Modelling Configurable Products and Software Product Families”

Tomi Mannisté'?, Timo Soininen® and Reijo Sulonen®
"Helsinki University of Technology, Software Business and Engineering Institute
PO Box 9600, FIN-02015 HUT, Finland
2Vfisiting Nokia Research Center, Burlington, MA, USA

Abstract

Software product families are an emerging and im-
portant area of software engineering, whereas prod-
uct configuration of traditional products, i.e.,
mechanical and electronic, has a slightly longer his-
tory as a specific area of research and business. This
paper presents a preliminary comparison of concepts
for modelling variety and evolution in both fields.
This comparison shows remarkable similarities in
these areas, but also leads to proposals on how results
could be transferred from one area to the other.

1 Introduction

Product families, product configuration and product data
management are research areas with great deal of practical
importance for traditional products, i.e., mechanical and
electronic products. In software engineering, product fami-
lies have also become an active area of research as the num-
ber of variants of a software product have in many occasions
increased due to various requirements from different mar-
kets, hardware platforms, customer specific individualisa-
tion, and so on.

This paper compares the work on traditional configurable
products and work on software architecture in order, on one
hand, to understand the differences of the fields and, on the
other hand, to find potential areas for transfer of results be-
tween the fields. In addition to modelling variety, we also
consider novel ways of capturing evolution within the same
framework, which is hardly ever included in configuration
modelling approaches of traditional products.

A configurable product, or a product family, is such that
each product individual is adapted to the requirements of a
particular customer order on the basis of a predefined con-
figuration model, which describes the set of legal product
variants [Sabin et al., 1998; Soininen, 2000]. Because of
combinatorial explosion, the number of legal variants of a
traditional configurable product is typically large enough
that listing them one by one is infeasible. A specification of
a product individual, i.e., a configuration, is produced from
the configuration model and particular customer require-
ments in a configuration task. The configuration task is

routine, that is, the generation of the product individual does
not involve creative design or design of new components.

Software product families with a large number of variants
resemble traditional configurable products in many respects.
Therefore, we believe that it is worth applying the results
from the area of traditional products to that of software
product families, and vice versa.

This paper focuses on viewing a software product as a
configurable product family that potentially includes a very
large number of variants. Such a software-engineering para-
digm becomes relevant, for example, when software is em-
bedded in a configurable product and the software must
adapt to the hardware configuration. If the available memory
is limited, the loaded software cannot include all possible
variability and dynamically adapt to the hardware. Textbook
examples of products for which software variability is im-
portant include alarm systems [Bosch, 2000], oscillators
[Shaw et al., 1996] and television sets [Jazayeri et al.,
2000]. Similar strategies are also currently sought for enter-
prise resource planning (ERP) systems, which are large
configurable information system packages [Kumar et al.,
2000].

In the following, we first describe the field of product
configuration of traditional products. Thereafter, we discuss
modelling software product families and some possibilities
of importing results from one area to the other.

2 Configurable Traditional Products

Configurable products clearly separate between the process
of designing a product family and the process of generating
a product individual according to the product configuration
model. This places configurable products in between mass-
products and one-of-a-kind products by enabling customer
specific adaptation without losing all the economical bene-
fits of mass-products [Tiihonen et al., 1998].

Knowledge based systems for configuration tasks, prod-
uct configurators, have recently become an important appli-
cation of artificial intelligence techniques for companies
selling products adapted to customer needs [Darr et al.,
1998; Faltings et al., 1998]. The purpose of a configurator is
to allow managing the configuration models and support the

“ This paper is an extended and revised version of “Product Configuration View to Software Product Families” presented at Software Con-
figuration Workshop (SCM-10) of ICSE01, Toronto, Canada, May 2001 [Mannistd et al., 2001].



configuration task. Product configuration tasks and configu-
rators have been investigated for at least two decades
[McDermott, 1982]. Several approaches have defined spe-
cific configuration domain oriented conceptual foundations.
These include the three main conceptualisations of configu-
ration knowledge as resource balancing [Heinrich et al.,
1991; Jungst et al., 1998], product structure [Cunis et al.,
1989; van Veen, 1991] and connections within a product
[Mittal et al., 1989; Soininen et al., 1998]. Next, we first
give an overview to a combined conceptualisation of con-
figuration knowledge synthesising these approaches, re-
ported in detail in [Soininen et al., 1998; Soininen, 2000].
Then we elaborate on approach to modelling evolution of
traditional configurable products. The basic approach has
been reported in [Méannist6 et al., 1996; Mannistd, 2000],
and it builds on the ideas of supporting design object ver-
sioning in the field of product design [Katz et al., 1986].

