Representing Software Product Family Architectures Using
a Configuration Ontology

Timo Asikainen', Timo Soininen' and Tomi M:innisto'

Abstract. In this paper, we study the possibility of applying tech-
niques developed for configuring mechanical and electronics prod-
ucts to configuring software. We analyze and compare at the
conceptual level software architecture description languages and
configuration modelling concepts. Based on the analysis we are able
to define a way of representing much of the architectural knowledge
using the configuration modelling concepts. This indicates that it is
relatively easy to provide software configuration support using the
existing techniques if the software is represented through architec-
tural descriptions. However, there are also some differences that
require extending the current conceptualizations of configuration
knowledge to capture software products adequately.

1 INTRODUCTION

In the recent years there has been an increasing research effort dedi-
cated to providing better configuration modelling languages and
tools. However, the research on configuration has mainly dealt with
mechanical and electronics products. At the same time, software
product lines or families have become increasingly important in the
software industry [1]. The most systematic of such families closely
resemble configurable products in that they are composed of stan-
dard re-usable assets and have a predefined architecture [1]. A ma-
jor effort in the software product family and architecture research
has been spent on developing architecture description languages
(ADLs) for representing these re-usable assets and software archi-
tectures. Thus product families and ADLs are natural counterparts
in the software domain for configurable products and configuration
modelling languages. There are many ADLs and large differences
between them [2,3].

In this paper, we study the possibility of applying techniques de-
veloped for modelling and configuring mechanical and electronics
products to configuring software. A prerequisite for coming up with
a general solution to this problem is to define a mapping from the
conceptualization of software systems to a conceptualization of
configuration knowledge. Towards this end, we analyze three
prominent ADLs at the conceptual level and compare them with the
major concepts used for modelling configuration knowledge. Based
on the analysis and comparison, we show how to represent main
concepts of ADLs using the configuration modelling concepts. In
addition, we identify several potential needs for extending the con-
figuration modelling concepts with ADL derived concepts.

For the purposes of this paper we concentrate on three important
ADLs: Acme [4,5,6], Wright [7,8] and Koala [9,10]. Out of these,
Acme has been designed to include features of other ADLs that its
designers considered central. The relevance of Acme is further
promoted by the fact that one of the goals of Acme is to serve as an
interchange language for other ADLs. Wright is a widely cited ADL

! Helsinki University of Technology, TAI Research Centre and Software
Business and Engineering Institute, P.O. Box 9600, FIN-02015 HUT, Fin-
land. Email: {Timo.Asikainen, Timo.Soininen, Tomi.Mannisto } @hut.fi

that has a rigorous semantics and describes behavioural aspects of
software. Both the use of formal methods and description of behav-
iour make Wright important among ADLs. Koala is in commercial
use at Philips Consumer Electronics. Being one of the few ADLs
used in commercial applications, it is an important example of the
practical aspects of ADLs.

As the reference point in the comparison we employ a configura-
tion ontology presented by Soininen et al. [11]. This ontology syn-
thesizes prior conceptualizations of configuration knowledge.
Moreover, it is very similar to another recognized configuration
ontology presented by Felfernig et al. [12]. Thus, as it seems to
cover most approaches to configuration modelling, it is a natural
reference point for conceptual level analysis.

The remainder of this paper is organized as follows: An over-
view of software architecture and ADLs will be given in Section 2.
Section 3 introduces our framework for analyzing and comparing
ADLs along with the most important characteristics of three ADLs.
In Section 4, a comparison between the ADLs and the concepts of
the configuration ontology is presented. A mapping from the most
important concepts of ADLs to the concepts of the configuration
ontology is given in Section 5 and potential extensions of the ontol-
ogy are discussed in Section 6. We discuss our findings and previ-
ous work in Section 7 and finally give our conclusions and topics
for further research in Section 8.

2 SOFTWARE ARCHITECTURES AND
ARCHITECTURE DESCRIPTION
LANGUAGES

Software architecture of a system purports to describe the high-level
structure of a software system. The significance of considering
architecture when designing software systems is well understood.
There is, however, no single, generally accepted method for de-
scribing software architecture. Simple methods, such as referring to
an existing architectural style or using box-and-line diagrams with
no or vague semantics, have been recognized to be inadequate for
the task [13]. Hence, there is a need for better methods.

