
Distributed Configuring

Alexander Felfernig, Gerhard Friedrich, Dietmar Jannach and Markus Zanker
Universitaet Klagenfurt, Austria

falf, gerhard, dietmar, markus g@ifit.uni-klu.ac.at

Abstract

Shorter product cycles, lower prices, and the pro-
duction of highly variant products tailored to the
customer needs are the main reasons for the pro-
ceeding success of product configuration systems.
However, today’s product configuration systems
are designed for solving local configuration tasks
only, although the economic development towards
webs of highly specialized solution providers de-
mands for distributed problem solving functional-
ity. In this paper we motivate the integration of
several configurators and give a formal definition
of the distributed configuration task based on a
logic theory of configuration. Further we present
a basic architecture comprising several configura-
tion agents and propose an algorithm for coopera-
tion between distributed configuration systems that
ensures correctness and completeness of configura-
tion results.

1 Introduction
Configurators are not only important enablers of the mass
customization paradigm but also among the most successful
applications of AI-technology. Configurators calculate prod-
uct variants which fulfill customer requirements as well as
technical and non-technical constraints on the product so-
lution. As the digital economy of the 21st century will be
based on flexibly integrated webs of highly specialized solu-
tion providers, the joint configuration of organizationally and
geographically distributed products and services must be sup-
ported. The rush for supply chain integration by web-based
selling systems and electronic procurement offers new chal-
lenges for configuration technology. While supply chain inte-
gration of standardized, mostly well defined products can be
quite well achieved, the case for complex configurable prod-
ucts and services is still an open research issue.
Current configuration technology [Sabin and Weigel, 1998]
does not yet offer concepts and tools to support the integra-
tion of configuration systems. In particular, a distributed con-
figuration problem cannot be solved by a single configurator
with a centralized knowledge base for security and privacy
reasons of suppliers. As we have to cope with distributed-
ness we must accept the fact that there is no central point of

knowledge. Neither a main vendor nor any of its suppliers
has full knowledge on the whole problem domain. The sec-
ond point is heterogeneity; we cannot assume that each of the
engaged parties, that have knowledge on a subset of the prob-
lem domain and can therefor provide to the overall solution,
employs the same knowledge representation mechanisms.
Consequently, our goal is to contribute to the further develop-
ment of configuration technology such that distributed config-
uration problems can be solved. We base our contribution on
a clear and general problem definition that can be easily tai-
lored to special instances of configuration methods and tools
found in research and industry.
Our introductory example is based on an application scenario
provided by one of our industry partners (Section 2). Based
on the definition of a central configuration problem, we for-
mally define the distributed configuration task (Section 3) and
show under which conditions the central and distributed prob-
lems are equivalent. We present an algorithm which enables
configuration agents to cooperatively construct valid configu-
rations and describe the required properties in order to assure
correctness and completeness (Section 4). Finally we discuss
related work followed by conclusions.

2 Motivating Example
We introduce our concepts by presenting a small scenario
from the area of telecommunication systems. Our product
example is a telecommunication switch for enterprise net-
works. The functionality of the switch can be extended by
installing additional software modules onto the hardware
component such as management software or application
packages for messaging and ip-services. These additional
applications are third-party products or may be developed
by a subsidiary company. The customer, however, wishes to
order a completely configured product solution, comprising
the switching hardware and all needed add-ons. For obvious
reasons each supplier maintains the product knowledge
within its own sales configuration system that cooperates
with others. In our scenario a facilitating agent coordinates
the search for a configuration solution of three configuration
agents representing the providers of the switching hardware,
the messaging and the ipvoice application software add-ons.
We employ a logic theory of configuration [Felfernig et al.,
2000] that complies with the component-port representation
for configuration knowledge [Mittal and Frayman, 1989].

