Modeling and Generating Tradeoffs for Constraint-Based Configuration

Eugene C. Freuder
Constraint Computation Center
Department of Computer Science
University of New Hampshire
Durham, NH 03824 USA
ecf@cs.unh.edu

Abstract

During an interactive configuration session we may
reach a point where our desires can not be met.
At this point we can consider “tradeoffs”. Ideally,
we would like the configurator to suggest appropri-
ate tradeoffs to us. In this paper we have modeled
tradeoffs in constraint-based configuration as addi-
tional constraints, and begun to study the issues in-
volved in generating and evaluating such tradeoffs.
We describe our basic approach in the context of
a “toy” configuration problem based on the clas-
sic N-Queens problem. Initial experiments com-
pare “proposal strategies” for generating tradeoffs.
We lay out a program for further study, outlining
the parameters of the problem space to be explored.
Finally, we discuss how our ideas might be applied
to a real-world configuration problem.

1 Introduction

Configuration is becoming a well studied design activ-
ity [Sabin and Weigel, 1998]. While there has been a growing
interest into issues such as diagnosis of knowledge-bases for
configuration [Felfernig er al., 2000], advice generation for
design [Bowen, 1997] and explanation generation [Freuder et
al., 2000], there is still a need for work on techniques which
learn user preferences and use these to assist users achieve
satisfactory configurations. This paper presents initial steps
towards the development of such techniques.

During an interactive configuration session we may reach
a point where our desires can not be met. At this point we can
consider “tradeoffs”. For example, in configuring a camera,
we find that it is impossible to get one weighing less that 10
ounces with a zoom lens of 10X or more, so we consider a
tradeoff: “I will increase my weight limit to 14 ounces if I
can have a zoom lens of 10X or more.” Ideally, we would
like the configurator to suggest appropriate tradeoffs to us.

We have modeled tradeoffs in constraint-based configura-
tion as additional constraints, and begun to study the issues
involved in generating and evaluating such tradeoffs. In Sec-
tion 2, we describe our basic approach in the context of a
“toy” configuration problem. We utilize the classic N-Queens
problem, with the addition of user-generated “preference con-
straints” and system-generated “tradeoff constraints”. Ini-

Barry O’Sullivan
Constraint Processing Group
Department of Computer Science
University College Cork
Cork, Ireland
b.osullivan@cs.ucc.ie

tial experiments compare “proposal strategies” for generating
tradeoffs. In Section 3, we lay out a program for further study,
outlining the parameters of the problem space to be explored.
Our approach enables us to address important but ill-defined
questions like “what is a good tradeoff?” in a formal, exper-
imental manner. In Section 3.2, we discuss how our ideas
might be applied to a real-world configuration problem in cir-
cuit board design. Finally, a number of concluding remarks
are made in Section 4.

2 A Case Study

In this section we describe our basic approach in the con-
text of a toy configuration problem. We utilize the classic
N-Queens problem, with the addition of user-generated pref-
erence constraints and system-generated tradeoff constraints.
This is the problem of placing NV queens on a chess board of a
size N x N so that no queen can capture another queen [Mar-
riott and Stuckey, 1998]. In Section 2.1 we present a number
of proposal strategies for generating tradeoffs. In Section 2.3
we present some initial experimental results comparing these
proposal strategies.

2.1 Modeling Tradeoffs for the N-Queens Problem

The configuration problem that will be studied here is based
on the N-Queens problem. This problem has been chosen
since it is a well-known vehicle for facilitating explanation
in the field of constraint processing. The user attempts to
solve the configuration problem by interactively specifying a
series of preference constraints to a constraint-based config-
urator. We assume that the user prefers higher column val-
ues. Thus, when the user generates a preference constraint,
we will assume it to be of the form row > column, where
row corresponds to a row number in the N-Queens problem
and column corresponds to the column value for that row.
For example, the constraint 4 > 6 means that the queen on
row 4 should be placed in a column whose value is at least 6.

