Timo Asikainen

Representing Software Product Line Architectures Using a Configuration Ontology

Master’s thesis submitted in partial fulfilment of the requirements for the degree of

Master of Science in Technology

Espoo, August 27, 2002

Supervisor: Professor Timo Soininen, Helsinki University of Technology

Instructor: Professor Timo Soininen, Helsinki University of Technology

HELSINKI UNIVERSITY OF TECHNOLOGY ABSTRACT OF THE MASTER’S THESIS

Author : Timo Asikainen

Title: Representing Software Product Line Architectures Using a Configuration Ontology
Date: August 27, 2002 Number of pages: 134

Department: Department of Industrial Engineering and Management

Professorship: T-106 Information Processing Science

Supervisor: Prof. Timo Soininen

Instructor: Prof. Timo Soininen

In the software engineering domain, software product lines have recently been identified as a form of
software reuse where a fixed set of assets is used to produce a large number of variations of a single
product. The set of assets typically includes software components and a software architecture or a number
of them, into which the components are incorporated. Architecture Description Languages (ADLs) are

notations used for formally or semi-formally describing the architecture of software systems.

Product configuration, on the other hand, is a research domain where the focus has been on modifying
the general design of a product in prescribed ways to produce product individuals that match the specific

needs of customers. A product that lends itself to configuration is termed a configurable product.

This thesis studies the possibility of representing software product line architectures using a configuration
ontology, i.e., a conceptualisation of the knowledge people have on configurable products. In more detail,
the thesis focuses on analysing and comparing the concepts of ADLs and a configuration ontology, and
constructing mappings between individual ADLs and the configuration ontology. The undetlying
objective is to utilise the configuration ontology, configuration modelling languages built on it, and tool
support developed for the configuration languages in developing, modelling, managing, and creating

instances of software product lines.

It was found that ADLs and the configuration ontology share much of their concepts: many of the
concepts of the ADLs are present in the configuration ontology as well, and these concepts could easily
be mapped into the configuration ontology. Many other concepts could be adequately represented using
the concepts of the configuration ontology. However, some concepts of the ADLs could not be found a
satisfactory mapping to the configuration ontology; schemes for extending the ontology with these
concepts are suggested. On the other hand, some concepts of the configuration ontology were not found
a counterpart in any of the studied ADLs. Some of these concepts have been considered useful in

modelling software, but have not been included in ADLs.

Keywords: Softwate product line, Product configuration, Architecture Description Language
(ADL), Configuration ontology

TEKNILLINEN KORKEAKOULU DIPLOMITYON THVISTELMA

Tekij : Timo Asikainen

Tyon nimi: Ohjelmistotuotelinjojen arkkitehtuurien esittiminen konfigurointiontologian avulla
Piiviys: 27.8.2002 Sivumaari: 134

Osasto: Tuotantotalouden osasto

Professuuri: T-106 Ohjelmistotekniikka

Valvoja: Prof. Timo Soininen

Ohjaaja: Prof. Timo Soininen

Ohjelmistotuotelinjat ovat ohjelmistotuotannon muoto, jossa samoista, olemassa olevista tuotanto-
hyodykkeitd tuotetaan suuri joukko variaatioita samasta perustuotteesta. Kiytettiviin hyodykkeisiin
kuuluu tyypillisesti joukko ohjelmistokomponentteja sekd yksi tai useampi ohjelmistoarkkitehtuuri.
Ohjelmistoarkkitehtuurien kuvauskielet (ADL) ovat formaaleja tai puoliformaaleja menetelmid

ohjelmistoarkkitehtuurien kuvaamiseen.

Konfigurointi on tutkimusalue, jossa tutkimuksen kohteena ovat konfiguroituvat tuotteet.
Konfiguroituvan tuotteen tunnusmerkkini on se, ettd yleistd tuotetta moukataan yksittdisten asiakkaiden
vaatimusten perusteella rutiininomaisesti siten, ettd syntyy asiakkaiden vaatimuksia hyvin vastaavia tuote-

vksiliti.

Ty6ssd tutkittiin mahdollisuutta esittdd ohjelmistotuotelinjojen arkkitehtuureja kiyttden konfiguroitavien
tuotteiden kuvaamista varten kehitettyd konfigurointiontologiaa. Taustalla oleva tavoite oli kdyttid em.
konfigurointiontologiaa, sen Kkisitteistod kdyttdvid konfigurointikielid ja nditd tukevia tyokaluja
ohjelmistotuotelinjojen kehittimiseen, mallintamiseen, mallien hallintaan seka yksittdisten ohjelmistojen
tuottamiseen. Tutkimusmenetelmi oli konstruktiivinen: ADL:ien ja konfigurointiontologian kisitteistén
analysoimisen ja keskindisen vertailun jilkeen esitettiin konstruktio, jossa nidytettiin miten ADL:en ja

konfigurointiontologian kisitteet ovat kuvattavissa toisiinsa.

Ty6ssd selvisi, ettd ADL:en ja konfigurointiontologian kisitteist6illd on paljon yhtildisyyksid: monia
ADL:ien kisitteitd vastaa konfigurointiontologiassa samanniminen ja -sisdltdinen kisite. Lisiksi joukko
ADL:en kisitteitd voitiin tyydyttivilld tavalla esittdd konfigurointiontologian kisitteiden avulla, vaikka
kisitteiden vilinen vastaavuus ei ollutkaan tiydellinen. Kaikkia ADL:ien kisitteitd ei kuitenkaan onnistuttu
esittimdin konfigurointiontologian avulla; nididen kisitteiden esittdmiseksi luonnosteltiin laajennuksia
ontologiaan. Toisaalta konfigurointiontologiassa havaittiin olevan joukko kisitteitd, joille ei ole vastinetta

ADL:issd, mutta joiden on kirjallisuudessa todettu olevan tirkeitd ohjelmistoja mallinnettaessa.

Avainsanat: Ohjelmistotuotelinja, Konfigurointi, Ohjelmistoarkkitehtuurien kuvauskieli (ADL),
Konfigurointiontologia

Table of Contents

1

2

INtrOAUCHON oot s 3
1.1 Background ..o s 3
1.2 Research Problem and Goals ... 4
1.3 MethOd ..o s 6
1.4 SCOPE ettt 7
1.5 OULHNE ...t 8

Product ConfIguration ... s 9
2.1 Configurable Products.........cccviiiiiniiciiiniiiininiieeiiceeceeisscenessceesesssenens 10
2.2 Conceptualisations of Configuration Knowledge.........ccccovvviviiiirviiinininnnn. 11

2.2.1 The Configuration Ontology by Soininen et al........cccccevvicirniicinineennn. 11

222 Other ConceptualiSations.......ooevvieiieiieciieieieieieieieieieieieesseeeeeeseesenes 15

2.2.3 DASCUSSION w.voviviitiiiiiiciicicte sttt 15

Software Product LINEScccviiiiiiiiiniicic s 17
3.1 Software ArChIteCtUre.......cuviiiieiiiiciic s 19
3.2 Architecture Description Languages.........cooeeiiciiceceieieeieiesesesesene 19

32,1 AMANT s 20

3.2.2 WHIGNEciiiiiiiiiis 26

323 KOl ittt e 30

Comparison of Concepts of the ADLs with the Configuration Ontology.............. 35
4.1 Key Concepts and the Relations between Themcccccvviviviiiivnicninnnne. 35
4.2 Distinction between Types and Instances.......cocvvcviviiciiinicniccccn, 40
4.3 Variation MeChaniSmsccvvceieiiininiiiiccc e 42

SYNENESIS .ttt 45
5.1 A Model of Entities in the ADLs and in the Ontologycccccevevicrriviiunnne. 45
5.2 On the Style of Presenting the Mappingcccccovvivrinininiiicceceeeeeneenennens 45
5.3 Mapping between Armani and the ONtologycccvvieiiriviicininiicininicennn. 54

5.3.1 Mapping Basic Concepts of Armani to the Ontologyccceeveviiicnnnes 54

5.3.2 Mapping Additional Concepts of Armani to the Ontology..........ccceceueuuces 65

5.3.3 Ontological CONSLIANLS......ccoviiiiiiiiiiiieieieieieieieieieiiesse e 71

5.3.4 Mapping the Ontology to AfMANIcccevveeueuriiieieiiinieieiriieeisiseeeeeeneniaes 73
5.4 Mapping between Wright and the Ontology ..., 79

5.4.1 Mapping Basic Concepts of Wright to the Ontologycccceveueiviicueuiaes 79

5.4.2 Mapping Additional Concepts of Wright to the Ontology.........cccccceueuunecee. 85

54.3 Ontological CONSIAINLS.....c.cuvuviuiueuriiiiieiiiieieieiierersisiesessisiesessisssesessssssesessans 86

5.4.4 Mapping the Ontology to WIghtccccoviiiiiiiiiiiiiiicc 89
5.5 Mapping between Koala and the Ontology ..., 92

5.5.1 Mapping Koala to the Ontology ..o, 92

5.5.2 Ontological CONSLIAINES.....c.cuvvvieiuiuiiiiiieiriiieieiiieressisiesessissesessi e sesssssesessaes 99

5.5.3 Mapping the Ontology to Koalac.cccovviviiiiiiiiiiiiiiiiiiicicce, 102

DASCUSSION 1.ttt 105
6.1 Successfully Mapped CONCEPLS...c.ovwmiverrmieremririeiereeieeieneeeeeseneeeeeseseeeeesenseseaes 105

0.1.1 Configurations, SYSEMScceuririimeriiriiiieriiieieisiiseessiseessissesessssesesesssens 105

6.1.2 Components and CONNECIOLS.....ucueurrieeuerrereeererriieereseeeeerenseeeesesseesesesseseens 106

6.1.3 Potts, Roles, and INterfacesooevveierirrerieierieiiireeetecrecteeee et evenenees 107

6.1.4 Topology: Attachments and Bindings........ccccccovuvviviniiiniinccinen, 107

0.1.5 TaXONOMY...iiiiiiiiiiiiiiiiiiiiii e 108

6.1.6 Compositional SEIUCULE.......cccviiieiiiiicieieieieieeeees e 109

6.2 Unmapped Concepts and Potential EXtensions........cccceevviecrriniierrinienennn. 110
6.2.1 Heuristic CONSLIAMNLS ...cviviuiiiiiiiciiiiiicc e 110

6.2.2 Design Analyses, Interface TYPESccocceueuviicrririieieiriicniriceieseeeneeeeeens 111
6.2.3 Modelling Behaviours.........cccocciiiiiiiiiiiiiiicccnes 111

0.2.4 Function Binding.......cccceviiiiiiniiiiniiiiiiceiiceeiceesceesseenesssenens 112

6.2.5 Bindings between Compound and Contained Components.............c.cc...... 116
6.2.6 Constraint LanguUageccccviiiiiiiiiiiiiiiiissssssssenenes 118

6.3 The Extra Expressive Power of the Ontologycccoceviiiininiiniiinnicinnnes 119
6.3.1 Variability in Part and Port Definitionscccceeervnernnnnnnccccccenenes 119
0.3.2 COMEXLS c.vuiuiiiiiiciiiiti bbb 120
0.3.3 RESOUICES ..oiuiiiiiiiiiiiic e 120
0.3.4 TUNCHONS ..ottt 121
0.3.5 CONSIANE SELS..oiviiiiiiiiiiiiiiiiiicc e 121

6.4 EVAIUALION ..ttt 121
6.4.1 Conformance of the Mappings to the Criteria.......cccovvierrvveieiruniccirurincnnn 121
0.4.2 RelaDIlty cooecviiiiiiiiciiciricc s 122

6.5 General DISCUSSIONciiiiiiiiiiiiiiiiic s 123
6.5.1 Topology in the ADLs and in the Ontology.........ccceceuvivivirinininiriiiccccnnes 123
6.5.2 Modelling Products with Embedded Software..........ccccceeviiciivicininenee. 125

7 Comparison with Previous Work ..., 126
8 FUuture WOrK ..ot 128
O CONCIUSIONS ..ttt 130
REFEICICES ..t 131

1 Introduction

1.1 Background

An apparent trend in the developed world is the increasing significance of software.
Today, software is not only used in general purpose computing devices, such as desktop
and laptop computers and servers, but also in a wide range of devices in the form of
embedded software. Examples of this type of devices include consumer electronics,
cars, and telecom switches. Further, the number and range of types of handheld devices
using software is drastically increasing: handheld computers are no longer merely toys of

top executives, and mobile phones have surely solidified their position in our daily lives.

Another trend paralleling the one described above is the growing demand for variability
of software, i.e., software systems must lend themselves to be customised to match a
range of different requirements instead of a single set of requirements. Albeit consumers
might be happy with the standard web browser and word processor, there are other,
strong drivers for the variability of software. First, when software is embedded in
concrete products, software is often seen as a potential means for varying the product.
Second, the software running on e.g. handheld devices must be flexible with respect to
the individual needs of users: the scarcity of resources such as disk space, memory, and
computing power, requires that the software running on these devices exactly matches
the needs of each user, as matching the needs of all users simultaneously is not possible
with the given resources. Further, variability is not only required with respect to the
static likings of the users, but also with respect to the coming and going needs of the

customer and the changes in the environment where the device is located.

The currently dominating approach for software development is to produce a single
system that covers the needs of an entire range of customers, or to modify such a single
system to correspond to the individual requirements of a customer. Unfortunately, this
approach is hardly applicable today, and surely unable to match the requirements of the
future (Thiel et al. 2002). First, the cost and development effort following from the use
of this approach are impossible to tolerate. Second, the approach is incapable of
addressing the requirement of varying the system at runtime based on changes in user

needs and environment in which the device is located.

On the other hand, the issue of achieving variability has been studied in the domain of
traditional products, 1.e. mechanical and electrical ones. This domain of research is called
product configuration, and it pertains to modifying the general design of a product in
prescribed ways to produce product individuals that match the specific needs of
customers. Until lately, configuring software has not attracted much interest. But today
the issue has been acknowledged in the software engineering domain as well, and the
most systematic of software product lines come quite close to configurable products.

(Bosch 2000; Clements et al. 2001).

Applying the results from configuration of traditional products likewise to software is an
interesting research direction. The underlying assumption behind the idea is that
although very different in nature, there are also enough similarities between software
systems and traditional products that enable applying the same methods used with
traditional configurable products to software product lines as well. These methods are
based on computer support and cover the entire lifecycle of products from developing

the products to describing, managing, and generating instances of them.

However, the above-mentioned assumption is indeed a mere assumption as long as
there is no research supporting its validity. In order to apply the techniques developed
for configurable products to software product lines as well, software product lines must
lend themselves to be described with the same concepts as configurable products: if
traditional and software products can be described in the same terms, and the tools
processing the descriptions make no extra assumptions, the techniques developed for
traditional configurable products could indeed be applied to software product lines as

well.

This thesis studies the existence of a conceptual basis shared by software and traditional
products, and if no such basis seems to exist, the possibilities for creating one are

studied.

1.2 Research Problem and Goals

The research problem is defined in the form of research questions as follows:

1. One of the methods used for modelling software is architecture description

languages (ADLs). What are the concepts for modelling software used in ADLs?

How do they compare to the concepts used for modelling traditional

configurable products?

2. Given the set of concepts above, is there a viable mapping between these two
sets of concepts, i.e., can the concepts used for modelling software systems be
reduced to the set used for modelling traditional configurable products, and vice

versa? If there is at least a partial mapping, what is it in detail?

3. If the mapping described in the second research question is a partial one, how
should the set of concepts used for modelling traditional products be
supplemented in order to enable mapping the entire set of software modelling

concepts?

The goal of this thesis is to represent the architecture of a software system using the
concepts of the product configuration domain by applying the mapping between the
concepts and an ADL specified in the research questions. The representation can
happen either by starting from an ADL description and mapping it explicitly to the
concepts of the product configuration domain, or by modelling the architecture of the
system with a subset of the product configuration concepts that corresponds to the
concepts of the ADLs. Thereby, the mappings are not merely an analysis tool, but can

additionally be applied for modelling software systems.

Answering the first research question will yield one viable conceptualisation used for
modelling software. This conceptualisation provides a point of comparison to be used
in answering the second and the third question. Answering the two latter questions will

result in achieving the research goal.

In order to achieve the research goals, the mapping mentioned in the second research

question should satisfy the following criteria.

1. Unambiguity. Each concept is mapped into a single set of concepts, i.e., there are

no alternative mappings for a single concept.

2. Elegance. The mapping should be as simple as possible, and concepts in the
domain for which the mapping is made should not be used in ways

contradicting their intended or standard use.

3. Modularity. Each part of the domain can be mapped separately to the image.

4. No explosion in size. The size of the image of a model in the target domain should

be in proportion to the original size of the model.

5. Easy to understand. The mapping should be easy to understand, i.e., it should be
intuitively clear which elements in the target model correspond to the elements

in the original model.

0. Sufficient level of detail. The mapping should be detailed enough to serve as a

specification for implementation in some suitable programming language.

1.3 Method

The research method followed in this thesis is the constructive method. First, three
prominent ADLs are analysed at the conceptual level; second, the concepts of the ADLs
are compared with each other, and with the concepts of the product configuration
domain; third, it is shown how architecture-based descriptions of software systems can
be modelled using the configuration concepts by constructing a mapping between each
ADL and the configuration concepts; and finally, an analysis will be presented on which
concepts of the ADLs could and could not be found a mapping, along with suggestions

on what could be done with the concepts that could not be found a mapping.

The domains involved in the research problem are analysed in a literature study. These
domains are the product configuration domain and software product domain, and they
are illustrated in Figure 1. As the research problem concentrated on the concepts of the
two domains, the focus should lie on the conceptualisations of both of the domains.
However, as can be seen in the figure, no conceptualisation of the software domain
exists. Therefore, the focus in this domain is at a lower level of abstraction, which is the
language level; this is illustrated with a thick border. On the other hand, there are ready
conceptualisations, i.e., configuration ontologies, of the product configuration models.
Of the conceptualisation, a specific, comprehensive, and widely accepted configuration

ontology will be utilised. Hence, the focus in the domain is on a configuration ontology.

Traditional products Software products

Configurable product Software product line
\ \
presented through structure defined by
\ \
Configuration model Software architecture

conceptualised by
|

Configuration ontology described by

T
conceptual basis of
\

Configuration modelling language Architecture Description Language
\ \
exemplified by exemplified by
\ |
PCML Armani | Wright | Koala

Figure 1 The domains of interest of the thesis

The construction is given by defining a mapping between the concepts in the three
ADLs and those in a conceptualisation of configuration knowledge. In more detail, the
mapping will consist of three parts. Firstly, it is shown how the concepts of each ADL
can be mapped into the configuration ontology. This part of the construction supports
mapping ADL descriptions into the configuration ontology. Secondly, constraints that
limit the modelling facilities to those paralleled in the ADL are defined. This part of the
construction supports using the configuration ontology and its supporting toolset for
producing ADI-like software architectures. Thirdly and finally, it is shown how models
in the configuration ontology, constrained by the constraints specified in the second

part of the construction, can be mapped into the ADL.

The wvalidity of the construction is established by the mapping satisfying the criteria of
the above section: explicitly, the mappings are detailed enough and easy enough to
understand for the reader to convince her of the validity of the mappings. Further, the

validity of the mappings is demonstrated though an imaginary example.

1.4 Scope

The architecture is by no means the only relevant aspect of a software product line.
However, architecture is a central issue in the product line approach to software
engineering. Therefore, concentrating on architecture is a viable alternative to study

software product lines.

ADLs are not the sole possibility for describing software architectures. Nevertheless,
software architectures are generally considered the most sophisticated method of
modelling software architecture. Further, there are many other ADLs besides the three
studied in this thesis (Medvidovic et al. 2000). However, the studied ADLs are

representative of the entire class of ADLs.

The studied ADLs include aspects that are not relevant to configuring software product
lines. These aspects are mostly ignored in this thesis, as the emphasis of the thesis is on

configuring software product lines.

There are other conceptualisations of configuration knowledge than the configuration
ontology chosen for this thesis. However, the chosen ontology is both representative of

other conceptualisations and often cited in the configuration literature.

1.5 Outline

The rest of the thesis is organised as follows. In Chapter 2, an overview of issues related
to configurable products is given and a conceptualisation of the domain is presented.
The focus is shifted to software systems in Chapter 3, in which software product lines
are introduced, and thereafter ADLs as a method for describing their architecture are
studied in some detail. In Chapter 4, the concepts for describing traditional configurable
products and software systems are compared. Chapter 5 presents a synthesis in which
mappings between each ADL and the configuration ontology domain are presented.
Chapter 6 contains the discussion part of the thesis: the results for the mapping are
reiterated and assessed for validity; potential extensions to the conceptualisation of
configuration knowledge are suggested; and general topics concerning the thesis are
discussed. A comparison between this thesis and previous work is carried out in
Chapter 7. Chapter 8 presents projections for future work. Conclusions in Chapter 9

round off the thesis.

2 Product Configuration

Traditionally, there has been a difference in the sales-delivery processes for inexpensive
consumer goods, such as televisions, computers and mobile phones, and expensive
capital goods, such as paper machines, oil rigs and rock drilling machines. The
predominant paradigm for producing consumer goods has been mass production: vast
volumes of identical product individuals have been produced in large batches or using
assembly lines. On the other hand, capital goods have in many cases been one-of-a-kind
products: each product individual is designed based on customer requirements and

thereafter manufactured.

During the last couple of decades, a trend changing the situation described above has
emerged. Many companies that have been applying the mass production paradigm have
noticed that customers are increasingly willing to pay for customised products, i.e.
products that match some or all of the individual requirements of the customers.
Elsewhere, the manufacturers of one-of-a-kind products have noticed that standardising
parts of their range of products can lead to significant cost savings and improved
quality, as the need for design work per manufactured product decreases and the lessons
learned from the design of previous products can be efficiently utilised to avoid

mistakes in the design process. (Pine 1993)

Hence, the trend can be seen as two manufacturing paradigms, namely mass production
and one-of-a-kind products, converging towards each other (Tithonen et al. 1997). What
is in between the two old paradigms can be seen as a new paradigm, often described
with the term mass customisation (Pine 1993). In short, mass customisation can be
considered as a new paradigm replacing the old mass production paradigm. The main
idea of mass customisation is to combine the good sides and benefits from mass
customisation and one-of-a-kind products. More concretely, mass customisation seeks
to provide all the customers with products matching their requirements with no

overhead cost or increased lead-time compared to mass-produced products.

There are many methods for achieving mass customisation. One of the most important
ones is based on modular product design: products are designed in a way that allows a
number of constituent components of the product to be replaced with another variant.
(Pine 1993). Combinational explosion results in very large numbers of variants for

products containing many points where alternative components can be placed.

2.1 Configurable Products

The abstract idea of providing mass customisation through modular product design has

been concretised in the concept of configurable product. But before giving an exact

definition for this concept, some auxiliary definitions are needed.

A product 1s defined as an abstract specification or design of an entity that a

company sales. A product instance is a physical product that is to be delivered to a

customer or a design of a physical product, which is concrete enough to serve as a

specification for manufacturing. (Tithonen et al. 1997)

A configurable product is defined as a product with specific characteristics.

A configurable product is a product that comprises a large number of variants and

serves the specific needs of the individual customer by allowing customer-specific

adaptation of the product. A configurable product has the following

characteristics: (Tithonen et al. 1997)

Each delivered product instance is tailored to the individual needs of an

individual custometr.

The product has been pre-designed to meet a given range of different

customer requirements.

Each product instance is specified as a combination of pre-designed
components or modules. Thus, there is no need to design new

components as a part of the sales-delivery process.

The product has a pre-designed general structure or architecture or a set

of these.

There is no need to do creative or innovative design as a part of the
sales-delivery process. Rather, the specification of a product instance can

be done in a routine manner.

A configurable product is defined by a configuration model. Further, configurators are

defined to be produced by completing configuration tasks:

Configuration model defines the basic product properties and the possibilities for

tailoring them. Configuring a product on the basis of customer requirements

10

produces a configuration, a description of the product instance to be delivered. The

task needed to produce a configuration is referred to as configuration task. (Tithonen

etal. 1997)

Examples of configurable products include personal computers from the computer
industry, switching systems from the telecommunications industry, and passenger cars

from the automotive industry (Felfernig et al. 2001).
In the process of producing configurations, product configurators may be of help:

Product confignrator is an information system for managing products and their
variants, and for doing customer-specific adaptation of the product. (Tithonen et

al. 1997)

Putting pieces together, configurable products form an approach to satisfying variable
customer needs. The approach consists of defining a product through a configuration
model; a product configurator is used to support the process of creating and
maintaining the configuration model. Thereafter, configurations of the product
matching specific needs of a customer are formed through the configuration task using
a product configurator. What is essential is that the effort required to create a
configuration of the product is moderate. Especially, the definition of configurable

product implies that no need for creative design exists.

2.2 Conceptualisations of Configuration Knowledge

The definition of configurable product and the examples from the above section gives
an intuitive understanding of what configurable products look like and the ability to
decide whether a given product is configurable. However, the definition does not
specify any means for specifying configurable products. In the following sections, an

approach for conceptualising knowledge about configurable products is presented.

2.2.1 The Configuration Ontology by Soininen et al.

Timo Soininen, Juha Tiihonen, Tomi Minnistd, and Reijo Sulonen have presented in
(1998) a conceptualisation of confignration knowledge, i.e. the knowledge that people have
on configurable products. In the ontology, configuration knowledge is divided into

three classes.

11

Configuration type
N\

Configuration model concepts | |

Component type

‘ Port type ‘ ‘ Resource type ‘

Configuration model Engine RS-232 Power
AN AN
Configuration Engine1 Port1
(a)

Class Instance [: Direct-subclass-of or
- direct-instance-of

(b)

Figure 2 The basic structure of the ontology. Adapted from (Soininen et al. 1998).

Configuration model knowledge specifies the entities that may appear in a
configuration, their properties, and the rules on how the entities and their

properties can be combined.
Configuration solution knowledge specifies a (possibly partial) configuration.

Requirements — knowledge specifies requirements on the configuration to be

constructed.

The basic structure of the ontology is presented in Figure x. At the top, configuration model
concepts consist of a set of configuration specific classes and configuration specific relation definitions.
The qualifier ‘configuration specific’ refers to the fact that the sets of classes and
functions are specific to the domain of configuration, not to a configuration as defined
above. On a level immediately below in the figure, a set of product specific classes are
defined as direct subclasses of the configuration specific classes. These classes are
termed #pes in the ontology, and they form a configuration model of a product. Proceeding
further down in the figure, a configuration is defined as a set of instances of the types
occurring in the configuration model. These instances are termed zndividuals in the

ontology.

12

It should be noticed that in the ontology, types occur in configuration models and
individuals in configurations. In other words, these two kinds of entities are strictly

separated from one other.
Taxonomy

In the ontology, types are organized into classification taxonomies using ISA-relation. In
common terms, the ISA-relation defines an inheritance hierarchy for the types. The
terms direct subtype and direct supertype are related to the ISA-relation in a natural way: for
types T; and T,, (T; ISA T,) implies that T, is a direct subtype of T,, and T, is a direct
supertype of T,. Similatly, the terms subtype and supertype can be defined in the terms of
the transitive closure of the ISA-relation. Each individual is directly of exactly one type,

and indirectly of all the supertypes of that type.