Architecture description languages (ADLs) are a promising can-
didate solution for the architecture description problem. Loosely
defined, ADLs are formal notations with well-defined semantics,
whose primary purpose is to represent the architecture of software
systems. A large number of ADLs have been proposed. ADLs have
in common the concept of component, although different ADLs
have different names for the same concept [3]. But in their other
characteristics, ADLs differ from each other radically. Some of
them address a special application domain and others are dedicated
to a specific architectural style [3]. ADLs also employ different



formalisms for specifying semantics, and there is variety in how
rigorously the syntax and semantics are defined.

The most fundamental elements of architectural descriptions in-
clude components, connectors and their configurations [3,4,13].

Components represent the main computational elements and data
stores of the system. Intuitively, they correspond to the boxes in the
box-and-line diagrams. Clients, servers and filters are examples of
components. In a working system, a component might manifest
itself as an executable file or a dynamic link library. [4]

Unlike components, connectors are not loci of application spe-
cific computation in software systems. Instead, they represent inter-
actions between components. In a box-and-line diagram, connectors
are depicted as lines between the boxes. Examples of connectors
include method invocation, pipes and event broadcast. [4]

Components can be connected to each other to form configura-
tions. They are sometimes referred to as systems [4] or architectural
configurations [3]. In many ADLs, components can only be con-
nected through connectors; explicit use of connectors has even been
proposed a defining characteristic of an ADL [3]. Typically, com-
ponents are connected to each other through connection points.
Different ADLs call these connection points with different names,
e.g. port, role or interface.

In some ADLs, components can also have an inner structure.
Such components are called compound components and they repre-
sent a subsystem that has an architecture of its own. With composite
components it is important to be able to specify how the inner parts
of the component are linked to the component itself. Usually, the
linkage is defined by binding connection points of the compound
component with connection points of its parts. Intuitively, binding
means that the connection point of the compound component is in
fact a connection point of some other component inside the com-
pound component.

A practical concern with ADLs is the tool support available for
them. Tool support is out of the scope of this paper, since the goal is
to analyze the modelling languages. However, it should be noted
that support for generating executable systems out of architectural
descriptions is one of the goals of research on ADLs [3]. This is a
goal shared by research on configuration modelling.

3 ANALYSIS OF THREE ARCHITECTURE
DESCRIPTION LANGUAGES

In this section, we first define a framework for analyzing and com-
paring the concepts of ADLs with those of configuration. Thereaf-
ter, we use the framework to study three ADLs: Acme [4,5,6],
Wright [7,8] and Koala [9,10].

3.1 Framework for analysis and comparison

The fundamental phenomena described by the configuration ontol-
ogy and that presented in [12] are: taxonomies, structure, topology,
resources, functions and constraints. Underlying all the above-
mentioned phenomena is the division of configuration knowledge
into three classes, configuration model knowledge, configuration
solution knowledge and requirements knowledge. Types and in-
stances are entities occurring in the configuration model knowledge
and configuration solution knowledge, respectively.

In the following three subsections, we will analyse the above-
mentioned ADLs using a comparison framework composed of three
parts. The first part includes the key concepts of ADLs and the
configuration ontology, and the relations between them. The con-
cepts include components, connectors, configurations, connection
points, attributes, resources, functions and constraints. The rela-

tions include fopology, taxonomy and structure. The second part
considers the existence of different concepts for types and instances.
The last part of the framework is the variation mechanisms provided
by ADLs and the configuration ontology.

3.2 Acme

The basic concepts of Acme are components, connectors and sys-
tems. System is the Acme term for configuration. On the other hand,
there are no constructs for resources or functions in Acme. Both
components and connectors have connection points that are called
ports for components and roles for connectors. Design elements
include component, connector, port and role. Components are con-
nected to connectors by defining an attachment between the port of
a component and the role of a connector. One connector may con-
nect multiple components. Components cannot be connected di-
rectly to each other and neither can a connector to another
connector. [4]

Components and connectors can have attributes that are called
properties in Acme. Properties are uninterpreted values, i.e. they do
not have any semantics defined.

