
Interactive Configuration Capability in a Sale Support System: Laziness and
Focusing Mechanisms

Diego Magro and Pietro Torasso
Dipartimento di Informatica, Università di Torino

Corso Svizzera 185; 10149 Torino; Italy�
magro, torasso � @di.unito.it

Abstract
The paper discusses the configuration process in a
sale support system aimed at helping a customer of
a virtual store to assembly the right complex prod-
uct containing the subcomponents that he/she chose
and meeting her/his requirements. Because of the
interaction of the customer with the system during
the configuration process, we define a lazy configu-
rator able to configure only the portion of the com-
plex product which is directly related to the cus-
tomer’s requirements. We define also some focus-
ing mechanisms able to use the constraints in order
to reduce the search space during the configuration.

1 Introduction
In the last decade, much attention has been paid to the formal-
ization of the configuration problem and different approaches
have been proposed. Many of these are based on different ex-
tensions of the CSP framework (see, for example [Mittal and
Falkenhainer, 1990]). A logical formalization of the configu-
ration problem has been proposed by other researchers (e.g.,
in [Friedrich and Stumptner, 1999], a consistency-based def-
inition of the configuration problem is given; in [Soininen
et al., 2000] a formalization of the configuration process as
a problem of finding a stable model for a logical theory of
weight constraint rules is presented).

The basic concepts underlying the configuration problem
have been carefully analyzed (e.g. see [Tiihonen et al., 1998]
and [Felfernig et al., 2000]) and the importance of represent-
ing the structure of the product (i.e. the partonomical knowl-
edge) has been outlined by many researchers (the problem
of representing the structure in a CSP framework is treated,
for example, in [Sabin and Freuder, 1996] and in [Veron and
Aldanondo, 2000]). However, fewer works have analyzed
the issue of the interaction between the configurator and the
user (among them, [Amilhastre and Fargier, 2000], [Gelle and
Weigel, 1996], and [Veron and Aldanondo, 2000]).

In the present paper we are mainly interested in the interac-
tive aspect of the configuration process and, in particular, we
consider a scenario where an intelligent agent has to support a
customer in selecting a complex product which satisfies the
a set of requirements by taking into account the atomic prod-
ucts present in the catalogue of a virtual store (in the follow-

ing e-catalogue). Some products are considered atomic, since
they are sold ”as they are” and thus their internal structure
(which could be quite complex) is of no interest for this task
(but could be relevant for other tasks such as repair or mani-
facturing). A complex product can be viewed as a structured
entity whose subparts can be complex products in their turn
or atomic ones. So, eventually, it can be considered as the re-
sult of an assembly of atomic products. Since it is impossible
to foresee a-priori the huge number of different variants of a
complex product needed for matching the different require-
ments that a customer could impose, any specific variant of a
complex product satisfying the customer requirements must
be built ”on the fly” by assembling a set of atomic compo-
nents (if possible). The tasks of checking the consistency of
a set of requirements and of building a product that meets a
(consistent) set of requirements can be very difficult even for
domain experts. In a virtual store it is not possible to make
strong assumptions on the expertise of the customer, so that
an intelligent agent has not only to support the customer in
configuring the complex product but also in guiding her/him
in the specification of the problem. In this paper we refer to
the following scheme of interaction between the customer and
the sale support system (the parts written in italic are relevant
to the customer, while the other ones refer to the system):
1. The customer selects a (gross) category of products and
states a set of requirements.
2. The portion of the e-catalogue relevant to the chosen cate-
gory of products is displayed to the customer.
3. The customer selects a set of (atomic) components from the
e-catalogue.
4. A subset of (complex) products in the chosen category is
presented to the customer, on the basis of the (atomic) com-
ponents she/he has chosen.
5. The customer selects one product among those the system
has presented her/him.
6. A consistency check is performed in order to verify if it
is possible to build one instance of the chosen product con-
taining (at least) the set of chosen (atomic) components and
meeting the desired requirements. If no product can be built
with the desired features, the inconsistency is notified to the
customer. Otherwise, a partial configuration of the desired
product is shown to the customer.
7. In case of inconsistency, the customer can go back to
steps 1, 3 or 5 and revise her/his choices. In case of consis-

tency, she/he can ask the system for an alternative (partial)
configuration (if possible) or she/he can ask the system for a
support in extending the proposed partial configuration. The
customer can also decide to stop the interaction with the sys-
tem.

8. The system builds an alternative (partial) configuration or
it extends the one that it proposed to the customer (if this
is incomplete). In the first case, the interaction goes back to
previous step (with a consistent situation). In the second case,
the portion of the e-catalogue relevant to an incomplete sub-
component of the current configuration (possibly chosen by
the customer) is presented to the customer. Then the interac-
tion goes back to step 3 (and it skips the steps 4 and 5).

As can be seen, in this scenario the intelligent selling
agent has a strong interaction with the customer and advises
her/him in the different steps. Since a customer could be un-
aware of the particular product that fits her/his needs, the sys-
tem does not force the customer to single out a specific com-
plex product, but on the basis of a set of requirements and a
generic indication of the category of product the customer
is interested in (step 1) and of the selected (atomic) com-
ponents (steps 2 and 3), the system is able to make a set of
hypotheses on the products actually needed by the customer
(step 4), among which the customer can choose one (step 5).
This functionality is realized via an inference mechanism pre-
sented in [Magro and Torasso, 2000] (i.e. the Hypothesis For-
mulation Algorithm) and it will not be further analyzed in this
paper. It is worth noting that the system disregards some of
these steps (in particular steps 4 and 5) in case a more knowl-
edgeable customer has been able to single out the specific
product he/she needs from the real beginning. The step 6
can be seen as a configuration process, but the system should
not be too eager to complete the work (configuring the entire
complex product), since the customer has to be involved in
the configuration process by leaving her/him the possibility
of extending a partial configuration or selecting among com-
peting hypotheses. In this way, the configuration module has
the only task of verifying that the customer requirements are
consistent with the complex product description and, in this
case, it should propose a partial configuration satisfying them
(and containing the atomic components chosen so far by the
customer). In other words, the system should be lazy and it
should come back to the customer as soon as it can. More-
over, because of the strict interaction between the custumer
and the system, the time spent by the system in configuring
is critical. For this reason, we have developed a set of focus-
ing mechanisms to reduce the computational effort without
loosing any solution.