During the interactive session with the configurator, the
user may specify a constraint which causes the set of pref-
erence constraints to become inconsistent, identified using
some measure of consistency (e.g arc-consistency, preference
constraints are consistent with what the user would accept).
At this point our configurator attempts to recommend a set
of appropriate “tradeoff” constraints to the user which the

user can accept before continuing to develop a solution for
the configuration problem.

Thus, the interactive solving process can be summarized as
follows:

e Repeat until user satisfied:

— Repeat until “over-constrained”:

* User proposes a constraint:
must be > column y”

— Repeat until user satisfied:

“queen in row z

* System proposes a tradeoff: “queen in row x
must be > column i and queen in row y must
be > column j”

Thus, user specified preference constraints are modeled as
unary constraints. For example, for the 8-queens problem a
constraint which states that “the queen in row x must be >
6” is modeled as:

C, = {6,7,8}

On the other hand, in this case-study, we model tradeoffs
as a single binary constraint or as a conjunction of unary con-
straints. For example, a tradeoff constraint which states that
”if the queen in row x must be > column 6 then the queen in
row y must be > column 7” is modeled as:

Cla,y) = {(6,7),(6,8),(7,7),(7,8),(8,7),(8,8)}

or as

Cy = {67 778}
Cy, ={7,8}

During an interactive session with our configurator, when
a tradeoff involving row z is accepted, it is incorporated into
the set of user specified preference constraints.

Modeling configuration problems using binary constraints
has long be an accepted approach in the literature [Sabin and
Freuder, 1996]. Modeling tradeoffs as binary constraints is
useful. In particular, standard constraint satisfaction tech-
niques can be employed to assist a user to solve configuration
problems modeled using binary constraints.

2.2 Tradeoff Proposal Strategies

Since we assume in our case-study that higher column val-
ues are preferred, the approaches we have taken in this early
case-study were based on the following strategies: (a) Max-
imum Sum of Column Values, (b) Maximum Viability, (c)
Minimum Viability and (d) Pareto optimality. Each of these
strategies will be discussed here in turn.

Maximum Sum of Column Values

Earlier we stated our assumption that higher column values
are considered better that lower ones. Therefore, when a
tradeoff is to be presented to a user it has a higher likelihood
of being accepted if it is consistent with the preferences of
the user. We have studied two strategies which attempt to
maximize the sum of the column values described in the set
of user-specified preference constraints: “maximum sum of
arc-consistent column values” and “maximum sum of viable
column values” values.

The maximum sum of arc-consistent column values strat-
egy generates a set of tradeoff constraints each of whose col-
umn values are maximal and are arc-consistent with respect
to the other user-specified preference constraints.

The maximum sum of viable column values strategy gen-
erates a set of tradeoff constraints each of whose column val-
ues are maximal and could yield a consistent solution to the
configuration problem given the other preference constraints
which have been specified by the user.

Maximum Viability

This strategy generates a set of tradeoff constraints which
could yield the greatest number of solutions to the configu-
ration problem given the other preference constraints which
have been specified by the user.

Minimum Viability
This strategy generates a set of tradeoff constraints which
could yield at least one solution to the configuration prob-
lem given the other preference constraints which have been
specified by the user.

Pareto optimality

Pareto optimality is an economics principle which is fre-
quently used for comparing solutions to multiple objective
optimization problems. Pareto optimality has also been
used in the constraints paradigm for comparing the qual-
ity of solutions of a set of constraints which involve prefer-
ences [O’Sullivan, 1999].

In contrast to a single objective optimization problem
which produces a single optimum (or a set of equivalent
optima), multiple objective optimization produces a set of
non-dominated (Pareto optimal) solutions. A set of non-
dominated solutions is characterized by the property that ev-
ery solution in the set is either better than every other solution
to the problem, with respect to at least one of the objectives,
or is at least as good as every other solution on all objectives.

Formally, given the set, S, of candidate solutions to a
multi-objective optimization problem the Pareto optimal set,
P, can be defined as

P, = {s;]s; € S, not_dominated(s;,S)}.

