
9HSTFMG*aeddii+

ISBN 978-952-60-4339-5 (pdf)
ISBN 978-952-60-4338-8
ISSN-L 1799-4934
ISSN 1799-4942 (pdf)
ISSN 1799-4934

Aalto University
School of Science
Department of Computer Science and Engineering
www.aalto.fi

BUSINESS +
ECONOMY

ART +
DESIGN +
ARCHITECTURE

SCIENCE +
TECHNOLOGY

CROSSOVER

DOCTORAL
DISSERTATIONS

A
alto-D

D
 107

/2
011

Exploratory software testing is an
experience-based approach to revealing
defects. It relies on the tester's knowledge
and skills, and is based on creative
exploration instead of comprehensive test
documentation. Thus, it is a fundamentally
different approach than the traditional test-
case-based testing paradigm. Exploratory
testing is commonly used in software
organizations as practitioners consider it an
effective and efficient approach for
detecting defects. Exploratory testing is also
considered as an effective way of involving
application domain expertise in testing.
Despite this practical relevance, very little
scientific research on exploratory testing
exists. This dissertation opens up a new
research path and provides the first
empirical results on the applicability and
effects of exploratory testing based on
qualitative and quantitative empirical
studies.

Juha Itkonen
E

m
pirical studies on exploratory softw

are testing
A

alto
 U

n
ive

rsity

Department of Computer Science and Engineering

Empirical studies on
exploratory software
testing

Juha Itkonen

DOCTORAL
DISSERTATIONS

Aalto University publication series
DOCTORAL DISSERTATIONS 107/2011

Empirical studies on exploratory
software testing

Juha Itkonen

Doctoral dissertation for the degree of Doctor of Science in
Technology to be presented with due permission of the School of
Science for public examination and debate in Auditorium T1 at the
Aalto University School of Science (Espoo, Finland) on the 18th of
November 2011 at 12 noon.

Aalto University
School of Science
Department of Computer Science and Engineering
Software Process Research Group

Supervisor
Professor Casper Lassenius

Preliminary examiners
Professor Natalia Juristo, Universidad Politécnica de Madrid, Spain
Professor Markku Oivo, University of Oulu, Finland

Opponent
Professor Magne Jørgensen, Simula Research Laboratory, Norway

Aalto University publication series
DOCTORAL DISSERTATIONS 107/2011

© Juha Itkonen

ISBN 978-952-60-4339-5 (pdf)
ISBN 978-952-60-4338-8 (printed)
ISSN-L 1799-4934
ISSN 1799-4942 (pdf)
ISSN 1799-4934 (printed)

Unigrafia Oy
Helsinki 2011

Finland

The dissertation can be read at http://lib.tkk.fi/Diss/

Abstract
Aalto University, P.O. Box 11000, FI-00076 Aalto www.aalto.fi

Author
Juha Itkonen
Name of the doctoral dissertation
Empirical studies on exploratory software testing
Publisher School of Science
Unit Department of Computer Science and Engineering
Series Aalto University publication series DOCTORAL DISSERTATIONS 107/2011
Field of research Software engineering
Manuscript submitted 14 June 2011 Manuscript revised 26 September 2011
Date of the defence 18 November 2011 Language English

Monograph Article dissertation (summary + original articles)

Abstract
Exploratory software testing (ET) is a practically relevant approach to software testing that
lacks scientific knowledge. In ET, the tester’s work is not based on predesigned and
documented test cases. Instead, testing is guided by a higher-level plan or mission, and the
testing work involves parallel test design, test execution, and learning. One of the distinct
characteristics of ET is that the tester designs the tests during ET and uses information
gained to design new and better tests continuously. The ET approach relies on testers’ skills
and experience. The main claimed benefits of ET are the tester’s ability to apply personal
knowledge and creativity during testing as well as effectiveness, efficiency, and agility in
terms of adapting to changes and working with imperfect documentation.

In this thesis, the ET approach has been studied using empirical research methods. Two case
studies, one controlled experiment, and two field studies were performed to address three
research goals: defining ET and understanding its applicability based on the literature;
empirically investigating the benefits and shortcomings of ET; and providing empirically
based results on how the ET approach is applied in practice.

This research identifies different approaches to ET in industry and describes concrete
testing practices. The role of the tester’s personal knowledge is identified in the literature, and
this research provides a detailed analysis of the application of personal knowledge in failure
detection using ET.

The main conclusions of this work are that ET can be as effective as test case-based
approaches and even more efficient in certain contexts. The testers are capable of utilizing
their personal knowledge in failure detection, and the role of personal knowledge is important
in the ET approach. In addition, software testing in product organizations seems to involve
multiple diverse organizational groups, and ET was found to be an applicable approach to
engage domain experts in testing.

The main implications of this thesis are introducing the exploratory testing approach to the
research community and motivating its relevance by providing empirical studies in industry.
In addition, the results of the effectiveness and efficiency of ET as well as the qualitative data
on exploratory testing practices and the detailed analysis of knowledge in exploratory testing
work are valuable for the research community. The main practical implications include
presenting the benefits and applicability of the ET approach along with the potential
shortcomings and providing empirical evidence regarding the benefits of ET.

Keywords software testing, exploratory testing, defect detection, effectiveness, experience,
domain knowledge, case study, controlled experiment, field observation

ISBN (printed) 978-952-60-4338-8 ISBN (pdf) 978-952-60-4339-5
ISSN-L 1799-4934 ISSN (printed) 1799-4934 ISSN (pdf) 1799-4942
Location of publisher Espoo Location of printing Helsinki Year 2011
Pages 178 The dissertation can be read at http://lib.tkk.fi/Diss/

Tiivistelmä
Aalto-yliopisto, PL 11000, 00076 Aalto www.aalto.fi

Tekijä
Juha Itkonen
Väitöskirjan nimi
Empiirisiä tutkimuksia tutkivasta ohjelmistotestauksesta
Julkaisija Perustieteiden korkeakoulu
Yksikkö Tietotekniikan laitos
Sarja Aalto University publication series DOCTORAL DISSERTATIONS 107/2011
Tutkimusala Ohjelmistotuotanto
Käsikirjoituksen pvm 14.06.2011 Korjatun käsikirjoituksen pvm 26.09.2011
Väitöspäivä 18.11.2011 Kieli Englanti

Monografia Yhdistelmäväitöskirja (yhteenveto-osa + erillisartikkelit)

Tiivistelmä
Tutkiva testaus on merkittävä manuaalisen ohjelmistotestauksen lähestymistapa, jota ei ole
aiemmin tutkittu tieteellisesti. Se ei perustu etukäteen dokumentoituihin testitapauksiin
vaan rinnakkaiseen testien suunnitteluun, suorittamiseen ja oppimiseen. Testaaja
suunnittelee testejä testauksen aikana ja hyödyntää saamaansa informaatiota uusien,
parempien testien kehittämisessä. Tutkiva testaus perustuu testaajan taitoihin ja
kokemukseen. Sen väitettyjä hyötyjä ovat kustannustehokkuus sekä mahdollisuus hyödyntää
testaajan tietämystä ja luovuutta. Tutkivaa testausta voidaan pitää myös ketteränä
lähestymistapana, sillä se sietää muuttuvaa ja epätäydellistä dokumentaatiota.

Tässä väitöskirjassa tutkivan ohjelmistotestauksen lähestymistapaa on tutkittu empiirisillä
tutkimusmenetelmillä. Työssä on suoritettu kaksi tapaustutkimusta, yksi kontrolloitu koe ja
kaksi havainnointitutkimusta teollisuudessa. Tutkimuksella on ollut kolme tavoitetta:
tutkivan ohjelmistotestauksen määrittely ja sen soveltuvuuden arviointi kirjallisuuden
perusteella, hyötyjen ja puutteiden empiirinen evaluointi ja empiiristen tulosten tuottaminen
tutkivan ohjelmistotestauksen soveltamisesta käytännön ohjelmistokehitystyössä.

Tässä työssä on tunnistettu monia tapoja, joilla tutkivaa testausta sovelletaan
ohjelmistoteollisuudessa, ja kuvattu myös konkreettisia testauskäytäntöjä. Testaajan
tietämyksen merkitys on tunnistettu kirjallisuudessa, ja tässä työssä kuvataan
yksityiskohtainen analyysi siitä, mikä on tietämyksen merkitys ohjelmistovikojen
tunnistamisessa tutkivaa testausta käytettäessä.

Tämän tutkimuksen tärkeimmät havainnot ovat, että tutkiva ohjelmistotestaus voi joissain
tilanteissa olla yhtä tehokas ja kustannuksiltaan edullisempi kuin testitapauksiin perustuva
testaus. Testaajat pystyvät hyödyntämään tietämystään vikojen havaitsemisessa, ja
tietämyksen vaikutus tutkivassa testauksessa on merkittävä. Lisäksi ohjelmistotestaukseen
osallistuu tuoteorganisaatioissa ihmisiä monista erilaisista ryhmistä, ja tutkiva testaus on
toimiva tapa hyödyntää näitä eri sovellusalueen osaajia testauksessa.

Tutkimuksen tärkeimmät vaikutukset ovat tutkivan ohjelmistotestauksen lähestymistavan
esille nostaminen tutkimusyhteisössä ja sen motivointi empiirisen tutkimuksen avulla.
Lisäksi tutkimusyhteisölle merkittäviä ovat työn tulokset kustannustehokkuudesta,
kvalitatiiviset tulokset käytännöistä sekä huolellinen analyysi tietämyksen merkityksestä.
Käytännöllisesti arvokkaita ovat ymmärrys tutkivan ohjelmistotestauksen soveltuvuudesta ja
hyödyistä suhteessa puutteisiin sekä empiiriset tulokset sen kustannustehokkuudesta.

Avainsanat ohjelmistotestaus, tutkiva testaus, vikojen havaitseminen, tehokkuus, kokemus,
sovellusalueen tuntemus, tapaustutkimus, kontrolloitu koe,
havainnointitutkimus

ISBN (painettu) 978-952-60-4338-8 ISBN (pdf) 978-952-60-4339-5
ISSN-L 1799-4934 ISSN (painettu) 1799-4934 ISSN (pdf) 1799-4942
Julkaisupaikka Espoo Painopaikka Helsinki Vuosi 2011
Sivumäärä 178 Luettavissa verkossa osoitteessa http://lib.tkk.fi/Diss/

Acknowledgements

I want to thank many people who have contributed to the research and

made this thesis possible. First, I would like to thank my supervisor, Casper

Lassenius, for his continuous support and guidance in my research work.

He has always supported and encouraged me to pursue my work on this

rather uncommon research topic. I am grateful for his persistence, as he

never lost his faith in my work during these years.

This research has been a team effort with my dear researcher colleagues at

SoberIT, not a lonely journey. I want to express special thanks for their co-

operation, help, and encouragement to my closest friends and colleagues in

the Software Process Research Group: Mika Mäntylä, Kristian Rautiainen,

Jari Vanhanen, Jarno Vähäniitty, and Timo Lehtinen.

Many people have participated in the arrangements and data collection

for this research. I want to thank Mikko Rusama for his help with the exper-

iment arrangements and the anonymous students and software develop-

ment professionals who have participated in my research as subjects.

I want to thank my pre-examiners, Professor Natalia Juristo and Profes-

sor Markku Oivo, for helpful comments. In addition, I thank Professor

Claes Wohlin and other SERL researchers at Blekinge Institute of Technol-

ogy for the opportunity to spend three months as their guest and for their

support while I was finalizing this dissertation.

This research would not have been possible without the financial support

of Finnish Funding Agency for Technology (Tekes), Graduate School for

Electronic Business and Software Industry (GEBSI), and Graduate School

on Software Systems and Engineering (SoSE). Particularly important have

been the contributions of the participating companies of the SHAPE and

ESPA research projects in providing access to their development organiza-

tions and empirical data.

The most valuable support I have received came from my family. I thank

my wife Kati for her love and support. I will always remain grateful to her

for bearing the sole responsibility for our home and children while I was

away. Finally, spending cheerful moments with our two wonderful children,

Iiro and Riia, has helped me to put things in the right perspective during

this work.

Juha Itkonen

Espoo, October 2011

List of publications

I Toward an Understanding of Quality Assurance in Agile Software De-
velopment
Juha Itkonen, Kristian Rautiainen, and Casper Lassenius
Published in International Journal of Agile Manufacturing, 2005, vol 8,
no. 2: 39–49.

II Exploratory Testing: A Multiple Case Study

Juha Itkonen and Kristian Rautiainen
Published in Proceedings of International Symposium on Empirical Soft-
ware Engineering, 2005, pp. 84–93.

III Defect Detection Efficiency: Test Case Based vs. Exploratory Testing
Juha Itkonen, Mika V. Mäntylä, and Casper Lassenius
Published in Proceedings of International Symposium on Empirical Soft-
ware Engineering and Measurement, 2007, pp. 61–70.

IV How Do Testers Do It? An Exploratory Study on Manual Testing
Practices
Juha Itkonen, Mika V. Mäntylä, and Casper Lassenius
Published in Proceedings of International Symposium on Empirical Soft-
ware Engineering and Measurement, 2009, pp. 494–497.

V The Role of Knowledge in Failure Detection During Exploratory Soft-
ware Testing
Juha Itkonen, Mika V. Mäntylä, and Casper Lassenius
Submitted to IEEE Transactions on Software Engineering, May 2011, 17
pages.

VI Who Tested My Software? Testing as an Organizationally Cross-
Cutting Activity
Mika V. Mäntylä, Juha Itkonen, and Joonas Iivonen
Published in Software Quality Journal, published online 21st August 2011,
28 pages.

Author’s contributions
In articles I–V, the author of this thesis was the principal author and was

responsible for the research idea, research design, data collection, and writ-

ing the articles. The author has performed all the data analyses and written,

or co-written in the case of article II, all sections of the articles. In article II,

writing the article and the final data analysis cycle were collaborative activi-

ties together with the second author. In article VI, the author of the thesis

contributed to the original ideas and research design and helped in data col-

lection. The author’s biggest contribution in article VI was in the writing

and analysis phase, where he improved the related work, improved and ex-

tended the analyses, and restructured and improved the results and discus-

sion for the article’s final form.

1

Table of Contents

Part I: Summary ... 3�

1.� Introduction .. 5�

1.1� Motivation and background ... 5�
1.2� Research goals ... 7�
1.3� Structure of the thesis .. 8�

2.� Related work ... 9�

2.1� Exploratory software testing ... 9�

2.1.1� Exploratory software testing approach 9�
2.1.2� Practitioner reports on ET ... 11�
2.1.3� Scientific ET research ... 13�

2.2� The role of experience and knowledge in software testing 14�

2.2.1� Effect of experience and domain knowledge 14�
2.2.2� Oracle problem and defect identification 16�

3.� Research goals and methodology ... 20�

3.1� Research goals and questions .. 20�
3.2� A mixed-methods approach .. 22�
3.3� Literature reviews ... 24�
3.4� Case studies ... 24�
3.5� Controlled experiment .. 25�

3.5.1� Overview .. 26�
3.5.2� Factors and blocking variables ... 26�
3.5.3� Response variables ... 27�
3.5.4� Subjects ... 27�
3.5.5� Data collection and analysis ... 27�

3.6� Observation-based field studies .. 28�

3.6.1� Selection of organizations and observation sessions 28�
3.6.2� Observation method ... 28�
3.6.3� Data collection methods ... 30�
3.6.4� Data analysis methods ... 30�

4.� Summary of the results ... 32�

4.1� Goal 1: Define ET and understand its applicability 32�

4.1.1� Definitions of the ET approach in the literature 32�
4.1.2� Motivation and applicability of the ET approach 33�
4.1.3� Key findings .. 35�

2

4.2� Goal 2: Investigate the benefits and shortcomings of ET 36�

4.2.1� Perceived benefits and shortcomings of ET in industry 36�
4.2.2� Defect detection effectiveness and efficiency of ET 37�
4.2.3� Key findings .. 40�

4.3� Goal 3: Study how ET is applied in practice 41�

4.3.1� ET approaches in industry .. 41�
4.3.2� Role of knowledge in failure detection 44�
4.3.3� Testing contribution of different organizational groups 47�
4.3.4� Key findings .. 49�

5.� Discussion ... 50�

5.1� Answers to the research questions .. 50�

5.1.1� Definitions, motivation, and applicability ET 50�
5.1.2� Benefits and shortcomings of ET ... 52�
5.1.3� ET approaches in practice .. 54�

5.2� Validity threats .. 58�

5.2.1� Internal and conclusion validity ... 58�
5.2.2� Reliability ... 59�
5.2.3� Construct validity ... 60�
5.2.4� External validity ... 60�

5.3� Implications for research ... 61�
5.4� Implications for practice ... 62�

6.� Conclusions and future work .. 64�

6.1� Contributions of the research ... 64�
6.2� Future work ... 65�

References for the summary .. 66�

Part II: Articles ... 73�

3

Part I: Summary

4

Introduction

5

1. Introduction

“One important outcome of a test process is a better, smarter tester.”

—Lesson 46 in Kaner et al. (2002)

Software testing is commonly seen as a mechanical, dull, and repetitive ac-

tivity that involves substantial human labor and should be automated as

much as possible. This paradigm of software testing is strongly visible in the

research literature, but practitioners, testing professionals and consultants,

often see testing in a remarkably different light. The above quote from

Kaner et al. (2002) powerfully illustrates this approach to software testing.

Software testing practitioners might describe manual testing as an intellec-

tually challenging, creative, and professionally demanding task that re-

quires a wide variety of knowledge and skills. Exploratory software testing

is such a testing approach that relies on the tester’s skills, knowledge, and

expertise instead of detailed test documentation. In this thesis, the explora-

tory software testing approach is studied.

1.1 Motivation and background

Software testing is a fundamental practice needed in software engineering

to ensure good enough quality of software products. Testing aims at im-

proving software quality through revealing software faults early enough to

be fixed before release to customers and users. Traditionally, in the litera-

ture and especially in research, software testing has been described through

a document-driven and prescriptive test case-based testing (TCBT) para-

digm. In the testing literature, the term “testing technique” is very clearly

interpreted as the test case design or generation technique. Most of the re-

search, see e.g. (Juristo et al. 2004), is focused on techniques for test case

design, selection, prioritization, and optimization. The results, however, do

not show much difference between the various testing techniques and, e.g.,

random testing (Juristo et al. 2009). The development of test automation

has improved testing in many ways, and test automation has become in-

creasingly popular because of approaches such as test-driven development

Introduction

6

and extreme programming (Beck 1999, Janzen & Saiedian 2005). Many au-

thors, however, have pointed out that automated testing cannot replace

manual testing because most new defects are found by manual testing even

when automated testing is applied. Thus, instead of viewing test automa-

tion as a replacement for manual testing, it is usually viewed as a way of

removing the enactment of simple and repetitive tasks from human testers

in order to free up time for more intelligent manual testing (Fewster & Gra-

ham 1999, Andersson & Runeson 2002, Berner et al. 2005). Automating

software testing involves several severe practical challenges, including the

costs and maintainability of the tests and the tests’ ability to reveal new de-

fects when rerun (Fewster & Graham 1999, Persson & Yilmaztürk 2004,

Berner et al. 2005). Because of the benefits of manual testing and the chal-

lenges of test automation, it is unlikely that manual testers will be replaced

by automated testing in the near future.

