
Explanation and Implication for Configuration Problems
�

EugeneC. Freuder, Chavalit Likitvi vatanavong,Richard J. Wallace
ConstraintComputationCenter, Departmentof ComputerScience

Universityof New Hampshire
Durham,NH 03824USA

ecf-,chavalit-, rjw@cs.unh.edu

Abstract

In this work we explore the problemof generat-
ing explanationsfor configurationproblemsusing
on theconstraintsatisfaction(CSP)framework. In
addition,we areconcernedwith deriving implica-
tions from user choicesin order to guide selec-
tion of later choices. We show that the consis-
tency methodsusedin connectionwith constraint
processingcanbe usedto generateinferencesthat
supportboth functions. In this work we use the
� -queensproblem as a testbed. The systemwe
have developedis interactive and allows the user
to make selectionsandperformarcconsistency on
the current problem, as well as retractingselec-
tions,atypicalarrangementwith currentconfigura-
tor systems.At thesametime it generatesexplana-
tionsfor valuedeletionsandcurrentchoicesaswell
as implications in termsof the amountof future
domainreductionthat will follow certainchoices
andwhetherthesechoiceswill leadto solutionsor
non-solutions.Explanationstake the form of trees
which show thebasisin termsof previouschoices
for currentchoicesanddeletions. Together, these
methodssuggestwaysin whichtheprocessof solv-
ing combinatorialproblemscanbemademoreper-
spicuousandmoreinteractive.

1 Intr oduction
Constraint-basedtechnologyhas becomea major tool for
solving configurationproblems[Sabin and Weigel, 1998].
Present-dayapplicationsallow usersto work interactively, to
createrepresentationsin the form of constraintsatisfaction
problemsandto instantiatetheserepresentationsto obtainso-
lutions. In thesesystems,arcconsistency algorithmsareused
to maintaina degreeof local consistency by ruling out val-
uesthatarenot supportedby thechoicestheuserhasalready
made.

In aninteractiveprocesslike this,comprehensibilityof the
problemsolving processbecomesan increasinglyimportant
issue.In particular, theprocessmaybefacilitatedif userscan
getexplanationsfor results,e.g. “the frammusmustbeblue
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becausered will clashwith the gingus”. This is especially
trueif theresultis: “your problemis unsolvable”;userswant
to know why, andideally to get adviceasto how to modify
theproblemto make it solvable.

Another facetof comprehensibilitywhenusersare incre-
mentallymakingchoicesasthey definea problemor try to
solve it interactively, is knowing the implicationsof achoice,
e.g. “if you make the frammusred, then you can’t have a
red gingus”. Whenthe problemis unsolvablethe userwill
want to changetheproblemandview theimplicationsof the
changes.

Currentapplicationsprovide somefacilities to meetthese
requirements. Specifically, they allow usersto attachver-
bal “explanations”to specificconstraints.Whenoneof these
constraintsis violated,thisexplanationis shown to givesome
indicationof the basisfor the conflict. Obviously, such‘re-
minders’arelimited in the informationthey convey andthe
situationsthey canhandle,andthey donotdealatall with the
questionof implicationsof userchoices.Moreover, they are
entirelyextraneousto theactualprocessof problemsolving.

Explanationsfor constraint-basedsystemswouldappearto
be intrinsically difficult becausesuchsystemsgenerallyrely
on combinatorialsearch. An obvious responseto the need
for explanationor implicationinformation- tracingthesolu-
tion process- doesnot work well for search.However, the
consistency processingthatdistinguishestheAI approachto
constraintsolvingandis alreadyusedin commercialconfigu-
rationsystemsis aninferenceprocess.In thiscase,inferences
leadto domainrestrictions,andin the extremecase,whena
domainis reducedto oneor zeroelements,theinferencepro-
cesslimits us to assigninga specificvalueor shows us that
thepreviousassignmentsproduceanon-solution.Thismeans
that solutionsearchcanprovide at leastpartial explanations
for why an assignmentwas madeor why a solution is not
possibleunderthecircumstances.

Thepresentwork buildsuponthisinsight,andis concerned
with automatingthe processof providing informationabout
explanationandimplication. With respectto thefirst partof
the problem,providing explanations,our goal is to help the
userunderstandthefollowing situations:

� why did we getthis asasolution?
� why did this choiceof labelsleadto a conflict?
� why wasthis valuechosenfor this variableduringpro-



cessing?
� why wasthis domainrestricted?