2.1 Configuration modelling concepts

We believe that structured modelling is essential in keeping
product configuration models understandable. Therefore, we
concentrate here on configuration modelling methods that
are based on explicit description of structural information in
an object-oriented manner [Peltonen et al., 1994; Mannistd
et al., 1996; Soininen et al., 1998]. We present the concepts
for configuration modelling by means of slightly extended
UML (Unified Modeling Language) [Fowler, 1997]. The
details of the representation are not that important here, as
we are primarily interested in the modelling concepts.

- 600 MB

I
[0.1] Headset
"™ microphone|

Legend: ]

port
component type pname
o’ has-part with part name p
[n.m] and cardinality from n to m resource type

/\ is-a — amt > resource consumption / production

Figure 1. lllustration of configuration concepts by a simplified PC.

The modelling is based on component types that form an is-
a hierarchy (for simplicity, only with single inheritance).
Component types may have property definitions, such as
part, port and resource production and resource usage defi-
nitions. Next, these main concepts and their intuitive se-
mantics are very briefly introduced with some examples
shown in Figure 1, which shows an imaginary PC product
family.

Structural composition is modelled by means of part
definitions. A part definition is augmented with part name
and cardinality, e.g., ‘PC’ has one or two ‘IDE Disk’ as
parts named ‘hd’. Zero minimal cardinality represents an
optional part. In addition, alternative parts may be defined.
This is not shown in the example, but, for example, if there
were more hard disk types, only some of them might be
defined as alternatives for ‘home PC’.

Connections between components can be modelled by de-
fining ports (representing interfaces) for component types,
with the idea that in a product individual each port may be
connected to another port. In the figure, there are sample
ports for connecting IDE controllers of ‘PC’ and ‘IDE disk’
(for simplicity, port types are not shown in the figure).

A configuration model may define resources, and compo-
nent types may define that their individuals produce or use
resources. For example, in the example hard disks produce
disk space, whereas software uses it. In a legal configura-
tion, the production and usage of resources should be satis-
fied. For example, there should be enough disk space to
accommodate all software. In addition, a context may be
defined in which a resource must be satisfied, e.g., the use of
a resource may need to be satisfied by production within the
same subsystem.

The definitions in component types are inherited in the is-
a hierarchy. When ‘PC’ defines that it has part ‘Disk’, this
means that also its subtypes ‘Office PC” and ‘Home PC’
have ‘Disk’ as part.

The is-a hierarchy also induces variability. That is, de-
fining a component type to be a part means that any of its
subtypes can be a part. For example, either of the subtypes
of ‘Disk’ is a valid choice as (type of) a part of ‘PC’.

Configuration modelling languages also typically have a
mechanism for expressing conditions or constraints on
combining component types. Typical constraints are incom-
patibility and requires. That is, when two component types
are incompatible, individuals of both types cannot occur in a
legal configuration. If a component type requires another
component type, a configuration containing an individual of
the requiring type is legal only if it also contains individual
of the required type.

In addition to what is shown in Figure 1, the configura-
tion model typically also includes some means for express-
ing the functions (or features), as seen by the customers.
These allow the customers to express their interest in more
convenient terms than, for example, by directly selecting
particular component types.

2.2 Evolution and component internal variation

The long-term management of configuration knowledge has
always been a major problem for product configurators. One
of the earliest examples, the XCON configurator, was re-
ported to provide work for tens of developers and maintain-
ers of configuration knowledge after a few years of
operation [Barker et al., 1989]. Therefore, it is also impor-
tant to address the evolution in product family modelling.