Configuration type is a common superclass for types occurring in a configuration model.

They can be defined aztributes.
Structure

An important aspect of a product, configurable or other, is its stucture. Informally, the
structure of a product is defined in terms of its constituent components. In the
configuration ontology, Component fjpe is a subclass of configuration type. A component
type, i.e. a subclass of Component type, “represents a distinguishable entity in a product
that is meaningful for product configuration in the sense that a configuration is

composed on component individuals of component types” (Soininen et al. 1998).

Component types can be defined to include other component types as parts. This is
conceptualised by the two component individuals of the types being in HAS PART-

relation with each other.
Topology

Besides structure, an important aspect of a product is the connections between

component individuals in a configuration.

A port type is an intensional definition of a connection interface. Port type is a subclass of
configuration type. Each port type defines a set of port types whose port individuals can
be connected to the port individuals of the port type in its compatibility definition. A

component type specifies its connection possibilities b ort definitions that are
p ype Sp p y

13

conceptualised as component individuals and port individuals being in HAS PORT-

relation.

Two component individuals that have port individuals of compatible port types may be
connected to each other through their port individuals. The two port individuals are
thereby in CONNECTED TO-relation. If any two ports of two component individuals are in
the CONNECTED TO-relation, the component individuals containing the ports are in the

CONNECTED TO-relation as well.
Resources

Resources are used in the ontology to model the production and use of entities, or the

flow of such entities from one component individual to another.

Resource type defines the properties of a resource. Resource type is a subclass of
configuration type. An individual of a resource type is called a resource production individual.
A resource type specifies a computation definition that specifies whether the resource
production or use must be satisfied ot balanced. 1f the production or use is to be balanced,
the production must exactly match the use; in the case they must be satisfied it is
enough that production is greater than or equal to use. The computation is done in a
context. A context is a set of component individuals that can contain all the component

individuals in a configuration, or any subset of these.

The production and use of resources is specified by production definitions and use definitions
in component types. These definitions specify the resource types and quantities

produced or used.
Functions

The concepts of the ontology presented so far have been zechnical concepts. However, an
important aspect of any product is the functions it provides to its users. For capturing

this aspect, the ontology includes concepts for representing functions.

Function type is a subclass of configuration type. A function type is an abstract
characterisation of the product that a customer or sales person would utilise to describe
the products. An individual of a function type is called function. Function types can
specify parts in a similar manner as components. Hence, functions can be composed of
other functions, likewise components of other components. Implementation constraints can

be used to specify the relation between technical concepts, i.e., the concepts of the

14

ontology discussed so far, and functions. E.g., an implementation constraint can specify

that a function is implemented by a set of component individuals.
Constraints

Constraints can be used to capture aspects of products that cannot be reasonably
modelled using the concepts of the ontology presented above. A constraint is a formal
rule specifying a condition that must hold in a correct configuration. They can be
expressed using mathematics and logics. Constraints can specify arbitrary interactions of
types, individuals, and their properties. Formally, constraint is seen as a constraint

instance that defines a constraints expression.

The ontology itself does not specify a language for specifying constraints, but assumes
that such a language exists. Above, some special forms of constraints have already been
mentioned: examples of these include connection constraints and implementation

constraints.

2.2.2 Other Conceptualisations

Besides the ontology described above, there are other conceptualisations of
configuration knowledge. The most prominent of these is used by an Austrian research
group, including e.g. Alexander Felfernig, Gerhard Friedrich, and Dietmar Jannach as
members (see, e.g. (Felfernig et al. 2001)). A comparison between these two
conceptualisations reveals striking similarities. The concepts included and relations
between them in the conceptualisation used by the Austrians are essentially the same as
in that presented by Soininen et al: components, functions, resources and ports are the
main concepts of the Austrian conceptualisation. Further they are related to each other
in a way similar to that in the ontology by Soininen et al.: components can have other
components as parts through aggregation, components can be connected to each other
through ports etc. Finally, the Austrian research group refer in their work to the work
by Soininen et al. as the basis of their own conceptualisation (Felfernig et al. 2001).

Thereby, the two conceptualisations are indeed very close to each other.

2.2.3 Discussion

Historically, four approaches to configuration have been proposed. These include

resource-based, connection-based, structure-based and function-based approaches. The

15

fact that the ontology by Soininen et al. has been designed to synthesise these four
approaches suggests that it would be applicable wherever at least one of the previous

approaches would be.

The best evidence of the practical applicability of an ontology is its being in wide-spread
use in the industry. Unfortunately, there seems to exist no such evidence for the
configuration ontology by Soininen et al., or any other conceptualisation of

configuration knowledge.

However, there is some evidence of the practical usefulness of the ontology by Soininen
et al.: it has been used to model at least one real-world, commercial product, namely a
drilling machine (Tithonen et al. 1998). What is more, the Austrian research group has

adopted the ontology almost as such.

In conclusion, there is some evidence of the applicability of the ontology by Soininen et
al. in the industry, and a considerable support for it in the academia. Further, there
seems to be no conceptualisation of configuration knowledge following an approach
radically different from the ontology. Thereby, in the rest of this thesis, the
configuration ontology is employed as the conceptualisation of configuration knowledge

and is from now on referred to as the configuration ontology, or, for brevity, the ontology.

16

3 Software Product Lines

This chapter introduces the concept of software product line. This concept has emerged
from the software engineering domain. There are a number of definitions for the
concepts. Clements and Northrop from the Software Engineering Institute (SEI) of the

Carnegie-Mellon University (CMU) define the concept as follows (2001):

A software product line is a set of software-intensive systems sharing a common,
managed set of features that satisfy the specific needs of a particular market
segment or mission and that are developed from a common set of core assets in a

prescribed way.
Jan Bosch defines the concept somewhat differently in his book (2000):

A software product line consists of a product line architecture and a set of reusable
component that are designed for incorporation into the product line architecture.
In addition, the product line consists or the software products that are developed

using the mentioned reusable assets

A comparison between the two definitions indicates that there are both remarkable
commonalities and differences between them. Most significantly, the definitions share
the notion of a set of reusable or core assets. Further, both definitions include the set of

products or systems developed using these assets.

Despite the similarities, the definitions are far from being equivalent. The SEI definition
can be seen as market driven: one of the defining characteristics of a software product
line is the satisfying of “the specific needs of a particular market segment”. Bosch’s
definition, on the other hand, emphasises the role of soffware architecture as a part of a

software product line. Thereby, his definition can be said to be technology-driven.

There are still some minor differences between the definitions. First, the SEI definition
includes the requirement missing from Bosch’s definition that the systems belonging to
the product line are developed “in a prescribed way”. The Bosch definition, on the
other hand, postulates that the core assets belonging to the product line are designed to

“for incorporation into the product line architecture”.

Rather than dwelling deeper into the details of the definitions, it is more important for

this work to compare them with the characteristics of a configurable product defined

17

above in Section 2.1 Configurable Products’. This comparison is suggested by the

apparent correspondence between configurable products and software product lines.

The comparison discloses many similarities between the concepts. Of the similarities,
the most striking is that both software product lines and configurable products are
defined to be based on a set of assets: these are termed components in Bosch’s
definition and in configurable products, and simply assets in the SEI definition. The SEI
definition and the definition of configurable product share a market driven aspect: a
software product line conforming to the SEI definition satisfies the needs of a specific
market segment, whereas a configurable product is defined to satisfy a given range of
customer requirements. On the other hand, the notion of an explicit architecture of

configurable products is shared by the Bosch definition.

However, some characteristics of configurable product have no counterpart in the
definitions of software product line: There is no reference to tailoring systems in a
software product line to the individual needs of a customer in either of the definitions.
Moreover, it is not explicitly stated that there would be no creative or innovative design
as a part of the sales-delivery process of software product lines. On the other hand, the
definition of configurable product covers all the relevant aspects of both definitions of

software product line.

A viable conclusion from above would be that software product lines are somewhere
between products designed based on customer orders and configurable products.
Further, the most systematic software product lines come quite close to configurable
products (Bosch 2000). Consequently, the same techniques used for configuring
traditional configurable products can be likewise used for configuring software;
configuring software in the context of software product lines should be understood
similarly as configuration task in the context of traditional configurable products: i.e.,
designing a product individual of the configurable product conforming to some

requirements.

Of course, the resemblance between configurable products and software product lines is
so far on a very abstract level. Next, software architecture is discussed, as they are the

principal level of designing, modelling, and managing product lines.

18

3.1 Software Architecture

The level of design concerning the overall structure of software systems is commonly
referred to as the software architecture level of design. This level includes structural
issues such as the organisation of a system as a composition of components, the
protocols for communication, the assighment of functionality to design elements, the
composition of design elements etc. (Garlan 2001). One definition for software

architecture is (Bass et al. 1999):

The software architecture of a program or computing system is the structure or
structures of the system, which comprise software components, the externally

visible properties of those components, and the relations among them.

Informally, software architecture is used to refer to the structure of a software system
on a high level of abstraction. Explicitly, software architecture does not concern the
fine-grained structure or the properties of a software system, or the process used to
develop it (Medvidovic et al. 1998). Thereby, software architecture is as such a far cry

from a notion covering all aspects relevant to software development.

Of course, in the form defined above, software architecture is an abstract concept.
Therefore, methods for describing software architecture in more concrete terms are

needed in order to make software architecture useful for any practical purposes.

3.2 Architecture Description Languages

Historically, software architecture has been described with idioms such as ‘client-server
architecture’ and ‘pipeline’. In the software engineering community, idioms of this kind
have well-understood semantics. (Shaw et al. 1996). Another simple method for
describing software architectures is the use of box-and-line diagrams. In these diagrams,
computational elements are depicted as boxes and the interconnections between them
as lines. Although both of these methods manage to capture some important aspects of
software architecture, they have been recognised to be inadequate for the task of

software architecture description (Garlan 2001).

Architecture description languages (ADLs) are a promising candidate solution for the
architecture description problem. Loosely defined, ADLs are formal notations with
well-defined semantics. Their primary purpose is to represent architectures of software

systems. A large number of ADLs have been proposed. The greatest common

19

denominator for the class of ADLs is the concept of computational elements present in
all of them; in other respects, they differ from one other radically (Medvidovic et al.

2000).

In the following sections, three ADLs will be discussed in detail. This serves two
purposes. First, based on the descriptions of individual ADLs, a picture of ADLs as a
method of presenting software architectures can be formed. Second, in later section the
possibilities of mapping concepts of ADLs to the configuration ontology are studied

using the same ADLs as examples.

The names of entities in the ADLs are typeset in Courier New throughout the rest of

the thesis.

3.2.1 Armani

This section discusses the concepts of Armani (Monroe 2001) and illustrates them using
a running example. Armani is based on another ADL, namely Acme (Garlan et al. 1997,
Garlan et al. 2000; Monroe et al. 2002). Acme was created as a joint effort of the
academic software architecture community as an architecture interchange language that
would serve as an intermediate language when transforming descriptions from ADLs to
other ADLs. To support this goal, Acme was given the structural constructs that in the
language’s designers’ point of view were the shared structural core of architecture
description. Armani, on the other hand includes all the relevant properties of Acme.
Moreover, compared with Acme, Armani is considerable better documented and thus a

better object of analysis.

The basic concepts of Armani are components, connectors, ports, roles, systems,

properties and representations.
Components and Ports

Components represent the primary computational units and data stores of a system.
Intuitively, they correspond to the boxes in the box-and-line descriptions of software

architectures. Typical examples of components include clients, servers, filters, objects,

blackboards, and databases.

20

System simple cs = { simple_cs

Component client = { Port send-request; };
Component server = { client1 client2
Port rec-request;

send_req send_req

Representation rep = {
System sub = {
Component ¢ = { Port p; }
bi
Bindings {
server.rec_req to server.rep.sub.c.p;

}i

bi

rec_req

}s server T
Connector rpc = { Roles { caller, callee }}; rep - sub ﬁ
Attachments { P

c
clientl.send req to rpc.caller;

client2.send req to rpc.caller;

server.rec_req to rpc.callee;

}s
}s

(@) (b)
simple_cs System ’simple_cs’ Connector foo’ with role 'bar’
Attachment
foo | bar | Component’foo’ with port’bar Binding
foo
rep - sys Component 'foo’ with representation ‘rep’ that defines system ’sys’

©
Figure 3 A client-server system in Armani. (a) The system represented textually. (b) The

system represented graphically. (c) Legend of the notation used.

The interfaces of components are defined by a set of ports. Each port identifies a point
of interaction between the component and its environment. A port can represent an
interface as simple as a single procedure call or more complex interaction, such as a

collection of procedure calls that form a communication protocol.

A running example will be used for Armani and the other ADLs discussed the following
sections, and in Chapter ‘5 Synthesis’. The example system is a client-server system with
two clients. In abstract terms, the topology of the system consists of the two clients

being connected to the server. Further, the server is defined an inner structure. The

21

structure of the system is described in terms of the concepts of each ADL in the

following sections.

Figure 3 illustrates the client-server system in Armani. In Figure 3 (a), there is a textual
representation of the system, and in Figure 3 (b) a graphical one. In both versions,
components client 1,client 2, server, and c are defined. Further, both client 1
and client 2 define a port called send req, server defines port rec req, and c

defines port p. All the above-mentioned components and ports are illustrated in

Figure 3 (b).

The notation is explained in Figure 3 (c). The notation does not follow any standard but
is developed for the purpose of this thesis; there is no graphical notation defined for

Armani or a general graphical notation used across different ADLs.
Connectors and Roles

Connectors represent interactions and mediate the communication and coordination
activities among components. Informally, they correspond to the lines in the box-and-
lines diagrams. Examples of connectors include pipes, procedure calls and event
broadcast. In addition to these simple forms of interactions, connectors can represent
more complex forms of interactions, such as protocols or SQL-links between a database

and an application using it.

Like components, connectors have explicit interfaces defined by a set of ro/es. A role in a
connector defines a participant in the interaction defined by the connector. In Armani,

components, ports, connectors, and roles together are termed design elements.

In the example system in Figure 3, only one connector is defined. This connector is rpc,

and it defines two roles, caller and callee.
Systems and Representations

Systems represent configurations of components and connectors. To be more exact, the
constituents of a system are a set of components, a set of connectors and a set of
attachments between port and roles. The attachments describe the topology of a system
and are defined between ports in components and roles in connectors. Systems are in a
sense the base concept of the Armani language: of the basic concepts, only systems can
exist independently of other concepts. Further, systems are the object of architecture

description and therefore the fundamental class of objects in Armani.

22

In Figure 3, the example system has the name simple cs. It includes components
client 1, client 2, and server and connector rpc. The system defines three
attachments: the port send req in both client 1 and client 2 is attached to the
role caller in connector rpc; port rec_req of server is attached to role callee in

the same connectot.

To address the need of hierarchical descriptions in software architectures, Armani
includes the concept of representation. Specifically, any component or connector can be
represented by any number of more detailed, lower-level descriptions. Each such
description is termed a representation. Basically, a representation contains a system and
a set of bindings between parts in the representing system and those in the represented

component Or connectot.

In the rest of this thesis, the term zndependent system is used to refer to a system that is not
defined in a representation. Correspondingly, the term representing system is used when

referring to a system that is defined within a representation.

The use of presentations is illustrated in Figure 3 as well. Component server declares
the representation rep, which defines system sub. This system, in turn, defines a single
component ¢ with port p. Additionally, rep defines that port p of ¢ is bound with port

rec_req of server.
Properties

All the basic concepts of Armani (components, connectors, ports, roles, systems, and
representations) can be annotated with properties. They are named type-value pairs that
can include any kind of information about the entity they are located in. Properties can
be of an atomic type (integer, float, boolean, string) or have the structure of an

enumeration, record, sequence, or set.
Additional Concepts

In addition to the above-mentioned basic concepts, Armani includes a number of other
concepts that are second-class concepts in the sense that they bring nothing new into
what kind of systems can be described with the language. These concepts will be

discussed next.

23

Component Type T = { Port p; };

H
Il

Component A new T; Component C = { Port p; };

Component B : T = { Port p; }; Component D : T = {}; // Invalid

Figure 4 Declaring and satisfying a design element type in Armani.

Design Element and Property Types

A design element tjpe is a set of predicates concerning design elements. Each design
element type is associated with one category of design elements, i.e. component, port,
connector or role. A type can include two kinds of predicates. First, types can contain
predicates about structure and properties. Second, a type can include znvariants and
henristics. An instance is defined to sazsfy a design element type if it satisfies all the
predicates specified by that type. Moreover, instances can be declared to be of a type,

which implies that a valid instance also satisfies the type.

The predicates about structure and properties have the same form as design element
and property declarations. For example, Figure 4 includes a type definition that specifies
component type T. Type T contains one predicate: there exists port p. Any component
instance satisfying type T must satisfy this predicate. Further, Figure 4 includes the
declaration of four components, 2, B, C, and D. Of these, A declares type T, and also
satisfies T as it imports the structure defined by T with the zew operator. Instance B, on
the other hand, does not import the structure, but the same port declaration is repeated
in the component declaration; thereby, also B declares and satisfies type T. On the other
hand, component C does not declare type T, but it still satisfies the type: C has the
structure specified by the type. Finally, instance D declares T, but fails to satisfy the type:

component D has whatsoever no structure. Therefore, component D is invalid.

In addition to design element types, Armani includes property types as well. A property
type specifies a name and a structure, e.g. a float or a sequence of integers. For a
property instance in a design element or a system to satisfy a property type, the property

instance must have the structure specified by the property type.
Invariants and Heuristics

Invariants and heuristics are predicates defined in Armani Predicate Language. They are
boolean-valued conditions concerning the structure and properties of the instances of

the type in which they are defined. In order for a design element instance to satisfy an

24

invariant, the predicate specified in that invariant must be true for that design element.
A heuristic is always satisfied, i.e. heuristics impose no constraints on design elements
satisfying a type. Informally, heuristics are merely hints of what might be true for an
instance of a type. They are included in the language in order to enable the designers

using the language to capture rules concerning types that are less strict than invariants.

Subtyping can be used to create new design element types based on existing ones. The
subtyping mechanism is familiar from other domains, e.g. UML (Unified Modeling
Language) (Object Management Group 2001): the set of predicates of the existing type

is inherited by the new type.
Styles and Design Analyses

Analogically to design element and property types, there are also system types termed
styles or families in Armani. In this thesis, only the term style is used for simplicity. Styles
bear a close resemblance to design element types, but there are also differences. Namely,
design element types consist of required structure, invariants, and heuristics. Thereby,
design element types are best viewed as sets of requirements that instances must satisfy.
Styles, on the other hand, likewise define invariants and heuristics that the systems of

the style must satisty. However, a style can also include design analyses, design element

types, and property types.

Design analyses are functions formed by combining the primitive functions defined in
the Armani Predicate Language. Design analyses can be used in invariants and
heuristics. Thereby, unlike design element types, styles are not merely entities restricting
instances but contain also design vocabulary, i.e., design element and property types and

design analyses that are best described as options offered to the developer using the

style.

Finally, the term design is used to refer to a specification in the Armani language that is
valid and independent. In other words, when Armani is compared with a programming
language, a design in Armani corresponds to a program in the programming language.
An Armani design can include design type declarations, style declarations, design

analysis declarations, and a system declaration.

25

3.2.2 Wright

Components, Connectors, Ports, Roles, Systems

Wright (Allen et al. 1997; Allen 1997) is an architecture description language that has
been designed to support the formal description of software system. It shares a number
of concepts with Armani: as in Armani, there are components, ports, connectors, and roles in
Wright. These concepts are mutual to the two languages both on the syntactic and
semantic level: components are localised, independent computations; connectors
represent interaction between components; ports represent the interaction in which
components containing them can participate; and roles the behaviours of individual
participants in an interaction. Wright allows each port and role to be attached to at most

one role and port, respectively, at a time.

Depending on the source, Wright uses the same term gysterz (Allen et al. 1997), or a
different term configuration (Allen 1997) to refer to the same concept as system in
Armani, i.e. a configuration of connectors and components with affachments between

them. In this thesis, the term system is used.

Figure 5 depicts the client-server system used as an example. Previously, the same
example was defined in Figure 3. Figure 5 (a) contains a textual representation of the
system, and Figure 5 (b) a graphical one. The same notation that was given for Armani

in Figure 3 (c) is applicable to Wright as well.

As demonstrated in the figure, Wright distinguishes between component types and
instances. Additionally, Wright allows specifying arrays of components. An array by the
name client of size two is instantiated from client type. Of course, also arrays of
connectors, ports, and roles can be specified; role arrays are demonstrated in the figure,

as rpc specifies an array of size two by the name caller.
Behaviour modelling

The most significant feature of Wright lacking in Armani and in many other ADLs is
bebavionr modelling. Again, there is some disagreement between different sources about
the extent to which behaviour is modelled. What the sources agree on is the fact that the

behaviour of interfaces is described in terms of CSP.

26

System simple cs = {
Component client type
Port send-request;
Computatation

Component server type simple_cs

Port rec req

Computation) .
P client, client,

System sub

Component c type send_req send_req

caller, caller,

Port p
Instances

c: c_type
End sub
Bindings

C.p = rec_req
End Bindings

Connector rpc type server
Role caller, ,, callee sub HT
Glue ... | P |

Instances ¢
client, ,: client_ type
server: server type
rpc: rpc_type

Attachments
client,.send_req as rpc.caller,;
client,.send_req as rpc.caller,;
server.rec req as rpc-callee;

End simple cs.
(a) (b)

Figure 5 The client-server system in Wright. (a) The system represented textually. (b) The

system represented graphically.

CSP (Communicating Sequential Processes) (Hoare 1985) provides a wide range of
constructs for describing communicating entities, and describing all of them in any
reasonable high level of detail is impossible in the context of this thesis. However, a
short introduction to the topic adapted from (Allen et al. 1997) is presented to give an

initial understanding of the issue.

A process describes an entity that can engage in communication evenfs. An event is an
atomic entity that can be informally described as the occurrence of some meaningful,
real-world event. The set of events in which a process can engage is termed the a/phabet
of the process and is denoted as aP, where P is the associated process. Prefixing can be
used to form new processes based on existing ones; e.g. a process that first engages in
event ¢ and then becomes process P is denoted ¢e—P. At some points, a process can
behave in a number of different ways. When the choice between different behaviours is

made within the same process, the term used is decision. 1f other processes outside the

27

scope of the process make the choice, the term alfernative is used. Interactions of
processes can be described by the process formed by composing two other processes
with the ” operator: the process parallel composition of P and Q, P || 0, is defined to have
the alphabet of the intersection of the alphabet of processes P and (), and it engages in

the events of its alphabet when both P and () would engage in the event.

As mentioned above, in Wright a CSP process is associated in every interface, i.e. port
and role. Further, in each connector there is a CSP process called gixe. In (Allen 1997),
all the components are additionally defined a computation, a CSP process describing the
behaviour of the component. The process definitions are used on various levels and for
various purposes in Wright. First, the process descriptions of a port and a role are used
to decide if a port and a role can be attached to each other. A port and a role that can be
attached are termed compatible; compatibility is a static property the value of which can
be evaluated based on the CSP processes of a port and a role. Second, the behaviour of
an entire connector is characterised by parallel composition of its glue process and all its
ports. Third, the behaviour of an entire Wright system is defined to be the parallel
composition of all the computations in the system’s components and all the glues in the
system’s connectors. With their behaviours defined, connectors, roles and system can be
analysed with respect to different properties, e.g. dead-lock freedom and other safety

properties, by using tools processing CSP.
Hierarchical Decomposition

The similarities between Armani and Wright extend still further: Wright provides a
mechanism for specifying hierarchical compositions corresponding to the representation
construct in Armani. However, Wright gives a more elaborate semantic content to the
mechanism: in Wright, the composition is expressed by defining a system in place of the
computation of a component or the glue of a connector. Bindings are defined between
the interfaces of the entity (component or connector) being decomposed and the
interfaces of the decomposing system. The semantics of the representation mechanism
is roughly that the computation process of the component being represented is the
computation process of the representing system, but only the parts of the process

defined by the bindings exposed to outside the representing system.

28

The decomposing mechanism is illustrated in Figure 5, with both a textual and the
corresponding graphical presentation: the server component is represented by a

system called sub.
Styles

In addition to the previously mentioned concepts, Wright includes the notion of s#yl.
Basically, a style describes a set of definitions shared by a set, or a family, of systems.
Hence, the style construct in Wright corresponds the concept of style in Armani. But

there are some differences in what can be included in styles between the two languages.

In Wright, a style can include connector and component type declarations. These
declarations take the same form as type declarations in systems. Additionally, styles can
include interface types that are process descriptions defined outside the context of a
component or a connector. These can be used to define the processes in different
Wright elements. In essence, when used in the place of the process in a port or role,
interface types can be considered to be port and role types, as ports and roles define

only a name and a process.

Further, component and connector type declarations in styles can be parameterised both
with respect to the processes defined in the type and the number of interfaces. This
mechanism pertains to leaving some aspects of a type declaration unspecified and type
be filled in when instantiating the type. The C++ template system (Stroustrup 1997) is

analogous to this parameterisation mechanism.

What extends the meaning of styles beyond defining useful design vocabulary is the
possibility of defining structural constraints that pose limitations on the properties of a
system following a specific style. Constraints are specified in first order predicate logic
and they can refer all the relevant entities in Wright systems: components, connectors,
potts, roles, attachments, computations, and glue. In addition to this type of structural
constraints that concern the structure of systems, also sewantic constraints concerning the
behaviour of systems can be defined using CSP. These constraints limit the range of

behaviour that can occur in the systems of the style.

29

3.2.3 Koala

Components and Interfaces

Koala (Ommering et al. 2000; Ommering 2000; Ommering 2001; Ommering 2002) is an
ADL and a component model that has been developed at Philips Consumer Electronics

to be used in developing embedded software for consumer electronic devices.

The main design elements of Koala are components that contain explicit connection points
called snterfaces. Each component and interface is of a single #ype. Interfaces are small sets
of semantically related functions. Component in Koala is defined as an encapsulated piece
of software with an explicit interface to its environment. Interfaces in Koala are similar
to those in COM or Java. In COM (Microsoft Corporation 1995), interfaces are
specifications of interaction points of components; they contain name and type
information of functions and attributes, but no implementation of the functions. In Java
(Arnold 2000), interfaces are pure types containing only function signatures: they do not

contain any implementation or attributes.

Components and interfaces are depicted in Figure 6, which defines the client-server
system in Koala. Two instances, clientl and client2, of the CClient component
type, and one (server) of CServer type are defined. Further, the example includes

component instance ¢ of CRep type.

Compound components can be used to express compositional structure in Koala, i.e. a
component can contain other components. An example of compound components can
be seen in Figure 6 (a) and (b), the component server is defined to contain component
c. The term independent component is used when talking about two or more components
such that none of the components are contained within each other. In Figure 0,

clientl, client2, and server form a set of independent components.