This logical model serves as a general ontology for the
configuration domain. We allow that all involved configu-
rators may employ a proprietary representation mechanism.
However it must be assured that the content of communicated
messages can be mapped onto the concepts of this logical
theory. In our example we use only types to denote the set
of component types while ports describes their connection
points. We do not employ attributes of types and their
domains in this example, although these concepts are part of
our logic theory of configuration.

types = ftecom; srack; lrack; ipvoice

swpack1; swpack2;msger; uppackg:
ports(tecom) = frack; ipvoice;msgerg:
ports(lrack) = ftecomg: ports(srack) = ftecomg:
ports(ipvoice) = ftecom; swpackg:
ports(swpack1) = fipvoiceg:
ports(swpack2) = fipvoiceg:
ports(msger) = ftecom; upgrg:
ports(uppack) = fmsgerg:

The predicates used for describing configurations are con-
tained in a set CONL, where CONL = ftype=2; conn=4g
for our example. A type t is associated with a component
c by literal type(c; t). A connection is represented by
literal conn(c1; p1; c2; p2) where p1 (resp. p2) is a port
of component c1 (resp. c2). Usually an attribute value v

assigned to attribute a of component c is represented by a
literal val(c; a; v). In our example, we omit val - predicates
to keep the presentation short. The configuration knowledge
of each of the three involved configurators is defined by a do-
main description (DD) comprising sets of logical sentences
that specify compatibility constraints and the derivation
of additional facts. In addition to the constraints C i listed
below, a set of application independent sentences denoted by
Cbasic is included in the domain description, specifying that
connections are symmetric, that a port can only be connected
to one other port, and that components have a unique type.

DDswitch = fC1; C2g [Cbasic:

DDip = fC3; C4g [Cbasic: DDmsg = fC5g [Cbasic:

C1 : “If the switch has more than 200 end devices then a large
rack is needed.”
8T;C : type(T; tecom) ^ devices(T;C)^
C > 200) 9L :
type(L; lrack) ^ conn(L; tecom; T; rack):

C2 : “If the customer requires voice-over-ip then the ipvoice
application must be installed.”
8T : type(T; tecom) ^ voice-over-ip(T)) 9I :
type(I; ipvoice) ^ conn(I; tecom; T; ipvoice):

C3 : “An ipvoice application consists either of a swpack1 or
swpack2 software module.”
8I : type(I; ipvoice)) 9P :
(type(P; swpack1) _ type(P; swpack2))^
conn(P; ipvoice; I; swpack):

C4 : “A swpack1 software module is incompatible with up-
grade uppack.”
8T; I;M; P1; U : type(T; tecom) ^ type(I; ipvoice)^
conn(I; tecom; T; ipvoice) ^ type(M;msger)^
conn(M; tecom; T;msger) ^ type(P1; swpack1)^
conn(P1; ipvoice; I; swpack) ^ type(U; uppack)^
conn(U;msger;M; upgr)) false:

C5 : “If the software msger is sold together with the ipvoice
application then it must contain the upgrade uppack.”
8T;M; I : type(T; tecom) ^ type(M;msger)^
conn(M; tecom; T;msger) ^ type(I; ipvoice)^
conn(I; tecom; T; ipvoice)) 9P :
type(P; uppack) ^ conn(P;msger;M; upgr):

In our domain a system requirements specification (SRS)
provided by the customer is only sent to the switching
hardware manufacturer. It is a logic theory that comprises
predicates from CONL as well as any other predicates that
specify the requirements a customer wants to be fulfilled.

SRSswitch = f9T;M : type(T; tecom)^
devices(T; 300)^ voice-over-ip(T)^
type(M;msger) ^ conn(M; tecom; T;msger):g

Given the above constraints and customer requirements, cen-
tral problem solving would achieve the following complete
and consistent configuration result1:

CONF = ftype(id1; tecom): type(id2; lrack):
type(id3; ipvoice): type(id4;msger):
type(id5; swpack2): type(id6; uppack):g

Note however, that a central approach is not feasible for se-
curity and privacy concerns of involved business entities and
the question is how to solve this task for the distributed case.
Therefor, we aim at defining the distributed configuration
problem and at stating the conditions under which the dis-
tributed solving generates equivalent solutions to a central
approach.

3 Formalizing Distributed Configuration
In the general framework of [Felfernig et al., 2000], a config-
urator knowledge base consists of a set of logical sentences
DD describing available component types, their attributes
and connection points as well as constraints on legal product
constellations. As sketched in Section 2 configuration prob-
lems are solved according to a system requirements specifi-
cation SRS and the configuration result can be described by
means of a set of positive ground literals.