In Acme, design constraints can be defined using first order
predicate logic. They can be either invariant or heuristic: invariant
constraints must hold, whereas heuristic constraints are merely hints
of what should be true for an Acme system. Constraints can be used
to express various aspects of Acme systems: e.g. the existence and
values of properties and the connections present in a system. [5]

In addition, Acme includes a structure called representations that
can be used for describing an alternative view of a component or a
connector. Rep-maps, or in other words, representation maps, can
be used to specify the correspondences between different represen-
tations of a design element. There is, however, no semantics defined
for either representations or rep-maps. One possible use of these
constructs is representing the compositional structure of a compo-
nent and the correspondences between the ports and roles of the
compound component and those of the contained components. [4].

Although types are not first class entities in Acme, it has two
type systems: one for design element types and, and another for
systems. Types in the design element type system are sets of re-
quired structure, i.e. design element declarations, and values. New
types can be formed from existing types through subtyping. System
types are called families. A family consists of design element type
definitions. Subtypes of families can be formed through single or
multiple inheritance. Also, a system can be declared to be a member
of many family types. [6]

What makes types a secondary concept in Acme is that design
elements and systems need not have a type or be a member of a
family, respectively. A design element being of a given type merely
implies that the design element has the structure and values speci-
fied by that type. Similarly with families, a system being a member
of a family signals that the type definitions of the family are type
definitions of the system, too. Therefore, type systems of Acme can
be considered a sort of macro expansion mechanism.

The syntax and semantics of Acme are formally defined, the lat-
ter in terms of a mapping to first order predicate logic.

There seem to be no constructs in Acme for modelling variety.
What seems to come closest to modelling variability is the family
construct. It can be used to specify a set of type definitions shared
by a set of systems. Furthermore, constraints can be used to enforce
the instantiation of certain design elements. Hence, the family defi-
nitions complemented with constraints seem to provide a mecha-
nism for specifying product families with certain properties.



3.3 Wright

As in Acme, there are components, connectors, systems, ports, roles
and attachments in Wright and their semantics are the same in both
languages. There are no attributes, resources or functions. What
distinguishes Wright from Acme and makes it special among ADLs
is its way of specifying the behaviour of ports, roles, connectors and
components, and the possibilities for analysis based on these speci-
fications. Wright uses CSP (Communication Sequential Processes)
specified in [14], a formal approach for two purposes: (1) specify-
ing processes that reside in Wright elements and (2) defining se-
mantics of non-CSP parts of the language. In short, CSP is a formal
method for specifying and analyzing the behaviour of objects in
terms of sequences of events in which they engage. The pattern of
events that is possible for an object is termed a process. [7,8]

Each port and role is associated with a CSP process. In addition,
each connector and component includes a separate glue and compu-
tation process, respectively. The glue of a connector defines the
operation of the connector as an entity. That is, the glue coordinates
the operations of the other processes in the connector. Ports are
attached to roles to form systems. Which ports can be attached to
which roles, is determined by their process descriptions. The basic
idea is that a port can be attached to a role if the port will behave
well in all situations enabled by the role. In other words, CSP de-
fines a compatibility relation between ports and roles.

The second usage of CSP in Wright, defining semantics of non-
CSP parts of the language, allows using tools operating on CSP to
reason about properties, most notably about dead-lock freedom, of a
Wright connector. This is an important class of tool support enabled
by the rigorously defined semantics of Wright.

Wright allows describing hierarchical structure of both compo-
nents and connectors. This is done by enclosing a system into the
place of a process. In addition to the normal system specification,
bindings between the port and role names in the enclosing element
and those specified in the enclosed system need to be specified.

Wright distinguishes between component and connector types
and instances. Each connector and component is of exactly one
type. There is, however, no taxonomy of types.

In addition to component and connector types, Wright includes a
construct called style. Styles are collections of type definitions and
constraints. They are expressed in first order predicate logic and
they can be used in a manner similar to that in Acme described
above. In addition to component and connector type definitions, a
style can include interface type definitions. They are process de-
scriptions that can be used in port and role definitions.

Type definitions in styles can be parameterized. That is, parts of
the type definition can be left open and a value can be filled in when
the type is instantiated. New styles can be defined in terms of exist-
ing ones through subtyping: the new style has the same type defini-
tions and constraints as the old one plus some additional type
definition or constraints.