A distinction is made between provided and required interfaces. Loosely defined, a
component having a provided interface means that the component offers a certain
service for other components to use. Similarly, a required interface signals a certain
service being required by the component from some other component in the form of a
provided interface. Figure 6 (c) explains the notion used for provided and required

interfaces, and for other Koala constructs used in Figure 6 as well.

30

component cs system cs_system
{
contains client1 : client2 :
component CClient clientl; CClient CClient
component CClient client2;
component CServer server; caller er
connects
clientl.caller = server.callee v
client2.caller = server.callee
} p
hd
component CClient
(c: CRep
requires IRpc caller;
} server : CServer
component CRep
{
requires IRpc p; (b)

}

interface IRpc

{
void MakeCall (int n);

component ¢ of type T with a
required interface named r of
type S, and a provided interface
p of type S

component CServer connection between interfaces

{
provides IRpc callee; c:T
contains 4:s component ¢ of type T that
component CRep c; ' contains component d of type S
connects
caller = c.p;
}
(a) (c)

Figure 6 The client-server system in Koala. (a) The system represented textually. (b) The

system represented graphically. (c) Legend of the notation used.
Bindings

In Koala, topology is defined through bindings between interfaces. However, there are
limitations on how interfaces can be bound to each other. These binding rules are best
expressed in graphical terms. As depicted in the legend in Figure 6 (c), the interfaces of
a component are drawn on the border of the component: a provided interface is drawn
as a triangle the tip of which points outwards from the component; correspondingly, the
tip of an provided interface points inwards. With this notation, the binding rules are that
an interface must be bound by its tip to the base of exactly one interface, and by its base
to any number of interfaces, including zero. The term #p interface is used to refer to the
interface in the binding the tip of which is bound. The term base interface is defined

correspondingly.

31

In addition, the binding rules concern the types of interfaces. Interfaces of arbitrary
types may not be bound to each other; instead, the type of the tip interface in a binding
must be a supertype of the type of the base interface. The supertype relation between
interfaces is based on the content of interfaces, i.e., functions: given two interface types
A and B, A is a supertype of B if and only if B contains all the functions of A. Then, B is

correspondingly a subtype of A.

The above form of supertype relation becomes handy when considering how exactly
interfaces are bound in Koala. Namely, a binding between two interfaces is
implemented as bindings between the functions constituting the interfaces. That is, calls
to a function in the base interface are textually replaced with calls to the function with
the same name in the tip interface. Thereby, it is sufficient to require that the tip

interface is a supertype of the base interface.

Figure 6 (b) contains examples of bindings: the required interfaces called Caller in
both component clientl and client2 are bound by their tips to the base of the
provided interface callee of component server. These bindings are examples of
bindings between independent components. The binding between interfaces callee
and p, on the other hand, is an example of a binding between interfaces in a contained

and a containing component.

It should be noted that bindings between independent components are always between
a required and a provided interface, whereas bindings between contained and containing
components are always between a pair of required or provided interfaces. Although
both forms of bindings are handled uniformly in Koala, bindings between independent
components and contained and containing components could be classified similatly as
attachments and bindings in Armani and Wright: bindings between independent
components compare to attachments, and between a contained and containing
component to binding in the Armani and Wright. Similarly, contained components in

Koala compare to the representation mechanism in the other two ADLs.

In addition to simple bindings between interfaces, more complex bindings between
interfaces can be defined. Module is the construct in Koala for implementing this.
Basically, modules can define arbitrary glue code between interfaces. There are a

number of important special types of patterns that can be achieved with modules.

32

First, instead of binding all the functions in the tip interface to functions of the same
base interface, it is also possible to bind functions one by one to each other. This form
of binding is termed function binding. Functions in the tip interface can be bound to

functions in a single base interface, or in a number of base interfaces.

A second special case of the possibilities provided by a module is binding a tip interface
with multiple base interfaces; this would not be possible without a module between the
interfaces, because the binding rules prohibit a binding from a tip interface to multiple
base interfaces. This kind of binding is illustrate in Figure 7 (a), where component a is

bound simultaneously with components b, c, and d.

Still another important special case of bindings is swizch. Switch is a construct that
conceptually binds a tip interface into multiple base interfaces, and selects one of the
interfaces to which the binding will be eventually made when the software is running.
The selection between interfaces is done based on a parameter value that is obtained
from a yet another interface. The use of switches is illustrated in Figure 7 (b). In the
figure, interface p of component a is bound to switch s. Depending on a parameter s

obtains from component b, the binding will be either to ¢ or d.
Configurations

A configuration in Koala is defined as a component that is not contained in another
component and that has no interfaces on its border. A configuration represents an
independent piece of software, i.e., one that could be installed as the embedded software

of a device, such as a television.
Diversity Mechanisms

In addition to the constructs already mentioned, Koala provides mechanisms for
handling both the internal diversity of components and the structural diversity in a
configuration. Internal diversity is manifested as variation of component parameters.
Components can have a set of parameters. In Koala, there is typically a set of top-level
parameters in a configuration that are independent of each other and often ‘seen’ by the
end user. Rest of the parameters of a configuration depend on other parameters in a
hierarchical manner: e.g., the values of a certain set of other parameters can be
determined based on the values of the top-level parameters, and these lower level

parameters can in turn determine the values of the still lower level parameters etc.

33

Diversity interfaces are interfaces specialised in providing components with the possibility
of querying the parameter values they are interested in. However, there is no difference
between a diversity interface and an ordinary provided interface beyond the fact that a

diversity interface is specialised in providing parameters to other interfaces.

Structural diversity is implemented with switches, a special form of binding interfaces
introduced above. Switches use parameters obtained from outside interfaces to produce

diversity by determining which binding should be selected from a range of alternatives.

Additionally, components can declare both required and provided interfaces as gptional.

An optional interface is an interface that a component may, but is not guaranteed, to

require or provide.

(a) (b)
Figure 7 Modules in Koala. (a) A one-to-many module. (b) Switch.

34

4 Comparison of Concepts of the ADLs with the

Configuration Ontology

This chapter uses a comparison framework to compare the concepts in the three ADLs
analysed above with each other and with the corresponding concepts in the

configuration ontology.

The comparison framework consists of three parts. The first part includes the key
concepts of ADLs and the configuration ontology, and the relations between them. The
concepts include components, connectors, configurations, connection points, attributes,
resources, functions and constraints. The relations include topology and structure. The
second part discusses the roles of types and instances in the languages, and the relations
between types. The last part of the framework is the variation mechanisms provided by
ADLs and the configuration ontology. In this thesis, any feature of a language or a
conceptualisation that allows describing a number of different systems with a single
representation is considered a variation mechanism; the way in which the systems differ
from each other is not discriminated, i.e. the difference may arise from e.g. different

structure or the behaviour of the systems.

4.1 Key Concepts and the Relations between Them

The results of the comparison are presented in Table 1. In the following, the results

concerning each concept are elaborated.
Components and Connectors

Component is the central concept Armani, Wright and Koala. It is also present in the
configuration ontology with that same name. The semantics are as well similar:
components represent the defining parts of a system, or a configuration, in
configuration modelling as well as in the architecture description languages. However,
although similar, the semantics of component are not the same in all the disciplines:
whereas Armani and Wright define component abstractly as a locus of computation, the
definition of Koala is much more specific by specifying in more detail what components
should be like. Further, the configuration ontology definition for component is the most
general of the four, as any distinguishable whole is defined to be a component in the

ontology.

35

Table 1 The main concepts of the ADLs and the configuration ontology

Armani Wright Koala Configuration ont.
Component Primary computational | Localised, independent | An encapsulated piece | Distinguishable whole
units of a system computation of software with an in a product
explicit interface to its
environment
Connector Mediate interactions An interaction among N/A N/A
among components a collection of
components
Configuration | System: collection of System: a collection of | A set of components A set of instances of
components, component instances connected together to | the types occurring in
connectors, and a combined via form a product the configuration
description of the connectors model
topology of the
components and
connectors
Connection Port: a representation Port: an interaction in | Interface: a small set Port type: intensional
point of the external which the component | of semantically related | definition of a
interface of a can participate functions connection interface
component Role: a specification of Port individual: a place
Role: a representation | the behaviour of a in a component
of the external single participant in individual where some
interface of a the interaction other port individual
connector can be connected to
Attribute Property: annotation N/A An atomic property of | A characteristic of a
that store additional a component instance | type
information about the
language elements
Resource N/A N/A N/A An entity that is
produced and used by
component
individuals, or flows
from one component
to another
Function N/A N/A N/A Function type: an
abstract
characterisation of the
product that a
customer or sales
person would utilise to
describe the it
Constraint Invariant: design Syntactic constraint: a | N/A A formal rule, logical
constraint that must structural property or mathematical,
hold in a design defined in a style that which specifies a
Heuristics: suggestion must be obeyed by any condition that must
for creating effective system in the style hold in a correct
design Semantic constraint: a configuration
behavioural property
defined in a style that
must be obeyed by any
system in the style
Topology Attachments between Attachments between | Bindings between Connections between
ports and roles ports and roles interfaces or port individuals
individuals functions
in independent
components
Structure Components and The computation of a | Components can Part definitions in

connectors can define
representations
consisting of systems
and bindings between
interfaces in the
representation and the
represented entity

component or the glue
of a connector can be
replaced with a system;
binding between the
ports and roles of the
system and of the
component or
connector

contain other
components; bindings
between interfaces in
compound
components and the
components contained
in them

component types
specify the roles in
which other
component individuals
can be parts of the
individuals of the
component type

36

Connectors are entities present in Armani and Wright with the same semantics.
However, there are no connectors in Koala or in the configuration ontology. Thus,

there is a major difference in how the approaches handle architectural connection, or
topology.

Armani differs from the other ADLs and from the configuration ontology in that
component and connector instances and types are not separated from each other: i.c., a
component or connector instance needs not to be of any explicit type, but may define

its type by itself.
Configuration

The definitions for configuration are very similar to each other: in all the ADLs,
configuration is seen as a collection of components connected together. However, in
the configuration ontology a configuration is seen more broadly: a configuration
includes not only component individuals, but also the individuals of other kind of types
occurring in the configuration model besides component types. The other kind of types
include port, resources, and function types. Their individuals are port individuals,
resource production individuals, and functions. Resource production individuals specify
how resources defined by resource types are produced and consumed by components;
functions imply that a property of a product described by the function type is present in

a configuration containing the function.
Connection Points

The notion of connection points is also common to all the studied modelling methods.
In Armani and Wright they are called ports and roles in components and connectors,
respectively. In Koala connection points are termed interfaces and in the ontology ports.
The semantics of connection points are similar in all the approaches, except for Koala:
in Koala, an interface is defined to be small set of semantically related functions,
whereas the other approaches define ports and roles as external interfaces. Obviously,
the term interface is overloaded with a double meaning: seemingly, the word is used in
Koala to describe a set of points where interaction may occur, and a single, atomic point

of interaction in the other approaches.

Although the definitions of an interface is similar in Armani, Wright, and the

configuration ontology, there are some minor differences. It could be argued that the

37

Wright definition for ports and roles is more specific than the corresponding definitions
in Armani and in the configuration ontology: Wright specifies ports as interactions
wherein the component containing them can participate, and roles as specifications of
single participants in interactions; there is no notion in Armani and the configuration

ontology corresponding to that of interaction in Wright.
Attributes

All the disciplines, except for Wright, include a notion of attributes. Further, the
semantics of attributes seems to be the same in wherever they are included: attributes

store information that is relevant to an entity.
Resources

Resources are present in the configuration ontology but not in any of the ADLs.
However, resources are similar to the notion of provided and required interfaces present
in Koala in the sense that they are both anti-symmetric: just as the production of
resources must match their consumption, there must be a provided interface for each
required interface. What is more, resources are produced and consumed by
components, just as interfaces are provided and required. However, resources are
produced and consumed in certain quantities, which gives them more expressive power
compared with the notion of provided and required interfaces. Further, the notion of
provided and required interfaces and the associated binding rules in Koala are intuitively

closer to connection constraints in the configuration ontology than resources.
Functions

Modelling functions is another feature of the configuration ontology that all three ADL:s

presented in this paper lack.
Constraints

All the disciplines under comparison, except for Koala, have explicit mechanisms for
expressing constraints. Further, in all disciplines where constraints exist, they are logical
expressions about the non-behavioural properties of a system modelled in that
discipline; here, Wright is the exception to the rule, as it includes semantic constraints

that concern behavioural properties of systems, in addition to the form of constraints

38

shared with the other ADLs and the configuration ontology. Of the studied disciplines,

Armani is the only to support heuristic constraints.
Topology

All the disciplines model topology in roughly the same manner, i.e., attachments or
bindings between intensional connection points. However, there are some differences
between the disciplines: in Armani and Wright, connectors are needed between
components, whereas there is no similar construct in Koala and the configuration
ontology. Further, the limitations on what kind of connections can exist are different: in
Armani, the limitation is that attachments must be between a port and a role; in addition
to this, Wright requires that each port and role is involved only in a single attachment,
and that the CSP process in the port and the role are compatible; Koala has its own
binding rules for binding interfaces; in the configuration ontology, compatibility
definitions between types are needed in order for any connections to exists, and the
connections are additionally subject to connection constraints in the port types and

definitions.
Structure

All the studied disciplines model structure as well. Unfortunately, all the ADLs use

different names for same entities. Therefore, a unified terminology is introduced:

* The term component is used to refer to components and connectors in Armani,

Wright, and components of Koala.

" The term znterface is used to refer to ports and roles in Armani and Wright, and

interfaces in Koala.

» The term compound component is used to refer to any component or connector that
contains a representation in Armani, and to any component or connector in
Wright, whose computation or glue, respectively, is specified by a system

declaration, and any component containing components in Koala.

" The term contained component is used to refer to any component or connector that

is defined in the context of a compound component.

39

® The term binding is used to refer to bindings in Armani and Wright, and to those
connections between interfaces in Koala that are between interfaces in a

compound and contained component.

= The term atfachment is used to refer to attachments in Armani and Wright, and to
those connections between interfaces in Koala that are between interfaces in

two independent components.

Of the ADLs, Armani and Wright enable defining systems within component and
connectors. Armani allows multiple representations, whereas Wright allows only one. In
Koala and the ontology, on the other hand, structure of components is specified in
terms of components: Koala used the notion of contained components and the
ontology part definitions to express this. In the configuration ontology, part definitions

in component types are used for specifying structure.

It is possible to specify bindings between the interfaces in the contained components
and the compound component: in Armani and Wright bindings and attachments are
strictly different concepts, but in Koala a single concept is used for both. No
mechanism for specifying bindings is included in the configuration ontology. However,

there can be connections between ports in compound and contained components.

4.2 Distinction between Types and Instances

All the three ADLs studied have some distinction between types and instances.
However, the handling of types is not alike in any two studied languages. This section
compares the handling of types and instances in each ADL and the in the configuration

ontology. In the analysis, special attention is paid to the following issues:
* How can an instance be of a type?
* What is the number of types an instance can be of?
" The relations between types (taxonomy and other)

The data for each language concerning each of the above-mentioned issues is presented

in Table 2.

40

Table 2 Summary of the handling of types and instances

Armani Wright Koala Configuration
ontology
Being of a type Design elements: By | Components and Interfaces and An individual is
declaration or by connectors: components: By directly of a type
implicitly satisfying | Instantiating an entity | declaration when it is instantiated
all the predicates with the type with that type; the
defined by the type | System: Declaring the individual is valid
Styles: Declaring a system be of a style with respect to the
system in a style and | and satisfying the type if it has all the
satisfying the constraints defined properties specified
constraints defined by the style by the type
by the style
Number of types Design elements: Components and Interfaces and Directly of exactly

per instance

Any number of both
declared and
satisfied types.
Systems: any number
of styles

connectors: exactly
one type

Systems: zero or one
styles

components: Exactly
one type

one type and
indirectly of any
number of supertypes

Relations between
types

Design element
types: the set of
supertypes is the set
of element types
declared as the
supertypes of a type

Styles: a style is a sub-
style of another style
if it has all the
constraints of the
other style

Interface types are
defined to be sub-
and supertypes of
cach other based on
the functions they
contain.

Types organised in
classification
taxonomies by the
isa-relation.
Additional relations
between types, e.g.
the compatibility
relation

Being of a Type

First, all the disciplines except Armani have roughly the same mechanism for instance
satisfying a type: An instance can only be of a given type if the instance is created to be
of the type. Armani’s notion on an instance being of a type is dual. As discussed in the
section about Armani (Section 3.2.1), an instance can both declare and satisfy a type,

and declaring a type implies satisfying the type, otherwise the instance is not valid.

The configuration ontology specifies additionally that an instance of a type is also
indirectly an instance of all the supertypes of that type. Hence, the ontology specifies a
dual notion on an instance being of a type. In Armani, an instance that satisfies a type
satisfies all the supertypes of the satisfied types: this is due to the fact that types are
defined as sets of predicates, and the set of predicates of a supertype is a subset of those

of the subtype.
Number of Types per Instance

The dual notion on defining an instance to be of a type in the ontology and in Armani is
also reflected in the number of types an instance can be of. In Armani, an instance can

have an arbitrary number of both declared and satisfied types. In the configuration

41

ontology, each instance is directly of one type and indirectly of any number of types.
Wright and Koala rely on single typing: each component and connector in Wright and

interface in Koala is exactly of one type; Wright systems are optionally of a style.
Relations between Types

In Armani, the relations between design element types and styles are based on
declarations: a type can be declared to be a subtype of a set of types. In Wright, there
are no relations between component and connector types. On the other hand, there is a
notion of sub-style in Wright: subtyping is based on the content of styles, as specified in
Table 2. However, styles can be declared using existing styles as the basis. In Koala,
interface types are related to each other as subtypes and supertypes. The relations are
based on the content of the interface types: a subtype contains all the functions of its
supertype. Additionally, invariants in Armani and constraints in Wright can be used to

specify arbitrary relations between types.

By far the most sophisticated relations between styles can be found in the configuration
ontology: Types are organised in classification taxonomies based on the ISA-relation. In
addition, types can be in a number of relations with each other: these relations include
the part definitions concerning component types, port definitions concerning
component and port types, production and use definitions concerning resource types
and component types, compatibility definitions between port types, and implementation
constraints between function types and component, port, and resource types. Further,
similarly as invariants in Armani and constraints in Wright, general constraints can be

used to specify other, arbitrary relations between types.

4.3 Variation Mechanisms

This section compares the variation mechanisms of the ADLs and of the configuration
ontology. As can be recalled from the introduction, any feature of a language or a
conceptualisation that allows describing a number of different systems with a single

representation is considered a variation mechanism.

An apparent variation mechanism in Armani and Wright are styles. As explained in the
respective sections on these ADLs, styles are combinations of design vocabulary, i.e.
predominantly type definitions, available for the systems and constraints about the

structure, and behaviour in Wright, of systems in that style. It can be argued that

42

constraints are needed to make styles a variation mechanism: a style with only design
vocabulary does not describe any set of systems, as using the parts of design vocabulary
is perfectly optional to the systems in that style. Constraints, on the other hand, can be
used to enforce some properties of the systems using in the style and can be
consequently said to describe the set of systems in the sense specified in the definition

of a variation mechanism. Thereby, styles with constraints are a variation mechanism.

The above-described variation mechanism of Armani in Wright is likewise embedded in
the configuration ontology: the constraint mechanism of the ontology can be used to
express the same constraints as in the ADLs, and types can naturally be presented in the
ontology as well. Of course, it must be assumed that the constraint language used in
conjunction with the ontology is capable of expressing the same constraints as the

constraint languages of Armani and Wright.

A major difference is that a style definition is essentially an gper specification in the
sense that the systems using the style can and are expected to supplement it with
additional declarations. A configuration model, on the other hand, is c/osed in the sense
that during the configuration process, the model is not subject to change, but the
configuration is created based on the model. In other words, a style must be
supplemented with additional declarations in order to create a system instance, whereas
a configuration is created by reducing the set of configurations described by the
configuration model to a single configuration through a series of configuration

decisions.

Koala, on the other hand, has no construct corresponding to styles in Armani and
Wright. However, Koala includes mechanisms for both internal and structural diversity.
As was explained when analysing Koala, internal diversity pertains to components
having parameter values that affect their functionality. Structural diversity, in turn, is
implemented with modules and reflected in variation in the bindings between
components. Switch is a special case of the diversity that can be created with modules:
when there are multiple provided interfaces to serve a required interface, a switch is
used to decide the provided interface to be actually used. In a sense, switches are a

variation mechanism corresponding to alternative connections.

Another form of variability in Koala is provided by optional interfaces. Basically,
optional interfaces create variability to the topology of a compound component, or a

configuration. On a higher level of abstraction, optional interfaces make the range of

43

services required and provided by components variable, and thereby essentially affect
the functionality of components and configurations. Intuitively, optional interfaces and

optional parts correspond to each other.

The configuration ontology is aimed at modelling configurable products. To support
this aim, variation mechanisms are embedded in all the modelling facilities of the
ontology. Therefore, a full account of the variation mechanisms of the ontology is not
presented here; the interested reader should refer to the section were the ontology was
introduced (Section 2.2.1), or to the original papers describing the ontology and its use
(Soininen et al. 1998; Tiithonen et al. 1998). However, as has been discussed above, there
is a corresponding mechanism for most of the variation mechanisms identified in the
ADLs: styles and constraints correspond roughly to configuration models; parameters in
Koala components are paralleled by attributes in the ontology; optional interfaces
correspond to optional ports that can be expressed with the cardinality in port
definitions. However, it is not obvious how the variability provided by switches could
be encoded in the configuration ontology, let alone the variability provided by modules
in their general form. One way of modelling modules will be given in Chapter 5.5.1

Mapping Koala to the Ontology’ below.

44

5 Synthesis

This chapter presents a construction, in which for each ADL the following tasks are
completed. First, those concepts in the ADL that can be mapped into the configuration
ontology are given a mapping. Second, ontological constraints are given. The constraints
serve three purposes. First and foremost, they form an incremental extension to the
ontology required for representing architectures with a semantics equivalent with the
ADL; second, the constraints characterise the configuration models that correspond to
the ADL; third, the ontological constraints allow reasoning about the relative expressive
power of each ADL and the configuration ontology: the modelling facilities the use of
which is prohibited by the ontological constraints represent expressive power of the
ontology not matched by the ADL. As the last part of each section, a mapping from

configuration models to the ADL is given.

Before the actual construction, a model of the entities in each ADL and of the

configuration ontology is presented.

5.1 A Model of Entities in the ADLs and in the Ontology

This section presents a model of the entities with their properties in each ADL and in
the configuration ontology. Only entities and properties relevant for the construction
following later in this section are presented. This concerns especially the configuration
ontology. Again, the interested reader is asked to refer to the original papers presenting

the ontology (Soininen et al. 1998; Tithonen et al. 1998).

The entities are presented in tables from Table 3 through Table 8. The short name of

the property is the identifier that is used to refer to the property in the construction.

5.2 On the Style of Presenting the Mapping

Mappings between disciplines will be presented in the form of definitions. Each
definition will specify the steps needed to map a concept into the other domain. The
definitions use a mixture of styles to specify the mapping. First, definitions specify
functions that take entities in a domain as their input and return corresponding entities in

other domains. However, all entities cannot be fully mapped into the ontology simply by

45

recursively applying functions to entities. This is due to the fact that in addition to

functions, definitions contain procedural actions needed to map an entity.

Thereby, what should be done to map a concept into another domain is to first apply
the definition specifying a mapping for the concept. Then, whenever the definition
refers to a function not specified in the definition, definition containing the referred
function should be applied to the entities that are the arguments of the function. That is,
not only should the return value of the function be assigned to some property of an
entity, but also the procedural actions specified in the definition containing the function

should by taken.

The mappings are presented using top-down approach: in common terms, the concepts
aggregating other concepts are presented before the aggregated concepts. This approach
has the advantage that whenever a mapping is given for an entity, the reader will already
know how the concept aggregating the concept being mapped has been mapped. The
significance of this advantage is emphasised by the fact that most whole-part
relationships between entities are mapped into some kind of whole-part relationships in
the target domain. However, the top-down approach has the drawback that the
mappings for entities typically refer to the mappings of such entities that have not yet

been given a mapping.

The following typographical conventions are followed: Arial is used to typeset the names
of entity types (e.g., Component type); Times New Roman Italic is used for names of
variables and functions (c, c.name, system,o); SMALL CAPITALS are used for entities that
are in some sense constant, e.g. enumerated values, names of general types, and names
of relations (CONCRETE, ADLSYSTEM, ISA). Finally, Courier New is still used for

exemplars (cs_system).

Further, the functions used in the mapping are named using the following conventions.
In the names of functions, each ADL and the configuration ontology is referred to with
a letter: ‘A’ stands for Armani, ‘W’ for Wright, ‘K’ for Koala, and ‘O’ for the
configuration ontology. Further, each function that maps an entity e in discipline x to
discipline y is named e,,. For example, a function that maps a component in Armani to

the configuration ontology is name component .

46

Table 3 Entities of the configuration ontology

Entity Properties Short name Description
Configuration Component types |components |The set of Component types of the configuration model
model Port types ports The set of Port types of the configuration model
Attribute value attributes The set of Attribute value types of the configuration model
types
Component type Name name The name of the type
Abstraction abstraction | Possible values are: CONCRETE and ABSTRACT. Only
definition individuals of CONCRETE types can occur in complete
configurations.
Dependency dependency | Possible values: INDEPENDENT and DEPENDENT. Only
definition individuals of INDEPENDENT component types may occur in
a valid configuration without being a part of some other
component individual.
Part definitions parts The set of Part definitions of the type
Port definitions ports The set of Port definitions of the type
Supertypes types The set of Component types that are supertypes of the type
Attributes attributes The set of Attribute definitions of the type
Port type Name name The name of the type
Abstraction abstraction |See the same property in Component type.
Supertypes types The set of Port types that are supertypes of the type
Attributes attributes The set of Attribute definitions of the port type
Part definition Name name The role in which the component individuals are parts of the
individuals of the component type
Set of possible types The set of Component types the individuals of which are
part types allowed to occur as parts with the associated part name
Cardinality cardinality The number of component individuals that must occur as
parts with the part name
Port definition Name name The role in which the port individuals are ports of the
individuals of the component type
Set of possible types The set of Port types the individuals of which are allowed to
part types occur as ports with the associated part name
Cardinality cardinality The number of port individuals that must occur as ports
with the port name
Connection constraints | The set of Constraints that must be satisfied by the two ports
constraints and the components the port individuals are ports of in
order for them to be allowed to be connected to each other
Attribute value type |Name name The name of the type
Attribute definition |Name name The name of the attribute
Value type type The attribute value type of the attribute
Necessity necessity The possible values are NECESSARY and OPTIONAL.
Attributes that are defined NECESSARY must have exactly
one value, whereas OPTIONAL attributes have at most one
value.
Constraint Name name The name of the constraint
Expression expression The constraint expression of the constraint

The properties of the entities represented in table from Table 3 through Table 8

referred to using the dot notation. E.g. the set of component types defined in

Configuration model M are referred to as m.components (see Table 3).