Manual testing approaches are still a highly relevant part of most software

development efforts, especially in the context of interactive systems with

people as users.

“Manual testing is the best choice for finding bugs related to the underlying busi-

ness logic of an application. Business logic is the code that implements user re-

quirements; in other words, it is the code that customers buy the software for.

Business logic is complex and requires a human in the loop to verify that it is cor-

rect, a task that automation is too often ill-suited to accomplish.” (Whittaker

2009)

Human testers seem to have many benefits over automated approaches that

make manual testing an effective approach. These characteristics of hu-

mans as testers include creativity, intelligence, the ability to efficiently rec-

ognize a variety of problems, and domain knowledge. Knowledge of the ap-

plication domain, users, and how they work with the system is recognized

as a significant factor in software testing both by practitioners (Engelke &

Olivier 2002, Kharlamov et al. 2008) and researchers (Beer & Ramler

2008, Kettunen et al. 2010).

Interestingly, despite its high relevance to practical software develop-

ment, manual testing and humans as testers have not been extensively

studied in the software engineering community. Defect detection activity

(i.e., a human tester’s behavior and activities when recognizing software

failures during test execution) is a virtually unstudied area. Since one of the

most important goals of software testing is to reveal defects in the software,

test execution and defect detection activity deserve more research. After all,

the defects are found during the test execution.

Introduction

7

An early motivator for the research reported in this thesis was the hype

surrounding agile software development methods a few years after the mil-

lennium and the experiences of challenges in organizing testing and other

quality practices in agile development contexts. At that time, the explorato-

ry testing (ET) approach also gained more attention in the practitioner lit-

erature, and it seemed a good match with the agile values and principles.

The exploratory approach to software testing has been recognized in the

literature for decades but has gained more attention in the practitioner lit-

erature since 2000. The fundamental principles of ET are, first, relying on

testers’ knowledge and skills by testing without using detailed and pre-

scribed test cases and, second, parallel learning, test design, and test execu-

tion. Practitioner reports on ET have proposed that, in some situations, it

could be even orders of magnitude more efficient than TCBT (Bach 2004).

Other claimed benefits of ET include the ability to better utilize testers’ cre-

ativity, experience, and skills; lower documentation overhead; and lower

reliance on comprehensive documentation (Bach 2000, Kaner et al. 2002,

Våga & Amland 2002, Lyndsay & van Eeden 2003, Bach 2004). The ET ap-

proach builds on a human tester’s strengths and focuses on test execution

and revealing relevant defects instead of on documentation, repeatability,

or coverage.

Considering the claims and practitioner reports of ET and the identified

role of experience and knowledge in defect detection and software testing,

the experience-based and exploratory paradigms of software testing deserve

more dedicated research efforts. In this thesis, the ET approach is studied

both in realistic industrial and more controlled academic settings. The re-

sults illustrate the benefits and shortcomings of ET and deeper qualitative

knowledge on how testers work, identify failures, and apply their knowledge

in practice when performing exploratory software testing activities.

“The world of exploratory manual testing is one of the most challenging and sat-

isfying jobs in the IT industry.” (Whittaker 2009)

1.2 Research goals

The goals of this research are derived from the practical notion of the gap

between the theory and practical reality of software testing. Testing litera-

ture and theory are hard to relate to the pragmatic approaches to testing

that development organizations apply in practice. The ET approach that can

be found in the practitioner literature seems to share similar values that are

applied in industrial practice. The ET approach has not attracted much in-

terest by the software engineering research community. The high-level re-

Introduction

8

search problem in this thesis is: How do exploratory software testing ap-

proaches work in practice?

This high-level problem is addressed in this thesis through three goals:

Goal 1: Define ET and understand the applicability of ET based on the

literature.

Goal 2: Empirically investigate the benefits and shortcomings of ET.

Goal 3: Provide empirically based results on how the ET approach is ap-

plied in practice.

This thesis and the presentation of the results and discussion are structured

around these three goals. The goals are described and more detailed re-

search questions are presented in Section 3.1.

1.3 Structure of the thesis

This thesis consists of a summary part and the research articles. The sum-

mary part involves a brief review of relevant related work in Section 2, and

the research goals, questions, and methodology are introduced in Section 3.

The results of this work, structured by the research goals, are presented in

Section 4. The results are discussed in Section 5, including answers to the

research questions, limitations, and implications of this work to research

and practice. Finally, conclusions and directions for future work are stated

in the last section of the summary part. Part II includes the six original re-

search articles.

Related work

9

2. Related work

In this section, I review the relevant previous research and literature that

relates to this thesis work. The related work is covered in two parts. First,

the literature covering exploratory software testing approach is presented,

including work on ET approaches, reported practitioner experiences of ET,

and scientific research on ET. Second, the existing studies on the role of ex-

perience and knowledge in software testing and defect identification are

reviewed.

2.1 Exploratory software testing

In this section, the relevant literature on ET is reviewed. Scientific research

on ET is still scarce and was practically non-existent prior to this thesis

work. Thus, part of this literature review has to rely on practitioner reports

and books. This section is divided into four subsections. First, the ET ap-

proach is introduced and described based on books and the practitioner lit-

erature. Second, practitioner reports on experiences and claimed benefits

are covered, and, finally, scientific research on ET is reviewed.

2.1.1 Exploratory software testing approach

The term exploratory testing was first used in software testing books by

Kaner et al. (1999). The exploratory software testing approach has been

acknowledged in software testing books since the 1970s (Myers 1979), but

has been referred to mostly as an ad hoc approach or error guessing without

any concrete description of how to perform such testing.

In most of the sources, ET is seen as a useful and effective approach to

testing but as a complementary approach to structured and systematic test

case-based (TCBT) techniques. Exploratory testing can be viewed as a dif-

ferent way of applying testing techniques and theories. Exploratory testing

can utilize both the same and different techniques as the traditional prede-

signed testing. It can be stated that ET is a more efficient way of applying

not only similar testing theories and strategies that are used for prede-

signed testing but also the tester’s skills, experience, and tacit knowledge.

Related work

10

In ET, the result of applying the testing strategies is not written down in

detail beforehand, and the test design is not used as a restrictive script dur-

ing the test execution.

There is not much literature on exploratory testing, but it has been well-

covered in books by Kaner et al. (2002) and, more recently, by Whittaker

(2009). Many other books on testing also cover ET to some extent, see, e.g.,

(Craig & Jaskiel 2002, Whittaker 2003, Copeland 2004, Page et al. 2008,

Crispin & Gregory 2009). James Bach (2004) described it in more detailed

writings, and Tinkham and Kaner (2003a) covered the need for questioning

skills and the heuristic nature of ET. Jonathan Bach (2000) published the

first approach to managing ET, called “session-based test management.” ET

was defined in SWEBOK as:

“Exploratory testing is defined as simultaneous learning, test design, and test

execution; that is, the tests are not defined in advance in an established test

plan, but are dynamically designed, executed, and modified.” (Abran et al.

2004).

Bolton (2005) gave an explanation and examples of how to explore without

specifications. Whittaker (2009) published the first dedicated ET book giv-

ing a detailed description of a tour-based exploratory testing approach. In

addition, Bach (1999) described an exploratory testing procedure for testing

the functionality and stability of a software application for the “Certified for

Microsoft Windows Logo.”

Exploratory software testing seems to align well with the values and prin-

ciples of agile software development (Fowler & Highsmith 2001, Cockburn

2002). Originally, the exploratory testing approach was not recognized as

part of agile methods; e.g., Crispin and House (2003) did not allow manual

testing at all in their first agile testing book. Also, in the descriptions of ET,

only hints of applicability in the agile context could be found, e.g., (Bach

2004). This lack of coverage of the testing practices in agile development or

the applicability of the exploratory testing approach in the agile develop-

ment context was the motivation to perform the literature-based analysis

presented in article I of this thesis.

In the context of open-source software, the testing approach is typically

informal and exploratory in nature, not controlled by strict test case docu-

mentation. Instead, testing in OSS is based on a large number of volunteer

testers performing free-form testing in numerous different locations and

software and hardware environments (Aberdour 2007). Successful open-

source software projects are one example of the potential abilities of the ex-

ploratory testing approach, demonstrating that the prescribed test-case-

Related work

11

driven approach is not the only possible way of detecting important defects

and achieving a high-quality software system.

2.1.2 Practitioner reports on ET

Practitioners and consultants often describe ET as the way in which experi-

enced testers work; for example, Lyndsay and van Eeden (2003) wrote,

“Session-based testing mirrors the activities of experienced testers, but is

not the subject of a great many papers or books.”

Practitioner reports of experiences of applying exploratory testing ap-

proaches in industry have claimed that ET is effective in detecting defects as

well as cost-efficient. Bach suggested that, in some situations, ET can be

much more efficient than scripted testing (Bach 2004).

The most concretely described exploratory testing approach in the practi-

tioner literature is session-based testing (SBT) (Bach 2000, Lyndsay & van

Eeden 2003, Wood & James 2003). SBT is a method for managing explora-

tory testing that enables planning and tracking ET without sacrificing the

strengths of the exploratory approach. At the heart of SBT are strictly re-

stricted, time-boxed testing sessions instead of test cases as the unit of test-

ing, and the testing work is planned and controlled on the granularity of the

sessions. A typical length of a testing session is from a few hours to half a

day at maximum. Within the limits of a session, the tester’s activities are

not strictly controlled or predesigned; however, these sessions are directed

and planned, which enables the management of testing efforts on a higher-

than-test case level.

The first documented ET method was session-based test management

(SBTM), first described in a magazine article by Bach (2000). In SBTM, as

in session-based testing in general, the basic work unit of testing is a test

session, not a test case. The method includes practices for planning, manag-

ing, reporting, and tracking the progress of exploratory testing as short ses-

sions, but it does not describe the actual testing techniques or defect detec-

tion strategies to be used in the testing sessions. The basic building blocks

of SBTM are a charter, time-boxed sessions, reviewable results, and a de-

briefing.

Another, more detailed case report of performing exploratory SBT was

published on the Internet by Lyndsay and van Eeden (2003). In their ap-

proach, Lyndsay and van Eeden introduced the concept of “test points” for

controlling the scope and coverage of testing. Test points describe the test-

ing tasks that are performed during sessions. A test point can be described

as a unit of work and a test session as a unit of time, which separate the

Related work

12

concepts of the test session and the testing task more clearly than in Bach’s

SBTM.

Lyndsay and van Eeden (2003) reported many results and lessons learned

after introducing their SBT approach in the case organization. The most

important results were the ability to measure and control the exploratory

testing process and the visibility of the testing work to the test manager.

The testing team also felt in control of their work. They could see the size of

the work, current status, and progress. The improved visibility of the testing

process improved the trust between the developers and the testing team.

Finally, they reported that the tested product in this case was more stable

and had fewer outstanding defects.

Wood and James (2003) reported the benefits of applying exploratory

SBT in the medical software domain. They identified several problems

compromising the effectiveness of testing in medical software testing, in-

cluding highly compartmentalized testing, excess “housekeeping” documen-

tation at the expense of actual testing, an emphasized focus on require-

ments and code coverage instead of defect discovery, and repetitive testing.

As a solution to these problems, Wood and James proposed complementing

the standard testing methods with exploratory SBT. They described an SBT

approach for the medical device software domain and reported lessons

learned from using STB. They found STB to be an effective testing ap-

proach, especially if the testers were independent of the development and

V&V activities. They suggested that exploratory SBT is best applicable in

areas where heavy user interaction and outcomes can be confirmed quickly.

Våga and Amland (2002) reported a case description involving the appli-

cation of an exploratory testing approach in a very tightly scheduled ac-

ceptance testing project. The tested software was a proprietary Web pub-

lishing system for a large multinational IT company. The documentation of

the system was scarce, and the developers still changed and fixed the sys-

tem frequently, even though it was going into production. They combined

exploratory and pair testing in their two-day testing project. The reported

project was an extreme case where the task was to test a completed Web

system in two days using inexperienced testers, mainly end users, who had

only two days of training in ET prior to the testing work. They had 14 testers

who, during this two-day acceptance testing, reported approximately 150

defects. It took 3 months to fix the 65 most critical of the found defects be-

fore taking the system into production with limited functionality. The test

team managed to stop a system with too many defects from going into pro-

duction.

Related work

13

2.1.3 Scientific ET research

In the scientific research literature, only a few works even related to ET

have been published prior to this thesis work. There is a body of empirical

research on the effectiveness of numerous test case design techniques (Ju-

risto et al. 2004) but no studies comparing the ET and test case-based ap-

proaches. In a related study, Houdek et al. (2002) studied defect detection

effectiveness in an executable specification context, comparing systematic

testing and experience-based ad hoc simulation. According to their results,

ad hoc simulation required less effort than the systematic techniques of in-

spection and testing, and there was no difference in effectiveness (Houdek

et al. 2002). This gives some support to the hypothesis that freestyle ET

could be an efficient approach for detecting defects. However, it is hard to

generalize their findings from the executable specification context to func-

tional software testing. Later, do Nascimento and Machado (2007) com-

pared exploratory and model-based feature testing in the mobile phone ap-

plication domain. They found ET approach to be as effective as and even

more efficient than the other testing approaches. The results were, thus,

similar to those previously reported by Houdek et al.

Other studied aspects of ET include the effect of the individual character-

istics on ET. Tinkham and Kaner (2003b) used differences in learning

styles to explain different styles of testing and, more recently, Shoaib et al.

(2009) studied the effect of personality traits on exploratory testing per-

formance and found that extroverted personality types might be more likely

good at exploratory testing.

Tuomikoski and Tervonen (2009) reported good experiences in integrat-

ing exploratory testing sessions with the agile Scrum methodology. They

reported good results in terms of the number of revealed defects as well as

the benefits of sharing knowledge and forming a common understanding of

the actual quality level through the exploratory testing sessions (Tuomiko-

ski & Tervonen 2009).

These few studies on ET do not provide any conclusive results or enable

more detailed synthesis but give some support to the hypothesis that ET

could be an effective and efficient testing approach in certain contexts.

Another related research area that has emerged during recent years is

empirical research on software testing in real-world contexts. Some of such

studies are relevant from the ET point of view. Pichler and Ramler (2008)

applied ET in testing a highly interactive GUI editor and developed software

tools to support exploratory GUI testing. Researchers have also determined

that the ET approach seems to match well with agile development process-

es; e.g., Tuomikoski and Tervonen (2009) described positive experiences in

Related work

14

using team exploratory testing sessions as part of the agile Scrum develop-

ment process. Martin et al. (2007) gave a detailed description of a “systems

integration testing” approach that is highly exploratory in their ethnogra-

phy of testing at a small agile company. Kasurinen et al. (2010) observed

exploratory testing as part of a more generic risk-based approach to testing.

In addition to refereed scientific forums, multiple academic theses have

recently been published on the ET topic, which gives the impression that ET

is gaining more attention among academics. See, e.g. (Bhatti & Ghazi 2010,

Hellmann 2010, Hulkkonen 2010, Naseer & Zulfiqar 2010, Saukkoriipi

2010, Shah & Alvi 2010).

As a summary of the review of related ET work, it can be stated that ex-

ploratory testing has been promoted by practitioners and positive experi-

ences with the applicability and effectiveness of ET have been presented in

the practitioner literature. Research on ET in scientific forums is emerging.

There are some results of comparing ET with other testing approaches that

support the effectiveness and efficiency of the ET approach. There is a lack

of studies focusing on actual exploratory testing practices and activities.

2.2 The role of experience and knowledge in software testing

In this section, the research literature on the role of personal experience

and knowledge in the context of software testing and defect identification is

reviewed. The section is divided into two subsections. First, research on the

effect of experience and domain knowledge in software testing is reviewed.

Second, the relevant literature on the oracle problem and defect identifica-

tion is discussed.

2.2.1 Effect of experience and domain knowledge

In industrial practice, it is common that some part of the test case selection

and design as well as evaluation of the expected outcome is left to the indi-

vidual testers to do based on experience and tacit knowledge instead of rig-

orously documented techniques and outcomes. Studies on industrial prac-

tice report that rigorous, systematic, and thoroughly documented TCBT is

not dominating testing practices in industry (Andersson & Runeson 2002,

Ng et al. 2004, Runeson 2006, Engström & Runeson 2010). It seems that

an experience-based approach is an important complementary part of test-

ing even in contexts where rigorous and systematically documented testing

is required. Practitioners have proposed an experience-based testing ap-

proach, e.g., in the financial (Kharlamov et al. 2008) and medical (Engelke

& Olivier 2002, Wood & James 2003) domains. According to some re-

Related work

15

search, the lack of rigorous documentation is not always considered a prob-

lem in industry (Andersson & Runeson 2002), and there are significant

challenges in keeping documentation up to date (Forward & Lethbridge

2002). Some practitioners even consider a too-rigorous approach to test

documentation harmful (Dallas 2010). Although there are limited empirical

studies on the industrial practice of software testing, these findings give

some insight into the practical relevance of the experience-based approach

to software testing.

Expertise has been studied in the design (Cross 2004), software engineer-

ing (Turley & Bieman 1995), and software design contexts (Adelson & Solo-

way 1985, Sonnentag 1998). Outside software engineering expertise and

competence have been studied widely; e.g., Sandberg (2000) studied hu-

man competence at car engine optimizing work. However, scientific re-

search on the role of experience and knowledge in the software testing con-

text is still rare. Only a few studies have been published focusing specifically

on the role of experience in software testing (Beer & Ramler 2008,

Kettunen et al. 2010, Merkel & Kanij 2010, Poon et al. 2011).

Beer and Ramler (2008) studied the role of experience in three case stud-

ies and described the role of experience in the development of test cases,

regression testing, and test automation. They found that domain

knowledge, in addition to testing knowledge, is crucial in testing. They indi-

cated that the typical knowledge development path of senior testers started

with strong domain knowledge. Testing experience, was gained later

through working in testing, seminars, and working with external consult-

ants. They concluded that “test design is to a considerable extent based on

experience and experience-based testing is an important supplementary

approach to requirements-based testing” (Beer & Ramler 2008). In all three

cases of Beer and Ramler, the test cases were designed before the actual

testing, which means that their research did not give any insight into the

exploratory testing approach. Kettunen et al. (2010) also reported domain

knowledge to be the most emphasized area of testers’ expertise in their

study but emphasized also the role of technical knowledge, especially in the

agile context.