In the rest of the paper we will analyze the impact of this
scenario on the configuration process. Particular attention
will be given to the problem of configuring only the portion
of the complex product the customer is interested in or has
made some explicit choices.

The approach presented here is tested by developing (in
Java) a prototype of the sale support system and the domain
of PC has been used as a test bed.

2 The Conceptual Model and the
Configuration Algorithm: Overview

The configuration algorithm, in its basic structure, is similar
to the hypothesis validation algorithm presented in [Magro
and Torasso, 2000] and it works on a conceptual representa-
tion of the domain expressed in the ����� language described
in the same paper. In the following only a brief overview of
the conceptual language and the configuration algorithm is
provided.

The Conceptual Model. The conceptual model of a do-
main is made up of two different kinds of entities: atomic
products and complex ones. Both atomic and complex prod-
ucts can be organized around taxonomies and are described
by a set of properties (inherited along the tassonomic links
and represented by means of descriptive slots associated to
the class) and by a set of constraints. The structure of a com-
plex product is modeled via whole-part relationships between
it and each of its subparts; in particular each class of complex
products has a set of partonomic slots to capture these rela-
tionships.

Any partonomic slot � of a class � of complex prod-
ucts relating � to another class � (either of complex or of
atomic products) can be considered as a link directed from� to � . The cardinality associated to the partonomic slot� is represented by a pair of non-negative integers (indi-
cated with �
	���
�������������� and ��	������������������). Formally, �
is interpreted as a relation between � and � and it denotes
that ����� �!����� �"�����$#%�'&(��	���
"�������������*),+ �"�����-+.)��	����������-����������� The meaning is straightforward: each com-
plex product of type � has from a minimum of ��	���
"�������������
up to a maximum of �
	������������������ subparts of type � via
an has-part relation named � . The codomain � of this re-
lation is indicated with ��/10�������������� . The other properties
of the product are expressed by means of descriptive slots
and they are formally interpreted as relations too. A path
of links in a partonomy is called slot chain. A slot chain2.3 ����4-�-5-5-5����6
6����798;:<� (the empty chain is indicated with�=�), starting in a class � is formally interpreted as the relation
composition �>
�?@�6
6A"4"?�5-5-5�?@��4 . If �6
 is a partonomic slot,
the chain represents the subcomponents of a complex prod-
uct �B�$� via the has-part relationships named �"41�-5-5-5����6
 .
If �6
 is a descriptive slot, this chain represents the values
of the property �>
 for the subcomponents of � via the has-
part relationships �C4-�-5-5-5����6
6A"4 . Similarly, a set of slot chainsD 3 E-2 4-�-5-5-5�� 2 	GFH��IJ8;K-� (each one starting in �) is inter-
preted as the relation union L 	�NM"4 2 � . E �=��F is interpreted as
the identity function. With ��	���
������ D � and ��	���������� D � we
indicate, respectively, the lower bound and the upper bound
of the cardinality of the set

D ����� (for each �O�;�) as they
can be computed only on the basis of the taxo-partonomical
portion of the conceptual model (i.e. the sets of constraints
associated to each class of complex products are not consid-
ered). We assume �
	���
"����� E �=��F1� 3 ��	���������� E �=��F1� 3 K .
The codomain of

D
is indicated with ��/10������ D � . We have��/10������ E �=��F1� 3 � . If 2QP3 �=� , with R�S1T-U�V<� 2 � we indicate all

the subchains of 2 starting with the slot �"4 . With WYX�U�U�V<� 2 �
we indicate all the subchains of 2 ending with ��
 (if 798ZK ,
we have �=� P�$R�S1T-U�V<� 2 ��[9WYX�U�U�V<� 2 � , while R�S1T-U�V<�=�=��� 3

\Y]�^�^�_<`=a=b�cOdfe<a=b�g
). If h dfa=i1j1k-l-l-l�k�i�m<b�`�n*oJp<c is a slot

chain starting in q�r1s `�t�k�e-u�g1c , we indicate with v the justap-
position operator:

u v�h dZa�wCj1k-l-l-l�k�w6x�k�i1j-k-l-l-l�k�i�m1b (
a=b

is the
neutral element w.r.t. this operator).

Any configuration is represented as a tree. The root rep-
resents the complex product and each node y can represent a
subcomponent or a property value (in the latter case, it must
be a leaf). In the former case, with q�z�{ _-_<` y c we denote the
the most specific class (w.r.t. the taxonomy) to which y be-
longs. Each arc starts in a component node y . If it ends in
another component node | , it represents a has-part relation-
ship between y and | and it is labelled with the correspond-
ing partonomic slot. If it ends in a property node it is labelled
with the corresponding descriptive slot and it represents that
property. Given any node y in a configuration, the path from
the root to y defines a slot chain: we denote it with

w {1}�~ ` y c
(obviously,

w {1}�~ `�� r1r�} c@d$a=b).
As we said, a set (possibly empty) of constraints is asso-

ciated to each class of complex products. These constraints
restrict the set of valid combinations of components and sub-
components for a given complex product type. Due to their
importance both in realizing the laziness and in the focusing
mechanisms, we define (a simplified version of) the constraint
language.

Let � d�e-u6j1k-l-l-l�k�u<��gH` | o��-c , where each
u<� da�w6���-k-l-l-l�w6���<b�`��NxBo*�-c

is a slot chain starting in
t

.
The basic building blocks of the constraint language are the

predicates. In the conceptual language, there are six different
kinds of predicates. Here, due to space limitations, we present
(in a simplified version) only those three types that are heavily
used in the focusing mechanisms:
1)
` � c�` ~ k�n6c . q�� t satisfies the predicate iff ~B�;� � ` q c �1� n ,

where ~ , n are non negative integers with ~.� n and � ` q c is
a set of components.
2)
` � c�`�� y�� c . � d � j��(l-l-l<� ��� `�_9of�-c and each �=� `��Qd�<k-l-l-l�k�_-c

is a class. q�� t satisfies the predicate iff � ` q c�� � .� ` q c can be a set of components or a set of property values.
3)
` � c�`�� y�� ` ~ k�n6c�c . � d � j���l-l-l � ��� and each �=� `���d;�<k-l-l-l�k�_-c

is a class. q�� t satisfies the predicate iff ~B�$� � ` q c1� ���<� n ,
where ~ , n are non negative integers with ~.� n and � ` q c is
a set of components.