47

*

Component type

name
abstraction
dependency

1.7

*

Configuration model

*

Port type

Attribute value type

name
abstraction

name

*

*

*

Part definition Port definition Attribute definition
name name name
cardinality cardinality necessity
Constraint
name
expression
Figure 8 Entities of the configuration ontology
Table 4 Basic entities of Armani
Entity Properties Short name Description
Common properties Name Name The name of the entity
Properties properties The Propertys of the entity
System Components components | The Component instances contained in the system
Connectors connectors The Connector instances contained in the system
Attachments attachments | The Attachments of the system
Styles styles The Styles declared by the system
Component Ports ports The Ports declared in the component
Representations | reps The Representations of the component
Types types The set of Component types declared by the component
Connector Roles roles The Roles declared in the connector
Representations | reps The Representations of the connector
Types types The set of Connector types declared by the connector
Port Types types The set of Port types declared by the port
Role Types types The set of Port types declared by the role
Representation System sys The System defined in the representation
Bindings bindings The set of Bindings between ports and roles in the
representation, and those in the Component or Connector
containing the representation
Attachment Port port The Port that the attachment concerns
Role role The Role that the attachment concerns
Binding First interface first Each binding concerns two interfaces, i.c., Port or Role, and
Second interface | second the order of the interfaces is semantically itrelevant.
Invariant Expression expression The invariant expression
Heuristic Expression expression The heuristic expression

Note: Attachments and binding do not have the common properties “name” and “properties”.

48

Table 5 Additional entities of Armani

Entity Properties Short name Description
Common properties Name Name The name of the entity
Properties properties The Propertys of the entity
Component type Ports Ports The Ports declared in the component type
Representations Reps The Representations of the connector
Invariants invariants The Invariants of the type
Heuristics heuristics The Heuristics of the type
Types Types The set of Component types the type extends
Connector type Roles Roles The Roles declared in the component
Representations | Reps The Representations of the connector
Invariants invariants The Invariants of the type
Heuristics heuristics The Heuristics of the type
Types Types The set of Connector types the type extends
Port type Invariants invariants The Invariants of the type
Heuristics heuristics The Heuristics of the type
Types Types The set of Port types the type extends
Role type Invariants invariants The Invariants of the type
Heuristics heuristics The Heuristics of the type
Types Types The set of Role types the type extends
Property type Type declaration |declaration | The property type declared
Style Component types |components |The Component types declared in the style
Connector types | connectors The Connector types declared in the style
Port types Ports The Port types declared in the style
Role types Roles The Role types declared in the style
Property types properties The Property types declared in the style
Invariants invariants The Invariants declared in the style. The semantics are that
the systems of the style must satisfy the invariants to be true
Heuristics heuristics The Heuristics declared in the style. Heuristics are predicates
that the systems of the style are suggested to satisfy.
Design analyses Analyses Functions in the Armani Predicate Language that can be
used in forming invariants and heuristics in the style and in
systems of the style.
Styles Styles The set of Styles the style extends

In addition to tables, the entities are presented as UML class diagrams in figures from
Figure 8 though Figure 11. The structure of systems and representations illustrated in
Figure 9 (b) applies to Wright as well. However, there are minor differences in the
cardinalities; these differences have been explicated in the figure using non-standard

notation.

The figures do not attempt to capture all the aspects of the disciplines, but rather to give
an overview of the relations between different entities in a graphical form. Issues that
would have resulted in complex figures have been omitted: Koala binding rules are an

example of this kind of issue.

49

Component * » | Component type * Invariant
name name expression
Connector * «» | Connector type * Heuristic
name name expression
1
Port * * Port type
Type
name name 1 Property
name
Role « . Role type value
name name 0.1
Property type
System * * Style hame
name name declaration
(@)
* Component * Port
P 1 1 * (Armani)
1 name name 0..1 (Wright)
System 1 * Attachment
name
1 1 * Connector 1 * Role 1 | * (Armani)
name name 0..1 (Wright)
1| Represenatation | 1 * Binding
name
1 1 * (Armani) * (Armani)
0..1 (Wright) 0..1 (Wright)
* * o [{XOR} - 2
Connector Component Port Role
name name name name
(b)
1 Style
name
1 1 1
Component type Connector type Port type Role type Property type
name name name name name
declaration

(c)

Figure 9 The entities of Armani. (a) The associations between design elements and design

element types, systems and styles, and the constructs associated to both design element types

and styles. (b) The structure of systems and representations. (c) The structure of styles.

50

Table 6 Basic entities of Wright

Entity Properties Short name Description

System Name name Name of the system
Component types [comp_types |The set of Component types declared by the system
Connector types [conn_types | The set of Connector types declared by the system
Component components | The set of Component instances of the system
instances
Connector connectors The set of Connector instances of the system
instances
Attachments attachments | The Attachments of the system
Style style The Style declared by the system

Component type Name name Name of the type
Ports ports The Ports declared by the type
Computation computation |The computation process of the type
Representation rep The System acting as the Computation

Connector type Name name Name of the type
Roles roles The Roles declared by the type
Glue glue The glue process of the type
Representation rep The System acting as the Glue

Component instance |Name name Name of the instance
Type type The Component type of the instance
Cardinality cardinality The number of instantiated components

Connector instance |Name name Name of the instance
Type type The Connector type of the instance
Cardinality cardinality The number of instantiated connectors

Port Name name Name of the port
Process process The process of the port
Cardinality cardinality The number of ports instantiated

Role Name name Name of the role
Process process The process of the role
Cardinality cardinality The number of ports instantiated

Representation System sys The System in the representation
Bindings bindings The set of Bindings between ports and roles in the

representation, and those in the Component or Connector
containing the representation

Attachment Port port The Port that the attachment concerns
Role role The Role that the attachment concerns

Binding First interface first Each binding concerns two interfaces, i.e., Ports or Roles,
Second interface |second and the order of the interfaces is semantically irrelevant.

51

Table 7 Additional entities of Wright

Entity Properties Short name Description
Style Component types |[components |The set of Component types declared by the style
Connector types | connectors The set of Connector types declared by the style
Interface types intetfaces The set of Interface types declared by the style.
Syntantic constraints The set of syntactic constraints declared by the style
constraints
Semantic semantic The set of semantic constraints declared by the style
constraints
Interface type Name name Name of the type
Process process The process specified by the type
System * * Style L - Syntactic constraint
name name expression
1 1 !
Component Connector + |Semantic constraint
name name expression
1 1
Component type | 1 * Port Connector type |1 Role
name name name name
computation process glue process

Figure 10 Entities of Wright

52

Table 8 Entities of Koala

Entity Properties Short name Description
Configuration Name name The name of the configuration
Components components | The Component definitions contained in the configuration
Bindings bindings The set of Bindings between the component definitions
Component type Name name Name of the type
Interfaces interfaces The Interface definitions of the component
definitions
Contained components | The Component definitions contained in the configuration
components
Bindings bindings The set of Bindings defined in the type
Interface type Name name Name of the interface
Functions functions The Functions constituting the interface
Function Name name The name of the function
Interface definition |Name name The name by which the interface is provided or required
Type type The Interface type of the definition
Direction direction The direction of the definition. Possible values ate:
PROVIDED and REQUIRED
Necessity necessity The necessity of the interface. Possible values are: OPTIONAL
and MANDATORY. An interface with the value OPTIONAL is
an optional interface, whereas the value MANDATORY
indicates a non-optional (regular) interface.
Component Name name The name by which the component is contained
definition
Type type The Component type of the contained component
Binding Required interface |required The required Interface definition involved in the binding
Provided interface |provided The provided Interface definition involved in the binding
Function binding Required function |required The required Function involved in the binding
Provided function |provided The provided Function involved in the binding
Module Interfaces interfaces The set of Interface definitions connected to the module
Configuration Component type Binding Module
name name 1
1 1 1
2
’ ’ Interface definition
Component definition * Inhame ||
name direction
necessity
| *
|1
Function binding 1 2 Function * 1 Interface type
name name

Figure 11 Entities of Koala

53

5.3 Mapping between Armani and the Ontology

This section consists of three subsections. First, a mapping from Armani to the
ontology will be shown. Second, ontological constraints needed to make the resulting
configuration models sound will be explicated. Third, a mapping from configuration

models to Armani will be given.

5.3.1 Mapping Basic Concepts of Armani to the Ontology
This section presents a mapping from Armani to the configuration ontology.
Overview of the Mapping

Before going into details of the mapping, an overview is given in order for the reader to
get the big picture. First, the fact that there are components in Armani and in the
ontology suggests that in Armani components could be mapped into components in the

configuration ontology. The same argument applies to ports.

Further, as the structure of connectors is similar to that of components, and the relation
between connectors and systems is the same as that between components and systems,
connectors are mapped into components in the configuration ontology as well. Given
that connectors in Armani are mapped into components in the configuration ontology,

ports in the ontology are the natural counterpart of Armani roles.

The fact that systems in Armani contain components and connectors and that
components and connectors of Armani are represented as components in the ontology
suggests that systems should be mapped into components in the ontology as well: after
all, component type is the only concept in the ontology that can be specified a structure
in terms of other component types. Moreover, the representing systems are mapped
into components as well. This is motivated by two reasons. First independent systems
are mapped into systems. Hence, the mapping will create a symmetry between the
mappings for the two classes of systems. Second, representing systems have names and
can define properties; component is a concept that can accommodate these features of

representing systems.

Above, it was stated that concepts in Armani are mapped into components and systems.
To be more exact, all the entities discussed above are mapped into component and port

types. This is in a sense counter to intuition: instances are mapped into types, although

54

individuals would also be available in the configuration ontology. However, unlike
instances of Armani, all the individuals in the configuration ontology are directly of a
type. Consequently, mapping instances in Armani to individuals of the ontology would
require that corresponding types to be defined. Hence, the approach of mapping
instances into types is adopted in order to avoid each entity in Armani being mapped

into at least two entities in the ontology.

In summary, components, connectors, systems, and systems in representations are
mapped into component types in the configuration ontology. Respectively, both ports

and roles in Armani were mapped into port types.
General Definitions

In order to distinguish components and ports in the configuration ontology
corresponding to different entities in Armani, a taxonomy of component and port types

is introduced and presented in Figure 12.

All the types in Figure 12 with their names beginning with ‘ADL’ are abstract: i.e., their
individuals cannot occur in complete configurations. In addition, all component types
except ADLSYSTEM are dependent: i.e., the individuals of these types cannot occur in

valid configurations without being a part of some other component individual.

Further, compatibility definitions are needed to allow connections between ports and
roles, and to disallow connections between two ports or roles. In detail, the following

compatibility definitions are added to the ADLPORT and ADLROLE types.

Definition 5-1 ADLPORT is compatible with ADLROLE, and ADLROLE is compatible
with ADLPORT.

Systems

As stated above, systems are mapped into components. This task is carried out by the

function system,o defined below.

55

| Component type |

T

ADLComponent | | ADLConnector | | ADLSystem | |ADLRepresentation

(a)

| Port type |

T

ADLPort | ADLRole |
(b)

Figure 12 Component and port types used in mapping Armani. (a) The taxonomy of

component types. (b) The taxonomy of port types.

Definition 5-2 System s is mapped into Configuration model M and Component type
systemo(s). Initially, M contains the component and port types of Figure 12 and the

compatibility definitions of Definition 5-1. The function system o is defined as follows:

system o(s) := Component type ¢, where

c.name = s.name

c.abstraction := CONCRETE

c.dependency := INDEPENDENT

c.parts = component 10, 4./(S.components) U connector o, 4.(s.connectors)
c.types = { ADLSYSTEM }

c.attributes 1= property o(S.properties)

Further, for each Attachment a in s.attachments, and each Role r such that » = a.role,
roleo(r) is modified as follows:
constraints := roleyo(r).constraints L1 { attachment o(a) }.

M is modified as follows:

components := M.components [systemo(s). ®
As the definition shows, an Armani system is mapped into a concrete and independent
subtype of ADLSYSTEM. The components and connectors of s are mapped to parts of ¢
by the functions component o, 4oy and connector 40, 4; these functions are specified below
when defining the mapping for Armani components and connectors. Similatly,

properties of s are mapped into attributes of ¢ using the property,o function, also

56

specified below. Further, the function attachment,o returns a constraint based on the

attachment it receives as input.

Example. The example involving a client-server system that was used when analysing
ADLs will be used to demonstrate the construction as well. Figure 13 depicts the results
from mapping the client-server system in Armani (Figure 3) to the configuration

ontology.

The notation used for depicting the configuration models is UML. There are two
reasons for using UML. First, there is no standard graphical notation for depicting
configuration models or configurations. Second, the constructs of UML can be used to

capture the relevant aspects of the configuration models represented with it.

In Figure 13 (a), it can be seen that cs_system is defined as a subtype of ADLSYSTEM.
Both ADLSYSTEM and cs_system are types that are represented by classes in the
figures. Further, the fact that cs system is a subtype of ADLSYSTEM is illustrated with

a generalisation arrow between the classes. m

In the following definitions in this section, M refers to a specific configuration model: in
common terms, M is the configuration model that results from mapping a system using
the above definition. That M is indeed a specific configuration model in the definitions
below can be understood by observing that all entities in Armani are defined in the
context of an independent system, except for independent systems themselves. Thereby,
each entity is associated with a specific system. And as mapping an independent system
results in a configuration model, each entity is associated with a single configuration

model as well.
Components and Connectors

Components in Armani systems, both independent and representing, are mapped into
component types using the function component,o, . and into part definitions using the

function component o 4 Both these functionsa are defined in the definition below.

57

| ADLConnector | | ADLComponent | | ADLSystem | |ADLRepresentation|

z A A

| rpc | | cs_system | | sub |

client1 | | client2 | | server | | c |

ADLPort | | ADLRole

JASANYAYAY

send_req_1| |send_req_2| | rec_req | | p | | caller | | callee

(b)

«part of» «part of»
«part of»
1 1 | 1
| client1 | | client2 I, server
«port of» «port of» { must be connected } { must be connected }
«port of»
«port of» 1 «port of»
callee sub
————————————————————————————— > «part of»
1 1 1 1
send_req_1 caller | rec_req | | c |
«port of»
1

[»]
(c)
cs system A «part of» s Part definition: Type A defines a part by name
Concrete type . n E s, cardinality n, and part type B
«port of» s Port definition: Type A defines a port by name
ADLRole Abstract type n E s, cardinality n, and port type B
[: is-a __{mustbe _CCTH_GE@_)_> Connection constraint: the ports defined by the
two port definitions must be connected
(d)
Figure 13 Mapping the client-server system from Armani to the configuration ontology. (a)

The taxonomy of component types. (b) The taxonomy of port types. (c) The part and port

structure in the configuration model. (d) Legend of the notation used.

58

Definition 5-3 Component ¢ is mapped into Component type component,o, yp.(c), and

Part definition component o, 4o(c). The function component,o, . is defined as follows:

component 4o, ype(c) := Component type ¢, where

t.name = c.name

t.abstraction := CONCRETE

t.dependency .= DEPENDENT

t.parts := representation yo(c.representations)
t.ports = porto(c.ports)

t.types := { ADLCOMPONENT }

t.attributes := property o(c.properties)

The function component o, 4ris defined as follows:

component 4o, qo(c) := Part definition d, where

d.name

d.types
d.cardinality :=1

c.name

component 40, type()

M is modified as follows:

M.components := M.components U] component o, yp(c). B

The above definition uses the function representation,o for mapping the representations

of c into the configuration ontology. The function is specified below in Definition 5-9.

It should be observed that a single component in Armani results in two entities in the
configuration model: a component type and a part definition. The component type is
created to exist independently of other entities in the configuration model. However, in
contrast, part definitions cannot exist independently of other entities; as was already
seen in Definition 5-2, the component,o 4 function was used to produce the part
definitions of the component type corresponding to an Armani system. In a sense, the
above definition cannot be applied independently of other definitions, as the resulting
part definition cannot exist independently of other entities. This is, however, in
accordance with the semantics of components in Armani: they cannot exist

independently of systems.

It is intuitively clear that a component in Armani is mapped into component type in the
ontology: an Armani component contains information that corresponds to the

properties component types can define in the configuration ontology.

59

However, that a component is mapped into a part definition as well is not as intuitive.
The motivation for this kind of mapping can be seen by observing that in Armani, there
is a relationship between a system and a component contained in it; the relationship is
not a property of either the system or the component. Part definition is the concept in
the configuration ontology corresponding to the relationship. The alternatives for
mapping the relationship are: first, promoting the relationship between the system and
the component to an entity; second, map the relationship when mapping the system;

and third, mapping the relationship when mapping the component.

Above, the third approach was adopted, albeit the other two approaches would have
been viable as well. The first approach would have had the drawback that the entity
model would have introduced an entity in the entity model without a counterpart in the
language. Additionally, the entity would have had only two properties, namely references

to a component and a system.

There are several reasons that make the adopted approach better than the second. In
short, the adopted approach gives a better understanding of what is the effect of
inserting or removing a component to the configuration model: now it should be clear
that inserting a component into a system results in the addition of a component type
and a part definition using the component type. Other reasons for adopting the

approach are more objective and stylistic in nature and are not discussed for brevity.

Connectors are mapped in the same manner as components. This time, function
connector o, ype Maps an Armani connector in a component types, and connector o, s
into a part definition. These functions along with rest of the mapping are defined as

follows:

Definition 5-4 Connector ¢ is mapped into Component type connector o, yp.(c) and Part

definition connector 40, 4(c). The function connector o, yp. is defined as follows:

connector 40, ype(c) := Component type ¢, where

t.name = c.name

t.abstraction ~ := CONCRETE

t.dependency := DEPENDENT

t.parts = representation 4o, 4./(c.representations)
t.ports = roleyo(c.roles)

t.types = { ADLCONNECTOR }

t.attributes = propertyo(c.properties)

60

The function connector 40, 4ris defined as follows:

connector 0, 4o(c) := Part definition d, where

d.name = c.name
d.types 1= connector 40, ype(c)
d.cardinality =1
M is modified as follows:
components := M.components L1 connector o, ype(c). ®

Example. In Figure 13 (a), ADLCOMPONENT has four subtypes (clientl, client2,
server, and c) and ADLCONNECTOR one subtype (rpc) corresponding to components
and connectors of the sample Armani system. These types have resulted from applying
the functions component,o, 4. and connector o, 4. to the components and connectors of

the Armani system.

The effect of functions component o, 4y and connector 4o, q4r is llustrated in Figure 13 (b).
There, the above-mentioned subtypes of ADLCOMPONENT and ADLCONNECTOR are

related to cs_system and sub through part definitions.

Some observations about the notation used for illustrating part definitions is in place.
Basically, the part-whole relationship between the two types is defined as an association
between the two types. The association is of a special form, namely composition. The filled
diamond at the end of the association lines stands for this. The semantics of
composition in UML correspond to the semantics of a part definition: composition is a
special case of aggregation, where a part instance is included in at most one whole at a
time (Object Management Group 2001); although the configuration ontology would
allow specifying that an instance of a component type can be a part of multiple
component instances at a time, it is correct to disallow it for components corresponding
to Armani components, as Armani has no notion of entities being in a part-whole
relation with multiple wholes at a time. Further, the composite projects its identity to its
parts (Object Management Group 2001). This assures that it is semantically correct to

refer to the whole of a part.

Further, the compositions used for modelling part definitions are decorated with the
stereotype ‘part of”, depicted as «part of» in the figure. The stereotype used is not one of
the built-in stereotypes of UML, and should thus be defined. The definition is however

omitted, as the main purpose of the stereotype here is to distinguish illustrations of part

61

definitions from those of port definitions that are likewise modelled with composition.

m
Ports and Roles

Ports and roles are mapped analogously to components and connectors: each port and
role is mapped into a port type and a port definition. For Armani ports, function
POrto ype teturns the port type corresponding to the port, and portyo 4 the port

definition.

Definition 5-5 Port p is mapped into Port type porto yp(p) and Port definition

DPOrtio, ae(p). The function port,p, 4. is defined as follows:

POFLio, mpe(p) := Port type ¢, where

t.name = p.name

t.abstraction := CONCRETE

t.types := { ADLPORT }
t.attributes := property o(p.properties)

The function port,g, 4ris defined as follows:

POrtyo, ae(p) := Port definition d, where

d.name = p.name
d. types 1= portyp, type(p)
d.cardinality =

M is modified as follows:

ports := M.ports U port,o, ype(p). ®
Argumentation similar to that given for mapping components in Armani into
component types and definitions in the ontology applies to ports as well. Further, using

mappings following the same pattern should make the mappings easier to comprehend.

Further, it is worth noticing that the cardinality of # is set to infinite. This is due to the
fact that Armani does not restrict the number of attachments made to a single port in
any way, but the configuration ontology allows a port individual to be connected to at
most one port individual at a time. Therefore, cardinality is set to infinite to give port

definitions the same semantics as ports have in Armani.

The mapping for roles is defined below. The definition is very similar to that for ports

above; function role g, yp. corresponds to portso, 4y above, and role o, gor to POrto, def:

62

Definition 5-6 Role r is mapped into Port type role o yp(r) and Port definition

roleo, 4e(r). The function role,o, e 1s defined as follows:

role,o, wpe(r) := Port type ¢, where

t.name = t.name

t.abstraction := CONCRETE

t.types := { ADLROLE }
t.attributes := property o(p.properties)

The function role,o, 4ris defined as follows:

role,o, 4(r) := Port definition d, where

d.name 1= r.name
d.types 1= roleso, ype(r)
d.cardinality — := oo

M is modified as follows:

ports := M.ports U role o, ype(r). ®

Example. The port types corresponding to ports (send req 1, send req 2,
rec_req, p) and those corresponding to roles (caller, callee) in the sample system
are illustrated in Figure 13 (b). These port types have resulted from applying the
functions port,o, ype and role,o, 4. Further, the port definitions resulting from functions

POFtio, gy and roleyo, 4or can be seen in Figure 13 (c).

Observations similar to those made for modelling part definitions with UML apply
likewise to port definitions. In fact, it is even better grounded to model port definitions
with composition, as the ontology provides no possibility for port individuals to be
simultaneously ports of two distinct component individuals. The reader should not be
confused by the fact that composition is a kind of ‘part-of” association in UML, as the

term part has different semantics in UML and the configuration ontology. m
Properties

The mapping for properties follows the same pattern as the mapping for components,
connectors, ports and roles: a single property results in an attribute value type, and an
attribute definition. The former is produced by the function property o, ype, and the latter

by the function property o, 4 The mapping is defined as follows.

Definition 5-7 Property p is mapped into Attribute value type property,o yp(p) and

Attribute definition propertyo, 4(p). The function property,o, sy is defined as follows:

63

property o, wpe(p) 1= Attribute value type ¢, where
t.name 1= p.type.name

t.type := p.type if p.type exists; otherwise, return nothing.
The function property o, 4r1s defined as follows:
property o, ae(p) := Attribute definition d, where

d.name = p.name

d.type := p.type, if p.type exists, otherwise STRING

M is modified as follows:

attributes := M.attributes U property o, wpe(p). ®

Attachments

The construct in the configuration ontology that comes the closest to attachments is
connection constraints. Therefore, attachments are mapped into constraints that are
then inserted to port definitions corresponding to Armani ports as connection

constraints (see Definition 5-2).

Natural language is used for expressing constraints in the configuration ontology, as

there is no formal constraint language specified for it.

In the definition below, the function attachment,o specities the mapping for

attachments.

Definition 5-8 Attachment a is mapped into Constraint attachment,o(a). The function

attachment 4o is defined as follows:
attachment o (a) := Constraint ¢, where
c.expression = portso(a.port) and role,o(a.role) must be connected. m

Example. In Figure 13 (c), connection constraints corresponding to attachments are
drawn as lines between port definitions; see Figure 13 (d) for details of the notation.

The constraint is expressed in the UML notation for constraints. m
Representations

Finally, the mapping for representations resembles that for systems. However, in
addition to creating a component type, a corresponding part definition must be as well
created. The mapping into a type is carried out with the aid of function

representation 4o, 4. and that into a part definition by the function represenatation .o, .

64

Definition 5-9 Representation » is mapped into Component type representation o, yp.(7)
and Part definition representation o, 4(r). The function representation,o, yy. s defined as

follows:

representation 4o, yy.(r) := Component type c, where

c.name = r. name

c.abstraction ;= CONCRETE

c.dependency .= DEPENDENT

c.parts := component o, 4o/(r.sys.components) L]

connector 4o, 4of(r.sys.connectors)
c.types := { ADLREPRESENTATION }

c.attributes := property o(r.sys.properties)

Further, for each Attachment a in r.sys.attachments and each Role g such that ¢ = a.role,

roleo(q) is modified as follows:

constraints := roleyo(q).constraints [{ attachment o(a) }.

The function representation 4o, 4ris defined as follows:

representation 4o, q(r) := Part definition d, where

d.name = r.sys.name
d.types = representation 4o, ype(r)
d.cardinality =1
M is modified as follows:
components := M.components U representation 4o, yp.(r). ®

Example. The representation rep, including the system sub, is mapped into a
component type sub (Figure 13 (a)). Further, the representation is defined to be a part
of component type server (Figure 13 (c)). Component type sub itself has a part, where

the part typeis c. m

5.3.2 Mapping Additional Concepts of Armani to the Ontology

The name M is used in the definitions below to refer to a configuration model. This
model can be a configuration model corresponding to an Armani system, as it was
discussed in the above in Section 5.3.1. Alternatively, the model can correspond to a
style (see Definition 5-14 below). In any case, the configuration model referred to as M

in the definitions is a specific configuration model.

65

Design Element Types

The mappings for design element, i.e., component connector, port, and role, types are
similar to the mappings of type information of design elements: e.g. the mapping of
component types is similar to the function component,o, .. However, the resulting
component and port types differ from the types resulting from mapping design
elements in that the types are abstract. The abstractness serves two purposes: first,
component types corresponding to design element types and design elements are
distinguished from each other; second, there would be no use in making these types
concrete, as all the design elements are created a concrete type of their own when

mapping them to the ontology.

Component types in Armani are mapped into component types in the configuration

ontology by the function component o, . as follows.

Definition 5-10 Component type ¢ such that is mapped into Component type

componentType o(t). The function componentType,o is defined as follows:

componentTypeo(t) := Component type ¢, where

c.name = t.name
c.abstraction := ABSTRACT
c.dependency := DEPENDENT
c.parts = representation 4o(t.representations)
c.ports = porto(t.ports)
c.types := { ADLCOMPONENT } [componentType o(t.types)
c.attributes := property o(t.properties)
M is modified as follows:
components := M.components L1 componentType 0(t)
constraints := M.constraints U] invariant,o(t.invariants). m

The function invariant,o referred to in the definitions is defined below. In short, it maps

Armani invariants into constraints in the configuration ontology.

The mappings for other design element types are similar to both the above mapping of
component types and the corresponding mappings of the design elements themselves
presented above (see Definition 5-4 for connectors, Definition 5-5 for ports, and

Definition 5-6 for roles). In short, all design element types are mapped into abstract

66

types; in other respects the mappings are the same as those for design elements. The

mappings are not given explicitly here.

It should be noted that the above definition handles also the issue that component types
can be defined supertypes in Armani. In more detail, the fact that c.fypes is assigned to
the value of the union of ADLCOMPONENT and the set of types resulting from mapping

the component types declared by c as its supertypes.