3.1 Central Configuration Approach
Definition (Configuration problem): A configuration
problem is described by a triple (DD;SRS;CONL), where
DD and SRS are sets of logical sentences and CONL

is a set of predicate symbols. DD represents the domain

1For reasons of presentation, we employ only type=2 predicates
for representing configurations and omit the conn=4 predicates

description, SRS the system requirements specification for
a configuration problem instance. A configuration CONF

is described by a set of positive ground literals2 whose
predicate symbols are in CONL.2

Definition (Consistent configuration): Given a configura-
tion problem (DD; SRS; CONL), a configuration CONF
is consistent iff DD [SRS [CONF is satisfiable. 2

To ensure the completeness of a configuration, additional
formulae for each symbol in CONL have to be introduced
to CONF , e.g., for the type predicate:

type(X;Y)) type(X;Y) 2 CONF:

We denote the configuration CONF extended by these
axioms with dCONF .

Definition (Valid and irreducible configuration): Let
(DD;SRS;CONL) be a configuration problem. A configu-
rationCONF is valid iff DD[SRS[dCONF is satisfiable.
CONF is irreducible if there exists no other valid configura-
tion CONF sub such that CONF sub � CONF . 2

3.2 Distributed Configuration Approach
Definition (Distributed configuration problem): A dis-
tributed configuration problem for n different configuration
agents is described by a triple (DDset; SRSset; CONL)
where
DDset = fDD1; : : : ; DDng and
SRSset = fSRS1; : : : ; SRSng.

Each element of DDset and of SRSset is a set of logical
sentences and CONL is a set of predicate symbols. For
k 2 f1; : : : ; ng, DDk corresponds to the domain description
of the configuration system k and SRSk specifies its system
requirements. A configuration CONF is described by a set
of positive ground literals whose predicate symbols are in
CONL.2

Remark: In extension to the introductory example, all con-
figuration agents can be initialized with an individual system
requirements specification contained in the set SRSset.

Definition (Valid solution to a distributed configuration
problem): Given a distributed configuration problem
(DDset; SRSset; CONL), a configuration CONF is valid
iff DDk [SRSk [dCONF is satisfiable 8k 2 f1; : : : ; ng.2

In practice configurators of suppliers collaborate by exchang-
ing (partial) configurations, i.e., these configurators can be
seen as independent modules jointly constructing a common
solution. Related to our case this implies that the domain
descriptions DD1 : : : DDn and the system requirements
SRS1 : : : SRSn of each configurator are independent except

2By using Skolem constants we have decoupled the representa-
tion of a configuration solution from the problem description. There-
for validity of configurations is independent of a bijective renaming
of these constants.

assertions regarding the configuration. We achieve this
property by using disjoint sets of predicate symbols in each
DDk and SRSk but allow the joint use of predicate symbols
contained in CONL, i.e., for every pair of configurators i; j
the intersection of DDi [SRSi and DDj [SRSj contains
only predicate symbols from CONL. We call this property
defined interfacing.

Theorem: Let (DD;SRS;CONL) be a configuration prob-
lem and (DDset; SRSset; CONL) a distributed configura-
tion problem with defined interfacing where
DD =

S
dd2DDset

dd and
SRS =

S
srs2SRSset

srs.
CONF is a valid configuration for (DD;SRS;CONL) iff
CONF is a valid solution for the distributed configuration
problem (DDset; SRSset; CONL).2

Proof (sketch):
()) Since DD [SRS [dCONF is satisfiable, and
DDk � DD, SRSk � SRS also DDk [SRSk [dCONF

is satisfiable. It follows CONF is also a valid
solution for the distributed configuration problem
(DDset; SRSset; CONL). 2

(() DDk [SRSk [dCONF (we call this theory Tk) and
DDj[SRSj[dCONF (called Tj) with k 6= j are consistent.
Let us assume DDk [SRSk [dCONF [DDj [SRSj is
inconsistent. It follows that Tk ` :(DDj [SRSj). The
theory (DDj [SRSj) can be transformed to an equivalent
theory expressed by a set of clauses Csj . Consequently,
Tk has to imply the negation of a clause CCONL where
CCONL follows from Csj . Note, that Tk can only imply
such a clause :CCONL which solely consists of predi-
cates of CONL since Tk and Tj have only predicates in
common which are in CONL. Because dCONF � Tk is a
complete theory w.r.t. predicates in CONL it follows that
dCONF ` :CCONL. However, DDj [SRSj implies