Each constraint q�q associated to
t

is of the form ���!� ,
where � is a conjunction of predicates or the boolean constant
true and � is a predicate or the boolean constant false. The
meaning is that for every complex product q�� t , if q satisfies� then it must satisfy � . It should be clear that if � d*�-�1�Y� ,
then, for each q�� t , � must always hold, while if � d���6�=���

, then, for each q�� t , � can never hold. The constraint�-�1�Y� � ���6�=��� is forbidden.
If is either a predicate or a constraint, with q�~�{ � y _<` c we

indicate the set of slot chains occurring in .
The Configuration Algorithm. The requirements stated by
the customer (see the step 1 in the scenario described in sec-
tion 1) and the set of atomic components that she/he has cho-
sen (see the step 3) are translated into a set

t�¡�¢.\"£ �¥¤ of
input constraints (expressed in the costraint conceptual lan-
guage). The configuration algorithm accepts in input the con-
ceptual model of the domain, a class

t
of complex products

and the set
t�¡�¢.\"£ �¦¤ . t can represent either the chosen

type of complex product (see the steps 1 and 5) or the type of
the incomplete subcomponent chosen to expand the current
partial configuration (see the step 8).

t�¡�¢.\"£ �¥¤ is added to
the set of constraints associated to the class

t
. The configura-

tion process starts with a configuration (tree) containing only
the root q representing a product of type

t
and it tries to ex-

pand this configuration until all the considered constraints are
satisfied. If it succeeds, it returns the produced (partial) con-
figuration, otherwise, it returns a failure message represent-
ing the inconsistence of the requirements

t�¡�¢.\"£ �¥¤ (see
the step 6).

The expansion of the configuration is realized by means of
a search process with a backtracking mechanism. The main
steps of the algorithm are the following:
a. A subcomponent y that must still be expanded is chosen
(starting with the root q);
b. The set

t�§1` y c of the current constraints for y is computed;
c. On the basis of

t
§1` y c , the set
\�§1` y c of the current parto-

nomic slots is computed;
The following steps d-g are repeated until

\�§1` y c becomes
empty:
d. A slot

w � \¨§<` y c is selected;
e. The cardinality of

w
(i.e. the number of the new subcompo-

nents that should be introduced) is chosen and the new sub-
components are added to the configuration;
f. A type for each new subcomponent of y is chosen;
g. If any constraint in

t
§-` y c is violated a backtracking oc-
curs. Otherwise, the satisfied constraints are deleted fromt�§-` y c and

\�§1` y c is updated.
These steps are repeated until all the considered constraints
are satisfied or the algorithm fails in producing any configu-
ration.

Since this algorithm is used in an interactive way (see the
scenario in section 1), it shouldn’t be ”too autonomous” and,
given a set of requirements, it should introduce in the config-
uration only those components related in some way to the re-
quirements (laziness). Moreover, some focusing mechanisms
are needed to speed-up the search in the configuration pro-
cess.

3 Laziness

If we assume the consistency of the conceptual model, we are
guaranteed that at least one product of the considered typet

can somehow be built if
t�¡�¢.\"£ �¦¤ dZ© . However, the

interesting case is when
t�¡�¢.\"£ �¦¤.ªd © (the customer has

put some requirements) and therefore the input constraints
can interact both with the taxo-partonomical portion of the
conceptual model of

t
and with the constraints associated

to
t

. This interaction can reduce the set of valid configu-
rations. If this set is reduced to the empty one, we say that
the input constraints

t�¡�¢.\"£ �¦¤ are inconsistent. The lazi-
ness mechanisms allow the sale support system to reduce the
work needed for determining a (partial) valid configuration or
for detecting the inconsistency. More precisely: the configu-
ration process is lazy iff each partonomic slot

w
selected in

step d is such that the choices made for it (steps e and f) can
be critical for the satisfaction of some input constraint.

The laziness is mainly realized by means of the following
mechanisms.
1. Bound Relation among constraints. Two constraints are
bound if the choices made during the configuration process
in order to satisfy one of them can interact with the set of
possible choices for the second one 1. The bound relation«@¬

is defined as follows: let ­ , ® and ¯ be three constraints
for a class ° ; if ±�²6³*´(µ�¶�·H¸�¹�º<±�­�»�»�±�²H¼$´(µ�¶�·H¸�¹�º<±�®<»�»�±�³*½¾�¿"À�Á1Â-À-Ã-Ã-Ã�À�Á�Ä6Å�Æ ¼;½ ¾�¿"À�Ç1Â�À-Ã-Ã-Ã�À�Ç�È¥Å�Æ ¹;ÉËÊ Æ9Ì É'Ê<»
then ­ «@¬ ® (i.e. if two constraints refer to the same subparts,
they are bound); if ­ «Í¬ ® Æ ® «@¬ ¯ then ­ «@¬ ¯ (transitivity).
It is easy to show that