Design elements, i.e., components, connectors, ports, and roles, declaring types are
mapped similarly to ordinary design elements (see Definition 5-3 for components,
Definition 5-4 for connectors, Definition 5-5 for ports, and Definition 5-6 for roles)
with the exception that the concrete type that are created in the configuration ontology
is defined to be a subtype of all the abstract types corresponding to the types declared

by the design element in Armani.

For components, the mapping is carried out by functions typedComponent,o, . and
typedComponent,o, 4 , of which the former returns the component type, and the latter

the part definition. Formally, the mapping is defined as follows.

Definition 5-11 Component c that declares a set of types is mapped into Component type
typedComponent 40, ypo(c) and typedComponent,o, 4(c). The function typedComponent, is

defined as follows:
typedComponent 10, ype(c) := component o, yp.(c) modified with
types := component 0, ype(c).types L1 componentType,o(c.types)

The function component o, . 1s defined in Definition 5-3.

The tunction typedComponent o, 4o is defined as follows:
typedComponent o, 4o(c) := component o, 4(c) modified with
types := typedComponent 40, ype(C)
M is modified as follows:
M.components := M.components U typedComponent 1o, yp.(c). ®

The modification made to component,o p. are needed to reflect the fact that the

component instance is declared to be of a number of types.

Again, mapping connectors, ports and roles that declare types is similar to mapping
components declaring types and the mappings for connectors, ports, and roles not

declaring entities (see, once again, Definition 5-4 for connectors, Definition 5-5 for

67

ports, and Definition 5-6 for roles). In short, mappings for design elements declaring
types are the same as the mappings for design elements not declaring types, with the
exception that the resulting concrete type in the ontology is defined to be a subtype of
the abstract types corresponding to the types declared by the element in Armani. These

mapping are not given explicitly.
Property Types

Property types in Armani are mapped into attribute value types in the ontology by the

function propertyType 0.

Definition 5-12 Property type p is mapped into Attribute value type propertyTypeo(p).
The function propertyType,o is defined as follows:
propertyType,o(p) := Attribute value type ¢, where
t.name 1= p.type.name
t.type 1= p.type.
M is modified as follows:
M.attributes := M.attributes [propertyType o(p). ®

The mapping of property types is similar to mapping design element types in that similar
mapping was already seen above when mapping the type information embedded in

properties.
Invariants

Invariants in Armani are mapped to constraints in the configuration ontology. However,
the details of how the content of expressions is mapped cannot be given, as there is no

constraints language specified in the ontology.
Invariants are mapped by function invariant o as specified in the definition below.

Definition 5-13 Invariant i in a context is mapped into Constraint invariant,o(i). The
function invariant,g is defined as follows:

invariant (i) := Constraint », where

r.expression := the semantics of i must hold the in ‘part’ of the configuration
model corresponding to the context. m

The above definition refers to the context in which an invariant is defined. In practical

terms, an invariant can be defined within a design element type or a style. In the former

68

case, the invariant should be mapped to a constraint concerning the individuals of the
type the design element type is mapped to. In the latter case, the invariants are mapped
to concern entire configuration models: as will be shown next, styles are mapped into

partial configuration models.
Styles

Styles are mapped into configuration models that are partial in the sense that they do
not correspond to Armani systems as such, but are supposed to be used in conjunction

with configuration models corresponding to Armani systems.
Formally, the mapping is carried out by the function style,o defined below.
Definition 5-14 Style s is mapped into Configuration model style,o(s). The function

styleyo is defined as follows:

styleo(s) := Configuration model M, where

M.component := componentType o(s.components) [
connectorType o(s.connectors)

M.ports := portType,o(s.ports) L1 roleType o(s.roles)
M.attributes := propertyType o(s.properties)
M.constraints .= invariant o(s.invariants).

In addition, M contains the component and port types of Figure 12.m

As can be seen in the definition, M contains component and port types corresponding
to different design element types defined in the style. Further, M includes attribute value
types corresponding to the property types, and constraints corresponding to invariants
defined in the style. Further, the general definition of Figure 12 are needed, as the they

serve as the supertypes of abstract component and port types in M.

Systems that are of a one or a number of styles are mapped as ordinary systems with the
exception that the resulting configuration model is supplemented with the configuration
models corresponding to the declared styles. Formally, the mapping is carried out by the

function system,o, the same function used for mapping styles that are of no style.

Definition 5-15 System s that declares a set of styles is mapped into Configuration model
M and Component type systemo(s). Initially, M contains the component and port types
of Figure 12 and the compatibility definitions of Definition 5-1. The function system, is

defined in Definition 5-2.

69

M is modified as follows:

M

= M U styleyo(s.styles). m

In the above equation, the semantics of the union of configuration models is that the

configuration models resulting from mapping the styles are included in the

configuration model resulting from mapping the system.

Table 9 Summary of mapping Armani to the configuration ontology

Armani Configuration ontology
Entity Properties
System Concrete and independent subtype of the ADLSYSTEM, configuration model
Component Part definitions of ADLCOMPONENT type in the subtype of ADLSYSTEM
Connector Part definitions of ADLCONNECTOR type in the subtype of ADLSYSTEM
Attachment Connection constraints in port definitions corresponding to ports in Armani
Style Partial configuration model included in the configuration model
Component Concrete and dependent subtype of ADLCOMPONENT
Port Port definition of ADLPORT type in the subtype of ADLCOMPONENT
Representation Part definition of ADLREPRESENTATION type in the subtype
Type The type is a subtype of abstract types
Connector Similarly as componets, but types atre ADLCONNECTOR and ADLROLE
Port Concrete subtype of ADLPORT, port definition in an ADLCOMPONENT type
Role Concrete subtype of ADLROLE, port definition in an ADLCONNECTOR type
Representation Conrete subtype of ADLREPRESENTATION, and a part definition
Binding No mapping
Other properties Similarly as in System
Property Attribute definition in the corresponding type

Component type

Abstract and dependent subtype of ADLCOMPONENT

Port Port definition in the subtype of ADLCOMPONENT
Invariant Constraints concerning the subtype of ADLCOMPONENT
Heuristic No mapping
Connector type Similarly as Componen type, but types are ADLCONNECTOR ADLROLE
Port type Abstract and dependent subtype of ADLPORT
Invariant Constraints concerning the subtype of ADLPORT
Heuristic No mapping
Type The subtype is a subtype of other abstract types
Role type Similarly as Port type, but type is ADLROLE
Property type Attribute value type
Style Partial configuration model
Properties Items in the partial configuration model

Table 9 summarises the above mappings of this and the previous section. As has been

highlighted with bold typeface, no mapping could be found for binding between the

interfaces in representation and those in the represented entities, and for heuristics.

70

These issues are discussed in more detail in Section ‘6.2 Unmapped Concepts and

Potential Extensions’.

5.3.3 Ontological Constraints

This section represents a set of constraints that serve as an incremental extension to the
configuration ontology. The extension enables representing architectures with the

semantics equivalent to Armani.

Definition 5-16 There are no resource and no function types in the configuration

model. m

The above constraint is set is due to the fact that when the mapping from Armani to the
ontology, nothing was mapped into resources and functions. There is no obvious

corresponding concept in Armani for functions and resources.

Next, as a mapping between a single Armani system or style and a configuration model
is desired, it must be asserted that there is at most one subtype of ADLSYSTEM in the
configuration model. A model without a subtype of ADLSYSTEM corresponds to an
Armani style, and a model where there is exactly one subtype of ADLSYSTEM
corresponds to a system. Further, configuration models corresponding to systems and

styles both have some invariant properties.

Definition 5-17 There exists at most one subtype of ADLSYSTEM in the configuration
model. If there is a subtype of ADLSYSTEM, it must be independent and concrete. If
there exists no subtype of ADLSYSTEM, there may not exist any concrete component or

port types either. m

The fact that components, connectors and representations are always part of something

else is reflected in the following constraint.
Definition 5-18 Only subtypes of ADLSYSTEM are allowed to be independent. m
The taxonomy of types must be restricted.

Definition 5-19 Each component type must be a subtype of exactly one of the
following types: ADLCOMPONENT, ADLCONNECTOR, ADLSYSTEM,
ADLREPRESENTATION. Further, component types are not allowed to define concrete

supertypes. B

71

The need for these constraints can be seen by observing that if a component type were
not be a subtype of any of the above-mentioned types, there would be no unambiguous
mapping from the type to the ADLs. The same condition would result if some
component type had more than one supertype in the above-mentioned set of types. A

similar argument applies to port types.

Definition 5-20 Fach port type must be a subtype of exactly one of the following types:

ADLPORT, ADLROLE. Further, port types may not define concrete supertypes. ®

The above requirement is due to the fact that only design elements are mapped into
concrete types, and, on the other hand, only design element types may be declared as

types of design elements and supertypes of design element types.

Next, the part structure of component individuals must be constrained. In detail, the
entities of ADLs represented by component types in the ontology may define only the

following parts:

" Systems, both in representations and other, may define components and

connectors.

* Components and connectors may define only ports and roles, respectively, and

representations.
The corresponding constraints in the configuration model are:

Definition 5-21 For each Part definiion d of a subtype of ADLSYSTEM or
ADLREPRESENTATION, the set of possible part types of d must include only concrete

subtypes of either ADLCOMPONENT or ADLCONNECTOR. ®

Definition 5-22 Subtypes of ADLSYSTEM and ADLREPRESENTATION must not define

ports. m

Definition 5-23 For each Part definition d of a subtype of ADLCOMPONENT or
ADLCONNECTOR, the set of possible part types of d must include only subtypes of

ADLREPRESENTATION. ®

Definition 5-24 For each Port definition d of a subtype of ADLCOMPONENT, d.fypes must

include only concrete subtypes of ADLPORT. m

72

Definition 5-25 For each Port definition d of a subtype of ADLCONNECTOR, d.types must

include only concrete subtypes of ADLROLE. m

Further, it must be required that in all part and port definitions, the set of possible part
or port types, respectively, is of size one. Otherwise, the mapping from the type to the

ADLSs would be ambiguous.

Definition 5-26 For each Part definition d, d.fypes must be of size one, and and

d.cardinality must be one. B

Definition 5-27 For each Port definition d, d.types must be of size one, and d.cardinality

must be infinite. m

As already stated when defining mapping from Armani to the ontology, port definitions
must have an infinite cardinality due to the fact that Armani does not restrict the

number of connections made to a single port or role.

As the two above definitions guarantee that the set of possible types in part and port
definitions contains a single type, the type will be for simplicity referred by the name

type (compare with Table 3).

5.3.4 Mapping the Ontology to Armani

This section presents how a configuration model can be mapped into an Armani system

or style.
Component Types

As can be recalled from above, different entities in Armani were mapped into
component types. In the following definitions, component types are mapped into

different entities in Armani based on their supertypes.

First, subtypes of ADLSYSTEM are mapped into Armani systems. Formally, the mapping

is carried out by the function ADLSystemo,.

Definition 5-28 Component type ¢ in Configuration model M such that c.type is a subtype
of ADLSYSTEM is mapped into System ADLSystemo(c, M). The function ADLSystemo,

is defined as follows:

ADLSystemopy(c, M) := System s, where

s.name = c.name

73

s.properties := attributep(c.attributes)

s.components := ADLComponentoy, q4(c. parts)
s.connectors = ADLConnector oy, 4(c.parts)
s.attachments := connectionso,(M, c). m

As 1s apparent from the above definition, the attributes and parts of ¢ become
properties, components, and connectors of s; functions attributepy, ADLComponentg,, defs
and ADLConnectoro 4, respectively, defined below are used to map entities in
configuration models into these entites. Further, the attachments of s are extracted from

the configuration model by the function connectionsoy, likewise defined below.

Example. The same client-server example that was used for demonstrating mapping
Armani to the ontology is used to demonstrate the mapping back from the ontology to
Armani. Figure 3 presented the system in Armani, and Figure 13 the same system
mapped from Armani in to the configuration ontology. When giving examples in this

section, the same figures are used.

Applying the above definition results in cs_system component type being mapped into

the Armani by the same name. m

Abstract component and port types in configuration models are mapped into design
element types. For component types, the function ADLComponent,, . defined below is

used to perform the mapping.

Definition 5-29 Abstract Component type ¢ such that ¢ is a subtype of ADLCOMPONENT
is mapped into Component type ADLComponento, ywp(t). The function

ADLComponentoy, . is defined as follows:

ADLComponento,, (1) == Component type ¢, where

c.name = t.name

c.properties = attributep(t.properties)

c.ports := ADLPorto, q(t.ports)

c.reps := ADLRepresentationo, 4.(t.parts)
c.types := ADLComponent o, ype(t.types). ®

The functions attributegs, ADLPorto, 4, and ADLRepresentationg, referred to in the
above definition map the attribute definitions, port definitions, and representations,
respectiviely of ¢ into corresponding entities in Armani, i.e., properteis, ports, and

representations. These functions are defined below in this section. Further, the

74

supertypes of ¢ are mapped into supertypes of ¢ by recursively applying the

ADLComponentg,, 4 function.

Types that are subtypes of ADLCONNECTOR are mapped into connector types similarly
as subtypes of ADLCOMPONENT to component types above. Of course, the mapping is
done into Armani connectors, and the ports defined by ¢ are mapped into roles of

connectors, using a function similar to ADLPorto, 4o
Port Types

The definition for mapping abstract subtypes of ADLPORT is given below. In essence,

the mapping is carried out by function ADLPorto, ype(?).

Definition 5-30 Abstract Port type ¢ such that ¢ is a subtype of ADLPORT is mapped into
Port type ADLPorto,, ype(t). The function ADLPorto, 4. 1s defined as follows:

ADLPorto ype(t) := Port type p, where

p.name 1= t.name
p.properties = attributeo(t.properties)
p-types := ADLPorto ype(t.types). m

The mapping for subtypes of ADLROLE is the same as that for subtypes of ADLPORT.

Therefore, the mapping is not defined explicitly.
Part Definitions

Part definitions of component types in the configuration ontology are mapped into
components, connectors, and representations. First, the definition that results in
components is given. Formally, the definition is carried out by the function

ADLComponent o, gef

Definition 5-31 Part definition p such that p.fype is a subtype of ADLCOMPONENT is
mapped into Component ADLComponento, q4(p). The function ADLComponento, sor 15

defined as follows:

ADLComponentoy, 4(p) := Component ¢, where

c.name = p.name

c.properties = attributep(p.type.attributes)

C.ports := ADLPorto,, qo(p-type.ports)

c.reps := ADLRepresentationo, 4/(p.type.parts)
c.types := ADLComponent o, ype(p-type.types). &

75

As can be seen from the above definition, most of the information of the resulting
Armani component is obtained from p.fype. In fact, the above definition greatly
resembles the definition for mapping abstract subtypes of ADLCOMPONENT
(Definition 5-29).

Part definitions where the part type is a subtype of ADLCONNECTOR are mapped into
connectors. Once again, the mapping is analogous to that of component, and is
therefore not given explicitly; the differences between the mappings for components
and connectors are similar to those discussed above in conjunction with

Definition 5-29.

Example. The part definitions between types cs_system and clientl, client2, rpc,
and server are mapped components and ports of cs_system in Armani; the resulting

elements have the same names as the above-mentioned types. m

Finally, part definitions where the part type is a subtype of ADLREPRESENTATION are
mapped into representations using the following definition and the function

ADLRepresentationo,, 4 defined in it.

Definition 5-32 Part definition p in Configuration model M such that p.type is a subtype of
ADLREPRESENTATION is mapped into Representation ADLRepresentationoy, a(p, M). The

function ADLRepresentationoy, 4ris defined as follows:

ADLRepresentationo, 4/(p, M) := Representation r, where

r.name p.-name

r.sys.properties = attributeo (p.type.attributes)

r.sys.name = p.type.name
r.sys.components := ADLComponento,, q(p-type.parts)
r.sys.connectors:= ADLConnector o, qo(p-type.parts)
r.sys.attachments := connectionso (M, p). m
This mapping closely resembles the mapping for system; see Definition 5-28 and the

discussion following it.

Example. The part definition called rep between server and sub is mapped into

representation rep of component server in the Armani system cs_system. m

76

Port Definitions

Port definitions are mapped into ports and roles in Armani. For ports, the mapping is

carried out by the function ADLPorto, 4 as follows.

Definition 5-33 Port definition p such that p.fype is a subtype of ADLPORT is mapped
into Port ADLPorto, 4(p). The function ADLPorto, 4ris defined as follows:

ADLPorto, 4(p) := Port r, where

r.name = p.name
r.properties = attributep(p.type.attributes).
r.types := ADLPorto, yye(p-type.types). m

Port definitions where the port type is a subtype of ADLROLE are mapped into roles in

Armani. The mapping is similar to that for ports, and is thereby omitted.

Example. The port definition between clientl and send req 1 is mapped into port
named send req 1 in the Armani system. Correspondingly, send req 2 is mapped
into port by the same name in client2, p into port in c, and caller and callee into

roles in rpc.

It should be noticed that two ports resulting from the mapping, namely send req 1
and send req 2, have different names than the original ports in the components
(send_req). Actually, this condition was introduced already when mapping the Armani
system in the configuration ontology: as there were two ports with the same name in the
Armani system, they were implicitly given different names so that they would not have
the same name in the configuration ontology. For practical purposes, some general

scheme for resolving this kind of naming conflicts should be developed. m
Attribute Definitions

Attribute definitions occurring in types are mapped into properties. Formally, the

mapping is carried out by the function attribute,.
Definition 5-34 Attribute definition a is mapped into Property attributep,(a). The function
attributeg, is defined as follows:

attributep(a) := Property p, where

p-name = a.name

p.type = a.type. m

77

Constraints

Constraints that imply that port individuals must be connected are mapped into
attachments in systems. Formally, the mapping is defined below in terms of the function

connections py.

Definition 5-35 The function connectionsos(M, t) takes Configuration model M and
Component type ¢ as arguments and returns a set of Attachments s: s := { a | a.port =
ADLPortou(p) and a.role = ADLRoleoy 4(7), p and r are Port definitions in M such that p
and r are port definitions in parts of 7, and M implies that p and r must be connected }.

Characterising the constraints that should be mapped into attachments in more detail is
not possible. First, the assumption that such constraints would always be connection
constraints in port definitions is not valid. Second, constraints implying that two ports
must be connected cannot be assumed to have any certain pattern, especially when there

is no specific constraint language in the configuration ontology.

Example. The constrains between port definitions in Figure 13 are mapped into
attachments. Explicitly, the constraint between send reql and caller, and
send_req 2 and caller are mapped into attachments between ports and roles having
the same name in the Armani system. Similarly, the constraint between callee and

rec_reqis mapped into a constraint between callee and rec_regq.

It should be noticed that the model resulting from mapping the client-server system
back from the ontology to Armani does not include the binding between p and
rec_reg; this is due to the fact that the binding could not be mapped into the ontology.

Other constraints are mapped into invariants. Once again, it is not possible to show
exactly how different constraints are mapped, as the ontology does not specify a
constraint language. At the abstract level, however, constraints are mapped as follows

using the function constrainto,.

Definition 5-36 Constraint ¢ is mapped into Invariant constraintos(c). The function

constrainto, is defined as follows:

constrainto,(c) := Invariant i, where

I 1= c.expression. &

78

Configuration Models without Subtype of ADLSystem

Configuration models that contain no subtypes of ADLSYSTEM are mapped into styles.

Formally, the mapping is carried out by the function modelo,.

Definition 5-37 Configuration model m such that m contains no subtypes of
ADLSYSTEM is mapped into Style modelp(m). The function modely, is defined as

follows:

modelpy(m) := Style s, where

s.components := ADLComponento,, yy.(m.components)
s.connectors := ADLConnector oy, yp.(m.components)
S.ports := ADLPorto, ype(m.ports)

s.roles := ADLRoleo;, ypc(m.ports)

s.invariants constrainto,(m, GLOBAL). ®

In the above definition, design element types and constraints are mapped into the
content of the style using functions that have been defined above. An observation about
the way how the constrainto, is used is in place: no component type is specified, but the
identifier GLOBAL is used to express that constraints that are not specific to any design

element type are mapped into invariants of the style. Constraints that are specific to

some design element type are mapped in the respective functions mapping these types.

5.4 Mapping between Wright and the Ontology

In this section, a similar handling as was given in the above section for Armani, will

given for Wright.

5.4.1 Mapping Basic Concepts of Wright to the Ontology
This section presents a mapping from Wright to the configuration ontology.
Overview of the Mapping

As was found out above (see, e.g. in Table 1), Armani and Wright have the same set of
basic concepts. Consequently, it should come as no surprise that Wright is mapped into

the ontology in a similar manner to Armani.

79

General Definitions

The taxonomies for component and port types presented in Figure 12 and the

compatibility definitions of Definition 5-1 apply to Wright as well.
Systems

The mapping of Wright systems is similar to the mapping of Armani systems (see
Definition 5-2). A minor difference is that Wright systems cannot be defined properties.

Formally, the function systemy defined below is used to carry out the mapping.

Definition 5-38 System s is mapped into Configuration model M and Component type
systemyo(s). Initially, M contains the component and port types of Figure 12 and the

compatibility definitions of Definition 5-1. The function systemy is defined as follows:

systemyo(s) := Component type ¢, where

c.name = s.name

c.abstraction := CONCRETE

c.dependency := INDEPENDENT

c.parts = componentlnstanceyo(s.components) [

connectorlnstanceyo(s.connectors)

c.types := { ADLSYSTEM }
Further, for each Attachment a in s.attachments, and each Role r such that » := a.role,
rolewo(r) is modified as follows:
constraints := roleyo(r).constraints U { attachmentyo(a) }.

M is modified as follows:

components := M.components [systemyo(s). m

As when mapping from Armani, M refers to a specific configuration model, i.e. to the

configuration model of the above definition.

In the above definition, functions componentlnstanceyo and connectorlnstanceyo not
introduced so far are used for specifying the part definitions of the c¢. The function
attachmenty, returns a constraints based on the attachments it receives as its input. All

these functions are defined later in this section.

Example. Figure 14 depicts the mapping of the client-server from Wright to the

configuration ontology. The legend from Figure 13 (d) applies to this figure as well. The

80

mapping of the system in itself is the same as for Armani; the differences between

languages become visible later. m
Components and Connectors

In Wright, component types and their instances are separated from each other. The
following definition defines a mapping for component types; the function
componentTypeyo maps the component types in Wright into component types in the

configuration ontology.

Definition 5-39 Component type ¢ is mapped into Component type componentTypewo(c).

The function componentTypey, is defined as follows:

componentTypeyo(c) := Component type ¢, where

t.name 1= c.name

t.abstraction := CONCRETE
t.dependency .= DEPENDENT

t.parts := representationyo(c.rep)
t.ports := portyo(c.ports)

t.types := { ADLCOMPONENT }

M is modified as follows:

components := M.components U1 componentTypeyo(c). m

The function componentTypeyo is essentially the same as function component,o, yp. in
Definition 5-3. The functions representationyo and portyo defined later in this section

map the representation and ports of ¢ into the configuration ontology.

Instances of components are mapped into part definitions. The function

componentlnstanceyo defined below is the formal means for carrying out this task.

Definition 5-40 Component instance ¢ is mapped into Part definition

componentlnstanceyo(c). The function componentlnstancey is defined as follows:

componentlnstanceyo(c) := Part definition d, where

d.name = c.name
d.types := componentTypewo(c)
d.cardinality = c.cardinality. m

81

ADLConnector | | ADLComponent | | ADLSystem | |ADLRepresentation|

L

L T

rpc_type |

cs_system | | sub |

| client_type | | server_type |

| ADLPort | ADLRole

Coomazen] [] [p] [Ceter] [esies |

2

client_type

«port of»

1

(b)

cs_system

«part of» client «part of» server

«part of»
rpc

rpc_type
{ must be connected } { must be connected }

server_type

«port of» «part of»

send_req | | caller | | callee | | rec_req |

server

1 «port of»

©
Figure 14 Mapping the client-server system from Wright to the configuration ontology. (a)
The taxonomy of component types. (b) The taxonomy of port types. (c) The part and port

structure in the configuration model.

Once again, the mapping for both connector types and instances is essentially the same
as that for components; the only differences are that ADLCONNECTOR is used instead of
ADLCOMPONENT, and connectors contain roles instead of ports. Therefore, the explicit

mapping for connector types and instances is omitted.

Example. Figure 14 (a) illustrates that the component types client type,

type, and c_type are mapped into subtypes of ADLCOMPONENT with their

respective names. Correspondingly, connector type rpc_type is mapped into a subtype

of ADLCONNECTOR by the same name.

82

Further, it can be seen from Figure 14 (c) that the types mentioned in the above section
are related to cs_system and sub through part definitions. Particularly, it should be
noted that client type is a part of cs system with a cardinality of two; this
corresponds to the array of size two of client type instances in the Wright system

(see Figure 5). m
Ports and Roles

Unlike for components and connectors, the types and instances of ports and roles are
not separated for ports and roles. Therefore, the mapping for these concepts follows the
same lines as the mapping for ports and roles in Armani. The mapping for ports is given

below; formally, the mapping is carried out by the functions portyo, ype and portyo, aer-

Definition 5-41 Port p is mapped into Port type portyo wpe(p) and Port definition

POrtyo, a(p). The function portyo, 4ris defined as follows:

DPOFtyo, wpe(a) := Port type r, where

r.name := p.name
r.abstraction := CONCRETE
r.types := { ADLPORT }

The function portyo, 4ris defined as follows:

DPOrtyo, 4e(p) := Port definition d, where

d.name := p.name
d.types 1= portyo, ype(P)
d.cardinality .= c.cardinality

M is modified as follows:

ports := M.ports U portyo, ype(p). ®

The mapping for roles is once again omitted, as it is practically the same as the mapping

for ports.

Example. Figure 14 (b) illustrates port types in the configuration model. The subtypes
of ADLPORT correspond to the ports of the Armani system cs_system, and those of
ADLROLE to the roles of the same system. Figure 14 (c), in turn, depicts the port
definitions. Especially worth noticing is the port definition involving send req as the
port type: this definition has a cardinality of two, which reflects the fact that component

type client was declared to have a port array named send_req of size two. m

83

Attachments

As in Armani, attachments in Wright systems are mapped into constraints. Further
analogously to Armani, the attachments are placed in the port definitions, as this is the
natural place for the constraints; the placement of the constraints into the port
definitiosn was specified above in Definition 5-38. Formally, the mapping is carried out

by the function attachmenty, defined below.

Definition 5-42 Attachment a is mapped into Constraint attachmentyo(a). The function

attachmenty is defined as follows:

attachmentyo(a) := Constraint ¢, where
c.expression := portyo(a.port) and roleyo(a.role) must be connected. m
Example. Connection constraints resulting from mapping Wright attachments to the

ontology are illustrated in Figure 14 (c). m
Representations

The representations in Wright are mapped in a manner similar to Armani
representations. Now, the function representationyo, 4. is used to create a component
type based on the represenatation, and representationyo, 4 the corresponding part

definition.