CCONL and therefore Tj is inconsistent which is a con-
tradiction to the fact that Tj is consistent. Consequently,
DDk [SRSk [dCONF [DDj [SRSj is consistent. By
applying this argument to all elements of DDset and SRSset
it follows that

S
dd2DDset

dd
S
srs2SRSset

srs [dCONF is
consistent. 2

Corollary: Let (DD;SRS;CONL) be a configuration
problem and (DDset; SRSset; CONL) a distributed con-
figuration problem with defined interfacing where
DD =

S
dd2DDset

dd and
SRS =

S
srs2SRSset

srs.
A valid configurationCONF for (DD;SRS;CONL) is ir-
reducible iff CONF is a valid solution to the distributed
configuration problem (DDset; SRSset; CONL) and there
exists no other valid solution CONF sub to the distributed
configuration problem such that CONF sub � CONF . 2

3.3 Conflicts

When solving a configuration problem, partial solutions
are extended with the goal to generate valid configurations.
During the problem solving phase it could be discovered
that such partial solutions are in conflict with DD [SRS.
As a consequence these conflicts must guide the subsequent
search process in order to avoid the rediscovery of inconsis-
tent configurations. Due to the defined interfacing property,
conflicts can only be caused by predicate symbols from
CONL in CONF , i.e.:

Definition (Conflict): Let (DD;SRS;CONL) be a config-
uration problem and CONF be a consistent set of sentences
in CONL. CONF is a conflict of (DD;SRS;CONL) iff
SRS [DD ` :CONF . 2

The relation between conflicts and configurations is de-
scribed as follows.

Theorem: Let (DD;SRS;CONL) be a configuration
problem, NG � CONFLICTS is its set of negated
conflicts and dCONF be a configuration including the
completeness axioms. dCONF is a valid configuration iff
dCONF [NG� CONFLICTS is satisfiable. 2

Proof (sketch):
()) Since DD [SRS [dCONF is satisfiable and NG �
CONFLICTS is entailed by DD [SRS it follows that
dCONF [NG� CONFLICTS is satisfiable. 2

(() Let dCONF be a configuration where
dCONF [CONFLICTS is satisfiable. Suppose dCONF

is not a valid configuration i.e. DD [SRS [dCONF is
unsatisfiable. Therefore, DD [SRS ` : dCONF . But
then dCONF would be a conflict and : dCONF must be
included in NG � CONFLICTS, contradicting the fact
that dCONF [NG� CONFLICTS is satisfiable. 2

Definition (Minimal conflict): Let (DD;SRS;CONL)
be a configuration problem and CONF a conflict. CONF
is a minimal conflict of (DD;SRS;CONL) iff for all
conflicts CONF sub either :CONF sub 6` :CONF or
:CONF sub � :CONF . 2

Note that when searching for valid configurations we must
achieve consistency with the negated conflicts. Since the
negation of minimal conflicts implies the negation of non-
minimal conflicts, thus a non-minimal conflict needs not to
be considered. The same argument holds for an equivalent
conflict. In the following we relate conflicts of the central
and the distributed configuration approach.

Corollary: Let (DD;SRS;CONL) be a configuration
problem, dCONF be a configuration including the complete-
ness axioms, and (DDset; SRSset; CONL) a distributed
configuration problem with defined interfacing where
DD =

S
dd2DDset

dd and

SRS =
S
srs2SRSset

srs.
dCONF is a conflict for (DD;SRS;CONL) iff there

exists a k 2 f1; : : : ; ng s.t. dCONF is a conflict for
(DDk; SRSk; CONL). 2

Note, that every conflict found by a local configuration agent
is a conflict for the complete central configuration problem.
These conflicts must be communicated among the agents, in
order to ensure that superfluous work on conflicting configu-
rations is avoided.