«Í¬
is an equivalence relation. If Î ¬

is a set of constraints for ° , we indicate the quotient set withÎ ¬@Ï1«@¬ .
2. Computation of the initial set °�Ð1±�¹�» of current con-
straints for the selected component ¹ . (step b in the al-
gorithm). The set of current constraints for a component
influences the set of partonomic slots that have to be con-
sidered for that component (see the item 3) and thus it has
a direct impact on the number of subcomponents of ¹ that
should be taken into consideration during the configuration
process. Usually, the smaller °�Ð1±�¹�» the smaller the set of
partonomic slots of ¹ that are considered during the config-
uration. For this reason we restrict °�Ð-±�¹�» to contain only
those constraints related in some way to the input ones. Let°�Ñ�Ò.Ó"Ô�Õ be the set of constraints associated to µ�Ö�·Hº-º<±�¹�»
in the conceptual model. °
Ð-±�¹�» is computed as the union of
two disjoint sets: that of local constraints ×@°ØÐ1±�¹�» and that
of inherited constraints Ù<°�Ð1±�¹�» . ¹ is the origin of each con-
straint in ®O´(×@°
Ð1±�¹�» and this is expressed by the equationÚ Ç ¸�Û6¸�¹Y±�®<»�½ ¹ (each predicate occurring in a constraint has
the same origin as the constraint).
2.a. If ¹ is the root: Ù<°
Ð1±�¹�»ÝÜ ½ßÞ ; ×@°�Ð1±�¹�»ÝÜ ½àâáYã<ä å ¬"æ�ç�è1é�ê"ëH¬"æ�ç�è1é�ê"ì-íNî�ïHðNñ ò�ó�ó�ô õ�ö�÷ ø á@ù ¬"æ�ç�è1é�ê"ì-úû�ü�Î .
In this case, the input constraints (°�Ñ�Ò.Ó"Ô�Õ¥ý) are added
to the constraints associated to the considered class in the
conceptual model (°�Ñ�Ò.Ó"Ô�Õ). °�Ñ�Ò.Ó"Ô�Õ�þO°�Ñ�Ò.Ó"Ô�Õ¦ý
is partitioned by means of the bound relation

« Ð=ÿ ����� å Ä í and
only those equivalence classes of constraints containing at
least one input constraint are considered in the evaluation of°�Ð1±�¹�» .
2.b. If ¹ is an internal node: let

Ì
be the parent node of ¹

in the configuration and Ó be the set of partonomic slots asso-
ciated to µ�Ö�·Hº-º<±�¹�» in the conceptual model. The considered
component ¹ inherits all the current constraints of

Ì
that re-

fer to some subcomponents of ¹ : Ù<°�Ð<±�¹�»�Ü ½ � ®B´�°�Ð-± Ì »GÜ±�²��9´Qµ�¶�·H¸�¹�º<±�®<»�»�±�² Ç ´QÓY»�±�� Ç
	�� º<±
��»��.ÓY­ ��� º<± ¿ ·
��¶"±�¹�»��¾=Ç1Å »��½*Þ<»�� ;
If a constraint ® in °�Ñ�Ò.Ó"Ô�Õ refers to the same subcompo-
nents of ¹ as any inherited constraint ®
� Ä (i.e. a constraint inÙ<°�Ð1±�¹�»), then ® and all the constraints bound to ® have to be
considered. Formally, ×@°
Ð1±�¹�»�Ü ½ à á@ã ý Î , where Ù�½ � Î$´°�Ñ�Ò.Ó"Ô�Õ Ï1« Ð=ÿ ����� å Ä í Ü¥±�²6®*´ZÎ�»�±�²6®�� Ä ´ZÙ<°�Ð1±�¹�»�»�±�²�� ´µ�¶�·H¸�¹�º<±�®<»�»�±�²���� Ä ´.µ�¶�·H¸�¹�º<±�®�� Ä »�»�±
�B½ ¾=Ç1À�¿�Â-À-Ã-Ã-Ã�À�¿6Ä6Å6Æ ¹BÉ

1Here we are referring to the two main choices made during the
search process by the configuration algorithm: that of the cardinality
of a partonomic slot � (step e) and that of the type for each new
subcomponent (step f).

Ê Æ � Ç
	�� º<±
��� Ä »�� ÓY­ ��� º<± ¿ ·
��¶"±�¹�»�� ¾=Ç1Å »��½*Þ<»�»�� .
3. Computation of the initial set Ó�Ð1±�¹�» of current slots.
(step c in the algorithm).

All and only those partonomic slots mentioned in any
constraint either locally (i.e. in ×@°�Ð1±�¹�») or by inheritance
(i.e. in Ù<°�Ð1±�¹�») are taken into consideration. Formally,Ó�Ð1±�¹�»¥Ü ½ �1Ç ´QÓ*Ü�±�±�²6®B´Q×@°�Ð-±�¹�»�»�±�²��Q´9µ�¶�·H¸�¹�º<±�®<»�»�±
�Q½¾=Ç1À�¿�Â�À-Ã-Ã-Ã�À�¿6Ä6Å » Æ ¹ É Ê<»�� ±�±�²6® ´ Ù<°�Ð1±�¹�»�»�±�²�� ´µ�¶�·H¸�¹�º<±�®<»�»�±�� Ç
	�� º<±�®<»���ÓY­ ��� ºH± ¿ ·
��¶"±�¹�»�� ¾=Ç1Å »��½*Þ<»�»�� whereÓ is the set of partonomic slots associated to µ�Ö�·Hº-º<±�¹�» in the
conceptual model.
4. Updating of the current set Ó�Ð<±�¹�» of slots. (step g in the
algorithm). Let Ó be the set of slots computed as described
in the previous item, on the basis of the updated set °ØÐ-±�¹�» .Ó�Ð1±�¹�» is computed after updating the set °�Ð1±�¹�» . Any slot
in Ó�Ð1±�¹�» has its justification in a current constraint, i.e. it
must belong to Ó . Moreover, a slot should not be considered
more that once (except in case of backtracking), thus, any
slot in the updated set of slots must belong to the old set of
slot and be different from the last considered slot

¿
: ÓCÐ1±�¹�»�Ü ½±�Ó�Ð1±�¹�»�� ��¿ �1»
� Ó , where

¿
is the last considered slot (step d).