Variation mechanisms of Wright are similarly limited as for
Acme, although Acme uses the term family where Wright uses
style. In short, styles supplemented with constraints seem to be able
to express variability.

3.4 Koala

As the languages described above, the Koala model has components
as a main design element. But in other respects, Koala differs
greatly from its peers. In Koala, there is no notion of connectors,
resources, functions or constraints. Configurations are comprised of
components connected to each other through interfaces that are the

connection points in Koala. The connection between components is
not symmetric: a distinction is made between provided and required
interfaces. Loosely defined, a component having a provided inter-
face means that the component offers some service for other com-
ponents to use. Similarly, a required interface signals a service
being required by the component from some other component.
Koala interfaces are similar to those in COM or Java. [10]

There are some limitations on how interfaces can be connected
to each other: only required and provided interfaces of the same
interface type can be connected with each other and each required
interface must be connected to a single provided interface. On the
other hand, a provided interface can be connected to any number of
required interfaces, including zero.

In addition to connecting interfaces to each other, it is possible to
connect constituent parts of interfaces directly. These parts are
called functions. Hence, interfaces in Koala are not atomic even
when considered as connection points.

Koala has a type system: a distinction is made between both in-
terface and component types and instances. There is, however, no
taxonomy of component or interface types.

Compound components can be used to express compositional
structure in Koala, i.e. other components can be contained within a
component. An interface of a compound component can be bound
to an interface defined by a contained component.

Koala includes a construct, module, which is a component with-
out an interface of its own. Modules are used inside compound
components for gluing interfaces. Suppose, for example, that each
component contained in a compound component has an initializa-
tion interface to be called before using the component. Due to bind-
ing rules, it would not be possible to bind all these interfaces to any
single interface of the compound component. Therefore, a new
configuration specific module is added: when the initialization
function for the compound component is called, the call is routed to
the module, which in turn calls the initialization functions of all
necessary components in the order desired.

In addition to the constructs already mentioned, Koala provides
mechanisms for handling both the internal diversity of components
and the structural diversity in a configuration. Internal variety is
manifested as variation of component parameters. There may be
dependencies between parameters: a parameter value may imply
that another parameter has a certain value. Structural diversity per-
tains to alternative provided interfaces for a required interface: e.g.
there may be multiple components that provide the same interface
required by a certain component. The choice between the interfaces
is made by a construct called switch either statically, that is at com-
pile time, if the information required for the selection is available,
or, otherwise, dynamically at runtime.

We have no information about whether Koala has formally de-
fined syntax or semantics.

4 COMPARISON OF CONCEPTS OF THE ADLS
WITH THE CONFIGURATION ONTOLOGY

In this section, we use our framework defined in the previous sec-
tion for comparing the concepts and constructs found in the ADLs
with those of the configuration ontology.

4.1 Key Concepts and the Relations between Them

Component is the central concept of Acme, Wright and Koala. It is
also present in the configuration ontology with that same name. The
semantics are as well similar: components represent the defining
parts of a system in configuration modelling, too. In addition, sys-



tems as defined in Acme and Wright and configurations as defined
in Koala have a counterpart in the configuration ontology, namely
configuration.

The notion of connection points is also common to all the studied
modelling methods. In Acme and Wright they are called ports and
roles in components and connectors, respectively. In Koala connec-
tion points are termed interfaces and in the ontology ports. The
semantics of connection points are also similar in all the disciplines:
they denote the mechanism for connecting other entities.

Connectors are first-class citizens in Acme and Wright. How-
ever, there are no connectors in the configuration ontology or Ko-
ala. Thus, there is a major difference in how the disciplines handle
architectural connection — an important issue in both ADLs and in
the configuration ontology.

What then is the reason for this disagreement in architectural
connection? We believe that at least a partial reason for the impor-
tance of connectors in Acme and Wright can be found in the under-
lying assumptions of them and several of the ADLs not studied in
this paper: a major issue in software architecture has been reusing
existing components. Furthermore, there has been considerable
effort in the software engineering community to reuse heterogene-
ous components, which cannot be connected directly to each other
due to different communication mechanisms and various other
reasons. Therefore, connectors have been introduced in ADLs as a
vehicle for connecting heterogeneous components.