Merkel and Kanij (2010) performed a survey on the effect of experience

and individual differences in software testing. The survey results showed

that testing practitioners considered both testing and domain experience as

important factors affecting testing performance. Testing specific training or

certification was not found to be as important, but the individual traits of a

tester were found to be highly influential on tester performance by the re-

spondents (Merkel & Kanij 2010).

Related work

16

Poon et al. (2011) investigated experimentally the differences in the types

and amounts of mistakes made in test case identification between inexperi-

enced and experienced software testers. They also studied the reduction of

defect mistake rates when providing testers with an identification checklist.

They found large variations among individual subjects, especially in the

case of inexperienced subjects. Experienced subjects identified more test

categories and made fewer mistakes, and, in particular, the number of miss-

ing categories in complex cases was considerably lower for experienced sub-

jects. However, Poon et al. concluded that experienced testers are not nec-

essarily better than inexperienced ones in every respect. Experienced ones

made more mistakes of certain types. In addition, the contribution of expe-

rience to performance decreases when the complexity of the tested func-

tionality increases. Using a checklist reduced the number of missing catego-

ries and all types of mistakes (Poon et al. 2011).

The existing research on the role and effects of experience in software

testing raises the hypothesis that experience has an important effect on

testing performance and that domain knowledge will be even more im-

portant than testing experience.

2.2.2 Oracle problem and defect identification

The “test oracle” is a concept describing a method that is used to recognize

correct and incorrect test output during software testing (Howden 1978,

Beizer 1990, Baresi & Young 2001, Abran et al. 2004). This defect recogni-

tion is one of the most crucial activities in testing, and the existence of a test

oracle is recognized as a fundamental requirement in all kinds of testing

(Howden 1978, Whittaker 2000, Baresi & Young 2001, Memon et al. 2003).

The challenge of finding such a reliable oracle for testing is referred to as

“the oracle problem” in the literature. The oracle problem is often investi-

gated in the context of test automation in striving for automated test oracles

(Baresi & Young 2001, Abran et al. 2004, Shahamiri et al. 2011). While the

same problem is associated with all software testing, in manual testing, the

TCBT paradigm aims at solving the oracle problem by predefining the ex-

pected result in detail: “In real testing the outcome is predicted and docu-

mented before the test is run” (Beizer 1990). This assumption of the exist-

ence and availability of a test oracle is referred to as the “oracle assump-

tion” in the literature (Howden 1978, Weyuker 1982).

In practice, however, requirements, specifications, and test cases are sel-

dom perfect in terms of comprehensiveness and accuracy. Weyuker (1982)

described her experiences in testing what she called non-testable programs.

She recognized the common challenge that a reliable oracle does not always

Related work

17

exist or is not practically available for testers. Even in these situations, test-

ing is possible, and Weyuker described several strategies for testing such

programs. The strategies included a partial oracle, a pseudo-oracle, and us-

ing simplified data (Weyuker 1982). In referring to a partial oracle,

Weyuker (1982) meant a situation in which the “tester is able to state with

assurance that a result is incorrect without actually knowing the correct an-

swer.” Even though Weyuker presented the partial oracle in the context of

testing non-testable programs, testers can apply an experience-based par-

tial oracle to many kinds of programs. If a failure can be identified very effi-

ciently using a partial oracle, it is not necessary to use or find a perfect ora-

cle to find out the exactly correct outcome. Weyuker used the term pseudo

oracle to refer to an independently written program that satisfies the same

specification as the tested program (Weyuker 1982). The third approach to

testing non-testable programs was using simplified data, which, in many

cases, allows testers to verify the simple cases, for which the correct result

can be determined, and extrapolate from this that the program works also

for complicated data (Weyuker 1982).

It seems that, in most manual testing, the oracle problem is highly rele-

vant and typically solved based on the experience-based knowledge of test-

ers and varying types of documentation. Actually, in industrial practice,

even in many test automation approaches, the oracle problem is left a hu-

man decision (Baresi & Young 2001) as, e.g., Whittaker (2000) wrote: “…

such difficulty is the reason why the actual-versus-expected output compar-

ison is usually performed by a human oracle: a tester who visually monitors

screen output and painstakingly analyzes output data.” From the empirical

research on real-world testing activities, it is clear that an experience-based

human oracle is, in many cases, the way in which tests are evaluated in

practice; see, e.g., the ethnographic descriptions of Martin et al. (2007) and

Rooksby et al. (2009). In the ET context, experience-based oracles have

been presented, e.g., the heuristics-based approach. Kaner et al. (2002) and

Bolton (2005) described the consistency heuristics, a set of rules for check-

ing the consistency of functionality against various targets, such as the his-

tory of the product, comparable products, and users’ expectations.

Some additional insight into the role of knowledge in defect detection is

provided by the findings regarding the effects of domain knowledge on de-

fect detection in the usability inspection and spreadsheet error-finding con-

texts. As described earlier, multiple studies on software testing have report-

ed findings on the high importance of domain knowledge in testing (Beer &

Ramler 2008, Iivonen et al. 2010, Kettunen et al. 2010, Merkel & Kanij

2010). Similar results have been reported in the context of usability testing.

Følstad (2007) studied work-domain experts’ performance as usability

Related work

18

evaluators and found that the findings of work-domain experts were classi-

fied as more severe and that the developers gave higher priority to items

identified by work-domain experts (Følstad 2007).

To my knowledge, the oracle problem has not been studied in the context

of manual testing with the intent of understanding, describing, or improv-

ing the way in which humans recognize defects. Some insight into the issue

can be found in the area of end-user software engineering (Burnett et al.

2004). In the spreadsheet context, the oracle problem has been acknowl-

edged and studied to some extent. First, Galletta et al. (1996) presented a

conceptual model of the potential factors affecting error-finding perfor-

mance. Their model classified the factors into four categories: individual

factors, presentation factors, error factors, and external factors. They stud-

ied the individual experience factors (Galletta et al. 1993) and presentation

factors (Galletta et al. 1996). They compared the error-finding performance

of domain area (accounting) experts vs. novices and spreadsheet (software)

experts vs. novices in finding domain-related and spreadsheet-related de-

fects. They found that each type of expertise increased the error finding per-

formance, but the performance of those with both types of expertise far ex-

ceeded the performance of other groups. The spreadsheet expertise in-

creased the speed of revealing spreadsheet-related defects (Galletta et al.

1993). There is no research on how similar aspects, as presented by the con-

ceptual model of Galletta et al. (1996), would affect defect detection per-

formance in manual software testing.

Another important viewpoint regarding experience-based human oracles

is the possibility of oracle mistakes. Testers do not always recognize a defect

even if a test case reveals it; i.e., they make oracle mistakes. E.g., in the ex-

periment of Basili and Selby (1987), the subjects recognized only 70% of

observable failures, and Ruthruff et al. (2005) and Phalgune et al. (2005)

studied oracle mistakes that end-user programmers made and found mis-

take rates ranging from 6% to over 20%. Oracle mistakes, meaning that a

tester judges incorrect behavior to be correct or vice versa, are an important

factor affecting the effectiveness and applicability of exploratory testing.

As a summary of the research on the role of experience and knowledge in

testing, it can be stated that the importance of experience and, in particular,

domain knowledge is recognized in the literature. There is no detailed un-

derstanding of the knowledge that is applied in testing. Existing studies in

the software testing context are based on interviews regarding case studies

and surveys, and the results do not provide insight into how testers actually

work and apply their knowledge. The findings of the effect of experience

and knowledge in defect detection in the context of usability evaluations

and end-user programming support the importance of experience and do-

Related work

19

main knowledge. How and what type of knowledge is applied in defect de-

tection when performing ET remains an unstudied area. This thesis aims at

studying the ET activities and role of knowledge in defect detection activity

of ET in detail.

Research goals and methodology

20

3. Research goals and methodology

This thesis is an exploratory study of exploratory software testing. In this

section, the goals of the research and more detailed research questions are

described. As the main goals of this thesis are to increase understanding of

the previously rather unstudied exploratory testing approach, the work is

exploratory and theory-generating in nature (Patton 2002). Exploratory

research is a proper research approach when researchers have little existing

scientific knowledge about the activity under study but have a reason to be-

lieve that it is a relevant target of research (Stebbins 2001). To properly

study these human aspects of software engineering, qualitative inquiry

(Patton 2002) is used as the primary research method, combined with

quantitative methods when necessary. This mixed-methods research ap-

proach that forms the overarching methodology for this thesis is described

is Section 3.2. The sufficient details of each employed research method are

described in the subsequent subsections.

3.1 Research goals and questions

The high-level research problem that this thesis aims to address is: How do

exploratory software testing approaches work in practice?

To provide new understanding regarding the mostly unstudied ET ap-

proach, three goals are set for this thesis, and research questions are stated

for each of the goals.

Goal 1: Define ET and understand the applicability of ET based on the liter-

ature.

RQ 1: How is ET defined in the literature?

RQ 2: How is ET motivated in the literature and in what contexts is ET

claimed to be applicable?

The first goal of this thesis focuses on the existing knowledge of ET based

on scientific and practitioner literature. The goal is descriptive and aims to

Research goals and methodology

21

define the concept of ET and summarize the motivations and claims con-

cerning ET that are presented in the literature. The goal is not to come up

with a synthesis of results because the research results on ET are virtually

non-existent.

Goal 2: Empirically investigate the benefits and shortcomings of ET.

RQ 3: What are the perceived benefits and shortcomings of ET in indus-

try?

RQ 4: What is the defect detection effectiveness of the ET approach in

comparison to the TCBT approach?

The second goal of this thesis focuses on producing empirical data regard-

ing the benefits and shortcomings of the ET approach. The goal is twofold:

first, to investigate the perceptions of industry practitioners who apply ET

in their organizations and, second, to empirically compare the effectiveness

of the ET and TCBT approaches.

Goal 3: Provide empirically based results on how the ET approach is ap-

plied in practice.

RQ 5: How is the ET approach applied in industry?

RQ 6: How is knowledge applied to failure detection in exploratory test-

ing in industry?

RQ 7: How do people in different organizational roles contribute to defect

detection?

The third goal of this thesis focuses on empirical results with respect to how

ET is applied in industry. The goal is to provide descriptive results indicat-

ing the ways in which ET is applied as a part of software development activ-

ities. In addition, because the important role of knowledge in software test-

ing is identified in the literature, this goal includes a detailed investigation

on the knowledge aspect. Finally, directly related to the role of knowledge in

testing is the question of who performs the actual defect detection activities,

i.e., testing, in development organizations.

The results for each of the three research questions are covered in one or

more articles that this thesis consists of. The mapping of the research goals

and questions to the articles is presented in Table 1.

Research goals and methodology

22

Table 1. Mapping the research questions and publications. “X” denotes that the article ad-
dresses the research question, and “M” denotes that the research question is a main re-
search question in the article.

I II III IV V VI

Goal 1: Definition and applicability
RQ 1: How is the ET defined in the literature? M

RQ 2: How is ET motivated in the literature and in what
contexts is ET claimed to be applicable? X X

Goal 2: Benefits and shortcomings

RQ 3: What are the perceived benefits and shortcom-
ings of ET in industry? M

RQ 4: What is the defect detection effectiveness of the
ET approach in comparison to the TCBT approach? X M

Goal 3: Application in practice
RQ 5: How is the ET approach applied in industry? M M X
RQ 7: How is knowledge applied to failure detection in
exploratory testing in industry? X M

RQ 6: How do people in different organizational roles
contribute to defect detection? M

3.2 A mixed-methods approach

The overall research approach in this thesis is a mixed-methods approach

(Creswell et al. 2003, Shull et al. 2008) that combines three main research

approaches: case studies, experiment, and empirical observation-based

field studies. Even though one of the studies is a controlled experiment, this

research is mainly exploratory and hypothesis-generating in nature rather

than existing hypothesis-verifying. This was due to the shallow body of lit-

erature and research on ET and, thus, the lack of existing theories or hy-

potheses. The primary research approach in this thesis is qualitative; how-

ever, a mixed-methods approach enables us to study this rather unstudied

exploratory software testing phenomenon form diverse viewpoints. The re-

search methods are mixed in this research both sequentially between stud-

ies and concurrently within a single case study (see Figure 1).

Qualitative Case Study
(article II)

Quantitative
Experiment
(article III)

Qualitative Field Study
(article IV)

Qualitative Field Study
(article V)

Mixed Methods Case
Study

(article VI)

Theoretical Literature
Study (article I)

Figure 1. Mixed-methods approach and the studies of this thesis

Research goals and methodology

23

In the first phases of this study, the sequential exploratory strategy for

mixed-methods research (Creswell et al. 2003) was used to study the ET

phenomenon. As Creswell et al. described, the primary focus in the sequen-

tial exploratory strategy is on exploring a phenomenon. In this research

strategy, a primary qualitative study is conducted and a quantitative study

is then applied to assist in the interpretation of qualitative findings or the

test elements of an emergent theory resulting from qualitative findings

(Creswell et al. 2003). The first qualitative case study (article II) was per-

formed to understand the role, benefits, applicability, and shortcomings of

exploratory testing in software development organizations. Based on the

results of the first case study and a literature review, hypotheses of the de-

fect detection effectiveness of ET in comparison to TCBT emerged. These

hypotheses were tested in a controlled experiment (article III). In the first

case study, some quantitative data was also used to enrich the qualitative

descriptions, as in the concurrent nested strategy (Creswell et al. 2003).

The results of the experiment were not conclusive and required more ex-

planation. Because ET is a practice that has not been studied much and the

descriptions in the books and practitioner reports are somewhat vague,

more qualitative research was needed. The study continued, following a se-

quential explanatory strategy (Creswell et al. 2003) in which subsequent

qualitative studies were conducted to gain more insight into the ET phe-

nomenon, focusing on the defect detection activity. Two empirical observa-

tion-based field studies (articles IV and V) were conducted to study the ac-

tual exploratory testing practices of software development professionals.

During the research, it was recognized that, in practice, the knowledge of

professionals in a variety of organizational roles seemed to be an important

factor in testing and defect discovery. Another exploratory case study (arti-

cle VI) was performed to better understand the contributions of different

employee groups in defect detection. In this last study, the concurrent tri-

angulation strategy (Creswell et al. 2003) was used by mixing quantitative

and qualitative methods within the case study. Qualitative and quantitative

methods were used partly to answer different questions and to triangulate

and utilize multiple sources of evidence, but qualitative data was also em-

ployed in explaining the quantitative results of the study.

In the next three subsections, the case study, experimental, and observa-

tion-based field study methods used are introduced.

Research goals and methodology

24

3.3 Literature reviews

A literature review was a part of all of the studies of this thesis. Article I was

based purely on a review and theoretical analysis of literature. In articles II,

III, and V, a more comprehensive review of ET literature from the view-

point of the research questions of each article was performed.

The literature reviews did not follow any specific systematic literature re-

view (SLR) protocol. Instead, the literature reviews used an informal review

process that covered academic databases, practitioner literature, and Inter-

net sources. The literature reviews were carried out by searching for rele-

vant material from the following sources:

� IEEE Explorer database

� ACM Digital Library database

� Scopus database

� Google Scholar

� Generic Internet search services: Google and Yahoo!

All references in each relevant article found were reviewed. In addition, a

large number of known software testing textbooks were reviewed. Formal

inclusion and exclusion criteria were not applied since it was feasible to in-

clude all published material because no reliable research was available. In

practice, articles, books, and reports were included and other material such

as Web pages and slide presentations were excluded.

The reasons for using an informal approach instead of an SLR were as fol-

lows. Performing an SLR on exploratory testing was not feasible since there

is no established body of research on exploratory testing, which means that

systematic searches in academic databases with such relevant keywords as

“exploratory software testing” did not return any relevant findings, and

more generic search terms resulted only in the retrieval of thousands of ir-

relevant papers. More importantly, the relevant papers did not necessarily

include the used search terms. Finally, the goal of the literature review was

not to draw conclusions based on a synthesis of existing research but, ra-

ther, to summarize the existing published knowledge, which did not justify

the effort and rigor of the SLR approach.

3.4 Case studies

The two case studies in this thesis are both industrial multiple case studies

with three software product development organizations as the units of anal-

ysis (articles II and VI). In the first case study, the methodology was de-

signed mainly according to Yin (1994) and, in the second case study, it was

designed according to Runeson and Höst (2009).

Research goals and methodology

25

The selection of case organizations in the case studies was based on avail-

ability through ongoing research cooperation and the representativeness of

the case organizations in terms of the studied phenomena. In the first case

study, case organizations were selected that applied an exploratory testing

approach in their software development. In the second case study, the

availability of quantitative defect data was an additional selection criterion.

The first case study (article II) was a descriptive case study where the ap-

plied ET approaches in three case organizations were studied using semi-

structured interviews and qualitative data analysis as the primary research

methods. The number of interviewees was 1–4 in each case organization.

The qualitative descriptions were enriched by quantitative data regarding

defect detection effectiveness and efficiency.

The second case study (article VI) was an exploratory case study where

the role and contributions of different organizational groups in defect de-

tection were studied. The goal of the study was to provide initial answers to

the research questions and to generate hypotheses for future studies. The

case study was conducted with three case organizations as the units of anal-

ysis. In this study, multiple methods were applied, combining qualitative

and quantitative data and analysis. Qualitative data was collected using

semi-structured interviews with four interviewees from each organization,

collaborative workshops, and informal communication (discussions and

email communication) as the methods. Qualitative data analysis was per-

formed by, first, transcribing the interview recordings and, second, per-

forming qualitative coding using both preformed codes and open coding

followed by axial coding rounds (Strauss & Corbin 1998). In addition to the

qualitative methods, an in-depth quantitative analysis of the data on re-

ported defects in the defect databases in each case organization was per-

formed. After the quantitative defect data analysis, additional validating

interviews were conducted to validate and gain further explanations for the

generated hypotheses.

3.5 Controlled experiment

In the third study of this thesis (article III), a controlled student experiment

was conducted. The study focused on comparing the defect detection effec-

tiveness of the test case-based and freestyle exploratory testing approaches.

Research goals and methodology

26

3.5.1 Overview

A one-factor block design with a single blocking variable (Juristo & Moreno

2001) was used as the design of this experiment. The empirical research

guidelines presented by Kitchenham et al. (2002) were used as a guide in

designing this experiment. The study was performed as a student experi-

ment in the context of an undergraduate-level software testing course. The

subjects were randomly divided into two groups, both of which performed

similar test sessions with and without predesigned test cases. The ordering

of the test sessions differed for the two groups. The test sessions were con-

trolled sessions in which 90 minutes of effective testing time was given for

testing the features. The subjects of both groups performed the sessions at

the same time in different rooms. In both sessions, the same application

was tested, but the feature set being tested was different in the first and se-

cond sessions.

