A Koala-Based Ontology for Configurable Software Product Families

Timo Asikainen, Timo Soininen, Tomi M:innisto
Helsinki University of Technology, Software Business and Engineering Institute (SoberIT)
PL 9600, FIN-02015 TKK, Finland
{timo.asikainen, timo.soininen, tomi.mannisto } @hut.fi

Abstract

In this paper, we present an approach to applying
configuration techniques to managing the vari-
ability of configurable software product families.
We introduce Koalish, an ontology for modelling
configurable software product families, and give
the ontology formal semantics by mapping it to
weight constraint rules.

1 Introduction

Traditionally, the focus of configuration research has been
on traditional products, i.e., mechanical and electronic ones.
However, software product families (SPFs) have become an
important approach to increasing the efficiency of software
development and controlling complexity and variability
[Bosch, 2000]. The most systematic of such families closely
resemble configurable products in that they are composed of
standard reusable assets and have a predefined structure;
further, instances of the family can be deployed without
customer-specific tailoring or addition of glue code [Bosch,
2000]. Therefore, they can be called configurable software
product families (CSPF). Modelling and managing variabil-
ity of CSPFs can become a complex problem of its own.

In this paper, we study the possibility of utilising tech-
niques developed for modelling and configuring traditional
products for configuring CSPFs. There is some evidence
that this can be done if the CSPF is described using a simple
conceptualisation [Kojo et al., 2003]; however, [Asikainen
et al., 2002] suggests that this cannot be done straightfor-
wardly for more advanced conceptualisations. In this paper,
we specify an approach to modelling the variability of
CSPFs from a technical viewpoint. We further aim at auto-
matically generating a product based on such a model and a
set of requirements expressed in the language of the model,
or checking the correctness of a product with respect to the
model and requirements. We base our approach on a similar
one [Tiihonen et al., 2002] in the domain of product con-
figurators. The front-end of our approach is a language used
by software engineers for describing the commonalities and
variabilities of a CSPF. To be usable, both the underlying
concepts and the syntax of the language must correspond to
the intuitions of software engineers. The description is auto-
matically translated into a formal model. Based on the

model, descriptions of members of the CSPF conforming to
a set of user requirements can be generated, similarly as in
configuration task. The description of a family member can
be mapped into input of realisation tools, such as make, that
are used to build the desired software system.

This paper describes how certain parts of the above-
described approach can be implemented for a class of
CSPFs. We introduce and formalise Koalish, an ontology
serving as the conceptual basis of a language for describing
a static view of architectures of CSPFs; for architectural
views, see [Clements et al., 2002]. The concepts of Koalish
are based on Koala, a component model and architecture
description language (ADL) that is in industrial use at Phil-
ips Consumer Electronics. Thus, Koalish only covers such
CSPFs that lend themselves to be described using Koala.
Koalish extends the concepts of Koala with constructs for
modelling variability: we introduce possibilities for select-
ing the number and type of parts of components. Further, we
present a mapping from Koalish to Weight Constraint Rule
Language (WCRL) [Simons et al., 2002]. This gives the
ontology a sound formal basis, which enables implementing
a language based on the ontology using a state-of-the-art
inference tool [Tithonen et al., 2002].

Koala is relevant for CSPFs as the language enables
composing multiple products from a single set of reusable
assets. We believe that the practical success of Koala gives
the ontology a solid foundation. Further, Koala is close to
many other ADLs, which suggests that generalising our
approach to other ADLs could be possible [Medvidovic and
Taylor, 2000]. However, there is currently no support for
configuration task in Koala. Thereby, Koalish can serve as
the basis for a configuration front-end to Koala.

The remainder of this paper is organised as follows. In
Section 2, we give an introduction to Koala and present
Koalish. Thereafter, in Section 3 we define a mapping from
Koalish to WCRL. Discussion and comparison to previous
work follows in Section 4. Conclusions and outline of fur-
ther work round up the paper in Section 5.

2 An ontology for modelling CSPFs

In this section, we first give an overview of Koala. Second,
we present an ontology based on Koala and extended with
constructs for representing variability.