In Koala, the situation is rather different: components are ho-
mogenous and there seems to be no problem in connecting them
directly, i.e. without connectors. Hence, Koala is much closer to the
configuration ontology than Wright and Koala.

Resources, a feature present in the configuration ontology but
not in any of the ADLs, is similar to the notion of provided and
required interfaces present in Koala in the sense that they are both
anti-symmetric. What is more, resources are produced and con-
sumed by components, just as interfaces are provided and required.
However, resources are produced and consumed in certain quanti-
ties, which gives them more expressive power compared with the
notion of provided and required interfaces.

In addition to simulating provided and required interfaces, re-
sources can be used to model other relevant quantities. Such quanti-
ties include memory, power, output capacity and throughput. The
software engineering community has considered similar issues
important [15]. Hence, resources could very well be an important
feature of the configuration ontology when used to model software
architecture.

Modelling functions is another feature of the configuration on-
tology that all three ADLs presented in this paper lack. Functions
are an important aspect of software engineering usually termed
features in the domain [16]. We believe that also functions could be
very useful when modelling software with the ontology.

All the ADLs have some mechanisms for modelling structure.
However, the configuration ontology provides much stronger
mechanisms: the configuration ontology provides a wide range of
variation mechanisms. Furthermore, in the configuration ontology a
component can be a part of many components simultaneously,
which is not possible in any of the ADLs.

All the disciplines except Koala have explicit mechanisms for
expressing constraints. Further, in all disciplines where constraints
exist, they are logical expressions about the non-behavioural prop-
erties of a system modelled in that discipline. A difference is that in
the configuration ontology, there is no direct support for heuristic
constraints as defined in Acme. Support for modelling preferences
and optimization criteria have been identified as important and
developed in other research on configuration.

4.2 Distinction between Types and Instances

All the three ADLs have some distinction between types and in-
stances. In Acme, the distinction is rather weak, as the type systems
can be seen as a simple macro expansion mechanism. Nevertheless,
there is taxonomy between the Acme types. The situation is rather
similar in Wright: types bear a little meaning as such. The only
function of types seems to be facilitating in defining and altering
recurring patterns. In Koala, interface types are strong in the sense
that only interfaces of the same type can be connected. There is,
however, no taxonomy for the interface types. The component types
seem to have no function beyond defining the structure of a set of
components. Hence, component types seem to be as a construct as
weak as types in Acme and Wright.

In the configuration ontology, strong distinction between types
and instances is one of the basic assumptions and is made for all
kinds of entities. Types are organized in taxonomies.

4.3 Variation Mechanisms

A question closely related with the distinction of types and in-
stances is: What is being modelled, one product or a product family.
The configuration ontology aims at modelling product families.
Configuration model knowledge defines the common properties of
the family members. A lot of variation mechanisms are provided.

As stated in the analysis of Acme and Wright, both of these lan-
guages can be seen to provide some support for modelling variabil-
ity: there are no explicit variation mechanisms, but the combination
of system types and constraints seem to be able to express common
structure shared by a set of products.

In Koala, there is some knowledge about the common properties
of all the products: component and interfaces definitions are stored
in a component repository and they are common to different sys-
tems to be constructed [10]. In fact, type definitions shared by a set
of products is exactly the same phenomenon be have already seen in
provided by the family construct Acme and by the style construct in
Wright. As there are no constraints to complement the shared type
definition in Koala, the support provided by Koala for variability is
weaker than that Acme and Wright.

In the previous section, it was stated that Koala could model both
internal and structural variety. How does this statement relate to the
above observation that Koala provides a weaker support for vari-
ability than Acme and Wright? We claim that we are dealing with
two distinct forms of variability. The variability in Acme and
Wright can be used to span a set of products with many similarities,
or in other words, a product family. On the other hand, the variation
mechanisms in Koala seem to model behavioural variety of soft-
ware embedded in a physical product instance: e.g. a television set
can behave differently depending on some parameters. Of course, it
could be argued that the television set in our example is, in fact, a
product family. Nevertheless, we consider the variation mechanisms
discussed above examples of different phenomena.