The mechanisms described so far allows the system to sub-
divide the constraints into independent groups on the basis
of the equivalence classes and the input constraints. In this
way the global configuration problem can be split into a num-
ber of independent configuration subproblems and the con-
figuration algorithm exploits such a possibility since it works
separately on each class of constraints Î'´ ±�°�Ñ�Ò.Ó"Ô�Õ*þ°�Ñ�Ò.Ó"Ô�Õ�ý-» Ï1«@¬ . In this way, some useless backtrackings
can be easily avoided. In fact, let’s suppose that during the
configuration process a constraint ® is violated. If the intro-
duction of ® in any initial set °�Ð1±�¹�» had its justification (see
the items 2.a and 2.b) - either direct or indirect - in a constraint
belonging to Î$´9±�°�Ñ�Ò.Ó"Ô�ÕBþ¥°�Ñ�Ò.Ó"Ô�Õ¦ý-» Ï1«@¬ , it should
be clear that it would be useless to revise any choice made for
any partonomic slot

¿
whose introduction in any initial setÓ�Ð1± Ì » (item 3) had its justification in a constraint belong-

ing to another class J´$±�°�Ñ�Ò.Ó"Ô�Õ*þO°�Ñ�Ò.Ó"Ô�Õ¦ý-» Ï1«@¬ :
We have the guarantee that this does not happen since the
classes in ±�°�Ñ�Ò.Ó"Ô�Õ;þ�°�Ñ�Ò.Ó"Ô�Õ¦ý-» Ï1«@¬ are considered
separately by the configuration algorithm. The subdivision
of constraints into independent classes has also the advantage
of providing the customer with much more information when
an inconsistency is detected. Let us suppose that such an in-
consistency is detected while the configuration algorithm is
considering a class Î'´Z±�°�Ñ�Ò.Ó"Ô�Õ$þ9°�Ñ�Ò.Ó"Ô�Õ¦ý-» Ï1«@¬ :
the system can notify the customer that he/she has to revise
his/her choices and/or requirements by pointing out only the
subset of input constraints that are involved in the the classÎ . This mechanism allows the customer to focus his/her at-
tention on a specific portion of the domain knowledge. More-
over, the subdivision of constraints into independent classes
allows the configuration system to re-use part of work already
done: in fact, in case of change of some requirement and/or
choice (see steps 6 and 7 in the scenario) only some of the
classes of constraints are interested in the change. There-
fore the portion of the configuration built while consider-
ing the(consistent) classes of constraints not involved in the

change can be re-used without any additional computation or
check.

4 Focusing Mechanisms
Let ! be the selected component in a partial configuration"$#�%'&

(step a in the configuration algorithm) and (be the
current slot (step d).)�*,+ -�).+0/�!$1 is the set of current
constraints for ! whose antecedents are satisfied in

"$#�%'&
.203 *4-�5�/�!$1 (6�798�:�;<:�=<>) is the set of current constraints for! whose consequent is a predicate of type 6 (see the three

types of predicates presented in Section 2). ? 30@ (�/�!$1A7B
CEDGFIH 2�J /�!$1LK'/�M�N HEO�P�Q 6�!$R�/ F 1�1�/�S0T
U�V�R�/
N�1AW-YX�V�V�R�/ (Q
Z�P /�!$1Y[]\^(�_�1�`7ba�1�c is the set of current constraints
for ! whose consequent mentions the slot (of ! .
Focusing the Choice of a Cardinality for the Current Slot.
(step e in the configuration algorithm). Initially, the possible
choices for the cardinality of (are those specified in the taxo-
partonomical description of

O�d�Q R�R�/�!$1 , namely
2) @�e Rf7g 2�h 5^i$/ O�d�Q R�R�/�!$1�:�\^(�_�1�: 2�h]j�k / O�d�Q R�R�/�!$1�:�\^(�_�1�l . In order to re-

duce (hopefully) this set, the constraints in)�*,+ -�).+0/�!$1�W203 *4-�m�/�!$1 are used.2 In fact, for each constraint in)�*,+ -�).+0/�!$1�W 203 *4-�m
/�!$1 , its consequent must hold, thus
any cardinality in

2) @�e R that would prevent this conse-
quent to become true can be discarded without loosing any so-
lution. Obviously, a choice made for (can only influence the
truth value of a consequent that mentions the slot (of the cho-
sen component ! . Thus, the set of predicates ? 302�n -�8�7B�F KbM$/ CoDpF 1 H)�*,+ -�).+0/�!$1�W 203 *4-�m�/�!$1�W? 30@ (�/�!$1�c is used to (try to) reduce the set

2) @�e R (i.e.
to focus the search process).

2) @�e R is iteratively updated
for each

Fbq / @ 1�/ P :�r<1 H ? 302�n -�8 according to the fol-
lowing criterion:

2) @�e R0K 7 2) @�e R�W g O�sut : 20v t l whereO�s0t
is a lower bound for the cardinalities that can be assigned

to (without preventing the inequality w @ /�x
T
6^y<6�!Y/ F 1�1�w�z P
to hold (in at least one extension of

"$#�%'&
).
O�s�t

is com-
puted on the basis of the current configuration

"$#�%'&
and of

the taxo-partonomical portion of the conceptual model with-
out resorting to the constraints.

20v t
is an upper bound for

the cardinalties which takes into consideration the inequalityw @ /�x
T
6^y<6�!Y/ F 1�1�w�{fr .
If, after the update,

2) @�e R becomes empty, a backtrack-
ing occurs.
Focusing the Choice of the Type for each New Subcompo-
nent. (step f of the configuration algorithm). Let - n�| - !�(
be the set of subcomponents of ! (in

"$#�%'&
) through the

has-part relation expressed by (and *4}�~ -�/��f- n�| - !�(�1
be the set of these subcomponents whose type (i.e. class) has
not been chosen yet. At the beginning of step f, we have- n�| - !�(,7�*4}�~ -) and the possible types

20�)�-Y-Y}0-
for each subcomponent in - n�| - !�(are those specified in
the taxo-partonomical description of

O�d�Q R�R�/�!$1 , namely all the
most specific subclasses of

O x
��/ O�d�Q R�R�/�!$1�:�\^(�_�1 in the taxon-
omy 3.

2Since any predicate of type 3 ���������
�<���
��������� entails the pred-
icate of type 1 �������
�������Y�����
���^���������<��������� , also the predicates of
type 3 are actually used by this focusing mechanism.