2.1 Koala

Koala [van Ommering et al., 2000; van Ommering, 2002] is
an architecture description language and a component model
(in the sense of Microsoft COM) that has been developed at
Philips Consumer Electronics to be used in developing em-
bedded software for consumer electronics devices. Between
100 and 200 developers distributed over 10 sites are in-
volved with Koala, and a number of products developed
with Koala are in the market [van Ommering, 2002].

The main modelling elements of Koala are components
having explicit connection points called interfaces. A com-
ponent is defined as “an encapsulated piece of software with
an explicit interface to its environment”; an interface is a
“small set of semantically related functions”. Functions cor-
respond to function signatures e.g. in C. Each interface is
either a provided or a required interface; a provided inter-
face signals that the component having the interface pro-
vides some service for its environment, and a required inter-
face that such a service is required from the environment.

Components can have other components as their parts.
Further, there can exist bindings between interfaces. A bind-
ing signals that one of the interfaces uses the service pro-
vided by the other. Bindings are related to function calls
occurring in a software system. There are three different
kinds of bindings. In a sense the fundamental kinds of bind-
ings occur between a required and a provided interface: the
binding translates calls to the functions of the required inter-
face into calls to functions realising the provided interface.
The other two types of bindings occur between interfaces in
components that are in part-whole relationship with each
other: calls to a provided interface in the whole component
can be delegated to an interface in the part component; calls
to required interfaces in the part component can be for-
warded to a required interface of the whole component.

Example. Figure 1 (a) depicts a Koala system that will be
used as a running example throughout the paper. See Figure
1 (b) for a legend of the notation. Components client/1] and
client[2] are both of type CClient, server of type CServer,
and dbase of type CDb. Further, above-mentioned compo-
nents have interfaces: e.g., client[1] and client/2] have in-
terface caller of type IRpe. Finally, there are bindings be-
tween interfaces: e.g., the interface caller in both client[1]
and client[2] is bound into callee of server. m

2.2 Ontology

In this section, we present Koalish, an ontology for model-
ling CSPFs. The ontology is based on combining Koala and
an existing ontology of configurable products [Soininen et
al., 1998]. The basic concepts are the same as in Koala, but
they are extended with constructs for modelling variation
possibilities similarly as in [Soininen et al., 1998].

We distinguish between component and interface types
and instances of these. Occasionally, when there is no risk
of ambiguity, we use the terms component and interface to
refer to component and interface instances, respectively.

sys : CSystem

client[1] :
CClient

caller :

query :

IRchl IRpc2
} H i dbase : CDb

server : CServer

client[2] :
CClient caller :

IRpc

(a)

component ¢ of type T with a
required interface named r of type S,
and a provided interface p of type U

binding between interfaces

component c of type T that contains
component d of type S

(b)
Figure 1 (a) A sample Koala system (b) Legend of notation used

A Koalish model represents the reusable components and
the possibilities for combining them. A Koalish model con-
sists of a set of component and interface types, and a set of
constraints. Such a model represents the properties of a
software product family and contains information about
component and interface types that can occur in configura-
tions. A configuration consists of a set of instances of these
types. Further, a valid configuration is a configuration that
satisfies some conditions that will be explicated below.

In the following, we present different aspects of Koalish
models and configurations based on them, and discuss the
related properties of component and interface types.

Components and compositional structure

A component type is a description of an encapsulated piece
of software with an explicit interface. We employ two main
classes of information for representing the compositional
structure of component instances. First, a component type
defines the compositional structure of its instances through
part definitions. Second, a component type defines the pos-
sibilities for its instances to interact with other components
through a set of interface definitions.

A part definition consists of a part name, a set of possible
part types, and a cardinality definition. The component type
containing the part definition is termed whole type.

The part name distinguishes the role in which different
component instances are parts of a component instance of
the whole type. The set of possible part types consists of the
types the instances of which may occur as parts of instances
of the whole type with the associated part name. The cardi-
nality is an integer range and specifies how many compo-
nent instances must occur as parts with the part name.