The experiment consisted of three separate phases: preparation, session 1,

and session 2. In the preparation phase, each subject designed and docu-

mented test cases for the feature set that was allocated for TCBT for them.

The subjects designed the test cases without supervision and used as much

effort as they required for the preparation phase. Note that each student

designed the test cases only for TCBT; they did not prepare test cases for

the other feature set that was tested using an exploratory approach. All sub-

jects participated in both sessions, but the ordering of the test approaches

was different for the two groups. The structure and length of both con-

trolled testing sessions were exactly the same. An overview of the experi-

mental arrangements is described in Table 2.

Table 2. Experiment arrangements

 Group 1 Group 2
Preparation Test cases for feature set A Test cases for feature set B

Testing Session 1
TCBT ET

Feature set A Feature set A

Testing Session 2
ET TCBT

Feature set B Feature set B

3.5.2 Factors and blocking variables

The factor in this experiment is the applied testing approach. The factor has

two alternatives: test case based testing (TCBT) and exploratory testing

(ET).

Blocking variables represent the undesired variations in the experimental

design that cannot be eliminated or made constant. In this experiment, the

significant blocking variable was the tested feature set. The feature set also

Research goals and methodology

27

included the seeded and actual defects that, consequently, were not the

same for all of the elementary experiments. The type of tested features and

the properties of the defects in the tested software variant have an effect on

the test results. For these reasons, the tested feature set was considered a

blocking factor in the experimental design, and we took into account the

possible effects of two different feature sets in the data analysis.

3.5.3 Response variables

This study looked at the defect detection effectiveness measured by the

number of defects found during a fixed-length testing session. In addition,

insight into the effectiveness was gained by analyzing the proportions of

different defect types and severities. In addition, the number of false defect

reports produced during a testing session was used as one variable.

3.5.4 Subjects

The number of subjects in the experiment was 79. The major undesired var-

iation that affected this experiment originated from the individual differ-

ences in the student subjects. These properties included experience in soft-

ware engineering, amount of study, prior training in software testing, and

individual skills. These variations were handled by two means. First, all

subjects performed the experiment two times, once using each of the testing

approaches. Second, the subjects were randomly assigned into two groups

that applied the two approaches in different orders. The two groups were

used for the sole purpose of randomizing the application order of the two

approaches, and the testing assignments in this experiment were individual

tasks for each subject.

3.5.5 Data collection and analysis

The experiment data was collected in many forms. First, subjects submitted

the predesigned test cases in an electronic format. Second, in the testing

sessions, the subjects filled in test logs and defect report forms. Third, after

each session, the subjects filled in a survey questionnaire.

The defect report data was analyzed in detail. Each found defect was rec-

orded with all details and imported into the SPSS statistical analysis tool,

which was used for all statistical analysis. The number of defects detected

by the ET and TCBT groups were compared using the t-test. In addition, a

multi-factorial analysis of variance (ANOVA) was used to control for and

understand the effect of the different feature sets and the possible interac-

tions between the feature set and the testing approach.

Research goals and methodology

28

To analyze the defect types and number of false reports, the defect distri-

butions of the ET and TCBT groups were presented and a significance anal-

ysis using the non-parametric Mann-Whitney test was performed.

3.6 Observation-based field studies

Two of the studies of this thesis (articles IV and V) are field studies that fo-

cus on the testers’ activities in real testing work and in authentic environ-

ments and contexts, i.e., studying testing activities and defect detection in

situ. In these studies, field observations were used as the data collection

method, and the data analysis was performed primarily using qualitative

analysis and an applied grounded theory approach. The observations were

augmented with semi-structured interviews to get additional insights.

3.6.1 Selection of organizations and observation sessions

The studied software development organizations for these two field studies

were selected based on the use of the ET approach and accessibility through

existing research collaboration.

The subjects for the observations were selected based on the recommen-

dations of the test or development managers in each company. In the se-

cond observation study (article V), the selection criterion was to find high-

performing testers in terms of the subjective opinion of the managers. In

the selection of the individual test sessions, the goal was to find functional

testing activities that tested features through human-useable interfaces and

included new functionality or major changes. The selection of observed ses-

sions was affected by the testers’ and researcher’s schedules and the availa-

bility of suitable testing activities.

3.6.2 Observation method

In both field studies, the research method was participant observation

(Seaman 1999). Using observations as a method gives access to the actual

testing tasks that the subjects perform in their authentic working environ-

ments. It is common for practitioners to have difficulty describing, e.g. in

interviews, the actual work activities and how they perform their work in

practice. With direct observation, “the inquirer has the opportunity to see

things that may routinely escape awareness among the people in the set-

ting” (Patton 2002). When observations are used, the researchers are not

relying on descriptions and conceptualizations by the subjects based upon

their own recollection of how they perform their work.

Research goals and methodology

29

Participant observations in this thesis are used based on the definition of

Seaman (1999), who stated that the idea of participant observations is to

“capture firsthand behaviors and interactions that might not be noticed

otherwise” and that “participant observation does not necessarily imply that

the observer is engaged in the activity being observed” (Seaman 1999).

However, since the definition of participant observation is not consistent

among sources (see, e.g., Seaman & Basili 1998, Lethbridge et al. 2005, Pat-

ton 2002), I summarize the method used in this thesis in Table 3, applying

the six dimensions of fieldwork variations presented by Patton (2002).

Table 3. Properties of the participant observation method
Role of the
observer

Onlooker. The observer sat beside the subject for the entire testing session.
The observer did not carry out or participate in any way in the actual testing
activities.

The perspec-
tive of the ob-
server

Outsider dominant. The observer was not a part of the organization or in-
volved in the product development. The observer was, however, familiar
with the organization, the tested software products, and to some of the sub-
jects through longer research cooperation with the organizations.

Number of
observers

Single researcher. The author of this thesis.

Disclosure of
the observer

Fully disclosed to the subjects. The observer was clearly present in the test-
ing situation, and the observed subject was strongly conscious of his pres-
ence. Even though the observer tried to be as inconspicuous as possible,
the subjects communicated directly to the observer during the observations.

Duration of the
observation

One or two observation sessions per subject. The lengths of the observation
sessions varied between 1-2.5 hours.

Focus of the
observations

Narrowed to the individual test execution tasks of single testers. Any test
planning, design, documentation, and management activities outside the
observed testing sessions were excluded.

In exploratory testing work, much of the interesting behavior happens in-

side a tester’s head. To get data on the mental processes that take place dur-

ing testing sessions, a method is needed to record what the observed tester

was doing and thinking during the testing. A commonly used method for

this purpose is the think-aloud protocol approach (Patton 2002, Hughes &

Parkes 2003). The think-aloud method was applied in the observations by

asking the subjects to think aloud, i.e., describe what they were doing and

thinking during the testing session. The goal of these studies was to observe

testing sessions that were as authentic and natural as possible and, thus,

the researcher did not enforce continuous verbalization but only briefly en-

couraged the subject to verbalize every now and then. The goal of using the

think-aloud method was not to perform direct verbal protocol analysis

(Hughes & Parkes 2003) but, instead, use the subject’s verbalizations in the

analysis together and as a part of the video-recorded data.

The context of the observations was software development professionals

performing their actual testing tasks in their normal working environment.

Most of the sessions took place in front of the subjects’ personal work desk

Research goals and methodology

30

using a personal computer. The total number of observed sessions in the

first and second field studies was 11 and 12, respectively.

3.6.3 Data collection methods

The data collection methods differed between the first and second field

studies. The first field study relied purely on written field notes that were

produced during the observation sessions and short interviews and memos

done right after the sessions. The field notes were recorded using a pre-

planned structure in which four main categories were identified: session

data, test ideas, found defects, and general notes. Under each category ex-

cept general notes, a varying number of details were planned to ensure that

all aspects of the observed behavior that were deemed relevant beforehand

were rigorously recorded.

In the second field study, the data recording was carried out by compre-

hensive video- and audio-recording of all observation sessions, augmented

with written field notes. Video-based field observations have been used as a

research method in some software engineering studies (Höfer 2008, Salin-

ger et al. 2008, Wu et al. 2009). The observation sessions were recorded

using two cameras. The field notes were recorded in written format using

laptop computer.

In both field studies, the test documentation that was used during the ob-

served sessions as well as all defect reports were collected to support the

analysis. In addition to observations, short interviews were conducted after

each observation session. The interviews covered the background infor-

mation of the subject and discussion on how typical, for the subject, the ob-

served sessions were overall and in terms of the detected defects and issues.

In the interviews, we used a general interview guide approach (Patton

2002).

3.6.4 Data analysis methods

In the first field study, qualitative data was collected as structured field

notes by during the observation sessions. The field note data was analyzed

by coding the findings and identifying categories. A pre-defined initial cod-

ing scheme was used first to code the data using high-level codes based on

the research questions. The preliminary list of codes was refined and ex-

tended during the analysis work, as described in (Miles & Huberman 1994).

After the first coding round, the concepts describing the testers’ practices

were identified as categories, and coding was repeated to improve and veri-

fy the findings. Clustering (Miles & Huberman 1994) the findings based on

the purpose coding led to five partly overlapping clusters.

Research goals and methodology

31

The goal of the second field study was to gain understanding of how de-

fects are identified by testers performing exploratory software testing and

the role of personal knowledge in it. Grounded theory (GT) (Strauss &

Corbin 1998) and, more specifically, so-called “Straussian” (van Niekerk &

Roode 2009) grounded theory was selected as the general research ap-

proach for qualitative analysis in this study. In GT, the analysis is grounded

to the data instead of existing theories, and the research is theory-

generating. However, the rich video data, as primary documents, poses cer-

tain challenges in applying the pure GT approach, which has been reported

also by other researchers (Salinger et al. 2008). The amount of detail and

all the potentially relevant nuances of the recordings combined with the re-

quired effort and time consumption associated with the coding directly to

the video material proved to be too difficult.

To overcome these challenges, we applied three modifications to the GT

approach. First, we selected the perspective of our analysis before the cod-

ing phase to focus the analysis on the relevant issues. Second, we pre-

selected samples of the data, based on the chosen perspective, to limit our

analysis. Third, we transcribed the video data before the actual coding,

which was applied to the transcribed text.

We performed the data analysis in four phases. First, we performed open

coding with the perspective of the testers’ activities directly to the full-

length observation video-recordings. Second, based on the research ques-

tions, all excerpts from the video-recordings that were associated with fail-

ure detection were selected. Third, because of the aforementioned challeng-

es of coding directly to video episodes, the selected episodes were tran-

scribed in written format. In these transcriptions, not only the think-aloud

protocol but also the behavior of the tester, the general approach of testing,

the context, and the observed symptoms of the detected failure itself were

described. Fourth, by using these detailed transcriptions, the open coding of

the defect detection episodes continued. In this phase, the open coding and

axial coding were intertwined cyclic activity. As new codes emerged, they

were compared and grouped with similar codes, and categories were identi-

fied around groups of codes describing similar concepts. When the catego-

ries and classes emerged in the analysis, the transcriptions were analyzed

again against those concepts in a cyclic manner to confirm the findings.

Summary of the results

32

4. Summary of the results

In this section, the results of the research are summarized. The details of

the results and each individual study are found in the respective articles.

This section is structured in accordance with the three research goals intro-

duced in Section 3.1. Under each research goal, the results of the corre-

sponding studies are presented in relation to each of the research questions.

4.1 Goal 1: Define ET and understand its applicability

The first goal of this thesis addresses the definition and applicability of the

exploratory testing approach based on literature studies. The research re-

sults are summarized for both the definitions and applicability of the ET

approach in the subsequent subsections.

4.1.1 Definitions of the ET approach in the literature

A literature review of the exploratory testing literature was performed and

presented in the related work of article II. The findings of the literature re-

view summarized the definition of ET.

As a synthesis of different definitions and descriptions of ET in the litera-

ture, the following properties that characterize the exploratory approach to

testing were presented:

1) Tests are not defined in advance as detailed test scripts or test cases.

Instead, exploratory testing is exploration with a general mission

without specific step-by-step instructions on how to accomplish the

mission.

2) Exploratory testing is guided by the results of previously performed

tests and the knowledge gained from them. An exploratory tester uses

any available information about the target of testing, such as a re-

quirements document, a user’s manual, or even a marketing brochure.

3) The focus in exploratory testing is on finding defects by exploration in-

stead of systematically producing a comprehensive set of test cases for

later use.

Summary of the results

33

4) Exploratory testing is simultaneous learning of the system under test,

test design, and test execution.

5) The effectiveness of the testing relies on the tester’s knowledge, skills,

and experience.

4.1.2 Motivation and applicability of the ET approach

The literature review of article II covered the applicability of ET and the

claimed benefits and shortcomings of ET.

Applicability

The claims and propositions of the applicability of ET in the literature were

analyzed and the following contexts were identified in which ET is proposed

to be a highly applicable testing approach:

� There is not enough time for systematic testing approaches.

o Rapid feedback or learning of the product is needed.

� ET should be planned as a part of the testing approach in most soft-

ware development projects.

o ET can be used to provide more diversity for scripted tests.

o ET is also useful when test scripts become “tired”; i.e., they

are not detecting many defects anymore.

� ET fits well into testing from an end-user viewpoint.

� ET is a good way to investigate the status of particular risks.

� Regression testing based on defect reports can be done by exploring.

� Situations in which choosing the next test case to run cannot be de-

termined in advance but must be based on previous tests and re-

sults.

� ET can be used to explore the size, scope, and variations of a found

defect to provide better feedback to developers.

Benefits

In the literature review, five claimed benefits of the ET approach were iden-

tified. The most commonly claimed benefit of ET is the effectiveness of test-

ing in terms of the number and importance of found defects. Claims were

made that, in some situations, ET can be orders of magnitude more efficient

than scripted testing. A second benefit of exploratory testing is simultane-

ous learning. When testers are not following pre-specified scripts, they are

actively learning about the system under test and gaining knowledge about

the behavior and the failures in the system. This is claimed to help testers

come up with better and more powerful tests as testing proceeds. A third

benefit is the ability to minimize preparation documentation before execut-

Summary of the results

34

ing testing. This is an advantage in a situation where the requirements and

design of the system change rapidly or in the early stage of product devel-

opment when some parts of the system have been implemented but the

probability for major changes is still high. A fourth benefit is the ability to

perform exploratory testing without comprehensive requirements or speci-

fication documentation because exploratory testers can easily utilize all the

experience and knowledge of the product gained from various other

sources. Finally, the rapid flow of feedback from testing to both developers

and testers is a benefit of ET. This feedback loop is especially fast because

exploratory testers can react quickly to changes to the product and provide

test results back to developers.

Shortcomings

Identified shortcomings of ET in the literature were rare. Only two negative

aspects of exploratory testing were identified. One is the difficulty of track-

ing the progress of individual testers and the testing work as a whole. It is

considered difficult to find out how the work proceeds, e.g., the feature cov-

erage of testing, because there is no planned low-level structure that can be

used to track the progress. The other shortcoming that was pointed out is

the fact that ET has no ability to prevent defects. Designing the test cases in

scripted testing can begin during the requirements-gathering and design

phases and, thus, reveal defects early.

Analysis of quality practices of agile development methods

This thesis research was initiated in article I, in which the testing and quali-

ty assurance approach of agile software development methods was ana-

lyzed. The agile principles were analyzed form the viewpoint of software

testing, and the challenges that agile principles pose for testing were identi-

fied as presented in Table 4.

Table 4. Challenges that agile principles pose for testing (article I)
Agile principle Challenge
Frequent deliveries of valua-
ble software

- Short time for testing in each cycle
- Testing cannot exceed the deadline

Responding to change even
late in the development

- Testing cannot be based on completed specifications

Relying on face-to-face
communication

- Getting developers and business people actively involved
in testing

Working software is the pri-
mary measure of progress

- Quality information is required early and frequently
throughout development

Simplicity is essential - Testing practices easily get dropped for simplicity’s sake

Summary of the results

35

From the viewpoint of traditional principles of software testing, the agile

testing practices were analyzed to identify contradictions (see Table 5) that

might represent potential quality assurance challenges in agile methods.

Table 5. Traditional testing principles and contradictory practices in agile methods (article I)
Testing principle Contradictory practices in agile methods
Independence of testing - Developers write tests for their own code

- The tester is one of the developers on a rotating role in
the development team

Testing requires specific skills - Developers do the testing as part of the development
- The customer has an important and collaborative role
and a lot of responsibility for the resulting quality

Oracle problem - Relying on automated tests to reveal defects

Destructive attitude - Developers concentrate on constructive QA practices,
i.e., building quality into the product and showing that fea-
tures work

Evaluating achieved quality - Confidence in quality through tracking conformity with a
set of good practices

To deepen the analysis of the general quality assurance challenges of agile

development, the quality practices of four specific agile development meth-

odologies were analyzed using the Cycles of control framework of time-

paced software development (Rautiainen 2004). Based on the two theoreti-

cal analyses, the shortcomings of quality assurance in agile methodologies

were identified, and session-based exploratory testing approach along with

an independent tester role for the heartbeat time horizon were proposed as

improvements to agile practices.

4.1.3 Key findings

Based on literature review, a definition of the exploratory software testing

approach was synthetized and its applicability, claimed benefits, and short-

comings described. The applicability of ET in the agile software develop-

ment context was shown through a theoretical analysis of the quality assur-

ance and testing practices of agile development methods. The contribution

of this analysis (article I) for the goals of this thesis is motivational. The re-

sults of the article give a concrete description of a context in which the ex-

ploratory testing approach is applicable. It shows the gaps in the quality

practices of agile software development and concludes that the exploratory

testing approach matches agile development practices and principles and

could serve as an improvement in terms of the described gaps. The hypoth-

esis of exploratory testing as a vehicle for utilizing domain knowledge in

testing was raised in article I.

Summary of the results

36

4.2 Goal 2: Investigate the benefits and shortcomings of ET

The second goal of this thesis was to study the benefits and shortcomings of

ET using empirical research methods. This goal was covered in two of the

studies of this thesis. First, a multiple case study (article II) was conducted

to determine the benefits and shortcomings of ET as perceived by practi-

tioners in industry. Second, a controlled experiment (article III) was per-

formed in a student context to study the defect detection effectiveness of ET

in comparison to test case-based testing (TCBT). The results of these two

studies are summarized in the next two subsections.

Table 6. Reported reasons for using ET in the three cases (article II)
Reasons for using ET 1 2 3
The software can be used in so many ways or there are so many combinations be-
tween different features that writing detailed test cases for everything is difficult,
laborious, and even impossible.