Definition 5-43 Representation » is mapped into Component type representationyo, ype(r)

and Part definition representationyo, 4(7). The function representationyg, yp. is defined as

follows:
representationyo(r) := Component type ¢, where
d.name = r.sys.name
c.abstraction := CONCRETE
c.dependency := DEPENDENT
c.parts := componentlnstanceyo(r.sys.components) [

connectorlnstanceyo(r.sys.connectors)

c.types := { ADLREPRESENTATION }

Further, for each Attachment a in r.sys.attachments and each Role g such that ¢ = a.role,

roleyo(q) is modified as follows:

constraints := roleyo(q).constraints U { attachmentyo(a) }.

The function representationyo, 4ris defined as follows:

84

representationyo, 4(r) := Part definition d, where

d.name = r.sys.name
d.types 1= representationyo, ype(r)
d.cardinality :=1

M is modified as follows:

components := M.components U representationy(r). m
Example. Figure 14 (a) illustrates that sub is defined to be a subtype of
ADLREPRESENTATION. Additionally, Figure 14 (c) depicts that component type server
is defined a part where the part type is sub; the type sub itself is defined to have a part

corresponding to the component c in the original Wright system. m

5.4.2 Mapping Additional Concepts of Wright to the Ontology

As in Armani, styles in Wright are collections of design vocabulary and constraints, and
the systems of the style can use the design vocabulary and must follow the constraints.
Therefore, Wright styles are mapped to partial configuration models, just like Armani
styles above. Of course, the content of styles cannot be straightforwardly mapped using
the same definitions as for Armani above, as the constructs contained in styles are

different in the two ADLs.
Component and Connector Types

Component and connector types can be mapped by following the same process as for
mapping the types in the context of a system. The mapping for component types was
defined in Definition 5-39. The mapping for connector types was stated to be similar to

that for component types already in conjunction with the above-mentioned definition.
Syntactic Constraints

Definition 5-44 Syntactic constraint ¢ is mapped into Constraint constraintyo(c). The

function constrainty, is defined as follows:

constraintyo(c) := Constraint r, where

r.expression := the semantics of ¢ must hold. m

Styles

As in Armani, styles are mapped into partial configuration models. The configuration

model corresponding to a style is then included in the configuration model resulting

85

from mapping a system of the style. These mappings are formalised in the following two
definitions: in the first definition, the function styleyy maps Wright styles into
configuration models, and in the second definition the function systemyo already

defined in Definition 5-38 serves as the basis for mapping systems with styles.

Definition 5-45 Style s is mapped into Configuration model styleyo(s). The function

styleyo is defined as follows:

stylego(s) := Configuration model M, where

M.components := componentTypeyo(s.components) [
connectorTypeyo(s.connectors)

M.constraints = constraintyo(s.constraints).

In addition, M contains the component and port types of Figure 12. m

Definition 5-46 System s that declares a set of styles is mapped into Configuration model
M and Component type systemyo(s). Initially, M contains the component and port types
of Figure 12 and the compatibility definitions of Definition 5-1. The function systemyo

is defined in Definition 5-2.

M is modified as follows:

M =M U styleyo(s.styles). m
Table 10 summarises the above mapping. All the component and port types are
concrete. As has been highlighted with bold typeface, no mapping could be defined for
bindings between the interfaces in representations and those in the represented entities.
Further, no behaviour-related aspect was found a mapping: these include process
descriptions in components, connectors, ports and roles, interface types, and semantic

constraints.

5.4.3 Ontological Constraints

This section presents the ontological constraints for Wright. As the constraints and the
reasons underlying them are most similar to those in Armani, most of the constraints
are lightly motivated and explained. For more details, the reader is instructed to refer to

Section 5.3.3 Ontological Constraints’, where constraints for Armani are introduced.

As in the case of Armani, there is no obvious corresponding concept in Wright for

functions and resources.

86

Table 10 Summary of mapping Wright to the configuration ontology

Wright

Entity

Properties

Configuration ontology

System

Component type
Connector type
Component instance

Connector instance

Independent subtype of ADLSYSTEM, configuration model
Dependent subtype of ADLCOMPONENT

Dependent subtype of ADLCONNECTOR

Part definition of type ADLCOMPONENT in subtype of ADLSYSTEM
Part definition of type ADLCONNECTOR in subtype of ADLSYSTEM

Attachment Connection constraint in port definitions corresponding to ports
Style Partial configuration models included in the configuration model
Component type Dependent subtype of ADLCOMPONENT
Port Port definition of the subtype of ADLCOMPONENT
Computation No mapping
Representation Part definition of the subtype
Connector type Similarly as Component type, but the type is ADLCONNECTOR
Component instance Part definition in the subtype of ADLSYSTEM
Type The type of the part definition
Cardinality The cardinality of the part definition
Connector instance Similarly as Component instance
Port Concrete subtype of ADLPORT, port definition
Process No mapping
Cardinality Cardinality in the port definition
Role Similary as Port, but a subtype of ADLROLE
Representation Dependent subtype of ADLREPRESENTATION, a patt definition
Binding No mapping
Properties Similarly as the properties of systems
Attachment Connection constraints in port definition with ADLPORT type
Style Partial configuration model

Syntactic constraint
Semantic constraint
Interface type

Other properties

General constraint in the configuration model
No mapping
No mapping

Items in the configuration model

Definition 5-47 There are no

model. m

resource and no function types in the configuration

Each configuration model corresponds either to a system or a style.

Definition 5-48 There exists at most one subtype of ADLSYSTEM in the configuration

model. If there is a subtype of ADLSYSTEM, it must be independent and concrete.

The fact that components, connectors and representations are always part of something

else is reflected in the following constraint.

Definition 5-49 Only subtypes of ADLSYSTEM are allowed to be independent. m

87

The taxonomy of types must be restricted.

Definition 5-50 Each component type must be a direct concrete subtype of exactly one
of the following types, except for these types themselves: ADLCOMPONENT,

ADLCONNECTOR, ADLSYSTEM, ADLREPRESENTATION. B

Definition 5-51 FEach subtype of Port type must be a direct and concrete subtype of
exactly one of the following types, except for these types themselves: ADLPORT,
ADLROLE. =

The constraint that component and port types are not allowed to define supertypes
stems from the lack of taxonomy of types in Wright. Correspondingly, the constraint
that the subtypes must be concrete stems from the fact that nothing was mapped from

Wright to abstract component or port types.
The possibilities for specifying structure and topology are constrained.

Definition 5-52 For cach Part definiton d of a subtype of ADLSYSTEM or
ADLREPRESENTATION, the set of possible part types of d must include only concrete

subtypes of either ADLCOMPONENT or ADLCONNECTOR. ®

Definition 5-53 Subtypes of ADLSYSTEM and ADLREPRESENTATION must not have

port definitions. m

Definition 5-54 For each Part definition d of a subtype of ADLCOMPONENT or
ADLCONNECTOR, the set of possible part types of d must include only subtypes of

ADLREPRESENTATION. ®

Definition 5-55 For each Port definition d of a subtype of ADLCOMPONENT, d.fypes must

include only concrete subtypes of ADLPORT. m

Definition 5-56 For each Port definition d of a subtype of ADLCONNECTOR, d.tfypes must

include only concrete subtypes of ADLROLE. m

Further, it must be required that in all part and port definitions, the set of possible part
or port types, respectively, is of size one. Otherwise, the mapping from the type to the

ADLSs would be ambiguous.
Definition 5-57 For each Part definition d, d.types must be of size one. m

Definition 5-58 For each Port definition d, d.types must be of size one. m

88

As the two above definitions guarantee that the set of possible types in part and port
definitions contains a single type, the type will be for simplicity referred by the name

type (compare with Table 3).

Finally, as each component and connector in Wright may define at most one

representation, the number of part definitions must be constrained for these types.
Definition 5-59 For each Component type ¢, t.parts must be of size zero or one. B

Definition 5-60 For each Connector type ¢, t.parts must be of size zero or one. m

5.4.4 Mapping the Ontology to Wright

This section presents how a configuration model can be mapped into a Wright system

or style.
Component Types

Subtypes of ADLSYSTEM are mapped into Wright systems using the function
ADLSystemoy.

Definition 5-61 Component type ¢ in Configuration model M such that t.¢ype is a subtype
of ADLSYSTEM is mapped into System ADLSystemon(t, M). The function ADLSystemoy

is defined as follows:

ADLSystemoy(t, M) := System s, where

s.name 1= tname

s.comp_types := ADLComponentoy, ype(t.components)
s.conn_types = ADLConnector oy, y(t. components)
s.components = ADLComponentoy, qo(t.parts)
s.connectors = ADLConnector oy, 4o(t.parts)
s.attachments := connectionsow(M, t). ®

The functions referred to in the definition are all defined later in this section. Their
semantics are implied by their names: e.g. ADLComponentoy, ;,. maps subtypes of
ADLCOMPONENT into componen types in Wright, and ADLComponentoy, 4 maps part

definitions including subtypes of ADLCOMPONENT as part type in componen instances.

Component types that are subtypes of ADLCOMPONENT are mapped into component
types in Wright. Correspondingly, subtypes of ADLCONNECTOR are mapped into

connector types. However, as the mappings for the two subtypes are similar, only the

89

mapping for subtypes of ADLCOMPONENT is given explicitly. Below, the function

ADLComponentoy, . carties out the mapping.

Definition 5-62 Component type ¢ such that c.type is a subtype of ADLCOMPONENT is
mapped into Component type ADLComponentoy, yp(t). The function

ADLComponentoy, yp. is defined as follows:

ADLComponentoy, y.(t) := Component type c, where

c.name 1= t.name
c.ports := ADLPortoy, 4/(t.ports)
c.rep := ADLRepresentationop(t.parts). m

In the above definition, functions ADLPortow, 4 and ADLepresentationoy are used to
map the port and part definitions, respectively, of the component type into ports and

represenation of the resulting Wright component type.
Part Definitions

Part definitions where the part type is a subtype of ADLCOMPONENT are mapped into

component instances using the function ADLComponentoy, 4r defined below.

Definition 5-63 Part definition p such that p.fype is a subtype of ADLCOMPONENT is
mapped into Component instance ADLComponentoy, 4(p). The function

ADLComponentoy, 4 is defined as follows:

ADLComponentoy, 4.(p) := Component instance ¢, where

c.name = p.name
c.type := ADLComponentoy, ype(p-type)
c.cardinality = p.cardinality. m

Similarly, part definitions where the part type is a subtype of ADLCONNECTOR are

mapped into connectors. The definition is omitted.

Further, part definitions where the part type is a subtype of ADLREPRESENTATION are
mapped to representations. The mapping is similar to the mapping of subtypes of
ADLSYSTEM into Wright systems, and is defined formally in terms of the function

ADLRepresentationoy, ef:

Definition 5-64 Part definition p in Configuration model M such that p.type is a subtype of
ADLREPRESENTATION is mapped into Representation ADLRepresentationoy, 4(s, M). The

function ADLRepresentationoy, 4ris defined as follows:

90

ADLRepresentationoy(p, M) := Representation r, where
r.name = p.name
r.comp_types := ADLComponent oy, yp.(p.type.components)
t.conn_types := ADLConnectorow, yp.(p.type.components)
r.components := ADLComponent oy, 4/(p.type.parts)
r.connectors := ADLConnector oy, 4(p.type.parts)

r.attachments = connectionsow(M, p). m

Port Definitions

Port definitions where the port type is a subtype of ADLPORT or ADLROLE are mapped
into ports and roles in Wright, respectively. The mapping to ports is explicated in the

following definition by the function ADLPortow, 4o

Definition 5-65 Port definition p such that p.fype is a subtype of ADLPORT is mapped
into Port ADLPortow, 4e(p). The function ADLPortoy, 4 is defined as follows:

ADLPOI"tOW def(p) := Port r, where
r.name = p.name. A

Constraints

Those constraints that imply a connection between two individuals, of which one
corresponds to a port and the other to a role in Wright, are mapped into attachments.
The function constrainto, defined in Definition 5-36 is applicable to Wright as such.

Therefore, the definition of the function is not repeated here.

Similarly, the mapping for other type of constraints is similar to what was seen in

Armani in Definition 5-30.
Configuration Models without Subtype of ADLSystem

Configuration models that contain no subtypes of ADLSYSTEM are mapped into styles.

Formally, the mapping is carried out by the function modely,.

Definition 5-66 Configuration model m such that m contains no subtypes of
ADLSYSTEM is mapped into Style modelps(m). The function modely, is defined as

follows:

modelo(m) := Style s, where
s.components := ADLComponentoy, yp.(m.components)

s.connectors := ADLConnectoroy, ype(m.components)

91

s.constraints ~ := constraintps(m, GLOBAL). B
The definition is similar to Definition 5-37, where similar configuration models were
mapped into Armani styles. The observation made in conjunction with the above-
mentioned definition about the use of the identifier GLOBAL when applying the function

constrainto, applies here as well.

5.5 Mapping between Koala and the Ontology

This section contains three subsections. In the first subsection, a mapping is defined
from Koala to the configuration ontology. Ontological constraints are defined in the

second subsection, and a mapping from the ontology to Koala in the third.

5.5.1 Mapping Koala to the Ontology

Overview of the Mapping

Similarly as above for Armani and Wright, an overview of the mapping is given before
proceeding into the detailed descriptions of how individual language elements are

mapped.

First, Koala components are mapped into components in the configuration ontology: in
more detail, component types are mapped into component types, and components

defined within compound components are mapped into part definitions.

Second, interfaces are mapped into ports: interface types are mapped into port types,

and interfaces declared in components are mapped into port definitions.

As can be recalled, Koala configurations are component types that have no interfaces on
their boundary. Therefore, the natural way to handle Koala configurations is to map

into them into a certain kind of component type in the ontology.

Finally, modules are mapped into a special type of component. The mapping is
motivated by the fact that component of the configuration ontology is a concept that

can capture many relevant aspects of modules in Koala.

The order in which the mappings are presented is different for Koala than for Armani
and Wright. This is due to the fact that the component and interface types are distinct
from configurations using them. Therefore, component and interface types are given a

mapping first, and a mapping for configurations after these.

92

Component type

KoalaComponent | | KoalaModule | | KoalaConfiguration
(a)
| Port type |
AN
KoalaRequired | | Koalalnterface | | KoalaProvided |

(b)
Figure 15 Component and port types used in mapping Koala. (a) The taxonomy of

component types. (b) The taxonomy of port types.

General Definitions

As for Armani and Wright, special component and port types are defined to serve as
supertypes for types corresponding to different entities in Koala. Figure 15 (a) depicts

the taxonomy for component types, and Figure 15 (b) for port types.

Figure 15 (a) demonstrates that three subtypes are derived from Component type. First,
KOALACOMPONENT is will serve as the counterpart for ordinary Koala components, i.e.,
not configurations; these are handled with KOALACONFIGURATION. Finally,
KOALAMODULE is the type that will be the supertype for component types

corresponding to modules in Koala.

Especially worth noticing in Figure 15 (b) is that for interfaces, three different types are
defined: KOALAINTERFACE serves as the supertype for types corresponding to interface
types of Koala. KOALAREQUIRED and KOALAPROVIDED, in turn, are used to distinguish

required and provided versions of each KOALAINTERFACE from each other.

Further, the following compatibility definitions are made to enable modelling bindings,
i.e., to allow port individuals corresponding to required and provided interfaces being
bound, and to disallow port individuals corresponding to a pair of required or provided

interfaces from being bound.

Definition 5-67 KOALAREQUIRED is compatible with ~KOALAPROVIDED.

KOALAPROVIDED is compatible with KOALAREQUIRED.

93

Component Types

Component types that are not configurations are mapped into dependent component
types. Formally, the mapping is carried out by the function componentTypego defined

below.

Definition 5-68 Component type ¢ is mapped into Component type componentTypexo(c).

The function componentTypego is defined as follows:

componentTypego(c) := Component type ¢, where

t.name = c.name

t.abstraction ~ := CONCRETE

t.dependency := DEPENDENT

t.parts := containedComponentyo(c.components)
t.ports = interfaceDefo(c.interfaces)

t.types := { KOALACOMPONENT }

Further, for each Binding b in c.bindings, and each Interface i such that i = b.required and

i.direction = REQUIRED, interfaceDefxo(i) is modified as follows:

constraints := interfaceDefyo(i).constraints 1 { bindinggo(b) }.

M is modified as follows:

components := M.components Ul componentTypexo(c)
In the above definition, the components contained in ¢ type are mapped into parts of ¢
by using the function containedComponentyx, defined below. Similarly, the interfaces
defined by ¢ are mapped into port definitions of ¢ by the function interfaceDefo,

likewise defined below.

Example. Figure 16 (a) depicts that CClient, CServer, and CSub have been mapped

into subtypes of KOALACOMPONENT. m
Interface Types

Each interface type in Koala is mapped into three port types. First, an abstract subtype
of KOALAINTERFACE is created. Then, two additional types are created by multiple
inheritance from the abstract subtype of KOALAINTERFACE and KOALAREQUIRED. The
latter two types are concrete. Formally, the mapping is carried out by the functions

interfaceTypeyo, interfaceReqyo, and interfaceProgo.

94

| KoalaComponent |

JAVAYAYA

| CClient | | CServer | | CRep | | cs_system |
(a)
| KoalaRequired | | Koalalnterface | | KoalaProvided |
| IRpc |
IRpcRequired | | IRpcProvided
(b)

cs_system

«part of» client1

«part of»
server

1 1 «part of» client2

«part of» ¢ 1

{ must be connected }
«POrtofy b m e e e e e e
caller

«port of» callee «port of» p

1 1

IRpcRequired IRpcProvided

(c)

Figure 16 Mapping the client-server system from Koala to the configuration ontology.
(a) The taxonomy of component types. (b) The taxonomy of port types. (c) The part and port

structure in the configuration model.

Definition 5-69 Interface type ¢ is mapped into Port type interfaceTypexo(t), Port type
interfaceReqxo(t), and Port type interfaceProxo(t). The function interfaceTypexo is defined

as follows:

interfaceTypeyo(t) := Port type p, where

p.name 1= p.name
p-abstraction .= ABSTRACT
p.types := { KOALAINTERFACE }

The function interfaceReqxo is defined as follows:

interfaceReqko(t) := interfaceTypexo(t) modified with

name interfaceTypexo(t).name | | ‘Required’

abstraction := CONCRETE

95

types := { KOALAINTERFACE, KOALAREQUIRED }

The function interfaceProgo is defined as follows:

interfaceProgo(t) := interfaceTypeko(t) modified with

name := interfaceTypexo(t).name | | ‘Provided’
abstraction := CONCRETE
types := { KOALAINTERFACE, KOALAPROVIDED }

M is modified as follows:

M.ports := M.ports U interfaceTypexo(t) U interfaceReqyo(t) U
interfaceProgo(t). m

Above, the operator ‘| |’ is the catenation of strings. E.g. IRpc’ | | ‘Required’ evaluates

to ‘IRpcRequired’.

Example. Figure 16 (a) illustrates the types created based on the IRpc interface type in
the sample system. IRpc is an abstract type derived from KoalaInterface.
IRpcRequired inherits from KoalaRequired and IRpc; IRpcProvided, in turn,

inherits from KoalaProvided and IRpc.
Component Definitions

The obvious mapping for definitions of contained components is to represent them as
part definitions in the compound component types. Formally, this is defined in terms of

the function containedComponentyo.

Definition 5-70 Component definiton ¢ is mapped into Part definition

containedComponento(c):

containedComponento(c) := Part definition d, where

d.name = c.name
d.type = c.type
d.cardinality :=1.m

Example. Figure 16 (c) depicts part definitions resulting from mapping contained
components. Type CClient is a part of cs system by the names clientl and
client2; CServer is part of cs_system by the name server; finally, CRep is a part of

Cserver by the name c. m

96

Interface Definitions

Interfaces defined by components are mapped into port definitions by using the

function interfaceDefyo.

Definition 5-71 Interface definition d is mapped into Port definition interfaceDefxo(d). The

function interfaceDefy, is defined as follows:

interfaceDefxo(d) := Port definition p, where

p.name := d.name

p.type := interfaceReqgo(p), if d.direction = REQUIRED; otherwise
interfaceProgo(p)

p.cardinality := 1, if d.direction = REQUIRED; otherwise . m

It can be seen from the above definition that the mappings for required and provided
interfaces differ from each other in two respects. First, the interface type is naturally
different, as was explained above when defining the mapping for interface types.
Second, the cardinality is different for definitions corresponding to required and
provided interfaces. This difference is due to the binding rules of Koala. A required
interface must be bound to a single provided interface, but a provided interface can be

bound to any number of required interfaces.

Example. Figure 16 (c) depicts port definitions resulting from mapping required and
provided interfaces in component types: type IRpcRequired is related through a port
definition to component type CClient; and type IRpcProvided is related to CServer

and CSub.
Bindings

As attachments in Armani and Koala, bindings between required and provided
interfaces are mapped into constraints. These constraints are then placed in the port

definitions.

It should be noted that only bindings between independent components are given a
mapping. This is due to the fact that binding between independent components and
between a contained and a compound component are semantically different, although
the same concept, namely binding, is used for modelling both types of bindings. The
difference between the two forms of bindings is reflected e.g. in the fact that bindings

between independent interfaces are always between a provided and a required interface,

97

whereas bindings between an interface in a contained and in a compound component is

always between a pair of required or provided interfaces.

Formally, bindings are mapped by the function bindingxo defined in the definition

below.

Definition 5-72 Binding b is mapped into Constraint bindinggo(b). The function

bindingyo is defined as follows:

bindingko(b) := Constraint ¢, where

c.expression := interfaceDefxo(b.required) and interfaceDefyo(b.provided) must be
connected. m

Modules

Module is a construct for binding a required interface with a number of provided
interfaces. They are mapped into special type of component, namely KOALAMODULE,

using function modulexo.

Definition 5-73 Module m is mapped into Component type modulexo(m). The function

moduley is defined as follows:

modulexo(m) := Component type ¢, whete

t.abstraction := CONCRETE

t.dependency := DEPENDENT

t.ports := interfaceDefyo(m.required L1 m.provided)
t.types := { KOALAMODULE }

M is modified as follows:

M.components := M.components [1 modulego(m). m

Configurations

Configurations in Koala are component types that define no interfaces themselves.
Thereby, it is natural to map configurations into independent subtypes of
KOALACONFIGURATION. The mapping is carried out by the function configurationg, that

is defined below.

Definition 5-74 Configuration ¢ is mapped into Configuration model A/ and Component
type configurationgo(c). Initially, M contains the knowledge about the component and

interface types resulting from the above definitions for mapping component and

98

interface types, and the component and port types from Figure 15 and the compatibility

definitions from Definition 5-67.

configurationgo(c) := Component type ¢, where

t.name = c.name

t.abstraction := CONCRETE

t.dependency := INDEPENDENT

t.parts := containedComponentyo(c.components)
t.types = { KOALACONFIGURATION }

Further, for each Binding b in c.bindings, and each Interface i such that i = b.required and
i.direction = REQUIRED, interfaceDefxo(i) is modified as follows:
constraints := interfaceDefo(i).constraints [{ bindinggo(b) }.

M is modified as follows:

components := M.components [configurationgo(c). m
Example. Figure 16 depicts the client-server system mapped from Koala to the
configuration ontology. Figure 16 (a) illustrates the taxonomy of component types, and
Figure 16 (b) that of port types. Figure 16 (c) presents the part and port definitions of
component types graphically.

As can be seen in Figure 16 (a), the configuration type cs system has been mapped

into a subtype of KOALACONFIGURATION.

Example. In Figure 16 (c), it can be seen how the contained components are mapped
into part definitions. E.g. cClient is the part type in two part definitions, named

clientl and client2. m

Table 11summarises the above mappings. As can be seen, functions, the constituent
parts of interfaces, and bindings between them were the only concept that could not be

found a mapping.

5.5.2 Ontological Constraints

Similarly as in Armani and Wright, there is nothing in Koala corresponding to resources

and functions.

Definition 5-75 There are no resource and no function types in the configuration

model. m

99

Table 11 Summary of mapping Koala to the configuration ontology

Koala Configuration ontology
Entity Properties
Configuration Independent subtype of KOALACONFIGURATION, configuration model
Components Part definitions of the independent subtype
Binding Connection constraints in port definitions
Component type Concrete and dependent subtype of KOALACOMPONENT
Interfaces Port definition of the subtype of KOALACOMPONENT
Components Part definition of the subtype of KOALACOMPONENT
Bindings Connection constraint in a port definition
Interface type Abstract subtype of KOALAINTERFACE, two conctete versions of the
type corresponding to required and provided interfaces
Functions No mapping
Interface definition Port definition of a subtype of KOALACOMPONENT
Type The abstract part of the port type in the port definition
Direction The concrete part of the port type in the port definition
Necessity Different values for cardinality in the port definition
Component (cont.) Part definition in a subtype of KOALACOMPONENT
Type Part type of the part definition
Function binding No mapping
Module Concrete and dependent subtype of KOALAMODULE

The above constraint is set is due the fact that as in Armani and Wright, there is no

obvious corresponding concept in Koala for functions and resources.
The taxonomy of types must be restricted.

Definition 5-76 There exists exactly one independent subtype of

KOALACONFIGURATION. This type may not define ports. m

The latter constraint in the above definition is due to the restriction that Koala

configurations have no interfaces on their boundary.

Subtypes of KOALACOMPONENT may not be independent, as configurations are the only

independent components in Koala.
Definition 5-77 All the subtypes of KOALACOMPONENT are dependent types. B

Further, all the component types must be concrete subtypes of KOALACOMPONENT or

KOALACONFIGURATION, or KOALAMODULE.

100

Definition 5-78 Each component type must be a direct and concrete subtype of
KOALACOMPONENT, KOALACONFIGURATION, or KOALAMODULE, except for this type

themselves. m

Definition 5-79 Each abstract port type must be a direct subtype of KOALAINTERFACE,

and may not define other subtypes beyond KOALAINTERFACE.

Definition 5-80 FEach concrete port type, except for KOALAINTERFACE,
KOALAREQUIRED, and KOALAPROVIDED, must be a direct subtype of KOALAINTERFACE,

and either KOALAREQUIRED or KOALAPROVIDED. m

Components in Koala can contain both other component and interfaces. In terms of
the ontology, component types can have both part and port definitions. However, the

set of possible part or port types must be restricted, along with the cardinalities.

Definition 5-81 For each Part definition d, d.types may contain only concrete component

types and must be of size one, and d.cardinality must be exactly one.

Definition 5-82 For each Port definition d, d.types may contain only concrete port types

and must be of size one.

As the two above definitions guarantee that the set of possible types in part and port
definitions contains a single type, the type will be for simplicity referred by the name

type (compare with Table 3). The next definition utilises this:

Definition 5-83 For each Port definition d such the cardinality of d must be:
‘0..17 or “1’, if d.type is a subtype of KOALAREQUIRED
‘0 or infinite’ or ‘infinite’, if d.type is a subtype of KOALAPROVIDED. m

Above, the first possible cardinalities (‘0..1°, ‘O or infinite’) correspond to optional

interface definitions, and the latter to mandatory (regular) interface definitions.