A part definition is reflected in a valid configuration as
follows: an instance of the whole type has the number of
component instances specified by the cardinality as its parts.
Each part must be an instance of one of the possible part

types. The fact that a component instance has a component
instance as a part with a given name is conceptualised as the
two instances being in sas-part relation with the part name.

The has-part relation organises component instances in
composition hierarchies. Koala requires that in a valid con-
figuration, all the components be contained in a single com-
position hierarchy. Each Koalish model defines a single root
component type, and in a valid configuration, the root of the
component hierarchy, termed root component, must be an
instance of the root component type. The root component
type may not contain interface definitions, neither can it
appear as a possible part type in a part definition.

Example. Figure 1 (a) depicts a valid configuration.
Component instance sys is the root component. Its parts are
client[1], client[2], and server, which has dbase as part. m

Koala excludes self-containment from the composition
hierarchy, i.e., the composition hierarchy must indeed be a
hierarchy. Thus, we require that no component type may,
even transitively, contain a part definition where the com-
ponent type occurs as a possible part type.

The above restriction implies that there is no self-
containment for instances, either. In addition, we require
that no component is a part of two or more components.

Interfaces and bindings

The possibilities for interaction between components are
another important aspect of configurations. Interfaces are
the points in components where all the interaction between
the component and its environment occur.

An interface type represents a small set of semantically
related functions. In a valid configuration, the instances of
the interface type have the functions defined by their types.

An interface definition consists of an interface name, an
interface type, a direction definition, and an optionality
definition. The interface name specifies the role of the inter-
face instance in the component instance, and the interface
type the interface type an instance of which the interface
instance must be. The direction definition has two possible
values, required and provided: value required represents a
required interface, and the value provided a provided inter-
face. The optionality definition has two possible values,
optional and mandatory: we will use the terms optional and
mandatory interface in their obvious meanings.

An interface definition is reflected in a configuration as
follows: for a mandatory interface, an instance of the com-
ponent type must have an instance of the interface type as its
interface; for an optional interface, the component type may
have such an interface. The interface instance must have the
name and direction specified in the interface definition, re-
spectively. The fact that a component has an interface is
conceptualised as the component and the interface being in
the has-interface relation with the interface name.

Example. The interfaces caller in client[1] and client/[2]
are required ones, and callee and query provided ones. m

Bindings are conceptualised with the binary relation
bound-to;. The pair (a, b) being in bound-to; denotes the fact
that a is bound to . The reader should observe that bindings
are not symmetric, but, on the contrary, asymmetric.

b a

(a) (b) (c)
Figure 2 Different possibilities for place-compatibility

Example. In Figure 1 (a), the caller interfaces are bound
to callee, which is, in turn, is bound to query. m

In Koala, there are some restrictions on which bindings
may occur in valid configurations. These restrictions are
associated with the types of the bound interfaces, along with
their directions and relative positions. Next, we will detail
these restrictions.

First, if the pair of interfaces (a, b) is in the bound-to; re-
lation, then the type of b must be a subtype of a. In Koala,
the binary relation subtype is defined as follows: interface
type A is a subtype of interface type B if and only if A con-
tains at least all the functions in B. It should be noticed that
every interface type is a subtype of itself. Pair (a, b) of in-
terface instances fulfilling this requirement is said to be
type-compatible.

Second, a and b must have certain directions and be in an
appropriate relative position. There are three possible com-
binations that are illustrated in Figure 2. If a pair of inter-
faces fulfils any of the following requirements, the pair is
said to be place-compatible. First (Figure 2 (a)), both @ and
b are required interfaces, and the component having b as its
interface has the component having a as its interface as its
part. Second (b), both a and b are provided interfaces, and
the component having a as its interface has the component
having b as its interface as its part. Third (c), a is a required
interface, b is a provided interface, a and b are interfaces of
different components, and both of these components are
parts of the same component.

In addition to bindings between interfaces, there can exist
bindings between individual functions contained in interface
instances. Such bindings are termed function bindings. A
function binding is conceptualised as a pair of functions (a,
b) being in the bound-to, relation; we say that a is bound to
b. The semantics of a function binding are similar to those
of a binding between a pair of interfaces: function a being
bound to function b implies that calls to a are translated into
calls to b.