X X X

It suits well to testing from a user’s viewpoint. X X X
It emphasizes utilizing the testers’ experience and creativity to find defects. X X X
It helps provide quick feedback on new features from testers to developers. X X X
It adapts well to situations, where the requirements and the tested features change
often, and the specifications are vague or incomplete.

X X

It is a way of learning about the system, the results of which can be utilized in other
tasks, such as customer support and training.

 X X

4.2.1 Perceived benefits and shortcomings of ET in industry

In a multiple case study, the perceived benefits and shortcomings were

studied in three software development organizations. In addition, the or-

ganizations’ motivations for using ET were described.

Table 7. Perceived benefits of the ET approach (article II)
Benefit Description

Versatility ET is more versatile and goes deeper into the tested feature. Testers test things that

they would not include in test cases. Examples of such tests include testing the de-
pendencies of new and existing features based on expertise and knowledge of the

system. Another example of versatility is retesting a fixed defect, where testing is
not restricted to just retest in the same way as before, but includes exploring for
possible new defects at the same time.

Effectiveness

and efficiency

ET helped to find important defects in a short amount of time, but if a less experi-

enced person with less domain knowledge would do the testing, the results might not
be so good. More defects were found in system testing using ET than using TCBT,
because the test cases are designed to verify that the system works and the testers

use ET with a more destructive attitude. Using ET to test features of a complex sys-
tem can be very time consuming.

Better overall

view of quality

Getting an overall picture of the quality of the system quickly is one aspect of effi-

ciency. This was important because the information gained from ET was used as a
basis for prioritizing the work towards the end of the project.

Summary of the results

37

The results concerning the reasons for using the ET approach are summa-

rized in Table 6. In the table, the reasons that interviewees at each of the

three organizations gave for using the ET approach are listed. These rea-

sons are mostly related to the perceived benefits of ET as well as to the

shortcomings or challenges of applying the TCBT approach. The additional

benefits of ET are described in Table 7. The benefits shown in this table

were not used as reasons for applying the ET approach but were described

by the interviewees when they were questioned further about the benefits of

ET.

The perceived shortcomings identified in the case study are summarized

in Table 8.

Table 8. Perceived shortcomings of the ET approach (article II)
Shortcoming Description

Test coverage Coverage in one form or another was the biggest shortcoming of ET. Challeng-

es concerning coverage included planning and selecting what to test, since the
limited time and resources restricted the amount of testing. It was a question of

prioritizing testing to potential weak spots in the system and trying to allocate
time of domain experts for testing.

Test tracking Lack of control of the test coverage combined with scarce documentation of the
testing itself created a challenge of following up what had been tested and what

had not.

Dependency of in-
dividual testers

Relying on the expertise of the testers made ET more prone to human errors
than TCBT. It was impossible to find testers with enough experience to act as
professional users. Another challenge was that all testers have different back-

grounds and experience and thus perform ET from different viewpoints. This
was seen both as a strength and weakness, especially regarding the versatility

of testing this implied.

Repeatability The repeatability of defects was seen as a shortcoming of ET at on case organi-
zation. This was related to a complex system that permitted many ways of per-
forming tasks, and each task could require up to a hundred or more steps.

4.2.2 Defect detection effectiveness and efficiency of ET

In the case study (article II), quantitative data on the number of detected

defects and the testing effort were collected. In two cases where a session-

based testing approach was used, the average numbers of detected defects

per testing hour were 4.8 and 8.7. These findings support the hypothesis

regarding the effectiveness and efficiency of the ET approach, but the result

is not conclusive due to the severe limitations of this data.

In addition to the case study, another study was conducted in which a

controlled experiment methodology was used (article III). The fundamental

difference between ET and TCBT is that ET does not rely on pre-designed

and documented test cases. Thus, a controlled student experiment was car-

Summary of the results

38

ried out. The experiment compared the freestyle ET approach to the TCBT

approach in terms of defect detection effectiveness. In the experiment, 79

advanced software engineering students performed manual functional test-

ing on an open-source application, JEdit text editor, with actual and seeded

defects. Each student participated in two 90-minute controlled sessions,

using ET in one and TCBT in the other. The study focused on identifying

the effect of using predesigned and documented test cases in manual func-

tional testing with respect to defect detection performance.

This study looked at the defect detection effectiveness measured by the

number of defects found during a fixed-length testing session. Additionally,

more insight into the efficiency is gained by considering the proportions of

different defect types and severities as well as the number of false defect

reports produced. In this section, a summary of the results of the experi-

ment is presented based on the statistical analysis of the data.

Defect counts

The main response variable in the experiment was the number of detected

defects in a fixed-length testing session. The defect count data is summa-

rized in Table 9 and Figure 2. The number of defects found in each feature

set is different due the differences in the feature sets used. The absolute

mean defect counts for the ET and TCBT approaches were 7.038 and 6.367

respectively, the difference showing 0.671 more defects in the ET approach.

The difference, however, was not statistically significant. There was no dif-

ference in the number of detected seeded defects between the approaches,

but the ET approach detected more real (non-seeded) defects.

Even though the length of the testing sessions was fixed at 1.5 hours, it

should be taken into account that, in the TCBT approach, the subjects

spent, on average, 7 hours designing the test cases, which means that the

TCBT approach took 8.5 hours of total effort, i.e., almost six times more

than ET, to reach the same results.

Table 9. Summary of the defect count data (article III)

Figure 2. Defect counts (article III)

Testing
approach

Feature
set

Number of
defects

Found defects
per subject

mean Std. dev.

ET

A 44 6.275 2.172

B 41 7.821 2.522

Total 85 7.038 2.462

TCBT

A 43 5.359 2.288

B 39 7.350 2.225

Total 82 6.367 2.456

Types of defects

The results of the analysis of defect type and severity were used to provide a

deeper understanding of the differences between the two testing approach-

es. Table 10 characterizes the defects based on the detection difficulty.

Table 10. Detection difficulty distribution (article III)

Mode ET TCBT ET/TCBT Total
0 = easiest 120 93 129 % 213
1 327 320 102 % 647
2 89 75 119 % 164
3 = hardest 20 15 133 % 35

Total 556 503 111 % 1059

A mode 0 defect means that the defect is immediately obvious to the tester,

e.g., a missing button. A mode 1 (1-way) defect requires one action of the

tester to cause a failure and reveal the defect, e.g., save a file to find out that

some part of the file is not saved. Double-mode (2-way) and triple-mode (3-

way) defects require a combination of 2 and 3 actions or inputs, respective-

ly, to make the failure occur. In Table 10, we can see that ET found more

defects in all classes of detection difficulty. The most notable differences

were for mode 0 and mode 3 defects, for which ET found 29% and 33%

more defects than TCBT. However, the Mann-Whitney U test showed the

differences to be statistically insignificant for all classes.

In Table 11, the numbers of detected defects are categorized based on

their technical type. There were no radical differences in the number of de-

fects with different technical types. ET found more wrong-function defects,

GUI defects, and usability problems than TCBT and fewer technical defects.

The differences in the documentation, inconsistency, and usability catego-

ries are unreliable due to the small absolute numbers of defects in these

categories.

Table 11. Technical type distribution (article III)

Type ET TCBT ET/TCBT Total
Documentation 8 4 200 % 12

GUI 70 49 143 % 119

Inconsistency 5 3 167 % 8

Missing function 98 96 102 % 194

Performance 39 41 95 % 80

Technical defect 54 66 82 % 120

Usability 19 5 380 % 24

Wrong function 263 239 110 % 502

Total 556 503 111 % 1059

Summary of the results

40

In Table 12, the defects are categorized based on their severity. ET found

64% more negligible defects, 32% more minor defects, and 14% more nor-

mal defects. TCBT found 5% more severe and 2% more critical defects.

Table 12. Severity distribution (article III)

Severity ET TCBT ET/TCBT Total
Negligible 23 14 164 % 37

Minor 98 74 132 % 172

Normal 231 203 114 % 434

Severe 153 160 96 % 313

Critical 51 52 98 % 103

Total 556 503 111 % 1059

The data for false defect reports, meaning defect reports that were incom-

prehensible, duplicated, or reported non-existent defects, are summarized

in Table 13. TCBT produced, on average, 1.05 more false reports than ET.

The Mann-Whitney U test for statistical significance showed that the ef-

fect of the testing approach on the number of false defect reports was highly

significant, with a two-tailed significance of 0.000.

Table 13. False defects (article III)
Testing
approach

Feature set False defects per subject

x� �

ET

A 1,00 1,396

B 1,05 1,191

Total 1,03 1,291

TCBT

A 1,64 1,564

B 2,50 1,867

Total 2,08 1,767

4.2.3 Key findings

The description of the motivations of ET use and the perceived benefits and

shortcomings of ET in the companies were the main contributions of article

II. The results of the study support many of the benefits claimed in the ex-

isting literature, including the hypothesis of high defect detection effective-

ness and efficiency. In addition, the results reveal some new findings. First,

the use of ET for learning the system for purposes other than better testing

was not reported in the literature. In two of the three case companies, one

of the reasons for using ET was to learn the features and behavior of the

system, e.g. to help prepare training materials and answers for customer

service purposes. Second, the potential shortcomings were identified re-

garding test coverage, strong dependence on the expertise and personal

properties of individual testers, and repeatability of the defects. Based on

Summary of the results

41

the case study results, the hypothesis regarding the importance of domain

knowledge in ET was strengthened, and a need for future research was

identified.

The results of article III made four contributions. First, a lack of research

on manual testing activities from points of view other than the test case de-

sign point of view was identified. Second, the results showed no benefit, in

terms of defect detection effectiveness, in using pre-designed test cases in

comparison to a freestyle exploratory testing approach. Third, there ap-

peared to be no significant differences in the detected defect types, severity,

and detection difficulty. Fourth, the results indicate that TCBT produces

more false defect reports than exploratory approach. Even though the null

hypothesis could not be rejected, the results strengthen the hypothesis of

ET as an effective and cost-efficient approach to functional software testing.

The hypothesis regarding efficiency is particularly considerable if we take

into account the significant effort used to pre-design test cases in the TCBT

approach, which was avoided in the ET approach.

4.3 Goal 3: Study how ET is applied in practice

The research regarding the third goal, how the ET approach is applied in

practice, was performed in two empirical observation studies (articles IV

and V) and in two multiple case studies (articles II and VI). The more fo-

cused research questions under this goal were, first, how is the ET approach

applied in industry; second, how is knowledge applied to defect identifica-

tion in exploratory testing in industry; and third, how do people in different

organizational roles contribute to defect detection?

The results in terms of each of the three research questions are covered in

the following subsections.

4.3.1 ET approaches in industry

In the multiple case study on ET in three software product companies, a

description of different ways of applying the ET approach was presented.

The six different ET approaches are summarized in Table 14.

The session-based ET approach followed the description of Bach (2000).

The session based approach was motivated by the focusing effect; most of

the interviewed persons found it beneficial to isolate the testing time into

focused sessions without other tasks or interruptions. The exploratory re-

gression testing approach, as well as the smoke testing, to some extent, dif-

fers from the typical focus on automation and the high level of repeatability

of regression testing in the literature. In these companies, regression testing

Summary of the results

42

was not performed exhaustively over the whole system. Rather, it concen-

trated on the changes and fixes made and, based on the tester’s experience,

exploring possible new and related defects caused by the fixes. The main

reasons mentioned for this kind of “limited” regression testing were lack of

time or resources for complete regression testing of the system.

The important findings also included the outsourced exploratory testing

for utilizing the domain knowledge of expert users and the frequent use of

freestyle ET as a part of other duties.

Table 14. Exploratory testing approaches (article II)
ET Approach Description

Session-based ET Testing was organized in test sessions during which the tester accomplished one
planned testing task without any interruptions or other disturbance. The sessions
were planned using short descriptions that described briefly the testing task, goals

of the test session, and the target of testing. There was no systematic higher level
planning or control of the coverage of testing.

Functional testing

of individual fea-
tures

ET for testing individual features right after the feature was implemented. This

was performed by persons from the requirements management team and focused
on testing whether the implementation corresponded to the requirements and the
designer’s actual ideas of the specified functionality or not. This enabled fast

feedback to the developers in the early phase of the development life cycle.

Smoke testing Each of the releases was smoke tested by the service team. This exploratory test-
ing took from half an hour to a day and was guided by a “heading-level” list of
the areas to be tested. In addition, every fix and enhancement was checked to

ensure that the reported fixes actually had been performed and worked as the
service team member would expect from the end-user point of view.

Exploratory re-

gression testing

Exploratory testing to verify fixes and changes after implementing a single fix. A

tester took a short testing session to verify the fix, typically without any planning
or formal tracking or control. The result of this session was informally communi-
cated to the developer or, if it was a defect fix, through the defect tracking sys-

tem.

Subcontracted
exploratory testing

Real users of the system were used as subcontracted testers. Experienced profes-
sional users of the system were hired to test the upcoming release. This testing
was organized by features and the task of the testers was to perform real working

scenarios and explore each feature of the software.

Freestyle explora-
tory testing

Unmanaged exploratory testing as part of other duties. It was common to test the
latest alpha and beta releases, for example, at customer services as a part of the

everyday work.
Exploratory testing was quite often used as part of systematic system testing to
explore functionality beyond the documented test cases. The intent was to find

more defects and defects that are not straightforward to find.

Another study on the actual exploratory testing practices in industry was

based on field observations, in which 11 practitioners were observed while

they performed their actual testing activities. As a result of this qualitative

analysis, a classification of testing practices was created (see Table 15). In

Summary of the results

43

this framework, the 22 identified practices were classified into 9 test session

strategies and 13 detailed test execution techniques.

Table 15. Classification of testing practices (article IV)

Test session strategies
Exploratory 6 practices

Documentation based 3 practices

Test execution techniques

Exploratory 6 practices

Comparison 4 practices

Input 3 practices

The important contributions of this study included the finding that many of

these techniques that were applied in an exploratory way were actually

based on theories and assumptions that are the same or similar to some of

the traditional test-case design techniques. As an example, the techniques

in the input technique category were similar to the classic equivalence class

partitioning and boundary value analysis techniques (Myers 1979). The

covering input combinations technique, on the other hand, captured the

basic idea of the combinatorial testing. Many of the exploratory strategies

and techniques were similar to the general heuristics, rules of thumb, and

experience-based lessons found in software testing textbooks (Myers 1979,

Kaner et al. 2002). The difference between the techniques observed and

how the techniques are presented in the literature is that the execution-time

practices were used as part of test execution, not as test design methods be-

forehand.

Another new finding was the identification of comparison techniques that

are not often described in the testing literature because of the test case as-

sumption, i.e., assuming that expected results are documented in the test

cases and, thus, that the comparison is a non-issue. As a notable exception,

Kaner et al. (2002) listed some evaluation-based techniques including

comparison techniques and consistency heuristics.

As a conclusion, we state that this study provides the initial results of a re-

search study on the manual exploratory testing practices in the context of

how testing is practiced in industry. The classification of the testing practic-

es helps in better understanding the numerous findings and supports future

research. This study supports the hypothesis that testers, in practice, apply

numerous techniques and strategies during test execution and do not me-

chanically rely on test documentation. On the other hand, testers clearly

need testing techniques even when applying experience-based and explora-

tory testing approaches. Finally, we identified that execution-time tech-

niques are partly similar to test-case design techniques but are strongly ex-

Summary of the results

44

perience-based and applied in a non-systematic fashion during test execu-

tion.

4.3.2 Role of knowledge in failure detection

The question of how testers apply their knowledge in defect detection was

studied with rigorous field observations and applied grounded theory anal-

ysis. This study is reported in article V. The goal of the research was to

study how failures are identified during actual exploratory testing work. As

a result of the analysis of 12 authentic test sessions performed by 8 testers,

a categorization of the knowledge types, summarized in Table 16, was de-

scribed in detail. The detected failures were analyzed from two different

viewpoints. First, the failure symptom classification, summarized in Table

17, was created to characterize the externally observable symptoms of the

failures that would be recognizable to a tester and, thus, to the end-users of

the software system. Second, the detection difficulty was analyzed using the

FTFI-number, as presented in Table 18.

Table 16. Categories of knowledge used in detecting software failures (article V)
Knowledge category and perspec-
tive Knowledge type

Domain
knowledge

Users’ perspective

Episodic knowledge of usage procedures and con-
text
Conceptual knowledge of the information content
and presentation in the usage context
Knowledge of problems in customer cases

Application domain per-
spective

Conceptual knowledge of the subject matter
Practical knowledge of the subject matter and tools

System
knowledge

Interacting features and
system perspective

Knowledge of the system’s working mechanisms,
logic, and interactions
Knowledge of past failures

Individual features and
functional perspective

Knowledge of features and views of the system
Knowledge of the detailed technical aspects

Generic
knowledge

Generic correctness per-
spective

Knowledge of software user interfaces and presenta-
tion

Usability perspective
Practical knowledge of the usability of software sys-
tems

Direct failure perspective
Practical knowledge to recognize crashes and error
messages

The analysis revealed three main types of experience that testers utilized to

detect defects in the observed sessions: domain knowledge, system

knowledge, and generic SE knowledge. Under each category, two or three

perspectives were recognized. Domain knowledge was divided into the us-

ers’ perspective and the application domain perspective, whereas system

knowledge appeared as the interacting features and the system perspective

and, on the other hand, individual features and functional perspective. The

generic software engineering knowledge category was divided into three

Summary of the results

45

perspectives, generic correctness, usability, and direct failure. The

knowledge categories, perspectives, and specific knowledge types under

each perspective are described in detail, with examples, in article V.

The results of this rigorous observation study show that the testers are ca-

pable of identifying failures without detailed test case descriptions of the

expected outcomes. The testers identified failures based on their domain,

system, and generic software engineering knowledge. The domain

knowledge includes knowledge of users’ needs and goals, and the system

knowledge covers not only individual features but, even more importantly,

the interactions of many features and the functioning of the system as a

whole.

Experience-based knowledge is applied for testing in a distinctly different

fashion compared to how the TCBT paradigm describes the software testing

activity. The ways of applying knowledge in exploratory testing included

evaluating the overall behavior of the system and comparing the features

with other features and with knowledge of earlier versions. In many cases,

knowledge was applied straightforwardly as a test oracle, but sometimes

knowledge was applied as a more comprehensive strategy to guide testing.

This comprehensive use of knowledge for detecting defects was identified in

the data and called a test wizard to differentiate it from the use of

knowledge as a test oracle. In these situations, knowledge was applied to

design targeted attacks to address known risks or customer problems. The

knowledge was also applied to generate the expected results as a part of the

testing activity.