The predicate not_dominated(s;, S) means that a candidate
solution, s;, is not dominated by any other candidate solution
in S. Thus,

not_dominated(s;, S) < Vs; € S,~dominates(s;, s;)

A solution, sy, dominates another solution, so, if s
improves on so with respect to any objective and s, does
not improve on s; with respect to any objective. Thus,

dominates(s1, s2) < improves(sy, sa)A—improves(sa, s1).
The predicate improves(si, s2) can be defined as follows,
improves(sy, s2) < F, I) € O,better(F(s1), F(s2),I).

where O is the set of objective functions, each objective func-
tion in O being a pair, (F,I), where F' is a function and
I € {minimal, mazimal}; the predicate better is defined
as

better(z,y, maximal) & x >y

better (z,y, minimal) & x < y.

In the case-study being presented here, there is a preference
on each variable (row) in our configuration problem — this
preference is that each column have a value which is maxi-
mal. Thus, our toy configuration problem can be regarded as
a multi-objective optimization problem. Thus, the Pareto op-
timality strategy generates a set of tradeoff constraints which
could yield a Pareto optimal solution to the configuration
problem given the other preference constraint specified by the
user.

2.3 Evaluation of Proposal Strategies

Experiments were made on the 8-Queens problem. We con-
sidered the number of acceptable solutions as an experimental
axis. Different points on this axis were chosen and solutions
were generated at random for each point. An acceptable so-
lution to the configuration problem must satisfy the require-
ments of the user of the configurator application and must not
violate any constraints which define the validity of a candi-
date configuration. In our experiments we chose points along
the axis of acceptable solutions from the set {2,4,...,92},
where 92 is the number of solutions to the 8-Queens prob-
lem. Our simulated user would accept a tradeoff if it was
contained in a solution in a randomly predetermined “accept-
able set”. In this way we could evaluate how the ability of
the various tradeoff proposal strategies we presented above
varies with the number of satisfactory solutions available.

We also considered the “strength” (m) of the simulated
user’s constraints as an experimental axis. Based on this
axis our simulated user proposes new preference constraints
bounds randomly chosen between m and n (for n-queens) for
different values of m. In our experiments we chose points
along this axis from the set {2, 4, 6}.

In order to evaluate our tradeoff proposal strategies we sim-
ulated an interaction between the user and the configurator as
follows. Preference constraint were accepted from the sim-
ulated user while they were consistent with the user’s pre-
determined “acceptable set” of solutions. If the simulated
user managed to solve the problem without encountering an
inconsistency, tradeoffs were never proposed. When the user
proposed a preference constraint, z > ¢, which when incor-
porated into the set of user-specified preference constraints
made this set inconsistent, the configurator offered a set of
tradeoffs to the user. The user would accept a tradeoff if it
could yield a solution in the pre-determined “acceptable set”
of solutions. If the user accepted a tradeoff, y > j, the con-
straint on y in the user’s set of preference constraints was
replaced with the accepted tradeoff. If the set of tradeoffs
presented to the user was empty, or there did not exist an ac-
ceptable tradeoff, this was regarded as a failure.

Results from our initial experiments using the tradeoff pro-
posal strategies presented in Section 2.2 will be presented be-
low.

Maximum Sum of Column Values

As discussed earlier, we have studied two strategies which
attempt to maximize the sum of the column values described
in the set of user-specified preference constraints: “maximum
sum of arc-consistent column values” and “maximum sum of
viable column values”.

The “maximum sum of arc-consistent column values”
strategy performed extremely poorly, effectively never find-
ing tradeoffs which were acceptable to the user. The rea-
son for this behavior is that this strategy is extremely greedy.
When an inconsistency is detected in the user-specified set
of preference constraints, this strategy is locally very greedy
since it only suggests tradeoffs which are arc-consistent with
respect to the set of user-specified preference constraints and
would maximize the column values. Thus, this strategy does
badly because it works against the distributions found in so-
lutions to the N-Queens problem. As a consequence, the user
is presented with tradeoffs which do not offer the possibility
of finding an acceptable solution.

By modifying the level of viability checking done by the
previous strategy we achieved dramatically better results with
the “maximum sum of viable column values” strategy. This
strategy only recommends tradeoffs which it knows could
lead to a full solution to the problem. Thus, while greedy, it
attempts to work with the distributions found in the solutions
to the N-Queens problem. The performance of this strategy
is presented in Figure 1.