5 MODELLING SOFTWARE ARCHITECTURE
WITH THE CONFIGURATION ONTOLOGY

In this section, we strive to synthesize the configuration ontology
with the domain of software architecture. We do this by mapping
the concepts in the ADLs to some concept or concepts in the con-
figuration ontology. Components, ports, properties, and constraints
are represented in the obvious manner using their direct counter-
parts, whereas the representation of connectors and roles is more
problematic. Hence, we will present a mapping of connectors to



components, and provided and required interfaces to ports with the
aid of type specifications.

5.1 Modelling connectors as a type of component

In translating the semantics of connectors in Acme and Wright into
concepts in the configuration ontology, it helps to observe that
components and connectors have structures very similar to each
other. Therefore, it is natural to view connector as a subtype of
component with special semantic constraints. Indeed, defining con-
nector to be a subtype of component will enable us to express part
of the semantics associated with connectors. Furthermore, we can
define roles in connectors to be ports in the connector-type compo-
nents. To enforce the right use of connectors, we define suitable
constraints that enforce the right use of connectors: e.g. in Wright,
the only class of allowed connections is that between a component
and a connector.

Subtyping can also be used for distinguishing provided and re-
quired interfaces from one other. By defining common supertypes
for provided and required interfaces it is possible through multiple
inheritance to have two versions of each port type, a provided and a
required. By using constraints it is possible to assert that invariants
concerning provided and required interface types hold. For instance,
the fact that in Koala a required interface must be connected to
exactly one provided interface of the same interface type can be
easily captured using constraints.

5.2 Capturing diversity

Internal diversity of Koala can be captured with attributes defined
by components and constraints. Dependencies between different
parameters can be captured using constraints between attribute
values of component types.

In the configuration ontology, cardinality of a port defines the
amount of ports that can be connected to it. Cardinality can be used
to capture some aspects of structural diversity in Koala. By defining
cardinality greater than one for a port representing a required inter-
face, multiple provided interfaces represented as ports could be
connected to that port. This is only a partial solution as it says noth-
ing about deciding which ports should actually be connected; con-
straints can be used to model this.

6 EXTENSIONS NEEDED FOR MODELLING
SOFTWARE ARCHITECTURE

Albeit the configuration ontology captures a major part of aspects of
all the studied ADLs, each of them has some features the modelling
of which would require extending the ontology.

Capturing all of the idea behind heuristic constraints of Acme
may require adding some method of representing optimization
criteria and preferences in the configuration ontology.

There is no mechanism in the configuration ontology for model-
ling behaviour similar to the way how CSP is used in in Wright. In
fact, the configuration ontology ignores behavioural aspects en-
tirely. In case considering behaviour should be required in the con-
figuration ontology, it would be natural to extend the constraint
language to cover behavioural aspects, as the constraint language
can be seen as the extension mechanism of the ontology.

Koala includes the method of function binding, in which the
constituent functions of interfaces are connected directly to each
other instead of connecting interfaces [10]. This construct gives an
internal structure to Koala interfaces. Given that interfaces of Koala

are modelled with ports in the configuration ontology, this contra-
dicts with the underlying assumption of ports being undividable
connection points. As a result, there is a mismatch between inter-
faces in Koala and ports in the configuration ontology.

There is a number of possible ways to capture ports with internal
structure. The first one is to make Koala functions the basic level of
connection. Unfortunately, this approach introduces major prob-
lems. Firstly, interfaces would lose their counterpart in the configu-
ration ontology. Secondly, applying the approach would likely lead
to increased complexity in models of software products: the fact
that an interface can contain several functions implies this.

The second approach would be to introduce compositional struc-
ture for ports of the configuration ontology. Applied to the problem
at hand, interface types correspond to port types that have ports
corresponding to functions as their parts. This approach is appeal-
ing: it models the relation between interfaces and functions in a way
corresponding to the intuitive understanding of the issue. This ap-
proach would require major changes to the ontology, however.

Binding of interfaces of a compound component with the
interfaces of the inner parts is another feature of Koala lacking a
counterpart in the ontology. It seems that the ontology would need
to be extended in order for it to model this phenomenon.