According to the binding rules of Koala, a non-optional required interface must be

connected to a provided interface:

Definition 5-84 For each Port definition d such d.fype is a subtype of KOALAREQUIRED
exactly one port individual corresponding to d must be connected, if there are port

individuals corresponding to the definition.

101

In the above definition, it is stated that at least one port individual corresponding to a
port definition must be connected, if there are port individuals. The situation that there

are no port individuals is possible, if the interface is optional and not present.

Definition 5-85 There may be no constraints in the configuration model except for

those stating that certain ports must be connected.

The constraints in the above definitions capture the binding in Koala configurations and
components. Other constraints are not meaningful, as there is nothing in Koala that

would correspond to them.

5.5.3 Mapping the Ontology to Koala
Component Types

Subtypes of KOALACONFIGURATION are mapped into Koala configurations using the

function KoalaConfigurationo.

Definition 5-86 Component type ¢ in Configuration model m such that ¢ is a subtype of
KOALACONFIGURATION is mapped into Configuration KoalaConfigurationok(t, m). The

function KoalaConfigurationoy is defined as follows:

KoalaConfigurationgk(t, m) :== Component type c, where

c.name 1= t.name
c.components = KoalaComponentox, q(t.parts)
c.bindings := connectionsox(m, t).

The functions KoalaComponent ok 4 is used for mapping the part definitions of ¢ into
contained components of c. Further, connectionsok is used for mapping the connections

defined between the ports of ¢ into bindings in c.

The function KoalaComponentx ,,. maps dependent component types in configuration

models into component types in Koala.

Definition 5-87 Component type ¢ in Configuration model m such that ¢ is a subtype of
KOALACOMPONENT is mapped into Component type KoalaComponentok npe(t). The

function KoalaComponento, y,.(t) 1s defined as follows:

KoalaComponent k. ,.(t) := Component type ¢, where
c.name 1= t.name

c.interfaces := Koalalnterfaceok, qe(t.ports)

102

c.components := KoalaComponent, qo/(t.parts)

c.bindings := connectionsox(m, t).
The above mappings for subtypes of KOALACONFIGURATION and KOALACOMPONENT
resemble each other closely. The difference is subtypes of KOALACONFIGURATION have
no port definitions, as they correspond to Koala configurations; these port definitions
are mapped into interfaces defined by components wusing the function

Koalalnterfaceox, qor specified below.

Finally, subtypes of KOALAMODULE are mapped into modules in Koala. The mapping is

implemented by function KoalaModule ok, and defined in the definition below.
Definition 5-88 Component type ¢ such that ¢ is a subtype of KOALAMODULE is mapped
into Module KoalaModuleok(t). The function KoalaModuleoy is defined as follows:

KoalaModuleox(t) := Module m, whete

m.interfaces := Koalalnterfaceok, qo(t.ports). m

Part Definitions

Part definitions correspond to contained components. They are mapped into Koala as

follows using function KoalaComponent ok ef:

Definition 5-89 Part definiton p is mapped into Component definition

KoalaComponent ok q(p). The function KoalaComponentok q4r1s defined as follows:

KoalaComponent ok q4(p) == Component instance c, where

c.name := p.name
c.type := KoalaComponent ok, ype(p.type). m
Port Types

Abstract port types in the configuration ontology are mapped into interface types in
Koala. Formally, the mapping is carried out as follows by the function

Koalalnterfaceok ype:

Definition 5-90 Abstract Port type ¢ such that t is a subtype of KOALAINTERFACE is
mapped into Interface type Koalalnterfaceox ype(t). The function Koalalnterfaceox, ype 1S

defined as follows:

Koalalnterfaceok, yp.(p) := Interface type ¢, where

t.name = t.name. 1

103

It should be noticed that the above definition concerns only abstract port types; the
other two port types created for each interface type in Koala (see Figure 16) become

thus correctly ignored.
Port Definitions

Port definitions in configuration models are mapped into interface definitions in Koala

component types. The mapping is carried out by the function Koalalnterfaceok s

Definition 5-91 Port definition p is mapped into Interface definiton Koalalnterfaceok, aof(p).

The function Koalalnterfaceok, q4ris defined as follows:

portDefox(p) := Interface definition 7, where

r.name := p.name
r.type := Koalalnterfaceok yp.(p-type)
r.direction := REQUIRED, if KOALAREQUIRED is a supertype of p.type;

otherwise PROVIDED. ®

Constraints

Only constraints implying that two port individuals must be connected can be
meaningfully mapped into Koala: they are mapped into bindings by the function

connectionsog.

Definition 5-92 The function connectionsog(m, t) takes a Configuration model m and
Componen type ¢ as arguments and returns a set of Bindings s: s := { b | b.first =
Koalalnterfaceok 4o(p) and b.second = Koalalnterfaceok 4(7), p and r are Port definitions
in m such that p and r are port definitions in parts of ¢, and m implies that p and r must

be connected }. m

Above, only the connection constraints corresponding to bindings within a single
component type are returned. This is correct, as component types are mapped one at a
time, and a configuration model can contain constraints corresponding to bindings

located in multiple component types.

104

6 Discussion

This chapter discusses the construction presented in the previous chapter, and

explicates answers to the research question stated in the introduction.

The first research question, which concerned the concepts of the ADLs and their
comparison to those of the configuration ontology, has already been answered in
Section ‘3.2 Architecture Description Languages’, and Section ‘4 Comparison of

Concepts of the ADLs with the Configuration Ontology’; see, e.g., Table 1 for details.

The first section summarises the mappings that could be found from the ADL concepts
to the configuration ontology. Simultaneously, the section explicates and reiterates the
answer to the second research question concerning the mapping between the ADLs and
the configuration ontology. In short, the answer is that there is a partial mapping; full

details of the mapping were given in Chapter ‘5 Synthesis’.

The second section, in turn, discusses the concepts of the ADLs that were not found a
satisfactory mapping. Further, extensions to the ontology that would enable capturing
the lacking concepts are suggested. The third research question is also answered in the

subsection.

The concepts of the ontology that were not used for representing any concepts in the

ADLs are discussed in the third section.

In the fourth section, the reliability of the results achieved in the thesis is evaluated.

General discussion follows in the fifth section.

6.1 Successfully Mapped Concepts

6.1.1 Configurations, Systems

Armani and Wright systems and Koala configurations are mapped into specific kind of
component types in the configuration ontology. Another alternative would have been to
map these concepts into sets of independent component types; the component types
would have corresponded to the components and connectors defined in the system or
configuration. This approach was, however, not adopted because systems in Armani and
Wright have identities, and in Armani properties as well. Therefore, the approach would

have resulted in losing this class of information. In Koala, in turn, a configuration is

105

explicitly defined to be a kind of component; therefore, not mapping configurations into

component types would have been hard to argue for.

6.1.2 Components and Connectors

Armani and Wright components and connectors, and Koala components are mapped

into component types, and part definitions.

In more detail, Armani components were mapped into component types and part
definitions. As was argued in conjunction with the associated definition (Definition 5-3),
both the component type and the part definition are needed in the ontology to capture
both information about the structure of a component and the fact that a component is

always part of something.

Of course, the number of component types resulting from mapping an Armani design
would be smaller in some cases, if all components declaring a single type were mapped
into a single component type and multiple part definitions using the same type.
However, this approach would have other drawbacks: most significantly, components
declaring no types, a single type, and multiple types would have had to been handled
differently: creating a new component type is in any case mandatory for design elements
declaring no types or multiple types, as every individual in the configuration ontology
must be directly of exactly one type. Uniform handling of all components is considered

more important than minimizing the number of resulting component types.

In Wright and Koala type information about components is separated from the
information about instances. Therefore, the above problem of an extensive number of
component types is not a problem when mapping from these languages, as component
types are mapped into component types, and instantiations into part definitions or

constraints requiring that the components types get instantiated in configurations.

Of course, what was said about components above applies mostly likewise to
connectors. However, mapping connectors of Armani and Wright to component types
is not in perfect accordance with the semantics of component in the configuration
ontology: connectors are not typically distinguishable entities in software systems. This
cannot, however, cannot be avoided, as there are no concepts in the configuration

ontology besides component to which connectors could be reasonably mapped.

106

6.1.3 Ports, Roles, and Interfaces

Ports and roles in Armani and Wright, and interfaces in Koala are mapped into port

types and definitions in the configuration ontology.

Much of the discussion presented for components and connectors in the above section
could be repeated as such for ports and roles in Armani and Wright. That is, the
mapping for ports and roles is mostly obvious in the sense that there seem to be no
viable alternative mappings. However, the number of resulting port types in the
configuration model is somewhat excessive. In this case, both Armani and Wright have
this condition: although Wright distinguishes between component and connector types
and instances, there is no corresponding mechanism for ports and roles, except the
interface type construct. Consequently, each port and role defined in a component in

Armani and Component in Wright is mapped into a port type and a port definition.

As ports and roles in Wright define no properties beyond name and process, of which
the process is not mapped, it could be argued that all the port definitions corresponding
to ports in Wright could use the same type. IL.e., no individual types would be defined
for Wright ports. However, this approach is not adopted, as it would have de-
emphasised the fact that not all ports can be attached to any role in Wright; with the
selected approach, the knowledge about which ports can be substituted for which roles

can be encoded as compatibility definitions of the corresponding port types.

Koala does not suffer from the excessive number of port types, as interface types and

instances of them in components are separated from each other.

6.1.4 Topology: Attachments and Bindings

Attachments between ports and roles in Armani and Wright are mapped into
connection constraints in port definitions in the configuration ontology corresponding
to ports in the two ADLs. Bindings between independent interfaces in Koala are

mapped into connection constraints as well.

Mapping attachments in Armani to connection constraints in the configuration ontology
brings forward the issue that instances of Armani were mapped into types in the
configuration ontology. As argued in Section ‘5.3.1 Mapping Basic Concepts of Armani
to the Ontology’, this is the simplest way to map instances into the configuration

ontology. However, in a sense the natural counterpart for Armani instances and the

107

relations between them in the ontology would be individuals and the relations between
them: i.e., components in Armani correspond to component individuals in the ontology;
compositional structure corresponds to HAS PART-relation; and attachments to
CONNECTED TO-relation. Therefore, when mapping Armani systems into configuration
models, component types, part definitions and connection constraints are included in
the model to enforce that the configurations based on the model contain individuals
that are related to each other in the way described above: e.g. a connection constraint
essentially guarantees that in a complete configuration, the port individuals involved in

the constraints are in the CONNECTED TO-relation with each other.

6.1.5 Taxonomy

Of the ADLs, Armani is the one to define taxonomy between types. There, taxonomy is
defined both for design element, i.e., component, connector, port, and role, types, and

styles.

Design element types of Armani are mapped into abstract component and port types.
The taxonomy between design element types is mapped into taxonomy between the
resulting, abstract component and connector types. Further, the fact that a design
element declares a type is captured by making the concrete type of the design element a

subtype of abstract types corresponding to the types declared by the desing element.

Mapping design element types into abstract types can be questioned, as mapping design
element types into concrete types would as well have been possible. However, there are
some reasons speaking against such an approach, as discussed when in conjunction with
the definition for mapping component types from Armani to the ontology (Definition
5-10). First, following this approach would have resulted in ambiguities when mapping
from ontology to Armani: if all the types were concrete, there would be no way of
distinguishing types corresponding to design elements and design elements types.
Second, there would be no use in making these types concrete, as all the design elements
are created a concrete type of their own when mapping them to the ontology. That a
new component type is created for each design element when mapping in the ontology

was justified by uniformity above in Section ‘6.1.2 Components and Connectors’.

108

6.1.6 Compositional Structure

Systems and Representations

The compositional structure of systems and representations is mapped into part
definitions in the configuration ontology. The mapping is intuitive and correct, as part

definitions are the mechanism for modelling compositional structure in the ontology.

However, mapping connectors into part definitions of component types corresponding
to systems is not in perfect accordance with the semantics of part definition in the
ontology. This disaccordance could have been avoided by making connectors
independent components instead of parts of other components. Albeit viable, this
approach was not adopted, as it was considered more important that the resulting
configuration models reflect the structure of ADL systems than that the use of the

concepts of the configuration ontology matches their intended use.

The above design decision that connectors are mapped into part definitions is related to
a more general issue: when modelling software products with the configuration
ontology, how closely should the guidelines set for modelling traditional products (see
(Tithonen et al. 1998)) be followed when modelling software products. Intuitively, the
most of the design guidelines are likely to apply to software products as well. However,
stubbornly following the guidelines without properly analysing their applicability to

software systems is hardly reasonable.
Components and Connectors

Defining compositional structure for components and connectors is possible in all the
studied ADLs: In Armani, components and connectors can define a number of
representations; in Wright, the computation of a component and the glue of a connector
can be replaced with a system; in Koala components can contain other components.
Compositional structure is mapped into compositional structure of component types,
manifested by part definitions. However, no satisfactory mapping for the bindings
between the ports and roles in compound and containing components could be found,
although these bindings exist in all the ADLs studied. This issue is discussed in more
detail below, in Section ‘.2.5 Bindings between Compound and Contained

Components’.

109

Some discussion about the mapping of representations in Armani and Wright is in
place. Namely, as can be recalled from the mappings (Definition 5-9 and Definition
5-43), representations were mapped into component types, and the components and
connectors in the representation were mapped, in addition to types, part definitions in
these component types. An alternative mapping would have been to map the
components and connectors directly into parts of the component or connector
containing the representation. Following this approach would have resulted in avoiding
one layer in the decomposition hierarchy of the components. However, as argued in
‘5.3.1 Mapping Basic Concepts of Armani to the Ontology’, the adopted mapping
creates a symmetry between mappings for independent and representing systems, and
allows mapping the names and properties of representations into the configuration
ontology. Further, unlike the alternative approach, the adopted approach allows

mapping multiple representations for a component or connector.

6.2 Unmapped Concepts and Potential Extensions

This section discusses the features of the ADLs that could not be captured with the
configuration ontology. These features include heuristic constraints, design analyses and
interface types, behaviour modelling, function biding, binding the interfaces in
contained component with those in compound components, and constraint languages.
Further, extensions that would allow accommodating some of these features in the

ontology are outlined. This section also answers the third research question.

6.2.1 Heuristic Constraints

Heuristic constraints are a part of Armani, in which they can be defined in style
definitions. The distinguishing factor between heuristic constraints and ordinary
constraints, termed design constraints in Armani and just constraints in the ontology, is
the fact that heuristic constraints are merely suggestions of what might be true for a
Armani system following a style or a configuration corresponding to a configuration

model.

Default values of attributes are a special case of heuristic constraints. On the conceptual
level, default values are an important special case of heuristic constraints. In this special
case, the heuristic constraint simply states that a certain attribute has a specific value. A

default value is typically interpreted as to hold if not otherwise explicitly specified. This

110

special case demonstrates two important aspects of heuristic constraints: first, they take
the same form as ordinary constraints; second, they must be given an znferpretation that

defines their semantics.

Preferences or soft constraints are known in the configuration domain as well (see, e.g.
(Junker 2001)). Therefore, extending the ontology with the notion of heuristic
constraints has a justification also from the configuration point of view. A simple
approach to extending the configuration ontology with heuristic constraints would be to
define each constraint instance to be either invariant or heuristic. However, this would
not be enough: heuristic constraints should be defined semantics as well, and it is not

obvious what the semantics should be.

6.2.2 Design Analyses, Interface Types

Both design analyses in Armani and interface types in Wright are characterised by the
fact that they bear whatsoever no meaning as such, but only in some specific context:
design analyses are expressions in the Armani Constraint Language that can be used in
forming constraints, and interface types are CSP process description that can be used in

place of process definitions in element type declarations.

The ontology could be extended to cover design analyses simply by defining the
ontology an appropriate constraint language that includes a feature corresponding to
design analyses. Basically, interface types could be incorporated to the ontology
similarly: define a mechanism for modelling behaviour that includes interface types.
However, as will be next discussed, extending the ontology with behaviour modelling is

not as simple as defining a constraint language.

6.2.3 Modelling Behaviour

Of the studied ADLs, Wright has a strong emphasis on modelling behaviour: CSP is
used as a method for describing the behaviour of different entities. Further, tools
processing CSP can be used to perform analysis on the local compatibility of ports and

roles, and on system-wide properties.

In a generic solution to introducing behaviour modelling in the configuration ontology,
behavioural knowledge would be integrated with other kind of configuration knowledge.
Wright would suggest including behaviour descriptions in components and their ports.

Of course, simply adding behaviour knowledge to component and port types would not

111

be a complete solution to the problem: the semantics of behavioural knowledge should
be defined as well. Further, there are many other approaches to behaviour modelling
besides CSP: e.g. statecharts is an alternative method to model the behaviour of
software (Kihn 2000). Thereby, coming up with a generic solution to behaviour
modelling is would require carefully analysing the different techniques for modelling

behaviout.

On the other hand, behaviour modelling methods could be used in conjunction with the
configuration ontology without integrating any specific method of into the
configuration ontology. E.g., the compatibility definitions between port types in a
configuration model could by produced by a tool analysing the CSP processes in ports
and roles in Wright. Further, a ready configuration resulting from a configuration
process could be transformed back to Wright and tested for some desired properties,
again using tools processing CSP. Of course, these kinds of approaches are no
substitute for the generic solution described in the above paragraph: e.g., the approach
suggested above requires that the resulting configurations are in most cases valid;
otherwise a multitude of configurations should be generated in order to discover a valid

one.

If it is not clear how to model behaviour in the ontology, it is likewise uncertain if the
ontology should model behaviour at all. That Koala is an ADL without behaviour
modelling in industrial use speaks against the usefulness and necessity of modelling

behaviout.

6.2.4 Function Binding

Function binding is a problematic issue from the configuration ontology point of view:
In the ontology, connections are defined between ports, and ports can have no
compositional structure. Therefore, there seems to be no possibility to model functions
of Koala interfaces, or more importantly, the possibility to connect either interfaces or

functions.

As both interfaces and functions can be directly bound to each other and interfaces are
composed of functions, in a sense natural approach would be to allow compositional
structure for ports in a way similar to components. In this approach, port types would
correspond to both interfaces and functions. Then, types corresponding to functions

could be defined to be parts of types corresponding to interfaces. Formally, the Port type

112

interfaceTypexo(t) (Definition 5-69) resulting from mapping Interface type ¢ would be
supplemented with port definitions for the functions as specified in the following

definition:

Definition 6-1 Function f is mapped into Port definition functiongo(f). The function

functiongo is defined as follows:

Sfunctiongo(f) := Port definition d, where

p.-name := f.name

p-types := { KOALAFUNCTION }. m
The KOALAFUNCTION type occurring in the above definitions would be defined as a
concrete port type. It is worth noticing that the individual functions are not mapped
into ports with different types. This is, of course, not the only possibility. Other
alternatives would be to create types based on the signatures of functions, and creating
types based on the names of the functions. Both of these approaches would limit the
possibilities of binding functions, which would in principle be a good thing, as all
functions surely cannot be reasonably bound with each other. Unfortunately, neither of
these schemes for creating different types for functions would result in the desired
effect: first, intuitively, functions with the same name can be incompatible, and
functions with different names compatible with each other; second, it is not necessary to
bind the functions with a one-to-one matching between the parameters, but some
parameter conversions and similar adjustments are possible. Thereby, both types based
on names and function signatures would have to be supplemented with complex
compatibility definitions. This would not be reasonable, as Koala seems to assume that

the engineer has the knowledge on what functions may be bound which each other.

Of course, the semantics of connections between ports representing interfaces and
functions in Koala should be defined. In Koala, a connection between two interfaces
implies a connection between all the constituent functions of the interfaces; this could

be expressed as an ontological constraint in the ontology.

Definition 6-2 A connection between port two individuals of KOALAINTERFACE implies

connections between all the ports of the individuals of the two individuals. m

Still another issue is the depth of the port-of hierarchy. In the case of Koala, an
ontological constraint should be set to restrict that only subtypes of KOALAINTERFACE

can be defined ports.

113

Definition 6-3 Only ports types that are subtypes of KOALAINTERFACE may define

ports, and the ports defined must be of type KOALAFUNCTION. m

All in all, introducing compositional structure for ports would seem to enable modelling
the compositional structure of interfaces in Koala. However, the compositional
structure of ports would result in a problem in the ontology. Namely, the compatibility
of port types would not be obvious: if two types were defined to be compatible, would
their subtypes be likewise compatible? In the current ontology, subtypes of compatible
port types are compatible as well. The compositional structure of ports would induce
problems, as two subtypes of a given type could define different sets of ports.
Consequently, either the compatibility between types would not extend to subtypes, or
there could not be an implication similar to that of Definition 6-2. In the first case, the
current ontology would need to be changed; in the second case, the intuitive semantics

of the compositional structure would not hold.

On the other hand, the possibility of using the existing mechanism of the ontology for
capturing functions could be studied: after all, as a small number of concepts is one of
the criteria for a good ontology (Gruber 2002), the possibility of reasonably using

existing concepts should be studied before adding new ones.

It appears that the desired effects could be achieved by mapping interfaces to
components and functions to ports. Formally, the mapping would be carried out as

follows:

Definition 6-4 Interface type ¢ is mapped into Component type interfaceTypego(t). The

function interfaceTypego(t) is defined as follows:

interfaceTypexo(t) := Component type ¢, where

c.name 1= t.name

c.abstraction := ABSTRACT
c.dependency := DEPENDENT

c.ports = functiongo(t.functions)
c.types := { KOALAINTERFACE }.

The function functiongo is the same function as defined in Definition 6-1.

KOALAINTERFACE is an abstract and dependent component type that includes a Port

definition d:

d.name := “Default”

114

d.types := { KOALAFUNCTION }
d.cardinality =1

d.constraints =

{

both ports in the connection have the name “Default”

and

type of both ports is a subtype of the same subtype of KOALAINTERFACE
and

other ports in the component are connected with a port with the same name

}

M is modified as follows:

components := M.components U interfaceTypeo(t) U interfaceReqxo(t) [
interfaceProgo(t). m

Functions interfaceReqxo and interfaceProxo are defined in a similar manner as in

Definition 5-69.

The port named DEFAULT in the above definition is used for capturing the fact that a
connection between interfaces in Koala implies that the functions of the interfaces are
likewise connected. In more detail, the third part of the connection constraint in the

port definition guarantees this.

Definition 6-5 Interface definition d is mapped into Part definition interfaceDefxo(d). The

function interfaceDefyo is defined as follows:

interfaceDefxo(d) := Part definition p, where

p.name = d.name

p.type = interfaceReqyo(p), if d.direction = REQUIRED; otherwise
interfaceProgo(p)

p.cardinality := 1, if d.direction = REQUIRED; otherwise INFINITE. ®

The above definition does not account for optional interfaces. For a discussion on how

optionality affects cardinality, see Section ‘5.5.1 Mapping Koala to the Ontology’.

Compatibility definitions and constraints should be defined to guarantee the right
connections between functions and interfaces. These definitions are, however, omitted

for brevity.

115

6.2.5 Bindings between Compound and Contained Components

All the ADLs analysed in this thesis have a mechanism for relating the interfaces in
entities on different levels but same branch of composition hierarchy. In Koala, the
mechanism used is the same as the mechanism used for specifying bindings between
interfaces in independent components. The terminology used in this section has been

introduced in Section ‘4.1 Key Concepts and the Relations between Them’.

In Armani and Wright, bindings and connections are strictly different concepts.
Conceptually speaking, there are two different relations between interfaces in the ADLs.
This introduces a problem when mapping between these ADLs and the configuration
ontology: the only possible relation between port individuals is the CONNECTED TO-
relation. Above, attachments between interfaces were already mapped into connections
between ports. Therefore, mapping bindings to same concepts would result in an
inelegant construction, as it would imply using the same concepts for representing two
strictly different phenomena. Further, the approach would lead to major complications
in port type definitions, compatibility definitions, and port definitions. Therefore, the

approach of mapping bindings to connections is abandoned out of hand.

After ruling out the approach of representing bindings as connections, there are no
concepts left in the ontology that can be used to capture the semantics behind bindings.
Therefore, the only alternative left for accommodating bindings in the ontology is to
extend the ontology with an appropriate concept. In its most simple form, this concept
would be a relation between port individuals that would specify the pairs of port
individuals that correspond to each other. This relation would be called BOUND TO. In
essence, the relation would be similar to the CONNECTED TO-telation. Of course, it must
be possible to specify compatibilities and connection constraints with respect to the

BOUND TO-relation in a similar manner as with respect to the connected-to relation.

A construct corresponding to compatibility definitions must be defined, as it would
seem unreasonable to allow unrestricted possibilities for binding port individuals.
Further, port definitions should be decorated with binding constraints, again in parallel

with connections.

With the extensions outlined above, bindings could be mapped into the ontology in a
similar manner as attachments. However, in the ADLs bindings affect the possibilities

of making attachments. The most explicit example is Koala: e.g. a required interface

116

must be either connected to another required interface in the compound component, or
to a provided interface in a peer component. The corresponding constraint in the
ontology would be to that a port is not allowed to be in the BOUND TO- and CONNECTED-

TO-relations simultaneously.

Based on the approach outlined above, adding a notion for bindings into the ontology
would not seem to result in unacceptable damages in the elegance and clarity of the
ontology. However, some specifications concerning port individuals and the two
relations should be added. First, it should be specified that KOALAREQUIRED and
KOALAPROVIDED are compatible with themselves with respect to the BOUND TO-relation;
KOALAPROVIDED and KOALAREQUIRED would still be compatible with each other with
respect to the CONNECTED TO-relation, as specified in Definition 5-67. Additionally, a
constraint stating that a port of type KOALAREQUIRED must be in either CONNECTED TO-

or BOUND TO-relation with a port of type KOALAPROVIDED should be added.

Besides the approach outlined above, i.e., adding a new relation between ports, an
alternative worth considering would be to introduce connection types to the ontology.
In more detail, connection types would be organised in a taxonomy in a manner similar
to component types. Allowing attribute definitions in connection types would enhance
their expressive power; whether this expressive power would have any use is another
question. The natural way of relating connection types to ports would be to define the

CONNECTED TO-relation between two port individuals and a connection type individual.

If connection types were added to the ontology, attachments and bindings could then
be mapped connections using different connection types. Connections constraints and
compatibility definitions could have the option to discriminate between different
connection types. In a sense, connection types and connectors in the ADLs would be
parallel concepts: both components and connection types would allow describing the
connections between components. However, unlike connectors, connection types
would not define interfaces. Further, connections between more than two ports would

still not be possible.

Of course, the need to model both attachments and bindings is not as such a sufficient
motivation for adding connection types to the ontology. In general, the possibility of
specifying different kinds of connections between ports could be useful for physical
products as well. An example could be computer networks. In this domain, cables

connecting network nodes have characteristics that affect their use: e.g. UTP cable could

117

be a component type, with different categories as subtypes; further, the UTP cable type
could define length as an attribute. In order to model these aspects with the current
ontology, cables would have to be modelled as components. This is quite all right, as
cables do adhere to the definition of component in the ontology: a distinguishable entity
in a product. On the other hand, modelling network nodes and cables with different

entities would have intuitive appeal.