50

45

40

35

30

25

20

15

number of solutions found (out of 50 runs)

10

/ L i
0 10 20 30 40 50 60 70 80 90
number of acceptable solutions

Figure 1: The performance of the “maximum sum of column
values with full viability checking” strategy.

One of the most interesting aspects of the performance
of the “maximum sum of column values with full viability
checking” strategy is that as the strength, m, of the user’s
preference increases the ability of the user to find an accept-
able solution by accepting tradeoffs becomes increasingly
volatile. Using this strategy, to be able to consistently find ac-
ceptable solutions to a configuration problem, a user should
not be too greedy in terms of preference constraint. Thus,
it appears that combination of user who is content to adopt
a least-commitment approach and a configurator which pro-
poses tradeoffs which are known to be consistent with at least
one solution to the configuration problem is best. However,

as the user commits less, the quality of the solution is com-
promised since it will effectively describe a larger family of
solutions. Therefore, it may be the case that the best strategy
to adopt is application domain specific. For example, there
may be no net benefit associated with a non-committal so-
lution over having no solution at all. This is an interesting
dilemma for those who must build configurators for general
purpose applications.

Maximum Viability

This strategy generates a set of tradeoff constraints which
could yield the maximal number of solutions to the config-
uration problem given the other preference constraints that
have been specified by the user. From Figure 2 it can be seen
that this strategy performed particularly well in terms of its
ability to consistently find acceptable solutions.

50

number of solutions found (out of 50 runs)
N
X

0 L L L L L L L L L
0 10 20 70 80 90

30 40 50 60
number of acceptable solutions

Figure 2: The performance of the “maximum viability” strat-
egy.

Once again, as was the case for the “maximum sum of col-
umn values with full viability checking” strategy, it can be be
seen that as the strength of the user’s preferences increases,
the ability of the strategy to generate acceptable tradeoffs to
the user which could yield solutions becomes more volatile.
However, the “maximum viability” strategy is far more re-
liable at finding solutions. In addition, the most significant
disadvantage of this strategy is that is need to perform a full
solvability check in order to generate tradeoffs. However,
performance was better than “maximum sum of column val-
ues with full viability checking”. Thus, it appears that a least-
commitment approach is better.

Minimum Viability and Pareto Optimality
Both the “minimum viability” and ‘“Pareto optimality” strate-
gies found acceptable solutions for every point on both the
axis of number of acceptable solutions and preference con-
straint strength. Both of these strategies propose tradeoffs
which are have the capability to yield solutions to the config-
uration problem. Therefore, they will always generate trade-
offs which are acceptable to the user.

At the outset we assumed that the user preferred higher col-
umn values for each of the rows in our toy configuration prob-
lem based on N-Queens. From a Pareto optimality perspec-

tive this means that all solutions to the problem are equally
good — no solution is dominated by another. This is why, in
this case, both of these strategies behave similarly.

There is more effort required to generate tradeoffs based on
Pareto optimality. Pareto optimality defines an ordering over
the solutions to a problem, so we cannot start to eliminate
solutions until we have at least two. In contract, the minimum
viability strategy proposes tradeoffs as long as there is at least
one solution possible involving the tradeoff. However, if we
were to select a subset of the columns in our toy problem on
which we defined our maximal preference, Pareto optimality
would generate more relevant tradeoffs to the user.

3 A Framework for Further Study

In Section 2 we described our initial experiments on trade-
off generation in the context of a toy configuration problem
based on the well-known N-Queens problem. However, there
is considerable scope for study which extends this basic ap-
proach. In Section 3.1 we lay out our program for further
study, outlining the parameters of the problem space to be
explored. Our approach enables us to address important but
ill-defined questions like “what is a good tradeoff?” in a for-
mal, experimental manner. We will further demonstrate the
utility of our approach on a real-world problem taken from
the field of printed-circuit board design in Section 3.2.

3.1 Studying Tradeoffs

Essentially, we are interested in further exploring the general
notion of tradeoff generation for constraint-based configura-
tion as a technique for assisting users achieve their objectives
by learning from their preferences.

