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Abstract

This paper aims at presenting a way to integrate Case Based
Reasoning and Constraint Satisfaction techniques in order to
guide a configuration process according to past experiments.
We suggest a methodology in three steps: first find relevant
cases in the past experiments case base, then determine a
relevant domain to adapt the selected solution to the new
problem, and at last use constraint propagation in order to
guide the adaptation. We illustrate our proposal on an
example in the field of machining operation configuration.
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1. Introduction
In the field of configuration [Browne, 1996], in order to deal
with the problem complexity, much research work is based
on various constraint models and propagation techniques.
However, these methods are generally blind and do not
enable to take into account the results of past experiences in
order to guide the search of a relevant solution.
Nevertheless, in many configuration problems, such as
machining operation configuration, it may be very useful to
reuse and adapt the solutions to previous similar solved
problems in order to accelerate and to improve the
configuration process.

In such cases, the Case Based Reasoning (CBR) approaches
offer several means to help to find solutions to previously
solved similar problems. However, since the problem to
solve is often not exactly the same as the one already
solved, an adaptation of the solution is often mandatory.

The basic idea developed in this paper, illustrated in figure
1, is that the CBR technique can be used to find relevant
cases and that the adaptation should be carried out in a
neighborhood of the found solution by using constraint
propagation techniques in order to support the adaptation.

Therefore, the configuration process can be divided in three
main steps:

1. Find similar situations in the case base by using
the similarity measure and search algorithm
proposed in [Geneste & al., 2000] ,

2. Determine the adaptation domain as a
neighborhood of a selected case

3. Use constraint satisfaction techniques to guide
the adaptation process
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Figure 1: Adaptation domain

We proposed in [Perpen, 1999] a way to model technical
knowledge in an enhanced object oriented formalism
integrating the concept of constraint defined as a
generalization of the notion of association in which the
linked attributes are not compulsorily primary keys of the
linked classes. The schema of the knowledge base is
described with a class diagram whereas the knowledge base
in an instanciation of the class diagram.

The problem of the search of a relevant similar case in such
knowledge base has been addressed in [Geneste & al.,
2000]  thanks to the use of a recursive similarity measure.



The main elements of this search step are given in section 2
of this paper.  Section 3 aims at presenting the problem of
the characterization of the adaptation domains. The fourth
section briefly describes the adaptation of the solution
thanks to constraint satisfaction techniques. Then, in a last
section an example of configuration is given in the field of
machining operation configuration in order to illustrate the
proposed configuration process.

2. Search of a similar case
The basic search algorithm is recursive and propagates
inside the object structure. The user can weight the
attributes in order to describe their respective contribution to
the global similarity. The result of the search is a possibility
and a necessity degrees that represent to which extent a case
stored in the object structure is close to the reference case.
The object structure is used:

- first at the class level in order to achieve a quick
filtering of the candidate classes,

- then at the object level in order to make a more
precise selection among objects of the selected
classes.

In the literature, most CBR systems use indexing techniques
in order to quickly filter the cases in the case base. The
indexing strategies are numerous and often complex to
implement [Kolodner, 1993], [Aamodt and Plaza, 1994].
They are based on the use of an index that must be correctly
defined in order to find all the cases potentially similar to
the reference case. The filtering mechanism that we propose
does not use such a indexing strategy but relies on the class
structure of the experience base. The filtering is achieved by
comparing the characteristics of the class of the reference
object (labeled O) with the characteristics of each class of
the  experience base class model (labeled O'). According to
the similarity between classes O and O', we may decide or
not to explore the objects of the class O' (by giving an
acceptation threshold for instance). This filtering step aims
at determining the more promising classes for case search.
When the whole set of candidate classes is selected we can
launch the search of cases similar to the reference case
among the objects that are instances of these candidate
classes, commonly called source cases. There exists a large
number of similarity measures that are often very specific to
the context of application. The similarity measure that we
propose takes into account the object oriented structure of
the knowledge base and enables the use of possibility
distributions in order to represent the imprecise and/or
uncertain characteristics of the cases. We distinguish the
local similarity defined at the attribute level (i.e. on a single
domain) and the global similarity defined at the object level
(i.e. on a cartesian product of domains)
The local similarity is computed thanks to a similarity
membership function µL that enables the user to associate to
an attribute a specific similarity measure. In particular we

have µL (x,y)=1 if x is completely similar to y, µL (x,y)=0 if
x is totally different to y, and 0<µL (x,y)<1 for intermediate
similarities.