In this section, we identify few steps in improving the
management of configuration models.



Capturing the History

The First step is to capture the history. This can be done, for
example, by time stamping everything in a configuration
model when it changes. One actually needs two time stamps
that form an effectivity period, which allows ending the ef-
fectivity of an object and principally also some planning for
the future, if effectivities may extend to the future. With
historical information one can reconstruct the configuration
model at a particular point in time and also compare what
has changed between two time points.

Capturing Versions and Variants

In addition, one needs to know when two objects of different
times are in fact versions of the same thing. This is can be
modelled by means of naming conventions, e.g., A-1.0 and
A-2.0 could be different versions of the same A. To have
more specific semantics for a related set of versions, the set,
e.g., the A, can be explicitly represented by a generic object.
We will next introduce the generic object and then elaborate
further on the change management with the help of generic
objects.

Generic object C

' "
] ]

‘ Revision 1 ‘ ‘ Version 1 ‘ ‘ Version 2 ‘

D ——

‘ Revision 2 ‘ ‘ Version 3 ‘ ‘ Version 5 ‘ ‘ Version 4 ‘

Figure 2. Generic object with versions, variants and revisions.

A version is a concept for capturing the state of a generic
object at a particular time and the evolution of a generic
object is captured by a set of versions [Katz et al., 1986]. In
order to be versions of the same generic object, the versions
share something in common, such as an interface or substi-
tutability in use, e.g., so that newer versions can be used in
place of older versions. In a configuration model, compo-
nent types could be seen as generic objects.

When variability with respect to some property of an ob-
ject is also considered, versioning is divided to concepts
variant and revision, i.e., parallel and consecutive versions
of the generic object, respectively. Variants are intended to
coexist, whereas revisions capture the evolution in time.

The concepts “variant’ and ‘revision’ organise the set of
versions, as illustrated in Figure 2. For example, Variant 1
has its own revision history, and the explicit representation
of revisions bears the notion that Version 3 and Version 5 are
in some sense the corresponding revisions of Variant 1 and
Variant 2, respectively. They may, e.g., have the same major
error fixed or implement the same main functionality.

There is an ordering between revisions, e.g., Revision 2
succeeds Revision 1, which means that in Variant 2, Version
5 succeeds Version 2. This ordering of revisions is linear,
instead of a tree or directed acyclic graph, as it is sometimes
viewed, since variants are represented separately.

The generic object also serves as a point of reference to
the set of versions. Such generic references do not specify
the version; it is left open to be bound at an appropriate
time. A version binding mechanism enables selecting both
the appropriate variant and the revision of a generic compo-
nent. For example, the selection could be based on a label,
such as ‘1.1.2°, a time point or defaults, e.g., the “current
revision of default variant”.

Variants of a generic object implement what we call in-
ternal variation, i.e., variation according to which variant of
a selected component type is in the configuration. Another
form of internal variation is parameters of a component
type, such as the length of an axis or colour, for which the
configuration task must determine appropriate values. Inter-
nal variation is in contrast to structural variation, which
captures the choices between component types, as discussed
in Section 2.1 in relation to Figure 1.

Capturing the Semantics of Changes to Configuration
Models and Configurations

We will now take the next step in discussing the use of ge-
neric objects in modelling the evolution. The basic idea is to
consider everything in a configuration model that evolves a
generic object. This captures the evolution of the particular
generic object, e.g., a component type. The interesting ques-
tion is how the evolutions of different generic objects relate.
For simplicity, we only consider the evolution of compo-
nents in this and the following section.

First we separate the evolution of a configuration model
and the evolution of the individuals created according to the
configuration model. These evolutionary processes are in
principle independent, that is, changes to the configuration
model are not propagated to old individuals and individuals
can evolve beyond their original configuration model.
Therefore, one relation we consider in capturing the evolu-
tion is the relation of individuals to the configuration mod-
els, i.e., the is-instance-of relation.