4 Basic Model for Interaction

In order to show the feasibility of distributed configuration
problem solving according to the above definitions we outline
an architectural setting of cooperating agents and propose an
algorithm for interaction. However note, that this model rep-
resents a theoretical framework for the general case. For our
concrete implementation in an application-oriented interna-
tional research project we exploit domain specifics of config-
uration problem solving as described in the next subsection
Extensions for Efficiency.
The configuration knowledge is distributed over a set of n
configuration agents which may configure concurrently. The
communication among them is coordinated via a facilitator
agent that collects the (partial) configurations from each agent
and distributes them among the others. So there is no direct
communication between configurators, but only indirect via
the facilitator. As soon as a configuration agent detects a con-
flict with the joint configuration, the others are informed and
measures for conflict resolution are taken. This resolution
strategy ensures that a conflict never occurs twice during a
session and that the non-existence of a valid configuration for
the overall task is detected. When considering the integration
of already existing configuration systems into this framework,
we may not assume configuration agents possessing advanced
negotiation capabilities for conflict resolution.
The configurator agents communicate only with the faciliator,
where the exchanged messages have the following signatures:

� requestno
k
(CONF si): The configurator k receives the

configuration CONF si and checks if is locally satisfi-
able. si denotes the search depth of the algorithm for
this intermediate configuration solution and no counts
the interaction cycles.

� replyno
k
(CONF

si+1

k
): The configurator k com-

municates the configuration CONF
si+1

k
in reply

to requestno
k
(CONF si) back to the facilitator.

CONF
si+1

k
is a valid local configuration of configura-

tor k.

� conflictk(CONF sj): With this message the configura-
tor k alerts the facilitator, thatCONF sj is not satisfiable
with its local knowledge base.

� add-conflict(C): Once the facilitator was alerted with
a conflict message, it broadcasts this conflict C to all
configuration agents that is then negated and added to
their local system requirements SRSk.

The facilitator agent initially distributes only the non-
empty sets of individual system requirements SRSk to the
configuration agents that store them - see Algorithm (a).
Obviously, requesting a configuration from a configurator
without any system requirements would produce merely
incidental results and is therefor avoided. Then the facil-
itator starts the problem solving process by broadcasting
request1

k
(fg) to each recipient of a non-empty SRSk and

awaits reply1
k
(CONF

s1

k
) messages from these configu-

ration agents, only (b2). After collection of replies (b.2)
the facilitator unifies the locally completed configurations
and broadcasts them to all configuration agents with a
requestno

k
(
S
k
CONF

si

k
) message. This is now possible

because the intermediate result CONF si restricts the further
solution search of agents. In case at least one of the remote
configurators replies a conflictk(CONF sj) message the
facilitator initiates the conflict resolution strategy (c). Here
we chose a strategy where it is in the responsibility of every
single agent of not delivering a conflicting configuration
twice. This is achieved because the facilitator communicates
the conflicting configuration CONF sj to all agents via
an add-conflict(CONF sj) message and backtracks by
demanding another reply to requestno

k
(CONF sj�1) (c.1).

All replies to the previous request are discarded (b.1). The
algorithm terminates either with a valid solution or detects
that there exists no solution (c.2). The latter case is implied
if the empty set is not satisfiable with the local knowledge
base including stored conflicts. A valid configuration for the
overall configuration task is found, when no configurator has
added new ground facts to CONF si during an interaction
cycle (b.4), i.e., CONF si = CONF si+1 .
When a configuration agent receives a
requestno

k
(CONF si) message the algorithm distinguishes

between two problem solving levels (d).

First the satisfiability of the received configuration is tested.

Definition (Local satisfiability): For agent k local satis-
fiability is given, iff configuration CONF si is satisfiable
with its local knowledge base: DDk [SRSk [CONF si is
satisfiable.

If Local Satisfiability is given, the configuration agent
completes the initial configuration CONF si to a locally
valid configuration CONF

si+1

k
(d.1), which is represented

by a function configure.

Definition (Local validity): For agent k local validity is
given, iff configuration CONF

si+1

k
is a valid configuration

w.r.t. its local knowledge base: CONF
si+1

k
is valid for

(DDk; SRSk; CONL).

If Local Satisfiability is not given, the configuration agent
replies with a conflictk(CONF si) message to the initial re-
quest requestno

k
(CONF si) (d.2).

When a configurator receives a add-conflict(C) message it
stores it by expanding its local system requirements (e):

SRS
0

k
= SRSk [:C:

At this stage redundant clauses (e.g., non-minimal conflicts)
can be removed from SRSk.