Knowing aboutimplicationsof currentchoiceswill help
the user make intelligent choices during the subsequent
courseof problemsolving. For implicationsour goal is to
providetheuserwith informationaboutthefollowing:

� is therea basisfor choosingamongvaluesin a future
domain?

� specifically, whateffectwill differentselectionshaveon
thenumberof valuesremainingin otherdomains?

� aretherevalueswhosechoicewill leadto conflict,even
thoughthey areconsistentwith thepresentdomains?

In short,we want to be ableto offer suggestionsabouthow
bestto proceed,especiallyif aconflicthasbeenencountered.

Whenwe considerhow to generateexplanations,we face
two importantissues:Whatshouldserve asan explanation?
andHow canweproducebetterexplanations?Thelatterpre-
sumesthatwecanmeasurethe“goodness”of anexplanation.
Thereareclearly many possibleanswersto thesequestions.
One approach,that follows naturally from our methods,is
to measuregoodnessin termsof explanationsize,assuming
that,otherthingsbeingequal,smalleris better.

In the next sectionwe describethe basic featuresof the
demo. In Section3 we introducethe notion of an “expla-
nation tree” to asa framework for automaticallygenerating
explanationsin a dynamic environment. In Section4 we
demonstratehow constraint-basedinferencemethodscanbe
usedprospectively to determineimplicationsof userchoices.
In Section5 we discussproblemsassociatedwith interactive
use,namely, retractingchoicesandconflict handling,thatre-
quireundoingchoices.Section6 reviews relatedwork. Sec-
tion 7 givesconclusionsanddiscussessomeextensionsof this
work.

2 Testbed
In this paperwe illustrate the generationand useof expla-
nationsandimplicationswith the � -queensproblem. In this
problem, � queensmustbe placedon an � by � chessboard
in sucha way thatno queencanattackanother. (Recallthat
a queencanmove in a straightline horizontally, vertically or
diagonallyon theboard.)Figure1 shows anexampleof this
problemwhen � = 9. In this case,if, for example,a queen
is placedin thesecondcell (countingfrom theleft) of row 1,
asshown in this figure, a secondqueencannotbe placedin
thesamerow, nor canit beplacedin column2, nor canit be
placedin cells1 or 3 of row 2, cell 4 of row 3, etc.Thisprob-
lem differsfrom thelogic puzzlesthatwe usedearlierin this
connection[Freuderet al., 2000] in that the problemcannot
besolvedthroughinferencealone.

The � -queensproblemcanbe representedasa constraint
satisfactionproblem,whichconsistsof asetof variables,sets
of values,wherea memberof eachsetmustbe assignedto
a specificvariable,anda setof constraints,whereeachcon-
straint is a relationon a Cartesiansetof domainsthat is as-
sociatedwith somesubsetof the variables.Here,we repre-
sentthe queensproblemin the conventionalmanner, where

therows arevariablesandthedomainof eachvariableis the
set of cells in that row. Constraintshold betweenpairs of
rows and are basedon the rules of attackdescribedabove.
For example,the constraintbetweenrows 1 and2 includes
cell 1 of row 1 andcell 3 of row 2, which canbe denoted
as((1,1), (2,3)) but not cell 1 of row 1 andcell 2 of row 2.
Becausethe constraintsareall binary, the entirenetwork of
constraintsformsa constraintgraph,wherethevariablesare
the nodesandeachconstraintis representedasan edgebe-
tweentwo variables.For the queensproblemthe constraint
graphis complete.In theseterms,theproblembecomesone
of choosinga cell in eachrow for theplacementof a queen,
sothat thereis no violation of any of theconstraintsthatare
dueto therulesof attack.

Theinterfaceitself showstheproblemin termsof domains
ratherthanasaconstraintgraph(Figure1),whichis apopular
alternative for constraintsatisfactionproblems.This is quite
reasonablein this case,whereevery variableis constrained
by all the others,andit maybea generallyusefulapproach,
aswewill show later.