In addition to is-instance-of relation, we are also particu-
larly interested in two other relations, namely has-part and
is-a. We want to specify, for example, what happens to
component types that are parts or subtypes of a particular
component type of which a new version is created.

Figure 3 illustrates the situation where component types
as well as component individuals are represented as generic
objects. For simplicity, we only consider one variant and
assume that each change to a generic object is realised as a
new version and a new revision. Thus, we have a one-to-one
mapping between revisions and versions of a generic object,
which is why only versions are shown in the figure. Each
revision has an effectivity period and the effectivities of
consecutive revisions of a generic object are required to
meet. The effectivity of a version means the effectivity of
the corresponding revision. Effectivities are not aligned
between generic objects in the figure.



Configuration
model

Product
individuals

Legend:

> generic object
° version
——— effectivity of version

— reference

Figure 3. Evolution of types and individuals.

Relations are represented as references, which may be ge-
neric, i.e., refer to a generic object, or be a property of a
generic object, i.e., start from a generic object, in addition to
starting from or referring to a specific version.

By defining invariants on how the revisions of various
generic objects relate we want to capture some semantics of
the evolution of generic objects. For example, a company
may decide that a new revision must be usable in place of
old revisions it succeeds. This results in a convenient lack of
need of propagating a change to wholes by creating new
versions of them as well when a part is changed. This kind
of change management policy can be captured by an invari-
ant that only requires existence of an effective version in the
whole for the entire effectivity of a the part, but does not
require this separately for each version (which would re-
quire propagation of each change). Similar invariants can be
defined for the other relations and policies as well, as has
been done in [Mé&nnistd, 2000]; however, further discussion
is omitted here for brevity.

Supporting Configuration Task over Time

After providing for capturing history and change manage-
ment policies, the next step is to incorporate configuration
models and configuration tasks that span time periods. Ref-
erences could specify multiple revisions, such as “revision <
2.0 of A”. Consequently, the search space of a configuration
task would contain versions of multiple revisions of a single
generic object.

A configuration task spanning multiple time points may
require additional assumptions along the lines of “only sin-
gle revision of a generic object can be in a configuration”,
“a version of a newer revision can always be used instead of
an older one”, and so on. In addition, one would probably
want to prefer solutions with versions of later revisions (as-
suming an ordering of solutions with respect to time exists),
which preference could also guide the search itself.

As a next step further, one might want to support recon-
figuration of old individuals over the history of configura-
tion models. We do not, however, discuss that here.

Evolution of Other Concepts

The above discussion did not address the evolution of port
types, resource types or constraints. We expect that port
types and resource types can be treated quite similarly as
component types, the interesting relations to consider being
from a port type to a component type defining a port and
from resource type to a component type defining a produc-
tion or use of the resource.

The treatment of constraints depends on how they are
modelled. Constraints can be seen as properties of compo-
nent types that can refer to the parts of the component type.
A constraint C referring to component types A and B could
be placed to the least common ancestor of A and B in the
compositional structure. This can be the root representing
the whole product individual if the constraint is global.
From change management perspective, however, this is
somewhat odd because it is hard to see a change to the con-
straint C as a change to the whole product. Another alterna-
tive would be to consider constraints that are not clearly a
property of any particular component type as global. One
may argue that this is semantically equivalent to considering
them properties of the whole product. From the change
management viewpoint, however, there is a difference. Con-
sidering a constraint C as a generic object of its own means
that changing it leads to a new revision of C and potentially
the referred component types A and B. This seems to be
closer to the intended semantics of the change than a change
to the whole product.

3 Comparison to Modelling Software Product
Families

There are many ways of achieving variety in software.
Software variety can be implemented as a ‘universal’ soft-
ware product that contains all variants, and can thus behave
as any specific variant. An alternative approach is to use
pre-processor directives to optionally include pieces of
source code. This approach however, easily loses the big
picture over the entire product family, as the representation
of variation is distributed in the source code. With large
software products, a typical adaptation approach is to take
an existing variant as a basis and then modify it accordingly
[Karhinen et al., 1997]. Such “copy, paste and modify” of
architectural components easily blurs the original ideas be-
hind the architecture and consequently deteriorates the over-
all product architecture [Dikel et al., 1997].