3For the sake of simplicity, we assume that the set of direct sub-
classes of each class in the conceptual model is a partition of that

The constraints in)�*,+ -�).+0/�!$1.W 203 *4-���/�!$1 and in)�*,+ -�).+0/�!1W 203 *4-���/�!$1 are used to (hopefully) reduce
this set. In the following we provide some detail how pred-
icates of Type 2 are used (predicates of type 3 are used in a
similar way).
Let ?b7 B�F K�M$/ C4D�F 1 H)�*,+ -�).+0/�!$1�W 203 *4-$��/�!$1�c .

Each predicate
F�q / @ 1�/�6�!$��1 in ? entails the set of

predicates (still of type 2)
3 !$U O�P�Q 6�!Y/ F 1'7 B /
N�1�/�6�!���1�KN H @L� ��7 O x
��/ O�d�Q R�R�/�x
T
6^y<6�!Y/ F 1�1�: B N$c
1�Wf��c (possi-

bly ��7 a). The set of predicates ? 302�n -Y;L7 B�¡Lq/
N�1�/�6�!���1¢K�/�M F9H ?01�/ ¡�H 3 !$U O�P�Q 6�!Y/ F 1 � S0T
U�V�R�/
N�1]W-YX�V�V�R�/ (Q
Z�P /�!$1�[$\^(�_�1�`7fa�1�c are used as focusing predicates.? 302�n -Y; is the set of predicates entailed by the predicates
in ? and containing only one slot chain in which the slot (
occurs. It should be clear that, given

"$#�%'&
, each predicate

in ? 302�n -Y; must hold and that its truth value may be influ-
enced by the choices made for the type of the subcomponents
in - n�| - !�(. Therefore, each class in

20�)�-Y- that, if cho-
sen as a type for any subcomponent in - n�| - !�(, would pre-
vent one or more predicate in ? 302�n -Y; to hold can be dis-
carded without loosing any solution. Thus, at the beginning
of step f (i.e. when no class has been assigned to any sub-
component in - n�| - !�(yet), each predicate in ? 302�n -Y;
is considered and

20�)�-Y-Y}0- is iteratively updated in the
following way:
for each

¡£q /�\^($m�:�>�>�>�:�(<i$:�(�:�(<5�¤�:�>�>�>�:�(<5�¥Y_�1�/�6�!���1 H
? 302�n -Y; , the set

20� -�8¦7 B 2 H 20�)�-Y-Y}0-§K2�h 5^i$/ 2 : B \^(<5�¤�:�>�>�>�:�(<5�¥�_�c
1�7©¨�ª O x
��/ 2 :�\^(<5�¤�:�>�>�>�:�(<5�¥�_�1�W�«`7¬a�c is computed and it it assigned to
20�)�-Y-Y}0-

(if
20� -�8«7­a , a backtracking occurs). Let’s sup-

pose that there is a
e H 20�)�-Y-Y}0- such that2�h 5^i$/ e : B \^(<5�¤�:�>�>�>�:�(<5�¥Y_�c
1�`79¨ � O x
��/ e :�\^(<5�¤�:�>�>�>�:�(<5�¥Y_�1YW�«7®a . This means that for each � H e

, the set/ (<5�¥¢¯A>�>�>�¯](<5�¤�1�/���1 has at least one element that can’t be-
long to J. The choice of

e
as a class for a subcompo-

nent R H - n�| - !�(would prevent the considered pred-
icate /�\^($m�:�>�>�>�:�(<i$:�(�:�(<5�¤�:�>�>�>�:�(<5�¥Y_�1�/�6�!���1 to hold no mat-
ter what classes are chosen for the other subcomponents in- n�| - !�(.° B R
c . e can thus be discarded and this is exactly
what the focusing mechanism does.

In order to test the effectiveness of the focusing mecha-
nisms we performed some preliminary experiments over a
conceptual model relevant to a (simplified) PC domain. We
tested the configuration capability of the system by means
of 50 different test cases. Each case represented an interac-
tion with the system in which the customer selected a specific
complex product

2
and a set of atomic components. For each

case, we measured the effectiveness of the focusing mech-
anisms by comparing the number of bactrackings occurred
when building a (partial) configuration of the product

2
(see

the step 6 of the scenario) without using the focusing mech-
anisms with the same task performed by using such mecha-
nisms.

It resulted that, by exploiting the focusing mechanisms, the
number of backtracking is about 25% of that one occurred
with the strategy that didn’t make use of the focusing mecha-

class and that the type of each (sub)component in a configuration
always is a most specific class w.r.t. the taxonomy.

Motherboard

Controller
SCSIhas_m(1;1)

has_c(1;1)

has_cdw(0;1)

has_cdw(0;1)

has_cdw(1;1)

has_cs(0;1)

has_mpcb(1;1)

CPUhas_cpu(1;2)

Advanced
Appl. PC

Economic PC

PC

Main Printed
Circuit Board

MPCB_SCSI MPCB_EIDE

CD_writer

CDW_EIDE CDW_SCSI

Application
Software

MS_Sw Unix_Sw

Case

Unix

Operating
System

Windows

has_os(1;2)

Monitor

Standard
Monitor

LCD
Monitor

has_mon(1;1)

has_mon(1;1)

has_hd(1;4)

has_asw(0;20)

string

Hard Disk

HD
EIDE

model(1;1)

type(1;1)

price(1;1)
real

{SCSI,EIDE}type(1;1) type(1;1)

{EIDE}{SCSI}

HD
SCSI

[co1] ({<has_asw>})(in Unix_Sw (1;20)) ==> ({<has_os>})(in Unix (1;2))
 (In any PC, if there is a Unix application software,
 then there has to be a Unix operating system)
[co2] ({<has_hd>})(in HD_SCSI (1;4)) ({<has_m,has_mpcb>})(in MPCB_EIDE)==>
 ({<has_m,has_cs>})(1;1) (In any PC, if there is a SCSI hard disk and
 an EIDE main printed circuit board, then a controller SCSI is needed)
[co3] (...) (Analogous to the previous one, for CD writer)
[co4] ({<has_mpcb>})(in MPCB_SCSI) ==> ({<has_cs>})(0;0) (In any motherboard,
 if there is a SCSI main printed circuit board,
 then there can’t be any additional controller SCSI)

Figure 1: A sample (portion of a) conceptual model

nisms. These results are encouraging, even if a more accurate
statistical analysis has still to be performed.