In this work we solve the problemusingarc consistency.
This is a simpleform of inferencein which the domainsof
eachpair of variableslinked by a constraintaremadefully
consistent.This meansthat for every valuein thedomainof
oneof thesevariablesthereis at leastonevaluein theother
domainsuchthatthetwo togetherform atuplethatis amem-
ber of the constraintbetweenthesevariables. In this case
the tuple is saidto satisythis constraint.Valuesthat do not
satisfya relation in this mannerarediscardedbecausethey
cannotform a partof any solution.

As indicatedabove, arcconsistency by itself cannotsolve
the � -queensproblem. In fact, it cannotdeleteany values
at all if no assignmentshave beenmade.Therefore,at least
oneuserselection(i.e. anassignmentof a queento a cell in
onerow, which reducesthatdomainto onevalue)is required
beforeany valuescanbedeleted,andacertainnumberof user
selectionsarerequiredto solve the problemcompletely. In
thisrespect,ourtestbedis analogousto theusualconfigurator,
whichasdescribedbeforealsousesarcconsistency asits sole
inferenceengine.

Figure1 shows thetestbedinterface,with apartly instanti-
atedproblem. Theuserclicks on a cell on the � by � board
to placeaqueenthere.At any timeheor shecanperformarc
consistency by clicking the top button on the right (labeled
“implications”). In theFigure,two queenshave beenplaced
ontheboard,in row 1, cell 2 androw 3, cell 6, (i.e. cells(1,2)
and(3,6)),andarcconsistency hasbeenperformed.Cellsthat
representvaluesdeletedby arcconsistency areshaded.At the
sametime, the remainingcells arelabeledwith numbersin-
dicatinghow many morevalues(cells) would be deletedby
arcconsistency if a queenwereplaceon thatcell.

In addition to the representationof variables(rows) and
values(columns)in thecenterpanel,otherpanelsbelow and
to theright of this areusedto presentexplanationsandother
commentary, asdiscussedin latersectionsof thispaper. But-
tons in the upperright cornerof the layout are usedin the
courseof constructingandsolving a problem. Beginning at
thetop,they arefor (1) performingarcconsistency, (2) undo-
ing the lastalteration,(3) startinga new problem,(4) show-



Figure 1: � -queensinterface. Greyed-outcells have been
eliminatedby thetwo queensplacedontheboard.Whitecells
indicateremainingvalues.Countsin the lattercells indicate
how many morevalueswill beeliminatedif aqueenis placed
in thatcell andfull arcconsistency performed.Themeaning
of thex’son thegreyed-outcells is left asanexercisefor the
reader. Other featuresof this interfacearediscussedin the
text.

ing eliminationcounts(currentlyshown by default, asin the
figure). Explanationsfor the stateof a givencell areshown
in the panelto the left. (This is discussedat greaterlength
in thenext section.)A runningcommentaryon theprogress
of searchis givenin thepanelat thebottom.(This is not dis-
cussedfurtherin thispaper, althoughexamplescanbeseenin
Figures2 and3.) The testbedis implementedin Java. Run-
ning on a PentiumIII machine,theseandall otherfunctions
describedin this paperareperformedinstantaneously, from
theuser’spointof view, on thepresent9-queensproblem.

3 Deriving Explanations

3.1 Explanations
In thecontext of searchingfor asolution,theideaof explana-
tion turnsonthenotionof sufficiency. Thatis, anexplanation
is a setof elementsthat is sufficient to deduceanotherele-
mentwhoseselectionis to beexplained.Theseelementsare
membersof thebasicsetsfrom which a CSPis composed,in
particular, domainvaluesandconstraints.Anotherkey con-
cepthereis selection:wearealwaystrying toexplainachoice
or selectionfrom whatwasgivenin theoriginalproblem,and
we mustcomposeanexplanationfrom elementsof theprob-
lemthatarepertinentto this selection.

By itself, this definitiondoesnot tell ushow this informa-
tion is to becommunicatedto theuser. Questionsof presen-
tation form anotherpart of the overall problemof compre-
hensibility, andthesearehandledfor thepresentin a largely
intuitive fashion,usingwhat seemsto us to work. Thus, in

thedescriptionof thetestbedgivenabove,we have indicated
how critical actionsandoutcomesarepresentedto the user
via iconsthatrepresentvalueselectionsandchangesin color
thatrepresentdeletions.