Notations:
• R denotes the reference case and S the source case
• attR,L the name of attribute L of case R
• valR,L the value of attribute L of case R
• DL the domain of attribute L and U = DL x DL
• wL the weight associated to attribute L for the search
• µL the membership function describing the local

similarity for attribute L
• πR the possibility distribution describing the reference

case
• πS the possibility distribution describing the source case
• πD the possibility distribution defined by
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At the level of each attribute L, the possibility and necessity
degrees corresponding to a local similarity are computed as
follows:
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After the evaluation of each local similarity at the level of
the object attribute, the evaluation of the global similarity is
then achieved, taking into account the weights associated to
each characteristic of the reference object and by computing
the min of the max of the obtained similarities. Therefore,
the possibility and necessity degrees at the object level are:
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3. Determination of the adaptation domain
When several source cases are found as similar to the
reference case, one of them must be selected and adapted to
provide a solution to the reference problem. Our idea is, at
this level, to enable an adaptation in the neighborhood of the
selected case and therefore we need first to define such a



neighborhood. The use of the similarity membership
function is a convenient support to do so. Let us note valS,L

the found value of the attribute L of the source case S. In
order to find a neighborhood of valS,L we can look for a
domain that includes values similar to valS,L at a given level.
If valS,L is a crisp number, the α-cut of the membership
function µL(x, valS,L)  can represent such a domain as
illustrated in figures 2, where is shown the intersection
between  πD(x, valS,L) and µL(x, y), and 3 where the α-cut of
the resulting membership function is estimated leading to an
interval domain  [inf α,sup α].

X’

X
µ(X,X’)

X’0

X0

1
µ(X,X’0)

Figure 2: Intersection between  πD(x, valS,L) and µL(x, y)
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Figure 3: α-cut of the resulting membership function

More generally, if valS,L  is described by a possibility
distribution, the intersection between  πD(x, y) and µL(x, y)
is a volume, as shown in figure 4, volume that we project on
the x-axis (figure 5). On this projection, we determine the
a-cut which represents the adaptation domain.
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Figure 4: Intersection between πD(x, y) and µL(x, y)
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Figure 5: α-cut of the resulting membership function

When the adaptation domains are determined for each
attribute it is possible to find the adaptation domain of an
object as the cartesian product of these attribute domains.

We can observe that the ability of a case to be adapted may
be an important criterion for the selection of the case to
adapt, as suggested in [Smyth & Keane, 1995]  or [Purvis &
Pu, 1996] with the notion of AGR (Adaptation Guided
Retrieval). We therefore defined an adaptability measure of
a case as the specificity [Dubois & al., 1999] of the fuzzy
set resulting of the projection on the X axis of the
intersection volume between  πD(x, valS,L) and µL(x, valS,L).

Figure 6 illustrates various adaptability values for an
attribute. The adaptability is a value between 0 and 1. When
the adaptability of each attribute of an object is evaluated, it
is possible to determine the adaptability of an object as the
aggregation of its attribute adaptability thanks to an operator
such as min or *.
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Figure 6: Examples of adaptability values

4. Constraint propagation on adaptation
domain

When the adaptation domain is determined by the method
proposed in section 3, the adaptation process can begin. In
order to limit the choices of the user, we propose to achieve
this adaptation along with a propagation of the constraints of
the domain explicited in the knowledge model.  The various
domains of the constraints (discrete/continuous/both), the
arity of the constraints (binary, n-ary), and the dynamic of
the constraint application enables to select between several
propagation techniques such as  [Bessière, 1991], [Dechter,
1996], [Gelle, 1998], [Sam, 1995] as suggested in [Monteiro
et al, 1999].



