, J., Karlsson, E.-A., Höst, M., ”Experiences
from the Architectural Change Process”, STRAW’03,
Portland, Oregon, 2003

[10] Nejmeh, B. A., Thomson, I., “Business-Driven Prod-
uct Planning Using Feature Vectors and Increments”,
IEEE Software, November/December 2002

[11] Aaker, D. A, Strategic Market Management, 6th Ed.,
John Wiley & Sons, 2001