One of the most interesting findings of this study was that a significant

share (20%) of identified failures in the study were revealed as side effects

of the actual testing activity, which further emphasizes the diverse and crea-

tive opportunities of the exploratory testing approach.

Table 17. Failure symptom type classification (article V)

Commission failures

Presentation and layout
Error message

Extraneous functionality
Inconsistent state
Incorrect results

Omission failures

Data presentation and layout
Missing function

Lack of feedback
Lack of capability

The failure symptom classification (Table 17) was created when analyzing

the types of failures that were identified in the exploratory testing sessions.

Suitable failure type classifications were not available in the literature,

Summary of the results

46

which served as motivation to create a preliminary failure symptom classifi-

cation based on this observation data. The resulting classification is based

on a common dichotomy of omission and commission faults. In the failure

symptom classification, this division has been applied at the highest-level

classification. A finer granularity classification was created under the two

main classes based on the observation data. This classification is an im-

provement of an earlier classification used in the experiment data analysis

(see Table 11 in Section 4.2.2). A cross-analysis of symptom types and

knowledge categories revealed that there were some failure types that

seemed to be detected more often based on certain knowledge types. First,

the presentation and layout as well as the error message failure symptoms

were recognized mostly by generic knowledge. Second, the inconsistent sta-

tus failure type seemed to require system knowledge. Third, incorrect re-

sults related strongly to domain knowledge. Fourth, the missing capability

failure class was related to both domain and system knowledge.

This preliminary failure symptom classification adds to the body of em-

pirical understanding of software failure types in real operational software

systems. This classification can be used to guide testers and to create fo-

cused, failure-driven exploratory testing techniques. The classification in-

creases the understanding of software failures from the viewpoint of the

effects that the failures have on end-users. The classification is preliminary

and needs to be further improved and extended with more failure data from

different contexts.

Table 18. FTFI distribution among knowledge categories (article V)

FTFI num-
ber

Domain System Generic Total

0 Dir. visible 5 % 12 % 4 % 8 %

1-way 75 % 34 % 44 % 45 %
2-way 15 % 37 % 19 % 26 %
3-way 5 % 5 % 7 % 7 %

Unclear 0 % 12 % 26 % 14 %

The FTFI distribution of the detected failures is presented in Table 18. This

analysis shows that a clear majority of the identified failures fall into the

directly visible or 1-way failure classes, meaning that the failures are

straightforward to reveal. Only one-third of the failures fall into the 2-way

or 3-way classes, meaning that there are two or three interacting variables,

inputs, or actions involved in the occurrence of the failure. In comparing

the knowledge categories, it seems that the failures related to domain

knowledge are even more straightforward to reveal. The findings in this

analysis suggest that the exploratory testing approach could be effective

even when less experienced testers are used. On the other hand, the explor-

Summary of the results

47

atory testing approach can be an effective way of involving the knowledge of

domain experts in testing activities.

4.3.3 Testing contribution of different organizational groups

This research question is related to the significance of domain knowledge in

software testing. System-level testing is traditionally seen as a separate ac-

tion that is executed by independent testing specialists. However, there are

several examples in our experience and hints in the literature that, in many

cases, testing is actually a cross-cutting activity that involves knowledge and

people from different organizational roles and functions. Based on the hy-

pothesis of software testing as a cross-cutting activity, a study was designed

to provide empirical evidence on how testing involves different groups of

employees in varying organizational roles at software product development

companies.

This research question was addressed by an exploratory case study in

which the defect-reporting contributions of different organizational groups

were studied in three software product development organizations. In this

study, data was collected through interviews, defect database analysis,

workshops, and informal communications with the company personnel.

Table 19. Distribution of defect reports between reporter groups (article VI)
 Case A Case B Case C Total
Sales & Consulting 145 8.7 % 117 8.5 % 136 7.3 % 398 8.1 %
Support 111 6.6 % 79 5.7 % 239 12.8 % 429 8.7 %
Manager 108 6.5 % 247 17.9 % 476 25.5 % 831 16.9 %
Internal Misc 348 20.8 % 89 6.4 % 620 33.2 % 1057 21.5 %
Specialized Tester 367 22.0 % - - 117 6.3 % 484 9.8 %
Developer 134 8.0 % 419 30.3 % 282 15.1 % 835 17.0 %
Customer (ext) 458 27.4 % 431 31.2 % N/A N/A 889 18.1 %
Total 1671 1382 1870 4923

The results of the case study, reported in article VI, indicated that, at all

three companies, employees from various groups participated in the soft-

ware testing process, which is summarized in Table 19. The roles varied

across the organization and, even if the responsibility for testing was as-

signed specifically to some group of employees, a wide variation in the peo-

ple who reported defects was found. The existence of a separate testing

group or hiring specialized testing consultants did not appear as a strong

peak in the defect-reporting contribution. These results support the hy-

pothesis that, in real software organizations, product testing is not a sepa-

rate task of specialized testers. Instead, it seems to be a team activity in

which a large number of people with varying organizational roles contribute

and collaborate.

Summary of the results

48

In terms of the differences in contribution between these organizational

groups, the results lead to three findings. First, defects discovered by devel-

opers have the highest fix rate. Second, defects discovered by people whose

main task is testing have the lowest fix rate. Third, people with a personal

stake in the software product (e.g. due to a close connection to the custom-

er) tend to set higher importance on the defects that they report. A sum-

mary of the number and importance of the defects and the fix rates across

all three cases are presented in Figure 3.

In all cases, defects discovered by developers had the highest fix rate, even

exceeding the fix rate of the defects detected by the customers, see Figure 3.

One explanation for the high fix rate of developers’ defects is that they fix

their own defects, but, according to our further analysis, it seems that the

self-reported defects only partially explain the developers’ high fix ratios.

People with a personal stake in the product tend to place their defects at a

higher level of importance than the company average, but it did not im-

prove their defect fix ratio. This phenomenon was explained by two reasons.

First, responsibility for a particular customer can explain higher defect im-

portance, which means that customer satisfaction was directly related both

to the defects and to the reporter’s personal success in work. Second, the

responsibility for a larger set of customers increases the personal stake and

defect importance. People with close customer relationships tend to see the

defects they report as higher priorities because the defects are more directly

related to customer complaints or are based on their experience of what is

important for the end users.

Figure 3. Bubble chart of defect importance (x-axis), fix rate (y-axis), and total number of
defects found by each reporter group (indicated by the size of the bubble) in all cases. Data
was normalized to company totals to enable cross-case merging (e.g., a value of 1.0 in both
axes equals the companies’ average). (article VI)

The major challenge of utilizing the people near the customer interface was

to motivate and get these people involved in testing before the last-minute

Summary of the results

49

demo presentations, which is far too late to have any defects that arise re-

paired by any usual processes. A solution to this challenge was identified in

one case in which a practice called demo-by-customer was applied. In this

practice, the (internal) customer was preparing a demonstration of the new

features of an upcoming product release in an early phase. This effectively

involved a person with domain knowledge in the testing activities.

Article VI also reports on what the case organizations value in software

testing. The conclusion was that validation from the viewpoint of end-users

is more valuable than verification aiming for zero-defect software. At all

the companies, knowledge of the domain, the end-users, and the customer

process was considered highly important in software testing.

4.3.4 Key findings

The third research goal was to gain empirical results indicating how explor-

atory testing is applied in industry and how knowledge is applied in ET.

Based on the results of four studies (articles II, IV, V, and VI) summarized

above, I would like to highlight the following key findings. First, several di-

verse practices of applying ET were identified in the case study. ET was not

applied as a single testing technique; rather, it was an approach that was

widely applied as part of more document-driven approaches and as an in-

dependent approach in varying forms. Important was the finding of ET as a

common part of regression testing, which is a rather unorthodox approach.

Second, the recognition of exploratory and more systematic, manual test-

ing practices provided new knowledge of how testers perform testing activi-

ties in practice. A finding that deviates from the conventional textbook test-

ing approach was the application of comparison techniques as an oracle

during test execution.

Third, a significant contribution was the study of the role of knowledge in

defect detection in the context of ET (article V) and generally (article VI).

New qualitative information was reported on the knowledge types applied

in defect detection. The significance of domain knowledge in defect detec-

tion was showed qualitatively in the observation study, and the case study

quantitative results show the important role of domain experts in defect

detection. These results also highlight the applicability of the ET approach

for involving domain expertise in software testing activities. In addition, the

results of article VI showed the diverse organizational roles of people con-

tributing to defect detection in software product organizations.

Discussion

50

5. Discussion

In this section, the results are discussed and the answers to the research

questions are presented. After that, the limitations of this thesis are pre-

sented, followed by the summary of the implications for researchers and

practitioners.

5.1 Answers to the research questions

In this subsection, the results of this thesis are discussed and answers to the

seven research questions are given. The discussion is structured according

to the research goals stated in Section 3.1.

5.1.1 Definitions, motivation, and applicability ET

The first goal of this thesis was to define exploratory testing and under-

stand the applicability of ET based on literature review. Two research

questions were stated for this goal, and the answers to these questions are

discussed next.

RQ 1: How is the ET approach defined in the literature?

The exploratory testing approach is described in the practitioner literature

and consultant reports. As ET is an approach rather than a technique or

methodology, the descriptions of it mainly describe the general properties

of ET, not concrete practices or rules. Based on the available sources, five

distinct characteristics of ET were identified in this thesis (see Section

4.1.1).

The definition is an important starting point for this research because it

synthesizes the essence of the various descriptions of ET in books and expe-

rience reports. Because the ET approach is not widely known as a term, it is

important to be able to describe it clearly. The definition is needed to un-

derstand what the main characteristics of this unstudied phenomenon are

and to recognize the exploratory approach to testing in later empirical

work.

Discussion

51

RQ 2: How is ET motivated in the literature and in what contexts is ET

claimed to be applicable?

The literature review indicated that ET is considered to be applicable in a

wide range of contexts. In general, ET was seen as widely applicable as one

complementary part of testing methods in most software testing contexts.

In particular, certain contexts that are challenging for the TCBT approach

were proposed as applicable for ET, such as when there is not enough time

for detailed test case design, when rapid feedback and learning are re-

quired, when documented test cases cannot reveal any more defects, and

situations in which the test cases are difficult to design in advance but are

dynamically based on the results of previous tests. Another type of applica-

ble context included situations that emphasize the strengths of the ET ap-

proach, as when the end-users’ viewpoint is important in testing or when a

particular risk or defect has to be investigated.

In practitioner reports, ET is motivated by the claimed benefits based on

the authors’ personal experiences. The proposed benefits are related to the

effectiveness, in terms of the number and importance of found defects, and

efficiency, in terms of the low amount of pre-design and documentation. In

addition, simultaneous learning was proposed as a benefit. This is claimed

to help testers come up with better and more powerful tests as testing pro-

ceeds. It is not possible to evaluate these claimed benefits based on the re-

ports. The only way to gain a better understanding of those intuitively plau-

sible claims is to conduct empirical studies.

The lack of statements concerning the shortcomings of ET was clearly a

gap in the knowledge, especially considering the many intuitively obvious

concerns of coverage and repeatability of tests as well as tracking and man-

aging ET work. The applicability of ET was based on the authors’ personal

experiences and reasoned mostly by referring to the challenges and costs of

the TCBT approach. Because of the lack of reliable research, it remained

unclear what the consequences and drawbacks of the low level of documen-

tation and relying on the experience of individual testers would be. Fur-

thermore, based on the reviewed reports, it was not possible to understand

what the actual factors were that made ET work in the reported cases. Was

it the personal skills or knowledge of the people, the type of experience they

had, their motivation, or some specific practices or processes?

The early steps of this thesis work included an analysis of the testing and

QA practices of agile software development methodologies (article I). At

that time, agile methodologies such as extreme programming (XP) (Beck

1999) proposed relying purely on automated testing approaches (Crispin &

House 2003). In the results of the theoretical analysis (article I), several

Discussion

52

shortcomings of testing practices in agile methodologies were identified.

Many of these shortcomings were related to the fundamental challenges of

test automation. The session-based ET approach was identified as an appli-

cable improvement and, based on the results, we suggested including the

exploratory testing approach to complement the automated testing and,

thus, improve the testing practices in agile methods. Later, the applicability

of ET in the agile context was recognized (Crispin & Gregory 2009, Whit-

taker 2009) and found to be beneficial (Tuomikoski & Tervonen 2009).

5.1.2 Benefits and shortcomings of ET

The second goal of this thesis was to investigate the benefits and shortcom-

ings of ET empirically. Two research questions were stated for this goal,

and the answers to these questions are discussed next.

RQ 3: What are the perceived benefits and shortcomings of ET in indus-

try?

The perceived benefits of ET are twofold. First, the benefits are based on the

abilities of the exploratory approach to work in realistic development con-

texts where documentation is weak, things are changing, and resources are

limited. Second, practitioners clearly found the ET approach to be effective

because it enables them to efficiently take advantage of the experience,

knowledge, and creativity of a wide variety of people in the development

organization. The perceived benefits were mainly similar to the ones that

the literature review summarized, including the effectiveness, efficiency,

and versatility of testing. A difference to the literature was that practitioners

emphasized the difficulty and unacceptable amount of effort that the TCBT

approach would require as the reason for using the ET approach. Other

less-often covered benefits of ET in comparison to TCBT were the ability to

form a better view of the overall quality of the tested software and learning

the product for purposes other than testing, such as training and customer

support.

In terms of the shortcomings of the ET approach, the results revealed that

the interviewees found planning and measuring the coverage and the diffi-

culty of tracking the testing work as the most serious shortcomings of the

ET approach. In addition, for the case organizations, the dependency of in-

dividual testers and the lack of visibility to the actual testing work were

clearly concerns when ET was utilized. The lack of repeatability of the tests

and the reproducibility of found defects were not considered problems.

These findings concerning the shortcomings of the ET approach are an im-

Discussion

53

portant improvement to the published knowledge since the practitioner re-

ports rarely cover the shortcomings of the approach.

An important finding was that, in all cases, the choice of ET was reasoned

by the difficulties, complexities, and laboriousness of test case design. The

ET approach, however, does not provide any specific techniques to tackle

these challenges. Instead, it may just encourage people to ignore the com-

plexities and make it easier to adapt to tight schedules because it does not

make the amount and complexity of the tested functionality as explicit as

detailed test designs would do. This aspect is reflected in the interviewees’

concerns about controlling the coverage of ET and its sole reliance on indi-

vidual testers’ performance.

RQ 4: What is the defect detection effectiveness and efficiency of the ET

approach in comparison to the TCBT approach?

In this thesis, the results concerning the defect detection effectiveness and

efficiency of ET has been presented in two studies: the controlled student

experiment (article III) and the case study (article II).

The controlled student experiment in article III focused on comparing the

defect detection effectiveness of the ET and TCBT approaches. In the study,

the subjects performed fixed-length testing sessions using both approaches.

In the TCBT approach, the subjects performed a preparation phase, in addi-

tion to the testing session, during which they designed and documented the

test cases for the actual testing sessions. The results showed that the ET ap-

proach detected slightly more defects but without a statistically significant

difference between the approaches. However, the amount of preparatory

test design work in the TCBT approach made the total effort in TCBT six

times higher than in ET. This means that similar effectiveness was gained

with much less effort in the ET approach. This comparison, however, is not

completely fair because the many benefits of documented test cases related

to managing and tracking testing work did not affect the results of this short

experiment.

More insight into the efficiency of the ET approach is gained from the re-

sults of the case study of article II, in which the defect and effort data from

two case organizations was available. This data showed that, in those organ-

izations, ET produced 4.8 and 8.7 defects per testing hour when session-

based ET was applied. This result is anecdotal in a sense that shows just a

single metric from two organizations. It cannot be used to make conclu-

sions as such, but, in comparison to some available efficiency data from ex-

perimental research, we can state that the efficiency numbers of session-

based ET in this study seem to be high since, in two experiments that re-

Discussion

54

ported efficiency data for TCBT (Wood et al. 1997, Andersson et al. 2003),

both reported numbers below 3 defects per testing hour.

Based on these results, our hypothesis is that the ET approach is at least

as effective in terms of defect detection as TCBT, but this is due to the lack

of prescriptive test case design and much more efficient documentation.

There are a few existing experiments that have compared ET or a similar

approach to other testing methods, and the results of these studies also

support this hypothesis (Houdek et al. 2002, do Nascimento & Machado

2007).

These results lead to the hypothesis that the benefits of test case docu-

mentation might be something other than prescribing the detailed test de-

sign, inputs, and expected results. Test case design techniques are con-

structed based on assumptions of typical defects, theories of coverage, and

other concepts that aim at designing test cases that are effective at revealing

defects and efficient in avoiding redundant testing. However, in ET, it

seems that testers are capable of performing detailed test design and execu-

tion in parallel and without detailed prescription. In addition, the results of

article III indicated that TCBT can lead to a much larger number of false

reports, e.g., reporting duplicate or non-existent defects. If test case docu-

mentation does not actually help testers to reveal defects more effectively

and can even damage the test results, test documentation should be pro-

duced to serve other purposes such as higher-level test planning, managing

test projects, and tracking testers’ work. In this case, the documentation

could probably be lighter, be less detailed, and require less effort to produce

and maintain in comparison to detailed test case documentation.

5.1.3 ET approaches in practice

The third goal of this thesis was to provide empirically based results on

how the ET approach is applied in practice. Three research questions were

stated for this goal, and the answers to these questions are discussed next.

RQ 5: How is the ET approach applied in industry?

The results of the case study in article II indicate that ET is not a single

methodology or an approach with well-defined boundaries. Instead, many

diverse ways of applying ET were identified. ET was applied both as an in-

dependent testing method and as a complementary part of TCBT methods.

Several independent ET methods were identified, including session-based

ET, functional testing of individual features, smoke testing, and subcon-

tracted ET. A somewhat surprising finding was the use of the ET approach

in regression testing, which was identified in two case organizations. Practi-

Discussion

55

tioners found the personal experience of testers to be a valuable way of re-

vealing defects related to interactions of fixes or changes and other features

of the system. Exploratory testing was also applied regularly as a part of

other development duties and as a complementary part of the TCBT ap-

proaches, e.g., to extend and deepen the testing beyond the documented

test cases.

In another study based on field observations, in article IV, the practices of

exploratory testers were identified. The results show that 22 testing practic-

es were detected in the observations. These practices work as higher strate-

gies guiding the testing work and, on the other hand, as detailed techniques

for test execution, input selection, and comparison. These findings show

that test execution in manual testing is not a mechanical activity but re-

quires a lot of mental work. It also shows how exploratory testers use many

strategies to manage the coverage and proceed systematically in their test-

ing. When applying the ET approach, the testers use identifiable techniques

in test design and input selection that are partly similar to the traditional

test case design techniques. An important finding is the identification of the

comparison techniques applied in ET as a test oracle.