3.2 Explanation Trees
Asalreadyindicated,thisdefinitionof explanationtiesin well
with constraint-basedreasoning. When a value is deleted
or an assignmentmadebecauseall valuesin a domainex-
ceptonehave beeneliminated,thenthe basisfor theseout-
comesis givenby the selectionsalreadymadein the course
of search. In fact, from the presentsetof assignmentsand
deletionswecanobtainimmediateexplanationsfor suchout-
comesthat meetthe sufficiency condition describedabove.
But theelementsin theimmediateexplanationmayhavetheir
own explanations(unlessthey wereeitherchosenby theuser
or givenin theoriginalproblemdescription),andthisprocess
canbeiterated.Thismeansthatexplanationscanbeunwound
to form a network of elementsor an extendedexplanation,
which in its fully extendedform, whereall its elementsare
either themselvesexplainedor aregivens,is an ultimateor
completeexplanationof theselectionin question.

Fromthis it mightappearthatwefacepotentialtractability
problemsif we allow the userto call for extendedexplana-
tionsad libitum. Fortunately, thereareseveralwaysto avoid
incorporatingcycles into our extendedexplanations. In the
first place,wheneveravalueis deleted,informationaboutthe
(earlier)assignmentthat led to the deletioncanbe storedin
connectionwith thedeletedvalue.Similarly, wheneveravari-
ableis assignedavalue,wecanusethisstoredinformationto
derivea setof existing assignmentsthatform a sufficient ba-
sisfor assigningthis new value(i.e. for deletingall theother
valuesin thedomainof this variable).Obviously, sucha set
exists;otherwisetheassignmentwould not have beenmade.
Now, sincetheprocessof storagefollowstheorderof search,
andat any time during searchthereis a currentsearchpath
that is, of course,acyclic, then in forming an extendedex-
planationfrom this informationwe areguaranteednot to en-
countercycles.Becausetheexplanationsformedin this way
areacyclic, we call themexplanationtrees. Suchtreesare
alwaysrootedat theelementto beexplained.

This approachhasother convenientfeatures. In particu-
lar, sinceit follows thecourseof searchit is eminentlysuited
for generatingexplanationsdynamically. In fact,it is hardto
seehow this canbeaccomplishedexceptby building expla-
nationsdynamicallyaswell.

Thereis alsoaminimaldegreeof redundancy in thestored
information,sincewhenadeletionoccursonly oneof thecur-
rent assignmentsis storedin associationwith the deletion.
This appearsto be a much more satisfactory strategy than
trying to avoid redundancy by specifyingexplanatorylinks
aheadof time. (And it is not clearhow sucha strategy could
beusedto generateexplanationsdynamically.)

Of course,thereis a cost incurredfor updating: in par-
ticular, if anassignmentis retractedby theuser(andpossibly
alteredatthesametime),informationmustbediscardedfrom
thatpoint in thecurrentsearchpath,andat leastpartly regen-
erated. The proceduresusedfor this purposein the present
testbedaredescribedin Section5 below. In practice,this has



Figure2: � -queensinterfacewith explanationfor queenin cell (9,6). Lefthandpanelshows explanationtreerestrictedto one
level, representingan ‘immediate’ explanationfor this assignment.Cells in black aregiven; the restwerederived from arc
consistency processing.Noteinclusionof emptycellsin explanation;-seetext for furtherdiscussion.

provento beasefficientasprocessingafteranew assignment,
asdescribedin thelastsection.

An explanationtreefor oneassignmentin asolutionto the
queensproblemis shown in Figures2 and3. Theassignment
to be explained is the queenin cell (9,6). The immediate
explanationis shown in the left-handpanelin Figure2. (At
thesametime, theelementsin theimmediateexplanationare
highlightedon theboard.) Theuserobtainsthis explanation
by right clicking on cell (9,6) on theboardlayout. Thecells
listed in theexplanationarethesetof elementsthat together
eliminateall thecellsin thisdomainexcepttheonewherethe
queenhasbeenplaced.Notethatin this casethesetincludes
two emptycells in additionto attackingqueens;the former,
cells(6,2)and(6,5),aretheonly remainingelementsin their
domain,andneithersupportsaqueenin cells(9,2)or (9,5).

