
Configuration requirements from railway interlocking stations

(problem instance)

Andreas Falkner
Gerhard Fleischanderl

Siemens Austria, Program and Systems Engineering
Erdberger Laende 26, A-1030 Vienna, Austria

andreas.falkner@siemens.at / gerhard.fleischanderl@siemens.at

Abstract
Railway interlocks are a domain that provides large
and complex configuration tasks. We describe a prob-
lem instance that focuses on software configuration,
which is a distinguishing feature of the domain. Para-
meters for the operating system of a railway interlock
have to be configured and re-configured.

1 Introduction
Configurators are already applied to different domains of
industry products. For instance, telecommunication systems
are among the products frequently treated with
configurators [Fleischanderl et al., 1998].

Railway interlocking stations are a large and complex
domain for configurator applications. That may be one
reason why only few papers on configurators in the railway
domain were published. Configurations for interlocks usu-
ally have many elements and highly complex relationships.
The configuration of a large interlocking station may
comprise more than 50,000 objects. Furthermore, the
configuration of software is an important part of an inter-
lock configuration.

This paper briefly describes the domain of railway
interlocks. The main part is the description of a problem
instance for configurators. The relevant parts of an inter-
lock configuration are presented with their objects,
attributes, relationships, and constraints [Mittal and
Frayman, 1989].

2 The domain

2.1 Railway interlocks
Railway interlocking stations are produced by few
suppliers and are sold to industry customers, like railway
operators or engineering companies that build railway
stations.

Interlocks are used for monitoring and control of railway
stations. The safe and secure operation of trains on a

railway line depends on the correct and fail-safe
functioning of the interlocks. A configurator has to provide
the data for producing, assembling and parameterizing a
customer-specific interlock.

Railway interlocks are not mass products. That is why
interlocks are only partly designed for mass customization.
There are still many small components and details to be
chosen and parameterized for a specific interlock. These
sub-systems have to be configured for an interlock:
• Hardware: racks, frames, cards, cables, wires.
• Software: data for parameterizing the operating system

of the interlock.
• Communication equipment: hardware and software for

the connection between interlocks.

2.2 Configuration elements
Our condensed example focuses on the configuration of
software as a distinguishing feature of the domain.

A railway operating system, i.e. the real-time software of
a railway interlocking station, comprises components for
logic and control, for controllers of the field elements, for
communication with neighbor stations and for the station
operator's user interface.

The configuration of a specific station uses the infor-
mation about the field elements (names, connections, speed
limits induced by the environment like slopes, curves, etc.)
and about the interfaces to neighbor stations and station
operators. From there all the data (parameters) needed by
the railway operating system have to be derived and partly
adjusted by the configuration engineer.

2.3 Introductory example from the railway
software domain

In order to support safe train operation, a minimal railway
operating system needs the elements track, point (i.e. pair
of points, or switch), signal, occupancy indicator and route.
Tracks, points and signals are connected and form a
topology, e.g.:

T1 and T2 are tracks. P1 is a point whose tip is directed
to the left-hand side. SR3 is a signal whose foot is directed
to the right-hand side and whose head is directed to the left-
hand side. SL1, SL2 and SL3 are directed to the opposite
direction.

Trains move along the topology. They can go in any
direction, but they cannot go from one branch of a point to
the other (only between tip and one branch). A signal is
only visible to a train arriving from the foot side, e.g. SR3
is visible for trains arriving from the right-hand side. A
signal shows the speed as an integer number. While moving
the trains occupy tracks and points. Occupancy indicators
detect whether a track or point is occupied or not.

A train is allowed to start only if the signal in front of it
signals a speed > 0. Then it moves up to the next (visible)
signal. A route is the possible path of a train from a start
signal to a target signal, e.g. SL1-SL2 or SL1-SL3. There
are no other routes in the picture: SL2 and SL3 are not
connected via a valid path. For all other signal pairs, either
the start or the target signal is not visible to the train.