Bindings (between interfaces) imply certain function
bindings: if interface @ is bound to interface b, then every
function of a is bound to a function in b with the same
name. However, there can exist function bindings beyond
the above-mentioned ones. Further, as functions have differ-
ent semantics, not all bindings between functions are possi-
ble. Finally, only function bindings, where the interfaces
containing the functions are place-compatible (recall Figure
2), can occur in valid configurations.

In order for a configuration to be valid, certain bindings
must exist between interfaces: every function in every re-
quired interface must be bound to exactly one function.

Binding constraints are used for specifying bindings be-
tween interfaces or functions in a configuration. A binding
constraint is a logical condition that refers to interface defi-
nitions in components; in a configuration, a binding con-
straint is reflected as bindings between interface instances or
function bindings.

Constraints

A constraint is a formal rule that specifies a condition that
must hold in a valid configuration. Constraints are ex-
pressed using a constraint language. However, due to space
limitations, we do not specify one here. In short, the con-
straint can refer to the parts and interfaces of components
and bindings between interfaces and functions, and such
references can be combined using Boolean connectives.

3 Formalisation

In this section, we give formal semantics to Koalish. We
accomplish this by first giving a short introduction to weight
constraint rules (WCRs), and thereafter define the mapping
from Koalish to WCRs.

3.1 Weight constraint rules

WCRL is a general-purpose knowledge representation for-
malism similar to logic programs. WCRL has been shown to
be suitable for representing configuration modelling con-
cepts, see [Soininen et al., 2001]. Due to space limitations,
giving a thorough account of WCRs is not possible. Instead,
we use an example to demonstrate the aspects of weight
constraints rules that are most relevant for our purposes. For
a full account of weight constraint rules, the reader should
refer to [Simons et al., 2002].

The structure of a company board can be expressed using
WCRs as follows. We model the possible members of the
board using object constants, such as alice, bob, and carol.
Further, we use domain predicates for classifying object
constants in a similar manner as classes or types are used in
programming languages. The domain predicate person de-
notes the fact that certain object constants are persons:

person(alice) «— person(bob) «— person(carol) «—

The above kind of rules are termed facts, and the per-
son(X) are predicates. The semantics of a rule are roughly
that if all the predicates on the right side (termed body) are
true, then the left side (head) must be true as well.

The unary predicate member represents the fact that a
person is a member of the board.

The board must have at least five and at most seven per-
sons as its members. This is represented as follows:

5 { member(X) : person(X) } 7 —

In the above rule, the part on the left of the arrow is a
cardinality constraint. They can be used in place of a predi-
cate anywhere in a rule.

The board has a chairman that is also a member of the
board. We use the domain predicate chair(X) to denote the
fact that X is the chairman of the board. The fact that the a
chairman is a member is formalised as follows:

member(X) < chair(X)

Similarly, the board has a vice-chairman, which is also a
member of the board. We employ the following integrity
constraint to prevent the chairman and the vice-chairman
being the same person:

«— chair(X), vice(X)

3.2 Formalisation of the ontology

In the following, we distinguish between two classes of
rules, ontological definitions and rules representing a con-
figuration model. Ontological definitions are the same for
every Koalish model. Rules representing a configuration
model are Koalish model, i.e. product, specific. Ontological
definitions will be enclosed in boxes; the rest of the rules
formalise the example presented above.

Throughout the translation, we assume that the input is
valid with respect to the criteria mentioned in the previous
section. Hence, there is no need for constraints stating that
components are singly typed, components may not be self-
contained, or that all components must be contained within
a single composition hierarchy etc. Consequently, these and
similar constraints are omitted from the translation.

Compositional structure

Component types are represented as domain predicates,
component instances as object constants, and their composi-
tional structure with the predicate ip(c;, ¢y, pn), which is
interpreted as component instance ¢; having component
instance ¢, as its part with part name pn. Part names are
represented as object constants, and the set of part names is
represented using the unary domain predicate pan.