Explanationsof greyed-outcells can also be obtainedin
the samemanner;theseare restrictedto a set of cells that
rulesout thatvalue. Often this is a singletoncell to which a
queenhasbeenassigned,but asimplied in thelastparagraph,
it canalsobe a domainof cells noneof which supportsthe
designatedcell.

In Figure 3, the explanationtree has beenexpandedto
giveafully extendedexplanationfor thesamedesignatedcell
[(9,6)] asin Figure2. This is doneby clicking on the right-
handbutton below the left panel,that says“expand”. (The
cells in theimmediateexplanationremainhighlightedon the

board.)
Therearealternativesto thepresentapproach.If we want

explanationsfor labels,wheneachlabel is assignedwe can
searchfor asetof valuesthatcouldeliminateall theotherval-
uesfrom this domain.With this approachwe maybeableto
find betterexplanationsaccordingto somecriterionof good-
ness.Anotheralternative in this caseis to wait until we have
acompletesolutionandthensearchfor anexplanation.How-
ever, sincewe are interestedin having explanationsat each
stagein thesearchprocess,herewe storeinformationimme-
diatelyaftereachsignificantevent,suchasvalueloss.

Sinceour explanationstakea well-definedform in this sit-
uation,this allows us to describethemquantitatively andto
establishcriteriafor goodnessin thisdomainbasedonsimple
propertieslike numberof nodesor averagelevels in a tree.
Thesefeatureswerestudiedin somedetail in previouswork
[Freuderet al., 2000]. We have not yet donesimilar studies
in thepresenttestbed,althoughit maybepossibleto generate
morecompacttreesusing improved heuristicsfor AC algo-
rithms,asdescribedin [WallaceandFreuder, 1992].

4 Deriving Implications
Eachsuccessivevalueassignmentaltersthestatusof valuesin
therestof theproblemin variouswaysthatareoftennotobvi-
ous. Usingarcconsistency, we candeterminemany of these
implicationsof userchoice.In thefirst place,we canrun arc



Figure 3: � -queensinterfacewith explanationfor queenin
cell (9,6). Lefthandpanelshows the extendedexplanation
tree,representingacompleteexplanationfor thisassignment.
In theleft-handpanel,assignmentsthatwerederived,andfor
which theexplanationcanbeextended,areindicatedby gray
boxes.

consistency with eachfuture value selectedfor assignment
to determinethereductionin domainsthatwill ensue.In the
courseof doingthis,wecansometimesdeterminethatagiven
valueif selectedwill leadto a solutionin the next roundof
arc consistency or, conversely, that it will lead to failure in
theform of asituationin whichall thevaluesin somedomain
havebeendeleted.

Thesecapacitiesareillustratedin Figure1 above. There,
eachemptycell is labeledwith acountof thenumberof cells
that will be deletedif a queenis placedthere,and full arc
consistency is thenperformed. In the courseof performing
arcconsistency in associationwith oneof thesepresumptive
assignments,it maybefoundthatthereis no solution;in this
casethe count is given in red. (Examplesin this figure are
cells (4,8) and (7,9).) Conversely, if the problemis solved
(by deducingpositionsfor thequeensin thenow-emptyrows)
whentheprospectiveproblemis madearcconsistent,thenthe
countis givenin green.(Examplesin thisfigurearecells(5,5)
and(7,4).)

5 Supporting Interacti ve Use

5.1 Dynamically Altering Explanations
Sincethesystemswe areconcernedwith operatein interac-
tive mode,we mustgenerateexplanationsandderive impli-
cationsinteractively. As partof this,theusermustbeallowed
to retractassignments,andtheexplanationsmustbeupdated
accordingly. This is, of course,important for coping with
unsolvableproblemsandsituationsin which all theproblem
featuresarenotavailablein advance.

To achieve this form of interaction,we must be able to

undoeffectsof inferencesfrom the assignmentbeingmodi-
fied,sinceexplanationsof othervaluesthatincludethisvalue
arenolongervalid. In addition,wemustundoinferencesthat
affect themodifiedvalue. Supposethata cell � in row

�
has

beengreyedout; this meansthat thereis a queenat cell ��� in
row

�
� that canattackthatspace.Therefore,if this queenis

removedor moved to anothercell in the samerow, thenthe
inferencesbasedon thatqueen,includingtheexplanationfor
cell � , mustbeundoneaswell.