In order to make a train start, the railway station operator
sets up a route for it. Then the railway operating system
switches the start signal to a speed less or equal to the
speed restrictions of all tracks and branches on the route,
only if no track or point in the route is occupied and some
other conditions beyond this example hold.

3 Elements and constraints in a
configuration

3.1 Types, ports and attributes
Trains, railway station operators and railway operating
systems are handled at run-time and therefore are not
included in the configuration. For the definition of the
knowledge base we use the component-port terminology.
We model the software in the same terminology as the
hardware. A configuration yields parameters to be fed into
the software for operation and user interfaces. The configu-
ration does not generate procedure calls or source code for
the software.

types={track,point,signal,route}.
For the sake of simplicity occupancy indicators are not
included in this example. The abbreviation 'nb' stands for
'neighbor' and is used for port connections in the topology.

ports(track)={nb-left,nb-right}.

attributes(track)={name,index,max-speed}.
dom(track,name)=string. dom(track,index)=integer.
dom(track,max-speed)={5,10,15,...,300}.

ports(point)={nb-tip,nb-branch-left,nb-branch-right}.
attributes(point)={name,index,max-speed-branch-left,max-
speed-branch-right,preferred-branch}.
dom(point,name)=string. dom(point,index)=integer.
dom(point,max-speed-branch-left)={5,10,15,...,300}.
dom(point,max-speed-branch-right)={5,10,15,...,300}.
dom(point,preferred-branch)={left,right}.

ports(signal)={nb-foot,nb-head}.
attributes(signal)={name,index}.
dom(signal,name)=string. dom(signal,index)=integer.

ports(route)={start-signal,target-signal,elem-1,elem-2,...}.
The elem-i are virtual connectors between a route and its
elements in the path from start-signal to target-signal. For
sake of readability the corresponding ports are not listed in
signal, track and point.
attributes(route)={name,index,max-speed,is-preferred-
route}.
dom(route,name)=string. dom(route,index)=integer.
dom(route,max-speed)={5,10,15,...,300}.
dom(route,is-preferred-route)={true,false}.

3.2 Topology and traversal constraints
Many constraints are defined on the topology. Simple ones
restrict direct connections, e.g.:
• Only tracks, points and signals are allowed to be

connected to one another.
Complex constraints represent dependencies of several
distant elements, e.g.:
• For every route the elem-i-ports represent a traversal

sequence, i.e. a sequence of neighbors starting at the
head of the start-signal and ending at the foot of the
target-signal. Traversal sequences are constructed by
continuing 'on the other side' of the element, i.e. the
other nb-port for tracks and signals. Coming from an
nb-branch-port of a point traversal is done via the nb-
tip. Coming from nb-tip there are two possible
traversals: to the preferred-branch or to the other
branch.

• In a complex topology different routes may exist
between two signals. The points in the route where two
routes start to diverge, are called decision points. A
route is-preferred-route iff all its decision points are
traversed from nb-tip to preferred-branch.

• For every route its max-speed is less or equal to the
max-speed of each of its elements elem-i.

Typical configuration tasks for this example are:
• Manually add new elements and change connections,

then check whether the topology is still valid.
• Given a topology, compute all routes and their ports

and attributes (max-speed, is-preferred-route).
• After changes in the topology check and – if necessary

– change the existing routes.

SL1 T1 P1 T2 SL2

SL3SR3

• The configuration engineer can do manual changes, e.g.
decreasing max-speed, or deleting routes. The engineer
shall get support to do the changes, e.g. constraint
checks. His modifications shall not be overwritten by
subsequent automatic extensions.

3.3 Constraints for sorting
In the railway operating system the data for elements are
stored in arrays. Typically empty array elements are only
allowed at the end of the array, i.e. indices must be used
starting from the minimum value (i.e. 1) without gaps.

In a few cases the railway operating system requires
particular sorting criteria. In most other cases simple
sorting criteria are useful in order to achieve a repeatable
numbering scheme (which is also important for comparing
different outputs). For our example we assume alpha-
numeric sorting along the names of the elements, e.g.
SL1.index=1, SL2.index=2, SL3.index=3, SR3.index=4.