The set of component instances in a configuration is rep-
resented with the predicate in(c). Further, the domain predi-
cate cmp is used to represent the set of all component in-
stances. The domain predicate root represents the root com-
ponent instance.

A part definition is represented as a rule that employs a
cardinality constraint. The domain predicate ppa(c;, c,, pn)
denotes the fact that component ¢; may have component ¢,
as its part with part name pn.

Example. As our formalisation defines a mapping from a
Koalish model to a set of rules, using the configuration of
Figure 1 (a) as an example is not possible. Instead, we use a
Koalish model as our example; the configuration we have
used so far is a valid configuration of the model, but the
model has other valid configurations as well.

We assume that there is a sufficient amount of object con-
stants representing instances of each component type. For
brevity, we omit the discussion about what is a sufficient
amount of instances; see [Tiihonen et al, 2002] for a
solution to a similar problem. We introduce the instances
using facts like:

system(cy) «<— server(c)) «— client(cy) «—

The root component type in our example is CSystem.

This is represented as follows:
r00t(C) « system(C)

The following kind of rules conceptualise the fact that in-

stances of every component type are components.

emp(C) «— system(C) emp(C) «— server(C)

The part names occurring in the configuration model are
represented as facts as follows:

pan(client) «— pan(server) <— pan(dbase) «—

The sets of possible instances for each part definition are
defined using rules like:

ppa(C,, C,, client) « system(C)), client(C,)

The part definitions themselves are formalised using the
following kind of rules. The following rule says that there
are one, two or three clients in a system:

1 { hp(C,, Cy, client) : ppa(C, Cy, client) } 3+
in(Cy), system(C,) m

There must exist a single root component:

| 1 {in(C): root(C) } 1 — |

The part name pn in predicate Ap(ci, ¢, pn) will in some
rules be of no interest. Thus, we introduce a binary predicate
hp(cy, cp), with the semantics that ¢; has ¢, as a part.

hp(C1. C) — hp(Cr, Co, N), ppa(Cr, &, N) |

A component is in the configuration if it is a part of some
other component.

| in(Cy) «— hp(C,, Cy), ppa(C,, Cy, N) |

The fact that no component instance may be a part of two
or more component instances is represented as follows:

| — cemp(Cy), 2 { hp(C, Cy) : cmp(C)) } |

Interfaces and bindings

Interfaces types are represented as domain predicates, and
interface instances as object constants. The predicates req
and prov represent the sets of required and provided inter-
face instances, respectively. The interfaces of component
instances are modelled with the predicate hi(c, i, iname),
which is interpreted as component ¢ having interface i with
the interface name iname. The set of interface names is rep-
resented using a domain predicate, in this case intn(iname).

The functions defined in an interface type, and thus con-
tained in the instances of the type, are captured using the
predicate cf(i, f), where i is an interface instance and f'is a
function signature, and the semantics are that i contains f.

The predicate tc(iy, i,) is used to capture the idea of type-
compatible interfaces. The semantics are that the pair (7, i)
is type-compatible.

Similarly as for components, the predicate in is used to
represent the fact that an interface instance is in the configu-
ration. Further, the predicate int is used to represent the set
of all interface instances.

An interface definition is represented as a cardinality con-
straint. The predicate pint(c, i, intn) signals that component
¢ may have interface i as its interface by the name intn.

Example. As for components, we must assure that there
is a sufficient amount of interface instances of each type and
direction available. This is achieved by rules like:

rpc(ip) < prow(io) «—

The example did not define the functions contained in

each interface type. Let 7pc contain f; rpc2 contains fand g:
int(I) «— rpc(l) int(l) «— rpc2(l)
AL Sf) — rpe() AL) — rpe2()
A, g) «— rpe2(l)