Based on these results, it is clear that there are multiple ways of applying

the ET approach as a part of the software development process. Later, Mar-

tin et al. (2007) and Rooksby et al. (2009) reported detailed ethnographic

descriptions of real-world testing practices. These descriptions illustrate the

real nature of testing activities and include a variety of examples in which

exploratory ways of performing testing can be identified even though they

do not use the actual term in their work.

In most of our cases, the development organizations learned the ET

methods through practice by applying and modifying common testing tech-

niques and approaches in their specific technical and organizational con-

texts. In article VI, the value of testing in the case organizations was stud-

ied, and the results showed that validation from the viewpoint of end-users

is more valuable than verification and aiming for defect-free software. ET

could be a more natural approach when the testing does not focus on the

technical details but, instead, aims at ensuring validity and usefulness from

the users’ viewpoint. It seems that people in these organizations could not

get useful advice from the literature or theory of software testing for their

own contexts. It is important to describe and study these testing approaches

and techniques that emerge from practice and start creating a body of ET

knowledge that researchers and practitioners alike can utilize in future

work.

Discussion

56

RQ 6: How is knowledge applied to failure detection in exploratory testing

in industry?

The second field observation study in this thesis focused on the role of test-

ers’ personal knowledge in failure detection. The results (article V) present

a detailed qualitative analysis of 91 failure detection incidents observed by

researchers in authentic testing situations. These results highlight the im-

portance of testers’ personal knowledge in failure detection when the ET

approach is used. The results indicate how domain knowledge, system

knowledge, and generic software engineering knowledge are applied in fail-

ure detection. The knowledge was applied mainly as a test oracle, i.e., for

determining whether the result or behavior of the system under test was

correct or not. The domain knowledge and system knowledge were also ap-

plied as a test wizard, meaning that the tester used his or her personal

knowledge to guide testing and design tests targeted to attack a certain risk

or known problem in the system. In addition, the analysis revealed that

20% of the detected defects in the observations were revealed as side ef-

fects. This means that defects were detected in different features from the

actual target of the testing activity in question. This phenomenon is related

to the nature of exploratory testing work where the tester is free to explore

all of the functionality, encouraged to follow hunches, investigate suspicious

behavior, and utilize personal knowledge of potentially risky features and

interactions. The large share of side-effect failures supports the assumption

that exploratory testing is more versatile in comparison to TCBT. The test-

ers are capable of covering a larger set of features and investigating the

software with a wider scope than what is instructed in the actual testing

task.

The types of detected defects in the field study were also analyzed. The

failures were classified based on the visible symptoms and difficulty of de-

tection. Certain failure types seemed to be typically detected based on a

specific knowledge type. Based on the analysis of the interrelationships of

knowledge types and failure types, the following four hypotheses were gen-

erated. 1) In ET, testers are able to utilize their personal knowledge of the

application domain, the users' needs, and the tested system for defect de-

tection. 2) In ET, testers frequently recognize relevant failures in a wider set

of features than the actual target features of the testing activity. 3) A large

number of the failures in software applications and systems can be detected

without detailed test design or descriptions. 4) The majority of failures re-

lated to domain knowledge are straightforward to recognize, and failures

related to system knowledge or generic software development knowledge

are more complicated to recognize in terms of the number of interactions.

Discussion

57

The testers’ ability to detect failures without pre-described expected re-

sults again puts the role of test documentation into a new light. In tradi-

tional test case documentation, the detailed description of the expected re-

sults is essential (IEEE 2008). Specifying the expected results is, in prac-

tice, challenging and requires a lot of effort, which means that if, in certain

contexts, testers are capable of detecting failures without such descriptions,

it would be a considerable improvement in efficiency, as proposed in the

earlier results of this thesis.

The role of personal knowledge partly explains the differences in the ET

and TCBT approaches. The results presented in this thesis give rich descrip-

tions of how defect detection happens in ET work and why testers are capa-

ble of detecting large numbers of failures without detailed descriptions of

the expected results or test inputs and steps. In the exploratory approach,

testers seem to focus not only on the functioning of individual features but

take a wider view of the functioning of the system as a whole and the inter-

actions of different features. Testers in ET consider the usage context, in-

cluding the tasks and goals of the end-users when testing, and do not re-

strict their evaluation only to the technical features of the system.

More importantly, these results show that ET can be applied to exploit

domain expertise in software testing directly, without the need to codify the

knowledge first in the form of documented test cases. This is an important

result because the domain knowledge is found to be an important factor in

testing (Beer & Ramler 2008, Iivonen et al. 2010, Merkel & Kanij 2010), but

involving domain experts from outside testing organization into TCBT ac-

tivities can be too difficult. ET methods can provide a more straightforward

means to engage people with varying knowledge in testing.

RQ 7: How do people in different organizational roles contribute to defect

detection?

During the empirical research, in multiple software development organiza-

tions, we experienced that testing, particularly through the exploratory ap-

proach, was not purely an activity of professional testers. It was clear that

many organizational groups were performing testing activities in one form

or another. This was, however, a phenomenon that was not directly dis-

cussed in the literature. We found some studies that described testing in

real organizations that seemed to support our initial observations. The last

study of this thesis (article VI) analyses the contributions of different organ-

izational groups in a detailed case study. The results very clearly show the

significant contribution of diverse organizational groups to defect detection.

The main findings indicate that people close to the customers and with a

personal stake in the product have a high contribution in terms of both the

Discussion

58

number and importance of the reported defects. The high importance val-

ues of their defects do not, however, improve their fix rate. Instead, devel-

oper’s defects had the highest fix rates, while specialized testers had both

low fix rates and low importance values.

In the context of organizations’ developing highly technical software

products, defect detection contribution is distributed to diverse organiza-

tional groups, and the contribution of specialized testers does not stand out

in terms of the number, importance, or fix rates of the defects. While the

high importance of experience and domain knowledge to testing has been

identified in the literature (Beer & Ramler 2008, Iivonen et al. 2010,

Kettunen et al. 2010, Merkel & Kanij 2010), the results of this thesis show

quantitatively how much people with different knowledge in different or-

ganizational roles, in practice, contribute to defect detection. In addition,

considering the hypothesis of the applicability of the ET approach to involve

domain experts in testing, the results of this case study emphasize the rele-

vance of and need for such an approach. Because of the high number and

diversity of people contributing to defect detection, testing approaches that

are applicable for involving these groups in testing are needed.

5.2 Validity threats

This section contains a summary of the main limitations and threats to the

validity of this research. Descriptions of the limitations related to the details

of each individual study are presented in the articles. This thesis employed

three different research methods: case studies, a controlled experiment, and

field observations. Each of the methods had their own threats to validity,

and they are described in this section using common terminology employed

in experimental software engineering (Wohlin et al. 2000) and case study

research (Yin 1994, Runeson & Höst 2009). In the next subsections, inter-

nal and conclusion validity, reliability, construct validity, and external va-

lidity of this research are covered.

5.2.1 Internal and conclusion validity

The internal and conclusion validity are relevant for experimental research,

so in this thesis they concern the controlled experiment study (article III).

Threats to conclusion validity are issues that affect the ability to draw con-

clusions based on experimental data (Wohlin et al. 2000). In the experi-

ment the number of subjects was sufficient for statistical analysis, but the

reliability of measures could be a threat to conclusion validity. The

measures were based on the subjects’ own reports of their findings, so there

Discussion

59

might be differences between what the subjects reported and what they ac-

tually found during the experiment. In addition, the individual differences

in how subjects applied the exploratory testing approach in the experiment

caused some level of uncontrollable variation in the experiment results.

Threats to internal validity are factors other than the treatment, unknown

to the researcher, that can affect the independent variable with respect to

causality (Yin 1994, Wohlin et al. 2000, Runeson & Höst 2009). The train-

ing and education provided during the course probably affected how the

student subjects applied both of the studied testing approaches. In particu-

lar, it was not possible to completely prevent subjects from applying explor-

atory activities during test case based testing. Even though the subjects

were randomly assigned to treatment groups and each subject applied both

approaches in the experiment, it is possible that an unknown factor exists

that has a stronger effect on results than the testing approach that was used

as a treatment.

5.2.2 Reliability

In the qualitative case and field studies in this thesis, the goals were explor-

atory and descriptive, and theory generating rather than hypotheses verify-

ing. In this context, the validity criteria are different, and the concepts re-

lated to conclusion validity and internal validity that focus on the relation-

ship between treatment and outcome and causality are not applicable. In-

stead, the reliability of the research can be assessed via the repeatability of

the data collection and analysis procedures (Yin 1994, Runeson & Höst

2009), i.e., how strong the researcher’s influence is and how much the re-

sults are dependent on specific researchers.

In the field observation studies of this thesis, an important threat is the

possible subjective interpretations of the observing researcher. This was a

serious threat in the first field study in which the observations were not rec-

orded. In the second field study, the video recording made it possible to

more objectively perform the analysis based on the primary data. In the

case studies, the reliability was ensured by using multiple data sources and

more than one researcher in the data collection and analysis. However, the

researchers definitely influenced the results. First, in case studies during

semi-structured interviews, the interviewer unavoidably set the questions

and direction of the discussion based on his or her personal experience and

viewpoints. Second, in data analysis of the field studies, the approach was

exploratory and the method was applied grounded theory, which means

that the codes and findings emerge from the data without an existing theory

Discussion

60

or coding scheme. This type of analysis is highly dependent on the re-

searcher performing the analysis.

5.2.3 Construct validity

Threats to construct validity are issues related to the operationalization of

the theoretical concepts in an empirical study, i.e., how well the measured

data represents the theory and concepts under study (Yin 1994, Wohlin et

al. 2000, Runeson & Höst 2009). The most important threats to construct

validity were related to the rather vague concept of ET. In the first case

study (article II), the main threat to construct validity was the interviewees’

interpretation of the ET approach. Interviewees were hesitant to describe

their true (exploratory) testing practices because they felt that they were not

real or acceptable ways of performing testing. ET was a term not familiar to

all interviewees, which forced the interviewers to describe it in the interview

situation. In the student experiment (article III), it is possible that the actu-

al techniques that subjects performed varied between subjects, which also is

a threat to construct validity. Construct validity is also affected by the inter-

action of testing and the treatment. Both in the experiment and two field

studies the effect of being evaluated or observed could have affected the be-

havior of the subject. In the student experiment, it is possible that the

knowledge that they would be graded biased the behavior of the subjects. In

the field observation studies, observing most probably affected subjects’

behavior. However, it seems that the observer’s presence affected more the

attention and focus of the tester than the actual practices. It seemed that

the testers were more focused, had fewer interruptions, and identified more

defects when they were observed by the researcher.

5.2.4 External validity

Threats to external validity are issues concerning the generalization of re-

sults from a single experiment or case study to a wider, more general popu-

lation or other organizations in industry (Yin 1994, Wohlin et al. 2000,

Runeson & Höst 2009). The most important threats to external validity of

this thesis are, first, the effect of the context both in the student experiment

and in the industrial studies and, second, the sampling strategies used to

select the industrial organizations and individual subjects for the studies.

Using students as subjects in the experiment affects the external validity

of the results. We cannot know how well students represent professional

testers. It is possible that one of the compared approaches suffers more

from the inexperience of student subjects. Another threat is how well the

Discussion

61

short testing sessions of the experiment compare to the typical way of work-

ing in industry.

All the industrial studies of this thesis are limited to a similar context,

which means that generalizing the results to very different software systems

or development contexts is not possible. The main limiting context varia-

bles in the case and field studies of this thesis are the following. The studied

companies were small to medium-sized enterprises; the development or-

ganizations had fewer than 100 employees; all organizations were in the

software product development business; the developed software products

were targeted for professional users, not consumer markets; products were

highly interactive systems with rich graphical user interfaces; and the prod-

ucts or product lines were relatively mature, with years or decades of devel-

opment history. In addition, all the organizations were in Finland, which

means that the results are not necessarily applicable to organizations locat-

ed in countries with a very different culture.

The sampling of case organizations was based mainly on accessibility

through research cooperation. Some selection among the available organi-

zations was made in the individual studies and, in the first field study (arti-

cle IV), one organization was included from outside the research project

participants. Most of the case companies had organized software testing as

part of other development units, not as independent testing organizations,

which probably limits the generalizability of the results in organizations

with clearly separate testing organizations.

The selection of individuals for interviews and observations was guided by

the research design, but the practical availability of people at the companies

affected the selection.

5.3 Implications for research

The studies in this thesis open a new research area in the field of software

testing. This work introduces the exploratory testing approach to the re-

search community and motivates its relevance by empirical studies in in-

dustry. In addition, a first step in the empirical investigation of the effec-

tiveness and efficiency of ET is taken, and the experimental design and re-

sults are documented for further studies.

For the research community, the field studies provide valuable qualitative

data on low-level exploratory testing practices and testers’ behavior, which

give explanations and insight into the proposed benefits and working

mechanisms of the ET approach.

Discussion

62

A major implication is the detailed analysis of the role of knowledge in

exploratory testing work and the stated hypotheses that are grounded in

empirical data for future research to test. Unlike most of the related re-

search, which relies on interview data, this study investigates and describes

the role of knowledge in detail and is grounded in primary observation data

and authentic failure detection incidents.

This work makes a methodological contribution by studying software en-

gineering practices using video-based field observations and applied

grounded theory methods for data analysis. This combination of methods

has rarely been used in software engineering research. Direct observations

clearly have benefits as a data collection method in studying software de-

velopment activities, but there are challenges in collecting and analyzing

such data. This study describes our method of performing data collection

and analysis and, thus, provides valuable advice for other researchers in the

software engineering field.

5.4 Implications for practice

This thesis identifies the ET approach, which seems to be practically rele-

vant but is largely ignored in the literature. The results outline the benefits

and applicability of the ET approach and also discuss the shortcomings.

This information is helpful for practitioners who consider applying the ET

approach and need an understanding and results concerning these issues to

support their decision-making.

The ET practices and approaches described in the case and field studies

can be used as concrete guidance and as examples of how ET could be car-

ried out and applied as a part of other testing activities.

In the practitioner literature, there are some claims regarding the effec-

tiveness and efficiency of the ET approach. This thesis provides empirical

results that support at least the comparable effectiveness and better effi-

ciency of ET in comparison to TCBT. Along with a few other studies that

report similar findings, this thesis strengthens the available evidence re-

garding the effectiveness and efficiency of the ET approach. Such evidence

is important for practitioners when considering suitable testing approaches

in a certain context and improvements to existing testing methods.

The analysis of the role of personal knowledge in defect detection showed

that defects can be and are detected based on different types of knowledge.

For practitioners, this means that one should consider what type of applica-

tion and system knowledge will be important for their products and how

this knowledge could be exploited in testing. The findings also suggest that

Discussion

63

the ET approach could be an effective way of engaging people with varying

types of personal knowledge in testing activities.

I propose that practitioners recognize the ET approach as a valid testing

approach and consider its benefits among other testing methods. This re-

search indicates that ET is a beneficial approach, at least in the functional

testing of interactive software products with rich user interfaces from the

end users' point of view.

Conclusions and future work

64

6. Conclusions and future work

In this thesis, the exploratory software testing approach has been studied

using empirical research methods. This section states the contributions and

conclusions of this research. Finally, directions for future work are outlined

in the second subsection.

6.1 Contributions of the research

This research makes five main contributions. First, this thesis initiated the

research on ET approaches in the software engineering research communi-

ty. While the ET approach has been known to practitioners and found in

textbooks, this thesis is the first research work that specifically focuses on

ET.

Second, the experimental study on the defect detection effectiveness pro-

vided the first scientific results on the effectiveness of the ET approach.

This study raised the hypothesis that ET can be as effective as TCBT but re-

quire less effort, and it provided initial empirical evidence for it.

Third, the empirical studies in industry provided new knowledge of how

and why ET is applied in practice and how defect detection in general is an

organizationally cross-cutting activity instead of the responsibility of spe-

cialized testing organizations. This work draws a picture of this testing ap-

proach that is distinctively different from the more traditional paradigm of

an independent testing organization performing TCBT. This work analyses

the testing approach on both the individual and organizational levels.

Fourth, the field studies on ET practices and the role of knowledge in de-

fect detection reported a detailed analysis of the testing activities in authen-

tic manual testing situations. Manual testing is a rarely studied topic and, in

particular, the test execution and defect detection activities have been ad-

dressed in no previous scientific research. The results make a highly valua-

ble contribution to understanding and classifying the knowledge that test-

ers need to detect failures during testing. In addition to the knowledge clas-

sification, the types of detected failures were analyzed, which gives a richer

view of the ET activity and the role of knowledge in it.

Conclusions and future work

65

Fifth, this research stated hypotheses regarding the effectiveness of the

ET approach, the role of knowledge in failure detection, and the types of

failures that are detected in ET. These hypotheses are grounded in empiri-

cal data and serve as starting points for future studies.

As a final conclusion, I state that exploratory software testing is a relevant

and applicable approach among practitioners. In scientific literature, how-

ever, the ET approach has not been recognized or studied. This research has

taken the first steps to begin evaluating the ET approach using empirical

research methods. The results suggest that ET can be as effective as test

case-based approaches and even more efficient. The role of testers’ personal

knowledge is important in failure detection, and ET was found to be an ap-

plicable approach to engage domain experts in testing.

6.2 Future work

The effectiveness and efficiency of exploratory testing approach requires

much more research and evidence to enable the drawing of reliable conclu-

sions. In particular, important studies would be empirical evaluations in an

industrial context.

Research on the methods of managing, planning, and tracking ET is

needed. To understand the real benefits and limitations of ET, it should be

studied as a complete testing methodology that can be applied in properly

managed software engineering projects and processes. It is important to

study how the practitioners can benefit from the strengths of ET without

sacrificing other important aspects of testing, such as planning, tracking

and coverage.

The ET approach is found to be applicable and effective in industry, but

there are several challenges and shortcomings that have not been solved

and need research. The applicability and context dependencies of ET are

not well-understood and are one important research area.

There is a fundamental need to study detailed ET practices and tech-

niques. An important question is how much the experience-based aspects of

ET can be captured in codified form and taught or trained to novice testers

or, e.g., domain experts who possess the relevant personal knowledge but

are not testing experts.

Finally, this research posed several hypotheses that should be tested and

updated, if needed, in future studies.

References for the summary

66

References for the summary

Aberdour, M., 2007. Achieving Quality in Open Source Software.
IEEE Software, 24(1): 58-64.

Abran, A., Moore, J.W., Bourque, P., Dupuis, R. & Tripp, L.L., 2004.
Guide to the Software Engineering Body of Knowledge 2004
Version. IEEE Computer Society, Los Alamitos, CA, USA.