7 DISCUSSION AND COMPARISON WITH
PREVIOUS WORK

There is an apparent difference in the natures of the sets of product
variations modelled in different disciplines. In the configuration
domain, this set is typically termed as configurable product or a
product family. One of the defining characteristics of this concept is
a pre-designed general structure with a lot of variation in the con-
figurations [17]. On the other hand, above it was found that Koala
supports no common structure for a set of products. In fact, Koala is
not targeted at modelling a product family or a set of them, but
product populations, which are defined as a set of products with
many commonalities but also with many differences [9]. Hence, the
underlying aims of the ADL modeling and configuration modelling
are not totally similar.

In the previous section it was stated that no satisfactory mapping
could be found for function binding of Koala. One possibility to
respond to this and similar problems is to ignore the problematic
feature. Even though ignoring aspects of ADL that are of practical
or theoretical importance is nothing we would do light-heartedly,
we still believe that doing so in some cases will increase the useful-
ness of the configuration ontology in modelling software products.
Therefore, the question is: which features of ADLs should be mod-
elled. This is a question that can only be fully answered by empiri-
cal research into the nature of software product families.

Research closely related to this paper has been conducted earlier.
We do not know of earlier attempts of comparing the concepts of
software architecture description to those of configuration model-
ling. This is the main contribution of our paper.

In their work, Ménnistd et al. have pointed out the existence of
the research area of configurable software and identified some key
concerns in the area [18]. They have not, however, studied the con-
cepts of ADLs in detail or proposed any mapping from these con-
cepts to those of configuration modelling domain.

On the other hand, [19] presents a formalized software configu-
ration management (SCM) ontology. The concepts of the SCM
ontology are, however, different from those of the configuration
ontology. They are aimed at representing the modules, files, or
packages, their versions and the dependencies between these. The



ontology does not take into account the connections and interfaces
between components of a system.

Felfernig et al. have proposed a scheme for constructing configu-
rators based on UML descriptions of configuration knowledge [12].
Basically, their approach could be used for creating configurators
for software products as well. Their approach is, however, different
from our approach: theirs is based on presenting configuration
knowledge in UML, while our approach is based on modelling
software with the concepts of product configuration.

In [20], Kiihn has presented an approach to software configura-
tion based on structure and behaviour. He uses statecharts, a method
similar to finite state machines, for specifying the behaviour of a
module. This approach is similar to Wright in that it describes both
structure and behaviour. With its focus on using behavioural con-
straints for making decisions during the configuration process, this
approach is different from ours.

8 CONCLUSIONS AND FUTURE WORK

Above, we have presented an analysis of three ADLs and compared
their concepts to a conceptualization of configuration knowledge.
The aim has been to find a mapping from the concepts of ADLs to
those of the configuration ontology. Our goal is to use configuration
ontology and its supporting toolset for configuring software.

We found counterparts and close correspondences in the con-
figuration ontology for the main elements of the ADLs we have
studied and were able to propose a mapping between them that
shows that configuration languages can be used for representing
architectural knowledge. For instance, both share the notion of
components. Furthermore, compositional structure, systems formed
of connected components and constraints are phenomena present in
both disciplines. Hence, it seems that the concepts of the configura-
tion ontology can be used for modelling software products. How-
ever, capturing some aspects of ADLs seems to require extending
the configuration ontology. These aspects include function binding
and binding the connection points of compound components with
connection points in its inner parts. Another important aspect is
modelling behaviour. Of the ADLs, Wright models behaviour.
Additionally, the approach presented by Kiihn also emphasizes
behaviour [20]. The question whether behavioural aspects really are
important and should be modelled when configuring software prod-
uct families, should be resolved through empiric studies. The exis-
tence of Koala, a commercial ADL with no behaviour modelling,
suggests that modelling behaviour is not absolutely necessary.

There are still open questions and a need for further work. It is
necessary to define the mapping of the ADL concepts to the con-
figuration ontology more rigorously. Moreover, an ontology and a
configuration language for software products should be defined.
This will probably require investigating more thoroughly the current
ADLs and the conceptualizations of disciplines such as SCM, gen-
erative and feature based programming [16,21], and, of course, the
developments in the UML community, as well as case studies of
real software product families. After completing this, case studies
are needed to verify the applicability of the configuration language
to modelling software. Another issue to be concerned is the compu-
tational complexity of configuring software products. Theoretical
complexity analysis can provide insight into this issue, but only
experiments with real products will give relevant information on the
practical feasibility from this point of view. When moving towards
empirical studies, it is also necessary to consider which of the exist-
ing configurators and their modelling languages best support soft-
ware configuration at a more detailed level than in this study.