Variability may also be achieved by selecting appropriate
components to a family architecture [Hayes-Roth et al.,
1995; Karhinen et al., 1997; van Ommering et al., 2000;
Syrjanen, 2000; Wijnstra, 2000]. In the case of software
product families, the architecture can thus be called a prod-
uct family software architecture (PFSA). In fact, there are
many different phases in the life cycle of a product individ-
ual (to distinguish from the life cycle of product family),
e.g., construction of configuration, build and execution, for
which different modelling concepts may be needed [Ran,
2000]. However, no generally applicable conceptual basis
for modelling software product families seems to exist.



We will next compare the configuration modelling con-
cepts from the previous section with software product fam-
ily modelling.

3.1 Functions or Features

Customers view a product differently than its designers;
customers prefer speaking of features that are of value to
them, not necessarily about technical details of implement-
ing the features. This means that a configuration model
should allow customers to use features for inputting the
system requirements. As there are approaches for modelling
software product families on the basis of features [Hein et
al., 2000], it seems that from a modelling perspective, fea-
tures of software seem to correspond to functions of tradi-
tional products.

3.2 Compositional structure and taxonomy

Compositional structure and taxonomy are very powerful
and suitable means for representing configurable product
families. The decomposition of a system into subsystems is
also important for the management of software product
families and their configuration knowledge. For example,
work at Philips [Wijnstra, 2000] defines a skeletal architec-
ture that has plug-in components and optional implementa-
tions of components (called units in the paper). This
provides similar, although simpler, variation for a software
product family as optional and alternative parts in a configu-
ration model.

Van der Hoek et al. [1999; 2000] propose a model that
also provides means for modelling the compositional struc-
ture and has great similarities with some of the concepts
discussed above; the approach is discussed in more detail in
the next section.

For managing component types and configuration knowl-
edge, we also see great importance in organising component
types in a class hierarchy with inheritance, especially with
structural decomposition, ports and resources. Inheritance
and subtyping provide powerful mechanisms for represent-
ing abstract modules and classifying varying component
types. In the conceptualisation of Section 2.1, subtyping is
used for modelling the variants of component types, whereas
in software architecture modelling, it is often seen as a
means for extending the architecture, i.e., a mechanism for
supporting the evolution of component types [Medvidovic et
al., 2000].

3.3 Connections and Resources

There are many possibilities in conceptualising connections.
The basic idea is to get components connected, which re-
quires a point of connection in components. These are called
ports in configuration modelling, similarly as in software
architecture domain [see, e.g., Shaw et al., 1996].

Koala architecture description language presents con-
structs for capturing the variability of software systems [van
Ommering et al., 2000]. The main mechanism for express-
ing the configuration knowledge in that approach is based
on interfaces, i.e., ports, and their correct connections. The
approach makes a distinction between internal variety of a

component (they call it internal diversity of a component)
and structural variety. For internal variation Koala offers
diversity interfaces, which essentially describe the parame-
ters by which the variant of the component (type) can be
determined. For structural variety it offers switches that
model alternative connections between interfaces.

The model of van der Hoek et al. [1999; 2000] includes
component types and connectors, and supports variability
and evolution. The optionality proposed in the approach
takes the form of structural variety according to the termi-
nology above. The variability of components, on the other
hand, is explicitly represented by special variant compo-
nents, which consist of a set of components with same inter-
face. For a configuration, one variant is selected from the set
of variants of the component according to some control
variables. This corresponds to the internal variation of a
component, as discussed above.

Another issue in modelling connections is whether sepa-
rate entities are used to represent connections between the
components as in architecture description languages or if
components and their connections similar to configuration
modelling suffice. When connectors are used, they also need
points of connection, called roles [see, e.g., Shaw et al.,
1996]. Most software architecture description languages
model connectors that connect component types as first-
class entities [Medvidovic et al., 2000], which is not the
case in most configuration modelling approaches.