5 An Example

has_m

epc1(1) mb1(3)
has_mpcb

has_cs

(no controller SCSI)

mpcb_scsi1(4)

has_hd

hd_scsi1(2)

[co_ch1]true ==> ({<has_m,has_mpcb>})(in MPCB_SCSI(1;1))
[co_ch2]true ==> ({<has_hd>})(in HD_SCSI(1;4))

(5)

Figure 2: A partial configuration

Figure 1 contains a small simplified fragment of a conceptual
model relevant to the PC domain. Each rectangle represents a
class of complex products and each oval represents a class of
atomic products; any thin solid arrow corresponds to a parto-
nomic slot whilst each thin dashed arrow corresponds to a
descriptive slot. The subclass links are represented by thick
solid arrows. In the figure, it is stated, for example, that each
PC contains exactly one motherboard (which is a complex
product), from one to four hard disks, an optional CD writer
and so on; that any hard disk is described by its model (de-
noted by a string), its price (expressed as a real number), its
type (either SCSI or EIDE), etc; that an Advanced Appl. PC
is a particular PC having exacly one SCSI CD writer and so
on. Moreover, let’s suppose that in the model there are only
the constraints from ±�²�³ to ±�²�´ shown in figure 1 (those from±�²�³ to ±�²
µ are associated to the PC class, while ±�²�´ is associ-
ated to the Motherboard class).

Let’s suppose that the customer wants an Economic PC (in
the following EPC) with a SCSI Hard Disk and a SCSI Main
Printed Circuit Board and that no other requirements are im-
posed to the final product. We want to see how the configura-
tion algorithm works in order to check the consistency of the
requirements (step 6 of the scenario in section 1).

First of all, we note that the EPC class inherits all the PC
class constraints, but ±�²
µ (let ¶<·�¸�¹ be this set of constraints),
since this one is trivially entailed by the taxo-partonomical
description of the EPC class (the constraint inheritance is de-
scribed in [Magro and Torasso, 2000]). It is easy to see that¶�·�¸�¹�º
»Y·�¸�¹½¼�¾�¾
±�²�³
¿�À�¾
±�²
Á�¿�¿ (i.e. ±�²�³ and ±�²
Á are un-
bound). The set of chosen atomic products is translated into
the set of constraints Â0Ã0Ä4Å�Æ.ÇÉÈ¢¼Ê¾
±�² ±�Ë�³�À�±�² ±�Ë�Á�¿ for
the EPC class (figure 2. See [Magro and Torasso, 2000] for a
description of such a translation).

In figure 2 the numbers next to the component nodes ex-
press the order in which the components have been intro-
duced into the configuration (we selected one order among
the set of possible ones). The process starts with the
root (component ³), representing an instance Ì�Í�±
³ of the
EPC class (i.e. the target product). We have Î�¶<·�¸�¹�ÏÂ0Ã0Ä4Å�Æ.Ç.È�Ð�º
»Y·�¸�¹Ñ¼ ¾�¾
±�²
Á<À�±�² ±�Ë�³�À�±�² ±�Ë�Á�¿�À�¾
±�²�³
¿�¿ ,
thus Â�Ò�Î�³�Ð4¼ÊÓ�Â�Ò
Î�³�Ð4¼�¾
±�²
Á<À�±�² ±�Ë�³�À�±�² ±�Ë�Á�¿ ; Å�Ò
Î�³�Ð4¼¾
Ë�Ô�Õ Ë�Ö�À�Ë�Ô�Õ ×,¿ . Let’s suppose that the slot Ë�Ô�Õ Ë�Ö is
firstly considered. The possible cardinalities for Ë�Ô�Õ Ë�Ö are
all those specified in the taxo-partonomy (i.e. from ³ to ´),
since the current constraints doesn’t produce any restriction
of this interval. Let’s suppose that the minimum cardinality
is chosen, producing the introduction of the component Á , for
which the only admissible type is Ø4Ù ÅYÂ0ÅYÚ (this choice
has been focused by means of the constraint ±�² ±�Ë�Á – whose
consequent is of type 3 – in a way similar to that presented in
section 4). After introducing the motherboard ×AÛ
³ , we haveÂ�Ò�Î�³�ÐA¼�¾
±�²
Á<À�±�² ±�Ë�³
¿ and Å�Ò
Î�³�ÐA¼�Ü . At this point, the
component µ (i.e. the motherboard) is selected for expansion.
Since the constraints ±�²
Á and ±�² ±�Ë�³ both mention some slots
of the Motherboard class (i.e. Ë�Ô�Õ ×0Í�±�Û and Ë�Ô�Õ ±�Õ), they
are inherited by the component µ : Ú�Â]Ò
Î�µ�Ð.¼9¾
±�²
Á<À�±�² ±�Ë�³
¿ .
Since ±�²�´ mentions some slots that are mentioned also in
some inherited constraints (e.g. Ë�Ô�Õ ×0Í�±�Û), it has to be
taken into consideration: Ó�Â]Ò
Î�µ�Ð0¼©¾
±�²�´<¿ . Thus, we haveÂ�Ò�Î�µ�Ðb¼«¾
±�²
Á<À�±�² ±�Ë�³�À�±�²�´<¿ and, consequently, ÅÝÒ
Î�µ�Ðb¼¾
Ë�Ô�Õ ×0Í�±�Û
À�Ë�Ô�Õ ±�Õ
¿ . Let’s suppose that the slot Ë�Ô�Õ ×0Í�±�Û
is firstly considered and that a Main Printed Circuit Board is
introduced into the configuration (component µ). The conse-
quent of the constraint ±�² ±�Ë�³ (which is a predicate of type µ)
is used to focus the choice of the type for the componentµ : on the basis of this predicate, the only admissible type
is Þ�ß0Â0à ÅYÂ0ÅYÚ . At this point, we have ÂáÒ
Î�µ�Ð�¼�¾
±�²�´<¿
and Å�Ò
Î�µ�Ð4¼E¾
Ë�Ô�Õ ±�Õ
¿ . The choice of the cardinality forË�Ô�Õ ±�Õ is focused by means of the consequent of the con-
straint ±�²�´ and the only admissible cardinality is zero (thus no
additional controller SCSI is introduced). Finally, ÂâÒ�Î�µ�Ð�¼bÜ
and Å�Ò�Î�µ�Ð�¼ãÜ . All the considered constraints are satisfied
(no other complex component has to be expanded), thus the
configuration process halts returning the partial configuration
shown in figure 2 (this demonstrates the consistency of the
customer’s requirements).