Further, it could be argued that connection types are not needed, as connectors in the
ADLs could adequately be mapped into components in the configuration ontology, and
components can thus be used to model different types of interactions between
components. This is a perfectly valid argument. On the other hand, it could be argued
that components corresponding to connectors do not conform to the definition of
component in the configuration ontology, and that the components are not parts of
components corresponding to systems in the same sense as components corresponding
to components. Connection types would not suffer from the above-mentioned

problems.

6.2.6 Constraint Language

Both Armani and Wright specify in detail what kind of constraints are possible: Armani
includes a constraint language, Armani Constraint Language, and form of constraints
and the entities that can be referred in them is well specified in Wright. In the

configuration ontology it is merely assumed that a constraint language is available.

The lack of constraint language in the configuration ontology leads to a number of
problems. From the point of view of this thesis, the most severe are that it is impossible
to say anything about the relative expressive power of the constraint languages of the
ADLs and the constraints of the ontology. In detail, it is not possible to specify which

constraints in the ADLs can be mapped into the configuration ontology, and vice versa.

There is no reason why the constraint language of the ontology should not be formally
defined. Those of Armani and Wright could serve as starting points for formalising the
language for the ontology. However, specifying the language is outside the scope of this

thesis.

118

6.3 The Extra Expressive Power of the Ontology

Some concepts were not needed when mapping from the ADLs to the ontology. This
chapter discusses these concepts and the aspects of software they could be used to

capture.

6.3.1 Variability in Part and Port Definitions

In the configuration ontology, a part definition specifies the part name, a set of possible
part types, and a cardinality. Port definition specifies additionally a set of connection
constraints. When mapping between the ADLs and the ontology, ontological
constraints were set to restrict the size of the set of possible part types to one and the
cardinality to specific values. The constraints were needed, as none of the studied ADLs

allows introducing any variability to the type of a design element.

A reason for the above-observed difference can be seen in how compositional structure
is specified in the ADLs and in the configuration ontology: in the ADLs, compositional
structure is specified in terms of the design elements that some other design element
contains; in the configuration ontology, on the other hand, part definitions are holes or
roles that the individuals of a number of types can fill in. In other words, structure is
specified in terms of concrete components in the ADLs, and abstract parts in the

configuration ontology.

The same that was said in the above paragraph about components and parts applies to
ports as well, with the difference that ports specify the connection interfaces, not

compositional structure, of component types.

Considering variability, multiple possible types correspond to alternative parts and ports.
Optional parts and ports is a form of variability that can be achieved by varying the

cardinality.

In Armani and Wright, the effect of alternative parts and ports can be achieved with
styles supplemented with appropriate constraints. The constraint corresponding to
alternative parts would state that exactly one component type in a set of component
types is instantiated with a certain name. Optional parts, in turn, could be expressed by
specifying a constraint that enumerates the components that may exist in a system of
the style; in this model, other constraints would enforce the existence of mandatory

parts. In conclusion, the effects that can be achieved by modifying cardinality in the

119

configuration ontology can be achieved with constraints in Armani and Wright. Thus,
cardinalities do not provide the ontology extra expressive power compared with the two

ADLs, but they do provide a more intuitive and more intelligible way of modelling.

6.3.2 Contexts

Contexts in the configuration ontology are a mechanism for restricting pieces of
configuration knowledge to certain “parts” of a configuration. A context is defined to
be a set of component individuals in a configuration. The ontology includes three

special types of context:

= Component type set context, defined as a set of individuals in a configuration that are

of the component types in a given set of component types.

" Mereological context, defined as consisting of a component individual and the set of

component individuals that are its parts.

" Topological context, defined as consisting of a component individual and the set of

component individuals that are connected through port individuals to it.

If available in the ADLs, contexts could be used to restrict the effect of constraints to
certain components and connectors. Of course, the effect could be achieved simply by
enumerating the components the constraint concerns. In the configuration ontology,

contexts are of most utility when used with resources, the concept to be discussed next.

6.3.3 Resources

Resources are used in the ontology to model the production and use of entities, or the

flow of such entities from one component individual to another.

Arguably, resources are an important aspect of software systems as well: especially in
mobile devices, resources such as disk space, memory, and computing power cannot be
assumed to be in ample supply. However, resources seem not to have been considered
important in the software engineering domain in the sense resources are defined in the

configuration ontology.

120

6.3.4 Functions

In the ontology, functions are used for modelling non-technical aspects of products.
Examples of functions include high performance of a car, and the ability to play music
of a computer. Functions are linked into technical concepts through implementation
constraints. E.g. the ability to play music could be implemented by a suitable piece of

software, a sound card, and a speaker.

Although the studied ADLs include no concepts corresponding to functions, they
would certainly be useful in modelling software. In fact, feature models (see, e.g.,
(Czarnecki et al. 2000)) are used to model functional aspects of software systems among
technical aspects. Thus, there is a need for function modelling in the software domain,
and studying how functions of the configuration ontology could be utilised in modelling

software is a promising research avenue.

6.3.5 Constraint Sets

As the name suggests, constrain sets are sets of constraints. Constraint sets allow

considering the correctness of a configuration from different points of view.

6.4 Evaluation

This section presents an evaluation of the results achieved in this thesis. First, the
mappings between the ADLs and the configuration ontology are evaluated for
conformance to the criteria laid down in the introduction. Second, the reliability of the

results achieved is evaluated.

6.4.1 Conformance of the Mappings to the Criteria

In this section, the mappings between each ADL and the configuration ontology are
evaluated with respect to the criteria laid down for the mappings in Section

‘1.2 Research Problem and Goals’.

In general, the mappings satisty the criteria well. First, by inspecting the mappings, it is
easy to see that they are specified in a sufficient level of detail that they can be used as a
specification for implementation. Second, there is no explosion in size, as each entity is
mapped into at most two entities in the target domain. Third, the mappings are

unambiguous, as there are no entities with more than one mapping specified.

121

Fourth, the mappings are mostly elegant: the mappings are predominantly simple and
straightforward. However, as discussed various subsections of Section ‘6.2 Unmapped
Concepts and Potential Extensions’, there are some semantic mismatches in the
mappings: e.g. the definition of connector in Armani and Wright does not correspond

to the definition of component in the configuration ontology.

Fifth, the mappings are inherently not modular, as entities in the ADLs and the
configuration ontology are organised in hierarchies: systems and configurations are the
roots of decomposition hierarchies; types in Armani and the configuration ontology are
organised in taxonomies. Thereby, mapping e.g. systems in Armani and Wright is not
possible without mapping the components and connectors contained in it. On the other
hand, the mappings are roughly as modular as possible: there are no other dependencies

between mappings than those dictated by the hierarchies between concepts.

Finally, the mappings have been designed for being easily understandable. Of course,

the reader has the ultimate right to decide this issue.

6.4.2 Reliability

Concerning the reliability of the answers to the research questions, the critical issues are:
how representative of the entire class of ADLs the three exemplars are; is the
assumption that ADLs are a suitable approach for modelling software product lines
valid; and how representative of the class of conceptualisation of configuration

knowledge the configuration ontology by Soininen et al. is.

Starting from the lattest question, it was already stated in Section 2.2 Conceptualisations
of Configuration Knowledge’, the configuration ontology synthesises earlier approaches
to conceptualising configuration knowledge. Additionally, the ontology is close to
another conceptualisation. Consequently, the ontology by Soininen et al. was found to

represent well different methods for conceptualising configuration knowledge.

Thus, the focus must be shifted to the ADLs. The representativeness of the ADLs is

best argued by the special characteristics of each of the three ADLs.

As discussed in Section 3.2.1 Armani’, Armani is based on an eatlier ADL called Acme
that was designed to incorporate the semantics core of other ADLs, and in a sense serve

as an ontology of ADLs.

122

Wright is an ADL that is often cited in the literature. In itself, Wright has a number of
interesting properties. Most importantly, Wright models behaviour and does this using a
formalism called CSP. Due to these reasons, Wright was considered to represent a

number of important characteristics of the class of ADLs.

Whereas Armani and Wright are predominantly academic endeavours, Koala is in
industrial use in a real company, namely Philips Consumer Electronics. Strictly speaking,
Koala is not an ADL but a component model. The mechanisms for modelling structure

in Koala are essentially those of another ADL, namely Darwin (Magee et al. 1995).

In conclusion, the three studied ADLs can be considered to be representative of the
class of ADLs. First, Armani is designed to contain the structural core of other ADLs.
Second, both academic and commercial aspects are well represented: Armani and
Wright guarantee the former, and Koala the latter. Third, behaviour modelling and the
high degree of formalism represent the variety in ADLs. Thereby, the answers found to

the research questions can be considered reliable.

However, the fact that the three ADLs are representative of the entire class of ADLs is
not sufficient to guarantee that modelling software product lines with ADLs would be
practically feasible. In addition, the assumption that ADLs are a suitable approach for
modelling software must be valid to guarantee the feasibility. The assumption is
intuitively true: software architecture is arguably the principal level of designing,
modelling, and managing product lines. However, there is not much evidence that
ADLs would be used in companies with software product lines. In contrast, (Bosch
2000) argues that ADLs are not used for describing the architecture of software product
lines, and (Smolander et al. 2002) further states that UML is often seen as a capable of
modelling architecture; consequently, there is not necessarily a large demand for ADLs

in companies.

6.5 General Discussion

6.5.1 Topology in the ADLs and in the Ontology

Perhaps the most remarkable single factor differentiating the disciplines studied in this
thesis is the way the model topology: Armani and Wright consider connectors as first
class entities for this purpose, whereas Koala and the configuration ontology include no

notion corresponding to connectors.

123

What then is the reason for this disagreement in architectural connection? At least a
partial reason for the importance of connectors in Acme and Wright can be found in
assumptions underlying them and the software engineering domain in general: reusing
existing components has been, and still is, a major issue in the software engineering
domain. Furthermore, there has been considerable effort in the software engineering
community to reuse heterogeneous components, which cannot be connected directly to
each other due to different communication mechanisms and various other reasons (see,
e.g., (Mehta et al. 2000)). Therefore, it could be argued that connectors have been

introduced in ADLs as a vehicle for connecting heterogeneous components.

In Koala, the situation is different: the language operates on component repository
consisting of homogenous components. Based on the published documentation of
Koala (Ommering et al. 2000; Ommering 2002), all the components follow a single
interaction standard, namely procedure calls. Hence, the absence of heterogeneous

components can be seen as a reason for the exclusion of explicit connectors from the
language.

However, binding components is not free of problems in Koala either: as stated in
Section ‘3.2.3 Koala’, all the bindings between interfaces are not between entire
interfaces. In addition, modules can be used to create considerably complex interactions
between interfaces; examples include function binding and switches. Comparing the role
of modules in Koala with the definition of connector in Armani and Wright reveals that
modules could well be called connectors: they are defined to represent interactions and
mediate the communication and coordination activities among components. In fact, the
most recent publication on Koala uses the word connector when referring to the
different possibilities of binding interfaces (Ommering 2002). Thereby, Koala is after all

not free from connectors, although connectors are not first-class entities in Koala.

The manner in which the configuration ontology models topology stems from earlier
research. In (Mittal et al. 1989), intensional connection points are introduced in order to
prevent arbitrary connections between components. The reason for ruling out arbitrary
connections between components is to make the configuration task, i.e., finding one or
more configurations satisfying a given set of requirements, well defined. Further,
connections between components are important in computers and telecom switches

that are both domains where product configuration has been applied.

124

6.5.2 Modelling Products with Embedded Software

As mentioned in the introduction, much of software is not designed to run on general
purpose computing devices, but as embedded software in specialised devices. Further,
software is used as a source of variability in many cases: physically identical products are
made different through customising the software. Consequently, a need for modelling

simultaneously both the physical product and the software embedded in it arises.

Given that configuration models can be used to describe both the physical structure of a
product and the software embedded in it, additional benefits could be gained by
combining the two models: in addition to modelling the physical product and the
software, the models could include the dependencies between the two models. Thereby,
both the physical and software aspect of the product could be configured
simultaneously, and the resulting configuration is guaranteed to be valid with respect to

the physical structure, the embedded software, and their interactions.

Of course, when modelling both physical and software components, distinguishing
these two types of components from one other is important. The distinction can be
achieved simply be creating two subtypes of Component type, namely PHYSICAL
COMPONENT and SOFTWARE COMPONENT. These types, in turn, serve as the supertypes
for physical component types and software component types. E.g. ADLCOMPONENT and
the other component types specific to configuration models describing Armani and
Wright designs would now be derived from SOFTWARE COMPONENT, not directly from
COMPONENT TYPE as presented previously. The suggested taxonomy for components is

depicted in Figure 17.

| Component type |
|
Physical component | | Software component|

T

| ADLComponent |

Figure 17 Taxonomy of component types for modelling products with embedded software.

125

7 Comparison with Previous Work

This section compares the work done in this thesis with related previous work.

Research closely related to this thesis has been conducted eatlier. However, there seems
to no research where the concepts of software architecture description would have been
compared to those of configuration modelling. Thereby, comparing the concepts of

ADLs with those of the configuration ontology is the main contribution of this thesis.

In their work, Minnisté et al. have pointed out the existence of the research area of
configurable software and identified some key concerns in the area (2001). They have
not, however, studied the concepts of ADLs in detail or proposed any mapping from

these concepts to those of configuration modelling domain.

van der Hoek et al (1998; 1999), on the other hand, have developed a conceptualisation,
or a basic architectural skeleton, as they call it, of ADLs that accommodates evo/ution,
variability, and optionality. Out of these, evolution is out of the scope of this thesis and is
not further discussed. But variability and optionality in ADLs are closely related to this
thesis. van der Hoek et al. define variability as the ability of a single software system
being able to provide multiple, alternative ways of achieving the same functionality. A
numerical optimisation system is presented as an example of a system with variability:
depending on the user needs, the system may be either fast and imprecise, or slow and
precise; both alternatives are, however, incorporated into the system. The decisions
about which alternative is used is done based on a boolean condition: if the condition
for an alternative is true, the alternative is used. It is required that exactly one of the
conditions in the alternatives is true at a time. Optionality, on the other hand, is defined
as system having one or more additional parts that each may or must not be
incorporated in the system. Continuing the numerical optimisation example, the ability
to gather statistics can optionally be incorporated into a system. Whether to include a

part in a configuration or not is decided by a boolean condition.

Although apparently dealing with similar issues, the work done by van der Hoek et al. is
in many ways different from the work presented in this thesis. First, this thesis strives to
find a mapping from software domain to the configuration domain, using ADLs as the
conceptualisation of the software domain; their approach, on the other hand, is based

on developing a conceptualisation of ADLs with features unknown in the current ADLs

126

from scratch. Second, variability as defined by van der Hoek is not really variability from
the configuration point of view: their variability concerns the behaviour of a systems
instance, not variability in what kind of system is produced during a configuration
process. Third, from the configuration point of view, the notion of optionality as
defined by van der Hoek et al. a very limited form of variability. In conclusion, the
approach followed and the underlying goals are different in the work by van der Hoek

and this thesis.

(Sygjanen 2000) presents a formalized software configuration management (SCM)
ontology. The concepts of the SCM ontology are, however, different from those of the
configuration ontology. They are aimed at representing the modules, files, or packages,
their versions and the dependencies between these. The ontology does not take into

account the connections and interfaces between components of a system.

Felfernig et al. have proposed a scheme for constructing configurators based on UML
descriptions of configuration knowledge (2000). Basically, their approach could be used
for creating configurators for software products as well. Their approach is, however,
different from the one followed in this thesis: theirs is based on presenting
configuration knowledge in UML, while the approach in this thesis is based on

modelling software with the concepts of product configuration.

In (Kithn 2000), Kihn has presented an approach to software configuration based on
structure and behaviour. In the approach, domain objects are decorated with properties
and organised in taxonomic and compositional hierarchies. Statecharts, a method similar

to finite state machines, are used for specifying the behaviour of modules.

Compared with the configuration ontology, the domain objects compare to
components, and the taxonomy and composition hierarchy to taxonomy of component
types and structure, respectively. Thereby, the concepts he uses for modelling software
is subset of the concepts available in the configuration ontology, and of those of ADLs
as well: Kiuhn’s approach does not incorporate topology. On the other hand, the
approach does model behaviour, unlike the configuration ontology, Armani and Koala.
In conclusion, his approach is close to Wright in that the approach involves both

structure and behaviour.

127

8 Future Work

The results achieved in this thesis are preliminary for at least two reasons.

First, as stated in the introduction, the goal underlying this work is to apply the research
results achieved in the domain of configurable products to software product families as
well. The results achieved in the thesis seem to bring this goal a step closer, but only a

small step.

The results achieved so far should be concretised in the form of a language purported to
model architecture of software product lines. The language should contain at least the
concepts that were found relevant modelling software in this study. Further, the
language should be defined formal semantics in terms of some suitable formalism in
order to give it precise semantics and to allow analysing its properties and building

supportt tools on it.

Of course, to be of practical value, the language’s ability to model software product lines
should be verified through case studies with real products in companies. The case
studies will help to check if the set of concepts captured by the language is sufficient
and minimal in the sense that it covers all the architecturally relevant aspects of the
studied software product line and includes no unnecessary ones. Especially, the question
whether to extend the ontology with the concepts that are included in at least one of the
ADLs, but not in the configuration ontology, can be better answered based on empirical
studies in real companies. Further, for the purpose of being of practical use, the
language should be defined as an extension of some existing method currently used by

software engineers; UML is a strong candidate for the method.

A new version of the modelling language should be built based on the results of the case
study. As no modelling language without a supporting toolset is likely to ever be of
practical value, a tool supporting the modelling task and configuration tasks should be
designed and implemented. In more detail, the tool should support all the tasks related
to using software product lines: from constructing a model of the family to producing

individual software systems.

Finally, the validity of the second language version and the tool supporting it should be
empirically tested and formally analysed. The former would be done through case

studies in at least two companies with real software products and. The latter, in turn,

128

would be accomplished through analysing computational complexity of the tasks needed

to support the concept of configurable software product families.

Of course, there are other important issues related to software product families than

those addressed in the above-described research path.

As an example, the assumption that software product lines would be static is hardly
viable. On the contrary, it is most likely that both the architecture of software product
lines and the assets used for composing the systems will constantly evolve. The work by
van der Hoek et al. (1998; 1999) and Minnist6 (2000) support this argument. Therefore,
methods for handling the evolution of software product lines should be developed.
Further, the methods for modelling software product lines in general and constructing

instances of them should be integrated with those for handling the evolution.

129

9 Conclusions

In the beginning of this thesis, two domains were considered: the domain of
configurable products, and the domain of software product lines. The goal of the thesis
has been to study whether the concepts used for describing configurable products could
be used for describing the architecture of software product lines as well. As there was
no generally approved conceptualisation of software product lines, the concepts of three
ADLs were analysed in detail to form a picture of the concepts used for modelling the
structure of software systems. These concepts were then compared to a

conceptualisation of configuration knowledge.

The comparison indicated that there are natural counterparts and close correspondences
in the configuration ontology for the main elements of the studied ADLs. For instance,
both share the notion of components. Furthermore, compositional structure, systems
formed of connected components and constraints are phenomena present in both
disciplines. In addition, for most of other concepts, satisfactory mappings to the
ontology could be found; e.g. connectors could be mapped to a subtype of component.
The mappings were defined in enough detail in order for it to serve as a specification for
implementation. Hence, it was established that the concepts of the configuration

ontology can be used for modelling software products.

However, capturing some aspects of ADLs would seem to require extending the
configuration ontology. These aspects include function binding and binding the
connection points of compound components with connection points in its inner parts.
Another important aspect is modelling behaviour. Of the ADLs, Wright models
behaviour. Additionally, the approach presented by Kiihn also emphasizes behaviour
(Kidhn 2000). The question whether behavioural aspects really are important and should
be modelled when configuring software product families, should be resolved through
empiric studies. The existence of Koala, a commercial ADL with no behaviour

modelling, suggests that modelling behaviour is not absolutely necessary.

Although the results achieved in this thesis are based on detailed analysis and mappings,
they subject to the validity of the assumptions made. Foremost, it was assumed that
ADLs are a modelling method capable of capturing relevant aspects of the architectures

of software product lines.

130

References

Allen, R. A Formal Approach to Software Architecture. Ph.D. thesis, Carnegie Mellon
University. 1997.

Allen, R., Garlan, D. “A Formal Basis for Architectural Connection”, ACM Transactions

on Software Engineering and Methodology, vol. 6(3): pp. 213-249. 1997.
Arnold, K. The Java Programming Iangnage. Addison-Wesley, Boston (MA). 2000.

Bass, L., Clements, P. C. and Kazman, R. Software Architecture in Practice. Addison-Wesley,
Boston (MA). 1999.

Bosch, J. Design and Use of Software Architectures: Adapting and Evolving a Product-Line
Approach. Addison-Wesley, Boston (MA). 2000.

Clements, P. C. and Northrop, L. Software Product Lines - Practices and Patterns. Addison-
Wesley, Boston (MA). 2001.

Czarnecki, K. and Eisenecker, U. W. Generative Programming. Addison-Wesley, Boston
(MA). 2000.

Felfernig, A., Friedrich, G. and Jannach, D. “UML as Domain Specific Language for the

Construction of Knowledge-Based Configuration Systems”, International Journal of

Software Engineering and Knowledge Engineering, vol. 10(4): pp. 449-469. 2000.

Felfernig, A., Friedrich, G. and Jannach, D. “Conceptual Modeling for Configuration of
Mass-Customizable Products”, Artificial Intelligence in Engineering, vol. 15(2): pp. 165-176.
2001.

Garlan, D. “Software Architecture,” in Encyclopedia of Software Engineering, J. J. Marciniak,
ed., John Wiley & Sons, New York. 2001

Garlan, D., Monroe, R. T. and Wile, D. “Acme: An Architecture Description
Interchange Language”, in Proceedings of CASCON'97 . 1997.

131

Garlan, D., Monroe, R. T. and Wile, D. “Acme: Architectural Description of
Component-Based Systems,” in Foundations of Component-Based Systems, G. T. Leavens and

M. Sitaraman, eds., Cambridge University Press, pp. 47-68. 2000

Gruber, T. R. “Toward Principles for the Design of Ontologies Used for Knowledge
Sharing”, International Journal of Human-Computer Studies, vol. 43(5): pp. 907-928. 2002.

Hoare, C. A. R. Communicating Sequential Processes. Prentice-Hall, Englewood Cliffs. 1985.

Junker, U. “Preference Programming for Configuration”, in Proceedings of the configuration

workshop of IJCAI 2001. 2001.

Kihn, K. “Modeling Structure and Behavior for Knowledge-Based Software
Configuration”, in Proceedings of the ECAI 2000 Workshop on New Results in Planning,
Scheduling, and Design, Betlin. 2000.

Magee, ., Dulay, N., Eisenbach, S. and Kramer, J. “Specifying Distributed Software
Architectures”, in Proceedings of the Fifth European Software Engineering Conference (ESEC
'95). 1995.

Medvidovic, N. and Taylor, R. M. “Separating Fact from Fiction in Software
Architecture”, in Third International Software Architecture Workshop (ISAW-3) in conjunction
with SIFSOFT'98 (FSE-6). 1998.

Medvidovic, N., Taylor, R. M. “A Classification and Comparison Framework for
Software Architecture Description Languages”, IEEE Transactions on Software Engineering,
vol. 26(1): pp. 70-93. 2000.

Mehta, N., Medvidovic, N. and Phadke, S. “Towards a Taxonomy of Software
Connectors”, in Proceedings of the International Conference on Software Engineering (ICSE).
2000.

Microsoft Corporation. The Component Object Model Specification.1995

Mittal, S. and Frayman, F. “Towards a Generic Model of Configuration Tasks”, in
Proceedings of the Eleventh International Joint Conference on Artificial Intelligence (IJCAIL). 1989.

Monroe, R. T. Capturing Software Architecture Design Expertise with Armani. Technical report
CMU-CS-98-163. 2001

132

Monroe, Robert T., Garlan, David, and Wile, David. Aewe Reference Mannal. 2002

Mannisto, T. A Conceptual Modelling Approach to Product Families and Their Evolution. Ph.D.
thesis, Helsinki University of Technology, Finland. 2000.

Minnisto, T., Soininen, T. and Sulonen, R. “Product Configuration View to Software
Product Families”, in Proceedings of the Tenth International Workshop on Software Configuration
Management (SCM-10) of ICSE 20017. 2001.

Object Management Group. OMG Unified Modeling Langnage Specification.2001

Ommering, R. v. “A Composable Software Architecture for Consumer Electronics

Products”, Xootic Magazine, vol. 7(3): pp. 37-47. 2000.

Ommering, R. v. “Configuration Management in Component Based Product
Populations”, in Proceedings of Tenth International Workshop on Software Configuration
Management (SCM-10) - An ICSE 2002 Workshop). 2001.

Ommering, R. v. “Building Product Populations with Software Components”, in

Proceedings of the 24th International Conference on Software Engineering. 2002.

Ommering, R. v., van der Linden, F., Kramer, J. and Magee, J. “The Koala Component
Model for Consumer Electronics Software”, IEEE Computer, vol. 33(3): pp. 78-85. 2000.

Pine, B. J. 1. Mass Customization - The New Frontier in Business Competition. Harvard
Business Scholl Press, Boston (MA). 1993.

Shaw, M. and Garlan, D. Software Architecture - Perspectives of an Emerging Discipline. Prentice
Hall. 1996.

Smolander, K. and Piivirinta, T. “Describing and Communicating Software
Architecture in Practise: Observations on Stakeholders and Rationale”, in Proceedings of
the Fourteenth International Conference on Advanced Information Systems Engineering (CAISE '02).
Springer-Verlag. 2002.

Soininen, T., Tithonen, J., Minnist6, T. and Sulonen, R. “Towards a General Ontology
of Configuration”, Artificial Intelligence for Engineering Design, Analysis and Manufacturing, vol.
12(4): pp. 357-372. 1998.

133

Stroustrup, B. The C++ Programming Langnage. Addison-Wesley, Reading (MA). 1997.

Syrjanen, T. “Including Diagnostic Information in Configuration Models”, in Proceedings

of the First International Conference on Computational Logic. Springer-Vetlag, Berlin. 2000.

Thiel, S., Hein, A. “Modeling and Using Product Line Variability in Automotive
Systems”, IEEE Software, vol. 19(4): pp. 66-72. 2002.

Tiihonen, J., Lehtonen, T., Soininen, T., Pulkkinen, A., Sulonen, R. and Riihihuhta, A.
“Modeling Configurable Product Families”, in Proceedings of the 12th International Conference
on Engineering Design (ICED'99). 1998.

Tiihonen, J. and Soininen, T. Product configurators - information system support for configurable
products. Techical report TKO-B137. 1997

van der Hoek, A., Heimbigner, D. and Wolf, A. L. Investigating the Applicability of
Aprchitecture Description in Configuration Management and Software Deployment. Technical report
CU-CS-862-98. 1998

van der Hoek, A., Heimbigner, D. and Wolf, A. L. Capturing Architectural Configurability:
Variants, Options, and Evolution. Technical report CU-CS-895-99. 1999

134