Algorithm - Behaviour of facilitator agent
(a) initialize(SRSset) do

8SRSk 6= fg : forward SRSk to agent k;
CONF s0 = fg; count = 1;
8SRSk 6= fg : send(request1

k
(CONF s0));

end do;
(b) when received(replyno

k
(CONF

si

k
)) do

(b.1) if no = count then
CONF si = CONF

si

k
[CONF si ;

(b.2) if (8kf2 1; : : : ; ng : received(CONF
si

k
))_

((count = 1)^
(8SRSk 6= fg : received(CONF

si

k
))) then

(b.3) if CONF si 6= CONF si�1 then
count++;
8k 2 f1; : : : ; ng : send(requestcount

k
(CONF si));

(b.4) else
terminate algorithm, out: CONF = CONF si ;

end if
end if

end if
end do;

(c) when received(conflictk(CONF sj)) do
(c.1) if CONF sj 6= fg then

8k 2 f1; : : : ; ng : send(add-conflict(CONF sj));
count++;
8k 2 f1; : : : ; ng : send(requestcount

k
(CONF sj�1));

(c.2) else
terminate algorithm, out: no configuration exists;

end if
end do;

Algorithm - Behaviour of configuration agent
(d) when received(requestno

k
(CONF si)) do

(d.1) if locally satisfiable(DDk[SRSk [CONF si) then
CONF

si+1

k
= configure(CONF si);

send(replyno
k
(CONF

si+1

k
));

(d.2) else
send(conflictk(CONF si));

end if
end do;

(e) when received(add-conflictk(C)) do
SRSk = SRSk [:C;

end do;

4.1 Extensions for Efficiency

Configuration problems have the property to be usually un-
derconstrained and there exist many good solutions that can
be accepted from the standpoint of a domain expert. Further,
similar to a centralized approach, heuristics exist to guide the
solution search within and between the configuration agents.
These allows us to avoid an inefficient blind search of the so-
lution space. For design of our prototype implementation we
identified the following approaches:

� In a realistic economic setting one destined configura-
tion agent will act as a main vendor that also fulfills the
task of the facilitator. Further some partial sequential-
ization between configurators can be assumed, i.e., the
main manufacturer or service provider will configure lo-
cally as far as possible and restrict this way the solu-
tion space of its suppliers. When reducing the degree
of parallelism of solution search the probability for con-
flict occurence can be obviously diminished. Restricting
concurrent solution search to agents whose configura-
tion results do not have side-effects on each other is an
additional heuristic. Further a partial ordering of config-
urators can be used for an advanced negotiation strategy
for conflict resolution, where agents with lower prior-
ity are the first ones to repair their configuration results.
Such a scenario where all configuration agents sequen-
tially add new predicates to the calculated configuration
of the predecessor in a supply chain is a specific instanti-
ation of the more general model presented in this paper.

� When configuring complex telecommunication systems
calculated configurations tend to become quite large
with CONF encompassing thousands of facts. It is
obvious that not all components and connections of the
switching node are of interest to the configuration agent
that determines the configuration of the add-on product.
Therefor measures towards intelligent filtering of the
message content need to be taken. We can assume that
configuration knowledge is not randomly partitioned.
Based on this partitioning of configuration knowledge,
we are able to identify the vocabulary of product do-
main concepts that specifies the configuration capabil-
ities and informational interest on components and con-
nections for which it has constraints defined in its local
knowledge base. By employing domain ontologies we
can give an abstract description of the product domain
of the configuration agent. Therefor only those facts of
the overall configuration solution need to be communi-
cated to a specific configuration agent that correspond to
its domain ontology.

� A further step towards lower space complexity is the re-
duction of conflict size. This can be achieved, if configu-
ration agents are capable of generating minimal conflicts
following the definition in Section 3.3. Techniques from
model based diagnosis can be exploited to improve con-
flict generation.