CRpec2 is a subtype of CRpe, and similarly CRpe and
CRpec2 of themselves. This implies type-compatibilities:

te(ly,) — rpe(ly), rpe2(l)
te(ly, L) — rpe(l), rpe(l) te(ly, L) < rpe2(ly), rpe2(1s)
The interface names are captured by the facts:
intn(callee) < intn(caller) — intn(query) <
The possible interfaces are represented using rules like:
pint(C, I, caller) < client(C), rpc(I), req(l)
The rule corresponding to the definition would be:
0 { hi(C, I, caller) : pint(C, I, caller) } 1 «— in(C),
client(C) m
The predicate bn(iy, i,) represents the fact that interface i;
is bound to #,. Further, the predicate pc is used to represent
the pairs of interfaces that are place-compatible. Each of the
three following rules capture one of the ways in which a pair
of interfaces can be place-compatible. The rules use a binary
version of the predicate /i that is defined analogously to the
binary version of sp; we omit the definition for brevity.
pely, L) « req(ly), req(l), hi(Cy, 1), hi(Cy, 1),
hp(Ci, G3), emp(Cy), cmp(Cy)
pe(h,) «— prov(lh), prov(h), hi(Cy, I), hi(Cy, b),
hp(Ci, &), emp(C,), cmp(Cr)
pcly, L) «— req(ly), prov(ly), hi(Cy, 1), hi(Cy, L),
Ci# Cy, hp(Cs, Cy), hp(Cs, Cy), cmp(Cy),
emp(Cy), cmp(Cs)
A binding between a pair of interfaces can exist if the pair
is both type- and place-compatible:
| 0 {bn(l,, L) } 1 — te(ly, L), pe(ly, 1) |
The fact that a binding between two interfaces implies
bindings between functions is captured as an ontological
definition in which the predicate bnf(iy, fi, i, f>) has the se-
mantics that the function with signature f; contained in in-
terface 7; is bound to function f, contained in 7,.
[bnfil;, F, I, F) — bn(l, L. int(L,), int(L), cftly, F) |
The predicate cmbf(f, f>) captures the idea of compatible
functions between which there can exist a function binding.
0 {bnfll}, F, I, F2) } 1« cmbf(Fy, F), pe(ly,),
cfth, F1), cfihy, Fy)
An interface instance is in the configuration when it is
contained in a component.
| in(I) — hi(C, I), pint(C, I, N) |
We define a binary version of the predicate cnf:
I enfly, F\) < enftly, Fi b, Fy), cftdy, F), cfth, F)) |
The requirement that each function in every required in-
terface must be bound to exactly once is formalised follows:
— {enfth, Fy) } 0, cfthy, FY), req(1h), in(]))
—2 {cenfth, F)) }, cfth, F1), req(ly), in(Z,)

4 Discussion and previous work

Research closely related to this paper has been conducted
earlier, both in the configuration and software architecture
domain. However, we do not know of earlier attempts of
conceptualising and formalising concepts of ADLs extended
with variability. This is our main contribution.

As stated above, Koalish intentionally borrows a number
of concepts originally introduced in the configuration do-
main: for instance, compositional structure and connections
between explicit connection points are established model-

ling primitives in the domain, see, e.g. [Soininen et al.,
1998]. However, there is hardly any research in the configu-
ration domain that would take the special characteristics of
software into account.

The most significant distinguishing factor between Koal-
ish style CSPFs and traditional products seems to be the
notion of interface in CSPFs. First, interfaces are different
from ports, as defined in [Soininen et al., 1998]. Most im-
portantly, the connections between interfaces are directed,
between ports undirected. Further, a port instance can gen-
erally accept only one connection, but there can be any
number of connections to an interface. Second, interfaces
are different from resources, see, e.g., [Soininen et al.,
1998]. The fact that resources are produced and used creates
a degree of similarity between resources and interfaces.
However, there are significant differences: resources are
typically balanced without explicit connections between the
consumers and users, whereas interfaces must always be
explicitly connected. Further, there is no notion within the
resource concept corresponding to the internal structure of
interface, i.e., functions. Due to these important semantic
differences, interfaces cannot be adequately captured with
the existing configuration modelling concepts.