Whenever an element is created, the indices of all
elements with an index greater or equal to the index of the
new element have to be increased. The inverse action is
required for deleting an element. Instead of rearranging
them, the indices of all elements in the same array can be
recomputed. The possibility of recomputation distinguishes
software configuration from hardware configuration. Only
the consistency among the indices must be preserved
throughout reconfiguration.

If external interfaces are involved, re-sorting cannot be
used, as an index once chosen and communicated to the
interface partner must remain unchanged. Indices are then
ordered along the creation time of the element. When an
element is created, its index is set to the next available one.
If an element is deleted and gaps are not allowed, the index
of the element with the highest index has to be set to the
deleted element's index.

3.4 Several instances for a real-world element
The railway operating system consists of several
components, mainly the software for logic and control, and
the interface to the elements in the field. As a consequence
we have several types for a real-world element type and
several instances (with different types) for a real-world
element instance. We show this for the type point.

Typically we have a field element type, e.g. field-point,
even if the railway operating system does not need it as a
parameter. It is useful for encapsulating the input data for
the configuration process.
ports(field-point)={nb-tip,nb-branch-left,nb-branch-right,
logic-element}.
attributes(field-point)={name,max-speed-branch-left,max-
speed-branch-right,preferred-branch,number-drives}.
dom(field-point,name)=string.
dom(field-point,max-speed-branch-left)= {5,10,15,...,300}.
dom(field-point,max-speed-branch-right)=
{5,10,15,...,300}.
dom(field-point,preferred-branch)={left,right}.
dom(field-point,number-drives)={1,2,3}.

For parameterizing logic and control of a point we need a
representation for it. The operating system will then use the
logic point to store its logical state at run-time.
ports(logic-point)={field-element,controller-1,controller-2,
controller-3}.
attributes(logic-point)={index,preferred-branch,number-
controllers}.
dom(logic-point,index)=integer.
dom(logic-point,preferred-branch)={left,right}.
dom(logic-point,number-controllers)={1,2,3}.

For each point drive we need a controller.
ports(controller-for-point)={logic-element}.
attributes(controller-for-point)={index}.
dom(controller-for-point,index)=integer.

There are more types for representing a point on the station
operator's user-interface (widget-for-point, menu-for-point,
etc.) and for further software components. Having distinct
types for representing a point in different software compo-
nents is useful for separation of concerns.

We need constraints for synchronizing the types, e.g.:
• Existence constraints: A logic-point exists iff a field-

point exists.
• Connections: A logic-point is connected to number-

controllers controller-for-points.
• Equality or computation of attributes:

For every logic-point L, L.number-controllers =
F.number-drives iff L.field-element = F.

4 Summary and conclusion
Railway interlocks are a configuration domain that
provides interesting and relevant tasks. A problem instance
focusing on software configuration was presented.

We think that this paper is appropriate for a problem
instance to be discussed at the workshop. It is suitable for
presenting several important aspects of the application do-
main. After discussing the problem instance we can provide
a longer description if the need for more details emerges.

We successfully implemented a configurator for all sub-
systems of a railway interlock. Currently we are working on
a new configurator based on constraint satisfaction
concepts. More will be published when the project's results
are ready for presentation.

References
[Fleischanderl et al., 1998] Gerhard Fleischanderl, Gerhard
E. Friedrich, Alois Haselböck, Herwig Schreiner, and
Markus Stumptner. Configuring large systems using
generative constraint satisfaction. IEEE Intelligent Systems
& their applications, 13(4):59-68, July/Aug. 1998.
[Mittal and Frayman, 1989] Sanjay Mittal and Felix
Frayman. Towards a generic model of configuration tasks.
Proceedings of the 11th International Joint Conference on
Artificial Intelligence, pp. 1395-1401, San Mateo, Cal.,
1989, Morgan Kaufman Publishers.