4.2 Solving the Example

In the following we show how to solve the example from
Section 2 with our algorithm. In the example three agents
are involved, i.e., k 2 fswitch; ip;msgg. The problem
solving phase starts when the facilitator agent forwards the
system requirements SRSswitch to the switching hardware
manufacturer and initiates the solution search by sending
request1

switch
(fg). Therefor the agent switch is the only one

to reply to the facilitator in the first cycle of interaction:
(1) reply1

switch
(ftype(ids1; tecom): type(ids2; lrack):

type(ids3; ipvoice): type(ids4;msger):g)

The facilitator distributes the received configuration as
CONF s1 to all agents.
(2) reply2

switch
(CONF s1 [fg)

reply2
ip
(CONF s1 [ftype(idi1; swpack1):g)

reply2
msg

(CONF s1 [ftype(idm1; uppack):g)
The facilitator unifies the received partial configurations and
broadcasts a request3

k
(CONF s2) to all agents.

(3) conflictip(CONF s2) because of Constraint C4.
The facilitator discards the reply2

k
messages from agents

switch and msg. It broadcasts add-conflict(CONF s2)
and afterwards backtracks with request4

k
(CONF s1) to all

agents.
(4) reply4

switch
(CONF s1 [fg)

reply4
ip
(CONF s1 [ftype(idi2; swpack2):g)

reply4
msg

(CONF s1 [ftype(idm2; uppack):g)
The facilitator generates the union set of all received partial
configurations and broadcasts them for another cycle of in-
teraction. Now, no one detects a conflict. All configuration
agents determine the validity of the configuration and do not
need to derive additional facts. Therefor the algorithm termi-
nates with the same solution as with central problem solving.

4.3 Analysis
For analysis we employ the basic assumption that all con-
figuration agents are capable of generating valid configura-
tion results and are complete w.r.t. the set of all valid con-
figurations, which we assume to be limited for practical rea-
sons. This can be achieved by limiting the number of possi-
ble components in an artifact. In order to show the sound-
ness of the algorithm we must show that each generated
solution CONF satisfies the criteria of a valid distributed
configuration stated in section 3. This is given, because
8k 2 f1; : : : ; ng : DDk [SRSk [dCONF si is satisfiable
and CONF si = CONF .
For proofing the completeness of the algorithm we must show
that if a solution exists the algorithm terminates with a config-
uration solution CONF , otherwise the algorithm terminates
with a failure indication. Let us first assume that the algo-
rithm terminates. This happens either by giving a correct so-
lution, or terminating, because no solution exists: 6 9CONF :

DDk [SRSk [dCONF is satisfiable 8k 2 f1; : : : ; ng. Fi-
nally we have to show the algorithm terminates. Sources for
infinite processing loops are cycles in message passing and
subsequent generation of the same conflict. Infinite process-
ing loops are not possible because all agents can only re-
ceive requests from the facilitator that are replied either by
a replyno

k
or a conflictk message, and the number of these

messages is restricted due to the initial assumption of a lim-
ited solution space. Subsequent generation of the same con-
flict is avoided, because inconsistent configurations are dis-
tributed as conflicts3 to all agents via add-conflict messages
and locally stored by them. As all valid configurations are
consistent with the set of already negated conflicts, no con-
flicting configuration is produced twice by a configuration
agent. Further with this algorithm all valid configurations can

3Note that Skolem constants in calculated configurations are con-
verted to all-quantified variables, if the conflict is negated.

be found. If an already found solution is negated and added
to the system requirements, a new search can be initiated and
the algorithm will find another solution that is different from
the previous one. As there exists only a finite number of con-
figurations, subsequently all solutions will be found.

5 Related Work
There is a long history in developing configuration tools in
knowledge-based systems. Progressing from rule-based sys-
tems higher level representation formalisms were developed,
such as various forms of constraint satisfaction [Fleischanderl
et al., 1998], or description logics [McGuiness and Wright,
1998]. However there is no support for integrating these sys-
tems in order to allow cooperative configuration.
Our work can be compared to the work of [Yokoo et al.,
1992]. He describes how several agents can build major sub-
assemblies on their own, but these subassemblies must “hook
together” in a compatible way. As mechanism for problem
representation he proposes a distributed CSP and presents
several algorithms for problem solving such as asynchronous
backtracking. In contrast this work aims to be more general
by employing a logic theory as a mediating ontological layer
that allows the integration of different legacy configurators
with proprietary knowledge representations.
The proposed architecture for distributed configuration re-
lates to previous research projects such as TSIMMIS [Garcia-
Molina et al., 1997] or Infomaster [Genesereth et al., 1997].
They provide an integrated access to multiple distributed het-
erogenous information sources on the Internet. Our approach
for distributed configuration goes a step further, because not
only information sources but problem-solving agents with lo-
cal knowledge are integrated, thus giving the illusion of a cen-
tralized, homogenous configuration system.
In the area of distributed configuration-design problem solv-
ing [Darr and Birmingham, 1996] proposed an agent archi-
tecture. The aim of this work is to find a concurrent prob-
lem solving process in order to improve efficiency, whereas
our concern is to provide effective support of distributed con-
figuration problem solving, where knowledge is already dis-
tributed between different agents.