On the other hand, the concepts of Koalish are practically
the same as Koala, and Koalish shares many of its concepts
with other ADLs. This is also the intention: to define a con-
ceptualisation that can be used as the basis for developing
tools for managing CSPFs. In order to achieve this task, our
conceptualisation incorporates explicit variability mecha-
nisms and formal semantics. There are some ADLs that
have variability mechanisms or formal semantics, but, to the
best of our knowledge, there is no ADL having both. An
example of an ADL is the conceptualisation introduced by
van der Hoek et al. [van der Hoek ef al., 1998]: the concep-
tualisation includes some variability mechanism, but is not
defined formal semantics.

5 Conclusions and further work

We presented and formalised Koalish, an ontology for con-
figurable software product families based on Koala. The
formalism used allows the compact representation of soft-
ware architectures and using intelligent tool support in mod-
elling and deploying a variety of software systems from a
configurable software product family.

However, there still remain a large number of unresolved
issues. First, for practical purposes, a language committing
to the software ontology presented in this paper and an exact
mapping from the language to the weight constraint rules
should be defined. Second, software tools supporting
modelling, configuring, and checking the correctness of
configurations should be developed and integrated with
tools currently used in software development: a
configuration could serve as an input for tools such as make.
Currently, we are implementing a prototype tool that takes
as an input a language implementing the concepts of
Koalish. Further, the tool is able to translate the description
into weight constraint rules, which serve as the input for
smodels, an inference tool operating on weight constraint
rule language.

The ontology presented in this paper should be validated
and possibly improved by modelling actual software prod-
uct families with it. Likewise, the computational feasibility
of the configuration task should be analysed by conducting
empirical experiments with real software products, and
theoretical complexity analysis. Finally, in order to be
widely applicable, the ontology should be extended to cover
new aspects and kinds of software product families.

Acknowledgements

This work has been supported by Academy of Finland (pro-
ject 51394) and National Technology Agency of Finland.

References

[Asikainen et al., 2002] Asikainen, T., Soininen, T. and
Mainnistd, T. Representing Software Product Family Ar-
chitecture Using a Configuration Ontology, in Configura-
tion Workshop of ECAI 2002, 2002.

[Bosch, 2000] Bosch, J. Design and Use of Software Archi-
tectures: Adapting and Evolving a Product-Line Ap-
proach. Addison-Wesley, Boston (MA), 2000.

[Clements et al., 2002] Clements, P., Bachmann, F., Bass,
L., Garlan, D., Ivers, J., Little, R., Nord, R. and Stafford,
J. Documenting Software Architecture. Addison Wesley,
2002

[van der Hoek et al., 1999] van der Hoek, A., Heimbigner,
D. and Wolf, A. Capturing Architectural Configurability:
Variants, Options, and Evolution. Technical report CU-
CS-895-99, University of Colorado, 1999.

[Kojo et al., 2003] Kojo, T., Mannistd, T. and Soininen, T.
Towards Intelligent Support for Managing Evolution of
Configurable Software Product Families, in Proc. of 11th

Int. Workshop on Software Configuration Management
(SCM-11), LNCS 2649, 2003.

[van Ommering, 2002] van Ommering, R. Building Product
Populations with Software Components, in Proc. of the
24th Int. Conf. on Software Engineering, 2002

[van Ommering et al., 2000] van Ommering, R., van der
Linden, F., Kramer, J. and Magee, J. The Koala Compo-
nent Model for Consumer Electronics Software. [EEE
Computer, 33(3): 78-85. 2000.

[Simons et al., 2002] Simons, P., Niemel4, I. and Soininen,
T. Extending and Implementing the Stable Model Seman-
tics. Artificial Intelligence, 138(1-2): 181-234. 2002.

[Soininen et al., 1998] Soininen, T., Tiithonen, J., Mannisto,
T. and Sulonen, R. Towards a General Ontology of Con-
figuration. A EDAM, 12(4): 357-372. 1998.

[Tiihonen et al., 2002] Tiihonen, J., Soininen, T., Niemel4,
I. and Sulonen, R. Empirical Testing of a Weight Con-
straint Rule Based Configurator, in Configuration work-
shop of ECAI 2002, Lyon, France, 2002