Our basic model is that tradeoffs can be represented as bi-
nary constraints. We are starting from an assumption that
tradeoffs can be handled with independent, conjunctive trade-
offs. Once the first tradeoff involving some variable in a prob-
lem, the unary constraint for the variable is incorporated into
it to avoid the need for a separate, disjunctive unary con-
straint. Our agenda for studying tradeoffs is defined on a
number of levels: models of interaction with the user; tradeoff
suggestion strategies; metrics for measuring the effectiveness
of these strategies; experimental models; and practical appli-
cation. Each of these issues will be discussed below except
for the issue of practical application. A real-world example
showing how our work on tradeoffs is of value is presented in
Section 3.2.

Models of Interaction

In the initial experiments we presented here the consistency
of the user’s preference constraints was interpreted as a set of
constraints which were acceptable by the user, defined by the
pre-determined set of acceptable solutions. It is also of value
to check for consistency using just arc-consistency, since con-
figurators tend to avoid doing full ”look for solution” viability
checking, worrying about the cost. One of our primary con-
cerns is to assist the user to achieve a viable solution which
the user will find acceptable in as few tradeoff interactions
as possible. This may result in the consideration of other ap-
proaches to measuring viability which may incur a higher cost

that performing an AC check. For example, if we were to per-
form viability checking as full solvability checking we could
still fail, if a solution can not be found through a tradeoff.
However, it is expected that such an approach would help.

The challenge here is trying to strike a balance between the
effort expended on checking the viability of the user’s prefer-
ence constraints and our reliance on tradeoff suggestion strat-
egy’s ability to put the user back on the right track. Our initial
experiments give us some insight on how to proceed here. We
have seen how greedy tradeoff models are less successful and
how the strength of a user’s preferences increases volatility in
our ability to find acceptable solutions. Therefore, we need to
identify some taxonomy which associates appropriate trade-
off proposal strategies with particular classes of problem and
particular classes of user.

Tradeoff Suggestion Strategies

Another issue that needs exploration is the effect of the tight-
ness and density of random problems on the likelihood of suc-
cess for various tradeoffs strategies. In particular, an investi-
gation on how to match greedier tradeoff suggestion strategies
with different classes of random problems classified accord-
ing to density and tightness would be of considerable interest.

There is also considerable scope for developing more in-
telligent tradeoff proposal strategies which attempt to ensure
that a solution is found if one exists. One approach to devel-
oping more intelligent tradeoff proposal strategies may be by
incorporating some form of backtracking, either user or sys-
tem driven. These strategies would enable users to backtrack
from situations where no tradeoff was available to a point
where a tradeoff was accepted which, in hindsight, was a bad
choice. Further extensions to the generic concepts of trade-
off strategies could be made by incorporating costs, allowing
disjunctive tradeoffs etc.

Metrics for Tradeoff Strategies

In order to judge the suitability and quality of various trade-
off proposal strategies, some metrics are required. Essen-
tially, we see several dimensions to the question of metrics
for tradeoff strategy evaluation. We discuss some of these
briefly below.

Firstly, tradeoff strategies can be compared on the basis
of their ability to find a satisfactory solution. In our initial
experiments we defined a satisfactory solution as a solution
which was in a predetermined set of acceptable solutions.

Secondly, tradeoff strategies can be compared on the basis
of the number of interactions with the user they require be-
fore finding a satisfactory solution. Obviously, fewer interac-
tions are better, since this would mean that we are minimizing
overhead on the human user.

A third metric for measuring the performance of a trade-
off proposal strategy is the amount of information we can
learn about the user. Using our more general model of trade-
offs, where a tradeoff is handled with independent, conjunc-
tive constraints. Through an interactive process with the user
we can learn about the complexities of the user’s preferences
from the tradeoffs that are accepted. In our initial experiments
we can regard the pre-existing acceptable set of solutions as
a very crude model of this acquired knowledge.