In thepresenttestbed,this is doneby rerunningarcconsis-
tency from scratchafterachangehasbeenmadeandrebuild-
ing theexplanationsandimplicationsfor thenew board.For
this purpose,the programkeepstrack of all userinput and
thecellsaffectedby eachinput. (Thiscanbeshown by using
“Display input sequence”in thefile menu.) If theusersteps
back,the last input in the input sequenceis removedandthe
statesof affectedcellsarereversed.If theusermovesaqueen
to anotherposition,the programmodifiesthe corresponding
input in the input sequence,clearsthe board,andrerunsthe
entire input sequencefrom the beginning. In this way it al-
ways comesup with the sameexplanationsif they are not
affectedby thechange.

5.2 UsingExplanation Treesto Handle Conflicts
An importantcasewheredecisionsmustbe retractedoccurs
whenthesedecisionshave led to a conflict or domainwipe-
out. For wipeout, the simplestapproachis to generatethe
sametype of explanationtreeasfor necessaryassignments.
In otherwords,an immediateexplanationis a setof assign-
mentsthat servesto eliminateall the valuesfor a given do-
main.

However, for ourtestbedswehavedevelopedanalternative
approachthatappearsto have considerablevalueasan intu-
itivewayof flaggingadeadendcondition.Duringarcconsis-
tency processing,all domainsarecheckedto seeif thereare
any caseswherea queenis not supportedby any elementin
anotherrow. Obviously, undersuchconditionsfurther pro-
cessingwill lead to wipeout. Insteadof allowing this, the
cellsthatare‘in conflict’ arehighlighted.This servesto em-
phasizethe fact thatprocessinghasreacheda stagewherea
subsetof variableshasonly incompatiblevalues. The user
canthenchecktheexplanationsfor eachof thesedomainsto
determinewhatto alter.

In fact, we cango further in aiding the userat this point.
For eachconflictedcell, we candeterminethesetof all pos-
sible explanations(an inexpensive operation[Freuderet al.,
2000]), andthendecomposethis set into elementscommon
to all explanationsandthosenot. Then,if anelementin the
former set is changed,this will allow removal of the label
in conflict. In contrast,for the subsetsof non-commonele-
ments,oneelementmustbechangedin eachsubsetto allow
thesameremoval. Thishasnotyetbeenimplementedfor the
queenstestbed,althoughit wasincludedin theearliertestbed
basedon the9-puzzle[Freuderet al., 2000].

For the � -queensproblem,conflictscaninvolvemorethan
onevaluein a domain. However, this posesno problemfor
visualizationbecausethedifferentvaluesin a domaincanbe
shown togetherin anaturalway, asthesquaresin arow of the
chessboard.



6 RelatedWork

Explanationtreesare relatedto truth maintenancesystems
(TMS’s, [Forbus and deKleer, 1993]), in that they provide
a form of justificationfor particularfactssuchasvariableas-
signments.In fact,afull explanationtreefor anassignmentis
simply the transverseclosureof its justifications,which cor-
respondsdirectly to this featurein justificationtruth mainte-
nancesystems.Explanationtreesaremorerestrictedin scope
in that they are not usedto enhancesearchby supporting
backjumpingstrategies (dependency-directedbacktracking)
as TMS’s often are; with CSPsthis capacityis, of course,
usuallybundledwith thesearchalgorithm.Of greaterimpor-
tanceis thefact thatwith explanationtrees,justificationsare
directly tied to searchpaths.As a resultthey arealwaysen-
largedin a certainorder, onethatguaranteesa treestructure.
In addition, this providesus with the opportunityto ‘man-
age’theexplanationby choosingmoreefficientsearchorders
or by choosingamongpossibleexplanationsat eachstepif
therearemorethanone.