5. Example
In order to illustrate the proposed mechanism, let us
consider the following example, in the field of machining
operation configuration.

In this example, a machining operation is represented
according to the class diagram of figure 7.
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Figure 7: Schema of the knowledge base

An instance of such a class diagram is described in figure 8,
in which we can see 3 different operations recorded in the
knowledge base.

op1 : Operation  

Cutting Speed: (30,36,0.5,0.5)
Part Length (19,21,1,1)

op2 : Operation  

Cutting Speed: (35,45,1,1)
Part Length (9,10.5,0.5,1)

op3 : Operation  

Cutting Speed: (49,52,1,0.5)
Part Length (9,10.5,0.5,1)

s1 :Tool Shank  

s2 : Tool Shank  

m3 : Material  

pl1 : Plate  

p1 : Part  
Rugosity (3,3,2,2)

p2 : Part  
Rugosity (2,2,1,1)

t2 : C.C. Tool  

Height (145,155,4,4)
Width (24,26,4,4)
Clearance angle (6,6,2,2)

t3 : P.C.C. Tool  

Height (245,255,1,1)
Width (24,26,1,1)
Clearance angle (6,6,2,2)

t1 : C.C. Tool  

Height (109,201,1,1)
Width (24,26,1,1)
Clearance angle (6,6,1,1)

m1 : Material  
Name : XC48

Name : Steel

m2 :Material  
Name : XC18

m4 : Material  
Name : Carbide N3

p3 : Part  
Rugosity (2,2,0.5,0.5)

Figure 8 : Knowledge base

The problem to solve is to find a configuration for the
operation OpX described in Figure 9.

opX : Operation

Cutting Speed: (33,37,2,2)
Part Length (19,21,2,2)

pX : Part

tX : Tool

Clearance angle (5,7,0.5,0.5)

mX : Material

Name : XC48

Figure 9 : Operation to configure

Three different kinds of similarity measures are used in this
example :

- similarity “close to” defined by
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- “ad hoc” similarity for instance for the comparison of
material  defined as follows :

µ XC18 XC25 XC38 XC48 XC60
XC48 0.7 0.8 0.9 1 0.3

The results of the similarity and adaptability of each
operation of the knowledge base is given in the following
table :

Op1 Op2 Op3
Similarity with OpX Π=1

N=0.25
Π=0.5
N=0.25

Π=0.25
N=0.25

Adaptability 0 0.386 0.385

We can observe that from a similarity point of view,
operation Op1 is the best but that this operation can not be
adapted to configure operation OpX (since its adaptability is
equal to 0). However, operation Op2 is less similar to
operation OpX than operation Op1 but is more adaptable
and therefore is an interesting target for our configuration
process. Operation Op3 is equally adaptable but is less
similar and should therefore not be privileged.

When operation Op2 is chosen, we determine the adaptation
domains for the operation at level α = 0.5. The values for
the example are given for each attribute on figure 10.

op2 : Operation

Cutting Speed: [34,46]
Part Length [7.75,12]

s2 : Tool Shank

p2 : Part
Rugosity [0.5,3.5]

t2 : C.C. Tool

Height [142,158]
Width [23,29]
Clearance angle[4,8]

m2 :Material

Name : {XC18, XC25,
XC38, XC48}

m4 : Material

Name :  {N3,N1,N2
N4,N5,N6,N7}

Figure 10: Adaptation domains

6. Conclusion
We proposed in this article a way to achieve the
configuration of an item according to past experiences. This
approach mixes classical configuration techniques with case



based reasoning in order to support the configuration
process. The use of a membership function for the similarity
enables both to describe precisely the semantics of the
similarity and to determine the adaptation domain in the
neighborhood of the selected  case. We also pointed out the
interest of taking into account not only the similarity but
also the adaptability of the source case for the selection.

The results of this first attempt to combine CBR and CSP is
very promising and we expect to implement the whole
approach in a knowledge management tool.
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