6 Conclusions
Due to internet technologies business processes cross en-
terprise boundaries which boost the demand for distributed
problem solving methods. In the domain of product config-
uration the integration of Web-based configuration agents is
necessary in order to match the needs that arise from tem-
porary cooperation between highly specialized business en-
tities. In this paper we defined a general consistency-based
approach towards the joint provision of configuration solu-
tions by multiple configurators. Based on a formal definition
of the distributed configuration approach, it was shown under
which conditions distributed configuration problem solving
produces equivalent results to the central case. Partial config-
urations which are in conflict to the system requirements and
domain descriptions facilitate the search process. The con-
cept of conflicts was introduced and its relation to valid con-
figurations shown. Further a complete and sound algorithm

for cooperation was presented which allows the integration
of domain depended heuristics.

Acknowledgments
This work was partly funded by the EC under contract no.
IST-1999-10688 and the Austrian Federal Ministry of Educa-
tion, Science and Culture.

References
[Darr and Birmingham, 1996] T.P. Darr and W.P. Birming-

ham. An Attribute-Space Representation and Algorithm
for Concurrent Engineering. AIEDAM, 10(1), pages 21–
35, 1996.

[Felfernig et al., 2000] Alexander Felfernig, Gerhard E.
Friedrich, Dietmar Jannach and Markus Stumptner.
Consistency-based Diagnosis of Configuration Knowledge
Bases. In Proceedings of the 14th ECAI, pages 146–150,
Berlin, Germany, August 2000.

[Fleischanderl et al., 1998] G. Fleischanderl, G. Friedrich,
A. Haselböck, H. Schreiner, and M. Stumptner. Configur-
ing Large Systems Using Generative Constraint Satisfac-
tion. In E. Freuder B. Faltings, eds., IEEE Intelligent Sys-
tems, Issue on Configuration, 13(4), pages 59–68, 1998.

[Garcia-Molina et al., 1997] Hector Garcia-Molina, Yannis
Papakonstantinou, Dallan Quass, Anand Rajaraman,
Yehoshua Sagiv, Jeffrey Ullman, Vasilis Vassalos and Jan-
nifer Widom. The TSIMMIS Approach to Mediation: Data
Models and Languages. Journal of Intelligent Information
Systems, 8(2), pages 117–132, 1997.

[Genesereth et al., 1997] Michael R. Genesereth, Arthur M.
Keller, and Oliver M. Duschka. Infomaster: An Infor-
mation Integration System. In Proceedings of the 23rd
ACM SIGMOD International Conference on Management
of Data, pages 539–542, Tucson, Az, USA, May 1997.

[McGuiness and Wright, 1998] D.L. McGuiness and J.R.
Wright. Conceptual Modeling for Configuration: A De-
scription Logic-based Approach. AIEDAM, 12(4), pages
333–344, 1998.

[Mittal and Frayman, 1989] S. Mittal and F. Frayman. To-
wards a Generic Model of Configuration Tasks. In Proc.
of the 11th IJCAI, pages 1395–1401, Detroit, MI, 1989.

[Sabin and Weigel, 1998] S. Mittal and F. Frayman. Prod-
uct Configuration Frameworks - A Survey. In E. Freuder
B. Faltings, eds., IEEE Intelligent Systems, Issue on Con-
figuration, 13(4), pages 50–58, 1998.

[Yokoo et al., 1992] M. Yokoo, E. Durfee, T. Ishida and
K. Kuwabara. Distributed Constraint Satisfaction for For-
malizing Distributed Problem Solving. In Proc. of the 12th
IEEE Int. Conference on Distributed Computing Systems,
pages 614–621, 1992.