Adelson, B. & Soloway, E., 1985. The Role of Domain Experience in
Software Design. IEEE Transactions on Software Engineer-
ing, 11(11): 1351-1360.

Andersson, C. & Runeson, P., 2002. Verification and validation in in-
dustry - a qualitative survey on the state of practice, in Pro-
ceedings of International Symposium on Empirical Software
Engineering. pp. 37-47.

Andersson, C., Thelin, T., Runeson, P. & Dzamashvili, N., 2003. An
Experimental Evaluation of Inspection and Testing for Detec-
tion of Design Faults, in Proceedings of International Sympo-
sium on Empirical Software Engineering. pp. 174-184.

Bach, J., 1999. General Functionality and Stability Test Procedure for
Certified for Microsoft Windows Logo. Available at:
http://www.satisfice.com/tools/procedure.pdf

Bach, J., 2000. Session-Based Test Management. Software Testing
and Quality Engineering, 2(6).

Bach, J., 2004. Exploratory Testing, in van Veenendaal, E. (Ed.), The
Testing Practitioner. UTN Publishers, Den Bosch, pp. 253-
265.

Baresi, L. & Young, M., 2001. Test Oracles (Technical Report, No.
CISTR-01-02). University of Oregon, Eugene, Oregon, USA.

Basili, V.R. & Selby, R.W., 1987. Comparing the Effectiveness of
Software Testing Strategies. IEEE Transactions on Software
Engineering, 13(12): 1278-1296.

Beck, K., 1999. Embracing Change With Extreme Programming.
Computer, 32(10): 70-77.

Beer, A. & Ramler, R., 2008. The Role of Experience in Software
Testing Practice, in Proceedings of Euromicro Conference on
Software Engineering and Advanced Applications. pp. 258-
265.

Beizer, B., 1990. Software Testing Techniques. Van Nostrand Rein-
hold, New York.

Berner, S., Weber, R. & Keller, R.K., 2005. Observations and Lessons
Learned from Automated Testing, in Proceedings of Interna-
tional Conference on Software Engineering. pp. 571-579.

Bhatti, K. & Ghazi, A.N., 2010. Effectiveness of Exploratory Testing,
An empirical scrutiny of the challenges and factors affecting
the defect detection efficiency (Master’s Thesis). Blekinge In-
stitute of Technology, Ronneby, Sweden.

Bolton, M., 2005. Testing Without a Map. Better Software.
Burnett, M., Cook, C. & Rothermel, G., 2004. End-user software en-

gineering. Communications of the ACM, 47: 53–58.

References for the summary

67

Cockburn, A., 2002. Agile Software Development. Addison-Wesley,
Boston.

Copeland, L., 2004. A Practitioner’s Guide to Software Test Design.
Artech House Publishers, Boston.

Craig, R.D. & Jaskiel, S.P., 2002. Systematic Software Testing. Ar-
tech House Publishers, Boston.

Creswell, J.W., Clark, V.L.P., Gutmann, M.L. & Hanson, W.E., 2003.
Advanced Mixed Methods research Designs, in Tashakkori, A.,
Teddlie, C. (Eds.), Handbook of mixed methods in social &
behavioral research. SAGE.

Crispin, L. & Gregory, J., 2009. Agile testing: a practical guide for
testers and agile teams. Addison-Wesley, Boston.

Crispin, L. & House, T., 2003. Testing Extreme Programming. Addi-
son-Wesley, Boston.

Cross, N., 2004. Expertise in design: an overview. Design Studies,
25(5): 427-441.

Dallas, A., 2010. Caution: V&V May Be Hazardous to Software Quali-
ty. Medical Device & Diagnostic Industry, 32(5).

Engelke, C. & Olivier, D., 2002. Putting Human Factors Engineering
Into Practice. Medical Device & Diagnostic Industry, 24(7).

Engström, E. & Runeson, P., 2010. A qualitative survey of regression
testing practices, in Proceedings of International Conference
on Product-Focused Software Process Improvement. pp. 3-16.

Fewster, M. & Graham, D., 1999. Software Test Automation. Addi-
son-Wesley, Harlow, England.

Forward, A. & Lethbridge, T.C., 2002. The relevance of software doc-
umentation, tools and technologies: a survey, in Proceedings
of the ACM Symposium on Document Engineering. pp. 26-33.

Fowler, M. & Highsmith, J., 2001. The Agile Manifesto. Software De-
velopment, 9(8): 28-32.

Følstad, A., 2007. Work-Domain Experts as Evaluators: Usability In-
spection of Domain-Specific Work-Support Systems. Interna-
tional Journal of Human-Computer Interaction, 22(3): 217.

Galletta, D.F., Abraham, D., El Louadi, M., Lekse, W., Pollalis, Y.A. &
Sampler, J.L., 1993. An empirical study of spreadsheet error-
finding performance. Accounting, Management and Infor-
mation Technologies, 3(2): 79-95.

Galletta, D.F., Hartzel, K.S., Johnson, S., Joseph, J. & Rustagi, S.,
1996. An Experimental Study of Spreadsheet Presentation and
Error Detection, in Proceedings of Hawaii International Con-
ference on System Sciences. pp. 336-345.

Hellmann, T.D., 2010. Enhancing Exploratory Testing with Rule-
Based Verification (Master’s Thesis). University of Calgary,
Calgary, Alberta, Canada.

Houdek, F., Schwinn, T. & Ernst, D., 2002. Defect Detection for Exe-
cutable Specifications — An Experiment. International Jour-
nal of Software Engineering and Knowledge Engineering,
12(6): 637-655.

Howden, W.E., 1978. Theoretical and Empirical Studies of Program
Testing. IEEE Transactions on Software Engineering, 4(4):
293-298.

References for the summary

68

Hughes, J. & Parkes, S., 2003. Trends in the use of verbal protocol
analysis in software engineering research. Behaviour & In-
formation Technology, 22(2): 127.

Hulkkonen, E., 2010. Mobiiliohjelmistojen tutkiva testaus (Master’s
Thesis). Tampere University of Technology, Tampere.

Höfer, A., 2008. Video analysis of pair programming, in Proceedings
of the International Workshop on Scrutinizing Agile Practices
or Shoot-out at the Agile Corral. pp. 37-41.

IEEE, 2008. IEEE Standard for Software and System Test Docu-
mentation (Standard, No. IEEE Std 829-2008). IEEE Com-
puter Society, New York.

Iivonen, J., Mäntylä, M.V. & Itkonen, J., 2010. Characteristics of high
performing testers: a case study, in Proceedings of Interna-
tional Symposium on Empirical Software Engineering and
Measurement. p. 60:1.

Janzen, D. & Saiedian, H., 2005. Test-driven development concepts,
taxonomy, and future direction. Computer, 38(9): 43-50.

Juristo, N. & Moreno, A.M., 2001. Basics of Software Engineering
Experimentation. Kluwer Academic Publishers, Boston.

Juristo, N., Moreno, A.M. & Vegas, S., 2004. Reviewing 25 years of
Testing Technique Experiments. Empirical Software Engi-
neering, 9(1-2): 7-44.

Juristo, N., Moreno, A.M., Vegas, S. & Shull, F., 2009. A Look at 25
Years of Data. Software, IEEE, 26(1): 15-17.

Kaner, C., Bach, J. & Pettichord, B., 2002. Lessons Learned in Soft-
ware Testing. John Wiley & Sons, Inc., New York.

Kaner, C., Falk, J. & Nguyen, H.Q., 1999. Testing Computer Soft-
ware. John Wiley & Sons, Inc., New York.

Kasurinen, J., Taipale, O. & Smolander, K., 2010. Test case selection
and prioritization: risk-based or design-based?, in Proceed-
ings of the International Symposium on Empirical Software
Engineering and Measurement. pp. 10:1–10:10.

Kettunen, V., Kasurinen, J., Taipale, O. & Smolander, K., 2010. A
study on agility and testing processes in software organiza-
tions, in Proceedings of the International Symposium on
Software Testing and Analysis. pp. 231-240.

Kharlamov, M., Polovinkin, A., Kondrateva, E. & Lobachev, A., 2008.
Beyond Brute Force: Testing Financial Software. IT Profes-
sional, 10(3): 14-18.

������	�
��
�����
��������
�����
����
���
�����
��	���
�����
��
���	�

D.C., Emam, K.E. & Rosenberg, J., 2002. Preliminary guide-
lines for empirical research in software engineering. IEEE
Transactions on Software Engineering, 28(8): 721-734.

Lethbridge, T.C., Sim, S.E. & Singer, J., 2005. Studying Software En-
gineers: Data Collection Techniques for Software Field Stud-
ies. Empirical Software Engineering, 10(3): 311-341.

Lyndsay, J. & van Eeden, N., 2003. Adventures in Session-Based
Testing. Available at: http://www.workroom-
productions.com/papers/AiSBTv1.2.pdf

Martin, D., Rooksby, J., Rouncefield, M. & Sommerville, I., 2007.
“Good” Organisational Reasons for “Bad” Software Testing: An
Ethnographic Study of Testing in a Small Software Company,

References for the summary

69

in Proceedings of International Conference on Software En-
gineering. pp. 602-611.

Memon, A., Banerjee, I. & Nagarajan, A., 2003. What test oracle
should I use for effective GUI testing?, in Proceedings of In-
ternational Conference on Automated Software Engineering.
pp. 164-173.

Merkel, R. & Kanij, T., 2010. Does the Individual Matter in Software
Testing? (Technical Report, No. 2010-001). Swinburne Uni-
versity of Technology, Centre for Software Analysis and Test-
ing.

Miles, M.B. & Huberman, M.A., 1994. Qualitative Data Analysis: An
Expanded Sourcebook. SAGE Publications, Thousand Oaks.

Myers, G.J., 1979. The Art of Software Testing. John Wiley & Sons,
New York.

do Nascimento, L.H.O. & Machado, P.D.L., 2007. An experimental
evaluation of approaches to feature testing in the mobile
phone applications domain, in Proceedings of the Workshop
on Domain Specific Approaches to Software Test Automation.
pp. 27–33.

Naseer, A. & Zulfiqar, M., 2010. Investigating Exploratory Testing in
Industrial Practice (Master’s Thesis). Blekinge Institute of
Technology, Rönneby, Sweden.

Ng, S.P., Murnane, T., Reed, K., Grant, D. & Chen, T.Y., 2004. A pre-
liminary survey on software testing practices in Australia, in
Proceedings of the Australian Software Engineering Confer-
ence. pp. 116-125.

van Niekerk, J.C. & Roode, J.D., 2009. Glaserian and Straussian
grounded theory: similar or completely different?, in Proceed-
ings of the Annual Research Conference of the South African
Institute of Computer Scientists and Information Technolo-
gists. pp. 96–103.

Page, A., Johnston, K. & Rollison, B., 2008. How We Test Software
at Microsoft. Microsoft Press.

Patton, M.Q., 2002. Qualitative Research and Evaluation Methods,
3rd ed. Sage, Thousand Oaks.

Persson, C. & Yilmaztürk, N., 2004. Establishment of Automated Re-
gression Testing at ABB: Industrial Experience Report on
“Avoiding the Pitfalls”, in Proceedings of the 19th Interna-
tional Conference on Automated Software Engineering. pp.
112-121.

Phalgune, A., Kissinger, C., Burnett, M., Cook, C., Beckwith, L. &
Ruthruff, J.R., 2005. Garbage in, Garbage out? An Empirical
Look at Oracle Mistakes by End-User Programmers, in Pro-
ceedings of the IEEE Symposium on Visual Languages and
Human-Centric Computing. pp. 45-52.

Pichler, J. & Ramler, R., 2008. How to Test the Intangible Properties
of Graphical User Interfaces?, in Proceedings of 1st Interna-
tional Conference on Software Testing, Verification, and Val-
idation. pp. 494-497.

Poon, P.-L., Tse, T.H., Tang, S.-F. & Kuo, F.-C., 2011. Contributions
of tester experience and a checklist guideline to the identifica-

References for the summary

70

tion of categories and choices for software testing. Software
Quality Journal, 19(1): 141-163.

Rautiainen, K., 2004. Cycles of Control: A Temporal Pacing Frame-
work for Software Product Development Management (Li-
centiate Thesis). Helsinki University of Technology, Espoo,
Finland.

Rooksby, J., Rouncefield, M. & Sommerville, I., 2009. Testing in the
Wild: The Social and Organisational Dimensions of Real
World Practice. Computer Supported Cooperative Work,
18(5-6): 559-580.

Runeson, P., 2006. A survey of unit testing practices. IEEE Software,
23(4): 22-29.

Runeson, P. & Höst, M., 2009. Guidelines for conducting and report-
ing case study research in software engineering. Empirical
Software Engineering, 14(2): 131-164.

Ruthruff, J.R., Burnett, M. & Rothermel, G., 2005. An empirical
study of fault localization for end-user programmers, in Pro-
ceedings of the International Conference on Software Engi-
neering. pp. 352–361.

Salinger, S., Plonka, L. & Prechelt, L., 2008. A Coding Scheme Devel-
opment Methodology Using Grounded Theory for Qualitative
Analysis of Pair Programming. Human Technology, 4(1): 9-
25.

Sandberg, J., 2000. Understanding human competence at work: An
interpretative approach. Academy of Management Journal,
43(1): 9-25.

Saukkoriipi, S., 2010. Defining and utilizing team exploratory testig
sessions (Master’s Thesis). University of Oulu, Oulu, Finland.

Seaman, C.B., 1999. Qualitative methods in empirical studies of soft-
ware engineering. IEEE Transactions on Software Engineer-
ing, 25(4): 557-572.

Seaman, C.B. & Basili, V.R., 1998. Communication and organization:
an empirical study of discussion in inspection meetings. IEEE
Transactions on Software Engineering, 24(7): 559-572.

Shah, S.M.A. & Alvi, U.S., 2010. A Mix Testing Process Integrating
Two Manual Testing Approaches: Exploratory Testing and
Test Case Based Testing (Master’s Thesis). Blekinge Institute
of Technology, Rönneby, Sweden.

Shahamiri, S.R., Kadir, W.M.N.W., Ibrahim, S. & Hashim, S.Z.M.,
2011. An Automated Framework For Software Test Oracle. In-
formation and Software Technology, 53(7): 774-788.

Shoaib, L., Nadeem, A. & Akbar, A., 2009. An empirical evaluation of
the influence of human personality on exploratory software
testing, in Proceedings of IEEE International Multitopic Con-
ference. pp. 1-6.

Shull, F., Singer, J. & Sjøberg, D.I.K. (Eds.), 2008. Guide to Ad-
vanced Empirical Software Engineering. Springer London,
London.

Sonnentag, S., 1998. Expertise in professional software design: A
process study. Journal of Applied Psychology, 83(5): 703-715.

Stebbins, R.A., 2001. Exploratory Research in the Social Sciences.
SAGE Publications, Thousand Oaks.

References for the summary

71

Strauss, A.L. & Corbin, J.M., 1998. Basics of qualitative research:
techniques and procedures for developing grounded theory.
SAGE.

Tinkham, A. & Kaner, C., 2003a. Exploring Exploratory Testing, in
Proceedings of the Software Testing Analysis & Review Con-
ference. p. 9.

Tinkham, A. & Kaner, C., 2003b. Learning Styles and Exploratory
Testing, in Proceedings of the Pacific Northwest Software
Quality Conference.

Tuomikoski, J. & Tervonen, I., 2009. Absorbing software testing into
the scrum method, in Proceedings of 10th International Con-
ference on Product-Focused Software Process Improvement.

Turley, R.T. & Bieman, J.M., 1995. Competencies of exceptional and
nonexceptional software engineers. Journal of Systems and
Software, 28(1): 19-38.

Våga, J. & Amland, S., 2002. Managing High-Speed Web Testing, in
Meyerhoff, D., Laibarra, B., van der Pouw Kraan, R., Wallet, A.
(Eds.), Software Quality and Software Testing in Internet
Times. Springer-Verlag, Berlin, pp. 23-30.

Weyuker, E.J., 1982. On Testing Non-Testable Programs. The Com-
puter Journal, 25(4): 465 -470.

Whittaker, J.A., 2000. What is Software Testing? And Why is it so
Hard? IEEE Software, 17(1): 70-79.

Whittaker, J.A., 2003. How to Break Software A Practical Guide to
Testing. Addison Wesley, Boston.

Whittaker, J.A., 2009. Exploratory Software Testing: Tips, Tricks,
Tours, and Techniques to Guide Test Design. Addison-Wesley
Professional.

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B. &
Wesslén, A., 2000. Experimentation in software engineering:
an Introduction. Kluwer Academic Publishers, Boston, MA,
USA.

Wood, B. & James, D., 2003. Applying Session-Based Testing to
Medical Software. Medical Device & Diagnostic Industry,
25(5): 90.

Wood, M., Roper, M., Brooks, A. & Miller, J., 1997. Comparing and
combining software defect detection techniques: a replicated
empirical study. ACM SIGSOFT Software Engineering Notes,
22(6): 262-277.

Wu, H., Guo, Y. & Seaman, C.B., 2009. Analyzing Video Data: A
Study of Programming Behavior under Two Software Engi-
neering Paradigms, in Proceedings of International Symposi-
um on Empirical Software Engineering and Measurement.
pp. 456-459.

Yin, R.K., 1994. Case Study Research: Design and Methods. Sage
Publications, Inc.

9HSTFMG*aeddii+

ISBN 978-952-60-4339-5 (pdf)
ISBN 978-952-60-4338-8
ISSN-L 1799-4934
ISSN 1799-4942 (pdf)
ISSN 1799-4934

Aalto University
School of Science
Department of Computer Science and Engineering
www.aalto.fi

BUSINESS +
ECONOMY

ART +
DESIGN +
ARCHITECTURE

SCIENCE +
TECHNOLOGY

CROSSOVER

DOCTORAL
DISSERTATIONS

A
alto-D

D
 107

/2
011

Exploratory software testing is an
experience-based approach to revealing
defects. It relies on the tester's knowledge
and skills, and is based on creative
exploration instead of comprehensive test
documentation. Thus, it is a fundamentally
different approach than the traditional test-
case-based testing paradigm. Exploratory
testing is commonly used in software
organizations as practitioners consider it an
effective and efficient approach for
detecting defects. Exploratory testing is also
considered as an effective way of involving
application domain expertise in testing.
Despite this practical relevance, very little
scientific research on exploratory testing
exists. This dissertation opens up a new
research path and provides the first
empirical results on the applicability and
effects of exploratory testing based on
qualitative and quantitative empirical
studies.

Juha Itkonen
E

m
pirical studies on exploratory softw

are testing
A

alto
 U

n
ive

rsity

Department of Computer Science and Engineering

Empirical studies on
exploratory software
testing

Juha Itkonen

DOCTORAL
DISSERTATIONS