It should be clear that only the components involved in
the satisfaction of the input constraints have been introduced
into the configuration and any choice involving, say, the soft-
ware or the CPU can be taken in co-operation with the cus-
tomer. Moreover, it is worth noting that if the customer had
selected also a software product, the configuration problem

would have been split into two independent subproblems: the
one presented in this example and another one involving only
the new input constraint and the constraint ä�å�æ .
6 Discussion
In this paper we have described some aspects of a sale sup-
port system aimed at helping a customer of a virtual store in
selecting a complex product (or only a set of atomic compo-
nents for a complex product). In particular, we analyzed the
configuration capability, that plays a central role in such sys-
tems. We pointed out the advantages of using, in this context,
a lazy configuration mechanism. In fact, the system should
propose to the customer a partial configuration satisfying the
current requirements (if they are consistent) and containing
only those subcomponents related in some way to these re-
quirements. In this way the customer can interact with the
configuration process by stating a new set of requirements re-
ferring to those subparts of the product for which the system
didn’t make any proposal.

Some mechanisms that realize the laziness and other ones
that aim at reducing the problem solving time by focusing the
search during the configuration process have been described.

There are some differences between our application do-
main of configuration and more technical ones. First of all,
we can’t assume that the user is an expert of the domain. This
fact means also that the customer could not be aware of all the
requirements from the beginning of her/his interaction with
the system

The main aim of the sale support system is not to inform
the customer on how to actually connect the components that
she/he bought, but to support her/him in buying the correct set
of components (and to make a meaningful order to the virtual
store owner).

Despite these differences, some similarities still exist. The
need of having a structured representation of the products,
and, in particular, to express both the taxonomical and the
partonomical knowledge, proved to be fundamental also for
our task. In [McGuinness and Wright, 1998] the domain
knowledge is represented by means of description logic.
Formally, the semantics of our representation language is
strongly inspired by description logic languages.

In many cases, the product models built by the modelers
are translated into a lower level representation language used
by the configurator, e.g. in a logical theory or in some kind
of CSP (for an automated translation of a conceptual model
expressed in UML into a lower level logical representation
language, see [Felfernig et al., 2000]). This approach has
the advantage that the well-known algorithms developed for
those lower level languages can be used and, in this way, a
formal analysis of the configuration process is made possible.

Instead, we defined the configuration mechanisms that
work directly at the conceptual level. In this way, there is
no need of translating the conceptual model into a lower level
representation language and the results of the configuration
can be easily presented to the customer.

In [Amilhastre and Fargier, 2000] an off-line pre-
computation of all the solutions of a configuration problem
(represented as a CSP) is suggested. These solutions are rep-

resented by means of an automaton which is used at runtime
to interactively solve the configuration problem in an efficient
way.

Differently from this approach, our configuration mecha-
nisms solve each problem at runtime and try to reduce the
computational effort by subdividing the main problem into a
set of independent sub-problems (through the bound relation
presented in the section 3), by adopting a lazy policy and by
making use of some focusing mechanisms.

References
[Amilhastre and Fargier, 2000] J. Amilhastre and H. Fargier.

Handling interactivity in a constraint-based approach of
configuration. In Proc. of the ConfigurationWorkshop held
at the ECAI 2000, pages 7–12, 2000.

[Felfernig et al., 2000] A. Felfernig, G. E. Friedrich, and
D. Jannach. Uml as domain specific language for the con-
struction of knowledge-based configuration systems. Int.
J. of Software Engineering and Knowledge Engineering,
10(4):449–469, 2000.

[Friedrich and Stumptner, 1999] G. Friedrich and
M. Stumptner. Consistency-based configuration. In
AAAI-99, Workshop on Configuration, 1999.

[Gelle and Weigel, 1996] E. Gelle and R. Weigel. Interactive
configuration using constraint satisfaction techniques. In
Second International Conference on Practical Application
of Constraint Technology, PACT-96, pages 57–72, 1996.

[Magro and Torasso, 2000] D. Magro and P. Torasso. De-
scription and configuration of complex technical products
in a virtual store. In Proc. of the Configuration Workshop
held at the ECAI 2000, pages 50–55, 2000.

[McGuinness and Wright, 1998] D. L. McGuinness and J. R.
Wright. An industrial-strength description logic-
based configurator platform. IEEE Intelligent Systems,
(July/August 1998):69–77, 1998.

[Mittal and Falkenhainer, 1990] S. Mittal and B. Falken-
hainer. Dynamic constraint satisfaction problems. In Proc.
of the Eigth National Conference on Artificial Intelligence,
pages 25–32, 1990.

[Sabin and Freuder, 1996] D. Sabin and E.C. Freuder. Con-
figuration as composite constraint satisfaction. In Proc.
Artificial Intelligence and Manufacturing. Research Plan-
ning Workshop, pages 153–161, 1996.

[Soininen et al., 2000] T. Soininen, I. Niemelä, J. Tiihonen,
and R. Sulonen. Unified configuration knowledge repre-
sentation using weight constraint rules. In Proc. of the
Configuration Workshop held at the ECAI 2000, pages 79–
84, 2000.

[Tiihonen et al., 1998] J. Tiihonen, T. Lehtonen, T. Soininen,
A. Pulkkinen, R. Sulonen, and A. Riitahuhta. Modeling
configurable product families. In Proc. fourth WDK Work-
shop on Product Structuring, 1998.

[Veron and Aldanondo, 2000] M. Veron and M. Aldanondo.
Yet another approach to ccsp for configuration problem.
In Proc. of the Configuration Workshop held at the ECAI
2000, pages 59–62, 2000.