It may be that some mechanisms are also needed for de-
scribing the legal ways of attaching ports to roles. For this
purpose, port types and role types may be defined, and the
legal connections defined between them. If it seems appro-
priate, these concepts can be simplified by representing the
connections only as a relation directly between ports.

To summarise, it seems that the concepts proposed for
modelling software architecture and interfaces of software
classes or components are rather similar to the concepts
proposed for traditional products and it should be easy to
utilise results from the latter to model and manage software
product families. On the other hand, modelling of connec-
tions is one potential area in which results could be trans-
ferred from software architectures to configuration
modelling of traditional products.

Furthermore, in certain cases, such as method calls to
components, it may be adequate to represent the interfaces
as resources and only check that all needs are satisfied with-
out making the explicit connections. Module Interconnec-
tion Languages (MIL) use resources similar to those
described above for matching modules by interfaces of
services they provide and need [see, e.g., Shaw et al., 1996].
In configuration modelling, the satisfaction of resources,
however, is typically more complex than simple matching.
There may be multiple products and users of the same re-
source and thus the amounts produces and uses must be
calculated, possibly within a context. Combining resources
and compositional structure seems a new interesting way of
modelling software product families.



3.4 Constraints

Additional constraints describe the valid configurations,
e.g., by pruning out ones including component individuals
of incompatible component types. For software, additional
constraint could specify dynamic behaviour. However, con-
structing detailed behavioural models is a remarkable effort
and may require formalisms that make them computation-
ally infeasible. In configuration modelling of traditional
products, the computational complexity has been studied
and a working balance between expressive power can be
established—e.g., it is not necessary to model the behaviour
of the products for configuration and product data manage-
ment purposes [Soininen, 2000].

3.5 Evolution

In general, the software architecture for a product family is
seen as a mechanism for enabling software reuse and intro-
duction of new variants to the product family [Bosch, 2000].
Most approaches to modelling traditional configurable
products, however, have only considered the representation
of the current variation of the product family. That is, they
do not have concepts for modelling evolution. Evolution of
a product family, however, is inevitable and, therefore, we
feel it should be taken seriously in configuration modelling.
In fact, evolution is one area in which the ideas and results
from software product families could be useful for tradi-
tional products.

The evolution in Koala is defined to preserve the stability
of interfaces, which corresponds well with the semantics the
generic objects are meant to capture [van Ommering et al.,
2000]. That is, the new versions may be created for the
component as long as the common part described in the
generic object, e.g., the interface, remains.

In the approach by van der Hoek et al [1999; 2000], vari-
ability and revisioning are separated in a manner that is se-
mantically equivalent to generic object of Figure 2. Our
proposal is in this respect a superset of their approach, and
allows, e.g., the variability to be represented as structural or
internal.

Other research in software configuration management has
also addressed the orthogonal nature of revisions and vari-
ants. An n-dimensional grid is one way of representing vari-
ants of software [Conradi et al., 1997]. Estublier and
Casallas [1995] identified the dimensions: historical (i.e.,
revisions), logical (i.e., variants) and co-operative (i.e., con-
current work intended to be merged) for the version space.
VOODOO system, on the other hand, models versions by a
cube that has the following dimensions: components, revi-
sions and variants [Reichenberger, 1995].

Generic objects seem suitable for modelling the evolution
of software configuration models. They make the explicit
distinction between revisions and variants of single design
objects. Furthermore, as in traditional products, generic
references for modelling compositional structure with a
version binding mechanism can also be used for software.
As suggested for traditional products, generic objects may
be used in modelling the compositional structure of software
product families as well as the evolution with respect to

taxonomy, although this area requires further research
[Mannistd, 2000].

4 Conclusions

There are remarkable similarities between the concepts pro-
posed for modelling software architectures or software
product families and those used for modelling configurable
traditional products. For traditional products, various meth-
ods exist that allow modelling product families essentially
with the concepts of Figure 1, with some approach-specific
variations. These concepts for modelling the variety of tra-
ditional products seem to suit modelling software product
families as well. Utilising the concepts from traditional
product families and adapting them for representing the
architecture and variation of software product families, we
believe, would lead to concise and manageable models. In
addition, such models would open a way to using the Al
methods developed in the field of product configuration to
support the generation of product variants on the basis of the
models.