Finally, we can compare strategies based on “effort”. For
example, choosing tradeoffs that satisfy AC, will generally,
take less effort than, but not be as successful as, using via-
bility. Closely, linked to the effort metric is execution time,
which is an obvious measure of the performance of a tradeoff
proposal strategy. Here, execution time refers to the speed at
which a configurator, based on a particular tradeoff strategy,
can respond to the user. Obviously, the faster a tradeoff pro-
posal strategy can present the user with a set of alternative
tradeoffs the better.

Experimental Models

In Section 2.3 we presented the experimental design for our
initial experiments. These experiments involved the evalu-
ation of a number of tradeoff proposal strategies against two
experimental axes: (a) the number of acceptable solutions and
(b) the strength of the simulated user’s constraints. This basic
model for evaluating alternative strategies can be extended in
a number of ways.

For example, we have begun to consider differing combi-
nations of proposal methods and viability checking. In addi-
tion, we are currently investigating whether solutions fall into
classes based on which tradeoff proposal mechanism which
(a) can find them, and (b) most efficiently finds them.

A number of other important experimental models are pos-
sible by considering relationships between classes of solu-
tions and classes of tradeoffs, where tradeoff proposals are
based on domain or user models, either given or acquired. Fi-
nally, incorporating costs into the framework is an interesting
issue. More intelligent tradeoff strategies and experimental
models can be developed here based on Pareto optimality and
tradeoff domination.

Currently, our experiments capture an aspect of problems
with ordered domains. For example, in configuration and de-
sign, people often have a preference defined over non-ordered
domains such as colors. There are a number of ways in which
we can extend our approach to remove this restriction. Some
obvious approaches to overcoming this restriction are either
to learn a user’s preference over unordered domains through
tradeoff constraints, or to a priori interactively define an or-
dering over such domains with the user [O’Sullivan, 1999].

3.2 An Example Real World Application

In this section we present a real-world application of our work
on tradeoffs from the field of printed-circuit board (PCB) de-
sign. A PCB can be regarded as a configuration of electronic
components, connected by nets, placed on a multi-layer cir-
cuit board. Many of the common characteristics of configura-
tion problems are present in particular classes of PCB design
such as, specifying the detail of sub-systems within a pre-
existing product structure and specifying the nature of the in-
terface between the sub-systems. A typical example of PCB
configuration is selecting options for PC motherboard assem-
bly. However, in real world applications, there may be a need
for design optimization which may, or may not, be consid-
ered part of the configuration process. An example of this
from the field of PCB design is the placement of local fiducial
marks for fine lead-pitch components — components whose
pins are very close together. A fiducial is a marker placed on

a PCB which facilitates precise optical alignment for placing
fine lead-pitch components. In general, a PCB manufacturer
would require that every component on a PCB would have
two fiducial marks associated with it. Each of these fiducial
marks would be one in two diagonally opposite corners of the
component. An example arrangement of fiducial marks with
respect to a fine lead-pitch component on a PCB is illustrated
in Figure 3.

Fiducial Marks
- Rl

Fine Lead-pitch
Component

PCB Outline

Figure 3: An example arrangement of fiducial marks with
respect to a fine lead-pitch component on a PCB.

The placement of fiducial marks may appear to be a trivial
issue. However, on an actual PCB, the problem is compli-
cated by the existence of tracking (nets which connect com-
ponents etc), obstructions caused by the placement of other
components and areas which cannot, for one reason or an-
other, be used for fiducial mark placement. A problematic
scenario which frequently occurs in real-world designs is il-
lustrated in Figure 4

Tracking

[Fine Lead-pitch| |Fine Lead-pitch
Component Component
1 2

[Fine Lead-pitch| |Fine Lead-pitch
Component Component

3 4

PCB Outline

Figure 4: A typical, but problematic, PCB configuration for
fiducial mark placement.