Recently[Bowen, 1997] hasdiscussedthe generationof
explanatoryglossesby a constraint-basedsystem,Galileo4,
that supportsconcurrentengineeringfor solving configura-
tion problems.Thissystemallows theuserto addconstraints
or variablesto a problemincrementally. Domainscanbean-
notatedwith explanationsin theform of relevantconstraints
thathavebeenaddedto theproblemandthathaveresultedin
domainrestrictions. Explanationsin the form of verbalde-
scriptionsof constraintsarealsogivenon requestwhenvari-
ableshavebeenaddedto theproblemby thesystem.Thiscan
occurin responseto theinvocationof conditionsin theform
of constraintsthat may not be apparentto the user. Finally,
explanationscanbe minimizedby removing redundant,less
restrictive constraints.In onerespect,this is a generalization
of the presentwork in that the ‘element’ beingexplainedis
thecurrentsetof viabledomainvalues.(Someneedof this in
the presentcontext is indicatedby the useof emptycells in
ourimmediateexplanations.)Anotherimportantdifferenceis
oneof focus,or presentation:our focusis on assignmentsas
explanatoryelements,which leadsnaturallyto iteratedinfer-
encesin theform of explanationtrees.As aresult,oursystem
capturesthe historicalaspectof explanations(how did I get
here?)in a perspicuousfashion. In Galileo4the focusis on
constraints;this is importantwhentheconstraintsarehetero-
geneousin character.

A differentapproachto comprehensibilityin thecontext of
configurationproblemshasbeentaken by [Felfernig et al.,
2000]. Theseauthorsusea versionof model-baseddiagnosis
to aid theuserin discoveringerrorsin aconfigurationknowl-
edgebaseor errorsin the userspecificationfor a problem.
In theformercasetheknowledgebaseis shown to beincon-
sistentwith positive problem-cases;in the latter the specifi-
cationsareshown to be inconsistentwith a valid knowledge
base.It is unclearwhetherthesystemprototypesupportsthe
incremental,dynamicfeaturesof oursystem,althoughit may
be possibleto extend it in this fashion. Like Galileo4 this
systemreportsconflictsasexplanationswithoutgoingfurther
into thebasisfor theseconflicts.(SinceGalileo4is incremen-
tal in nature,thisin itself providessomefocusfor determining

this.)
Thepresentwork is alsorelatedto theproblemof “analytic

debugging”[Meier, 1995], whichis designedto answerques-
tionssimilar to thoseposedin theIntroductionin thecontext
of programevaluation.However, thesystemdescribedin that
paperdoesnot formulateexplanations,but insteadpresents
informationpertinentto thecurrentstateof searchin thespirit
of debuggingsystems.

In summary, this work togetherwith ours indicatesthat
thereare importantquestionsregardingextensionsto other
environmentsfor all thesesystems.In the future it will also
behelpful to understandhow thenumerousfeaturesembod-
ied in thesedifferentapproachesarerelatedto overall com-
prehensibilityof thesolution-findingprocess.

7 Conclusionsand Prospects
Our work to datehasshown how explanationscanbe built
automaticallyfor a complex inferentialprocessandhow im-
plicationscanbederivedbasedon thesameformsof consis-
tency processing.Explanationstake theform of treesthatare
createdduringthecourseof problemsolvingandcanthenbe
usedasa commentaryfor eachstepof theprocess.Implica-
tions canalsobe derivedon the basisof simpleconsistency
processing.

Somefurtherdirectionshavealreadybeenindicatedin the
discussionin theprevioussection.Currently, wearedevelop-
ing a systemandinterfaceusingideasdevelopedin connec-
tion with the � -queensproblemthatcanbeappliedto typical
configurationproblemssuchasassemblinga computersys-
tem. A sampleconfigurationproblemin this form is shown
in Figure4. (This problemis derivedfrom thesamplegiven
in [Calico,2000].)

This prototypesystemusesthe samematrix approachfor
representingthe problem,wherethe valuesin eachdomain
are shown as squareson a board. Sincedomainsizesare
unequal,the total numberof squaresin a row must equal
the largestdomainsize;if thesquaresare‘unused’,they are
shown in gray. Whentheuserplacesthecursoron a row, the
attributeor valuenamesareshown in apanelto theright near
thetop of thedisplay. Valuesthatarecurrentlyavailableare
shown in white with thoseselectedby theusermarkedwith
checkmarks;deletedvaluesaredarkened.

Unlikethequeenstestbed,thissystemmustbeableto han-
dle � -ary aswell asbinary constraints.We areworking on
waysto handlethesein an efficient manner, while retaining
thecomprehensibilityof thequeenstestbed.
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