The potential areas of transferring knowledge from con-
figuration of traditional products to software product fami-
lies include the following.

First is the appropriate level of abstraction in representing
product families. In traditional products, kinematics and
stress analyses, for example, are abstracted away from con-
figuration models. How about software—What is the appro-
priate level of abstraction of dynamic behaviour for software
product families? Does this change if configuration model-
ling is extended to capture the dynamic re-configuration of
software?

Second, the conceptualisation of connections requires in-
vestigating whether the more complex concepts are needed
or if a simpler conceptualisation is adequate.

Further, one issue to consider is whether the integration of
compositional structure with taxonomy and resources would
provide practically feasible product family modelling tools
for software engineers and architects.

In general, it is rather safe to say that methods for model-
ling and management of variation of traditional products is
more advanced than that of software product families. Nev-
ertheless, two major areas were identified for transferring
results from software product families to traditional config-
urable products.

First, connectors are modelled in more detail in software
architectures than in traditional products, and thus, there is
potential for utilising that work for modelling traditional
configurable products. For example, explicit representation
of connector types and individuals, and possibly also of the
information that is transferred via each connection could
also be useful for some traditional products.

Second, the evolution of product family descriptions (or
architectures) has received more emphasis in software prod-
uct families than in modelling of traditional configurable
products. The incorporation of evolution to product family
modelling is of great importance. However, regardless of
much work in modelling evolution in various areas, includ-
ing design data modelling, product data management, soft-



ware configuration management, schema evolution of data-
bases and temporal databases, there is still plenty to be done
before a mature practice for capturing the evolution of prod-
uct families can be defined.

Acknowledgements

We gratefully acknowledge the financial support of the
Academy of Finland (grant 51394). We also thank Alexan-
der Ran for his valuable comments on an earlier draft of the

paper.

References

Barker, V.E., O'Connor, D.E., Expert systems for configura-
tion at Digital: XCON and beyond, CACM, 32(3):298-
318, 1989.

Bosch, J., Design and use of software architectures—
adopting and evolving a product-line approach,
Addison-Wesley, 2000.

Conradi, R., Westfechtel, B., Towards a Uniform Version
Model for Software Management. In Proc. of SCM-97,
LNCS 1235, pages 1-17, 1997. Springer.

Cunis, R., Glnter, A., Syska, I., Peters, H., Bode, H., PLA-
KON — An approach to domain-independent construc-
tion. In Proc. of IEA/AIE-89, pages 866—874, 1989.

Darr, T., McGuinness, D., Klein, M., Special Issue on Con-
figuration Design. Al EDAM 12, 1998.

Dikel, D., Kane, D., Ornburn, S., Loftus, W., Wilson, J.,
Applying software product-line architecture, Computer,
30(8):49-61, 1997.

Estublier, J., Casallas, R., Three dimensional versioning. In
ICSE SCM-4 and SCM-5 Workshops, LNCS 1005,
J.Estublier, ed. pages 118-135, 1995. Springer-Verlag.

Faltings, B., Freuder, E.C., Guest editors' introduction: Con-
figuration, IEEE intelligent systems & their applications,
13(4), 1998.

Fowler, M., UML distilled Applying the standard object
modeling language, Addison-Wesley, 1997.

Hayes-Roth, B., Pfelger, K., Lalanda, P., Morignot, P., Bla-
banovic, M., A domain-specific software architecture for
adaptive intelligent systems, IEEE Transactions on soft-
ware engineering, 21(4):288-301, 1995.

Hein, A., Schlick, M., Vinga-Martins, R., Applying feature
models in industrial settings. In Software product lines—
Experience and research directions, pages 47-70, 2000.
Kluwer Academic Publishers.

Heinrich, M., Jingst, W., A resource-based paradigm for the
configuring of technical systems from modular compo-
nents. In Proc. of the seventh IEEE conference on artifi-
cial intelligence applications, pages 257-264, 1991.