In general, the placement of fiducial marks must satisfy the
following constraints
1. For each fine lead-pitch component two fiducial marks
must be placed in two diagonally opposite corners of the
component;

2. Fiducial marks should not be placed under the compo-
nent;

3. Fiducial marks should be as close to the corner of the
component as possible, typically within Smm.

4. Fiducial marks should have a minimum separation of
15mm from each other.

5. A minimal number of fiducial marks should be used.

In addition, the placement of fine lead-pitch components must
satisfy another set of constraints, the most relevant in this
example being that fine lead-pitch components should share
no more than one fiducial mark with another component. In
practice the solution to the problem of fiducial placement re-
duces to acquiring what a user would regard as an acceptable
meaning for “in the corner” of a component and “diagonally
opposite” corners. Figure 5 illustrates the bounds of what a
designer would accept as a tradeoff for “in the corner” of a
component and “diagonally opposite” corners.

Tradeoff limit
o -

L Fine Lead-pitch
— Component T

-0
Tradeoff limit
PCB Outline

Tradeoff limit

Tradeoff limit

Figure 5: The limits of what would be regarded as in the cor-
ner of a component.

During the process of placing fiducial marks on the layout
illustrated in Figure 4, the designer would attempt to locate a
fiducial in each of the outside corners of each component with
the consequence that the fiducial separation rule would be vi-
olated. Tradeoffs could be generated based on a user-model
based on the scenario illustrated in Figure 5. Analogous to the
interaction that a user would have solving the N-Queens prob-
lem, a designer could be presented with a series of tradeoffs
which would assist the designer reach the acceptable solution
illustrated in Figure 6.

Tracking
Fine Lead-pitch| |Fine Lead-pitch
Component Component
1 2
Fine Lead-pitch| |Fine Lead-pitch
Component Component
3 4
PCB Outline

Figure 6: An acceptable placement of fiducial marks.

Although, at face value a very simple real-world applica-
tion, this is a problem which is encountered by PCB designers
on a daily basis. There is currently no systematic tool for as-
sisting designers place fiducials.

4 Conclusion

The ability of configurators to generate tradeoffs to users dur-
ing interactive configuration is valuable. In this paper we
have modeled tradeoffs in constraint-based configuration as
additional constraints, and begun to study the issues involved
in generating and evaluating such tradeoffs. We described our
basic approach in the context of a "toy” configuration prob-
lem and reported the results of some initial experiments to
compare different ’proposal strategies” for generating trade-
offs. We have laid out a program for further study, outlining
the parameters of the problem space to be explored. Finally,
we discussed how our ideas might be applied to real world
configuration problems in circuit board design.

Acknowledgments
This work was supported in part by Trilogy.

References

[Bowen, 1997] James Bowen. Using dependency records to
generate design coordination advice in a constraint-based
approach to Concurrent Engineering. Computers in Indus-
try, 33(2-3):191-199, 1997.

[Felfernig et al., 2000] Alexander Felfernig, Gerhard
Friedrich, Dietmar Jannach, and Markus Stumpter.
Consistency-based diagnosis of configuration knowledge-
bases. In Proceedings of the 14h European Conference on
Artificial Intelligence (ECAI’2000), pages 146—150, 2000.

[Freuder er al., 2000] Eugene C. Freuder, Chavalit Likitvi-
vatanavong, and Richard J. Wallace. A case study in expla-
nation and implication. In In CP2000 Workshop on Analy-
sis and Visualization of Constraint Programs and Solvers,
2000.

[Marriott and Stuckey, 1998] Kim Marriott and Peter J.
Stuckey. Programming with Constraints: An Introduction.
The MIT Press, Cambridge, Massachusetts, 1998.

[O’Sullivan, 1999] Barry Alan O’Sullivan. Constraint-Aided
Conceptual Design. PhD thesis, Department of Computer
Science, University College Cork, Ireland, July 1999.

[Sabin and Freuder, 1996] Daniel Sabin and Eugene C.
Freuder. Configuration as composite constraint satisfac-
tion. In AAAI-96 Fall Symposium on Configuration, pages
28-36, 1996. also in: Proceedings, Artificial Intelligence
and Manufacturing Research Planning Workshop 1996.

[Sabin and Weigel, 1998] Daniel Sabin and Rainer Weigel.
Product configuration frameworks — a survey. IEEE Intel-
ligent Systems and their applications, 13(4):42-49, July—
August 1998. Special Issue on Configuration — Getting it
Right.