6

ACKNOWLEDGEMENTS

We gratefully acknowledge the financial support from Academy of
Finland (project 51394) and National Technology Agency of
Finland (Tekes).

REFERENCES

[1] J. Bosch, Design and Use of Software Architectures: Adapting and
Evolving a Product-Line Approach, Addison-Wesley, 2000.

[2] S. Vestal, 4 Cursory Overview and Comparison of Four Architecture
Description Languages. Technical Report. Honeywell Systems & Re-
search Center, 1993

[3] N. Medvidovic and R. M. Taylor, ‘A Classification and Comparison
Framework for Software Architecture Description Languages’, IEEE
Transactions on software engineering, 26, 70-93, (2000).

[4] D. Garlan, R. T. Monroe, and D. Wile, ‘Acme: An Architecture Descrip-
tion Interchange Language’, in: Proceedings of CASCON'97, 1997.

[5] D. Garlan, R. T. Monroe, and D. Wile, ‘Acme: Architectural Description
of Component-Based Systems’, in: Foundations of Component-Based
Systems, Cambridge University Press, 2000.

[6] R. T. Monroe, D. Garlan, and D. Wile. Acme Reference Manual. Avail-
able at “http:/www-2.cs.cmu.edu/afs/cs/project/able/www/AcmeWeb/
ACME%20StrawManual.html”. Cited March 11, 2002

[7] R. Allen and D. Garlan, ‘A Formal Basis for Architectural Connection’,
ACM Transaction on Software Engineering, (1997).

[8] R. Allen, A Formal Approach to Software Architecture. Doctoral disser-
tation, 1997.

[9] R. van Ommering, ‘Configuration Management in Component Based
Product Populations’, in: Proceedings of Tenth International Workshop
on Software Configuration Management (SCM-10), 2001.

[10] R. van Ommering, F. van der Linden, J. Kramer, and J. Magee, ‘The
Koala Component Model for Consumer Electronics Software’, IEEE
Computer, 33, 78-85, (2000).

[11] T. Soininen, J. Tiihonen, T.Ménnistd, and R.Sulonen, ‘Towards a
General Ontology of Configuration’, A/ EDAM, 12, 357-372, (1998).

[12] A. Felfernig, G. Friedrich, and D. Jannach, ‘UML as Domain Specific
Language for the Construction of Knowledge-Based Configuration
Systems’, International Journal of Sofiware Engineering and Knowl-
edge Engineering, 10, 449-469, (2000).

[13] D. Garlan, ‘Software Architecture’, in: Encyclopedia of Sofiware Engi-
neering, J. J. Marciniak, ed. John Wiley & Sons, 2001.

[14] C. A. R. Hoare, Communicating Sequential Processes, Prentice-Hall,
1985.

[15] D. Garlan and D. E. Perry, ‘Introduction to the Special Issue on Soft-
ware Architecture’, IEEE Transactions on software engineering,
(1995).

[16] K. Czarnecki and U. W. Eisenecker, Generative Programming, Addi-
son-Wesley, 2000.

[17] J. Tiihonen, T. Lehtonen, T. Soininen, et al, ‘Modeling Configurable
Product Families’, in: Proceedings of the 12th International Confer-
ence on Engineering Design (ICED99), 1999.

[18] T. Ménnisto, T. Soininen, and R. Sulonen, ‘Product Configuration
View to Software Product Families’, in: Proceedings of Tenth Interna-
tional Workshop on Software Configuration Management (SCM-10),
2001.

[19] T. Syrjénen, ‘Including Diagnostic Information in Configuration Mod-
els’, in: Proceedings of the First International Conference on Compu-
tational Logic, 2000.

[20] K. Kiihn, ‘Modeling Structure and Behavior for Knowledge-Based
Software Configuration’, in: Proceedings of the ECAI 2000 Workshop
on New Results in Planning, Scheduling, and Design, 2000.

[21] C. Prehofer, ‘Feature-Oriented Programming: A Fresh Look at Ob-
jects’, in: Proceedings of ECOOP’97, 1997.