Jazayeri, M., Ran, A, van den Linden, F., Software archi-
tecture for product families: Principles and practice,
Addison Wesley, 2000.

Jungst, W., Heinrich, M., Using resource balancing to con-
figure modular systems, IEEE intelligent systems & their
applications, 13(4):50-58, 1998.

Karhinen, A., Ran, A., Tallgren, T., Configuring design for
reuse. In Proceedings ICSE'97, pages 701-710, 1997.
Katz, R.H., Chang, E., Bhateja, R., Version modeling con-
cepts for computer-aided design databases. In Proceed-

ings of the SIGMOD, pages 379-386, 1986.

Kumar, K., van Hillegersberg, J., Enterprise resource plan-
ning—experiences and evolution, CACM, 43(4):22-26,
2000.

Mannistd, T., A conceptual modelling approach to product
families and their evolution. Doctoral thesis. Helsinki
University of Technology, 2000.

Méannistd, T., Peltonen, H., Sulonen, R., View to product
configuration knowledge modelling and evolution. In
Configuration—papers from the 1996 AAAI Fall Sympo-
sium, pages 111-118, 1996. AAAI Press.

Mannistd, T., Soininen, T., Sulonen, R., Product Configura-
tion View to Software Product Families. In Software
Configuration Management Workshop (SCM-10), 2001.

McDermott, J., R1: a rule-based configurer of computer
systems, Artificial Intelligence, 19(1), 1982.

Medvidovic, N., Taylor, R.N., A classification and compari-
son framework for software architecture description lan-
guages, IEEE Transactions on software engineering,
26(1):70-93, 2000.

Mittal, S., Frayman, F., Towards a generic model of configu-
ration tasks. In Proc. of IJCAI, pages 1395-1401, 1989.

Peltonen, H., Ménnistd, T., Alho, K., Sulonen, R., Product
configurations—An application for prototype object ap-
proach. In Proc. ECOOP '94, LNCS 0821, pages 513-
534, 1994. Springer-Verlag.

Ran, A., ARES conceptual framework for software archi-
tecture, in: Software Architecture for Product Families,
pages 1-29, 2000. Addison Wesley.

Reichenberger, C., VOODOO A Tool for orthogonal version
management. In Proc. SCM-4 and SCM-5, LNCS. 1005,
pages 61-79, 1995. Springer-Verlag.

Sabin, D., Weigel, R., Product configuration Frameworks—
A survey, IEEE intelligent systems & their applications,
13(4):42-49, 1998.

Shaw, M., Garlan, D., Software architecture - Perspectives
on an emerging discipline, Prentice-Hall, 1996.

Soininen, T., An approach to knowledge representation and
reasoning for product configuration tasks. Doctoral the-
sis. Helsinki University of Technology. 2000.

Soininen, T., Tiihonen, J., Ménnistd, T., Sulonen, R., To-
wards a General Ontology of Configuration, Al EDAM,
12(4):357-372, 1998.

Syrjanen, T., A rule-based formal model for software con-
figuration. Master's thesis. Helsinki University of Tech-
nology, 2000.

Tiihonen, J., Soininen, T., Mannistd, T., Sulonen, R., Con-
figurable products—Lessons learned from the Finnish
Industry. In Proc. of 2nd EDA, 1998.

van der Hoek, A., Capturing product line architectures. In
Proc. of Intern. Software Architecture Workshop, 2000.

van der Hoek, A., Heimbigner, D., Wolf, A.L., Capturing
architectural configurability: variants, options, and evo-
lution. CU-CS-895-99. 1999.

van Ommering, R., van den Linden, F., Kramer, J., Magee,
J., The Koala component model for consumer electronics
software, Computer, (March):78-85, 2000.

van Veen, E.A., Modelling product structures by generic
Bills-of-Material. Doctoral thesis. Eindhoven University
of Technology. 1991

Wijnstra, J.G., Supporting diversity with component frame-
works as architectural elements. In Proc. of ICSEQO,
pages 50-59, 2000.



