Towards Managing Variability using Software Product Family Architecture Models

and Product Configurators'

Timo Asikainen, Timo Soininen, Tomi Méannisto
Helsinki University of Technology, Software Business and Engineering Institute (SoberIT)
PL 9600, FIN-02015 HUT
{timo.asikainen, timo.soininen, tomi.mannisto}(@hut.fi

Abstract

In this paper, we study the possibility of applying con-
figurator tools developed for configuring mechanical and
electronics products to representing and managing the
variation points in a software product family. We compare
at the conceptual level software architecture description
languages and configuration modelling. Based on the
analysis we are able to define a way of representing much
of the architectural knowledge using the configuration
modelling concepts. Thus, it seems feasible to provide
software configuration support using configurators if the
software is represented through architectural descriptions.
However, there are also some differences that require ex-
tending the current conceptualisations of configuration
knowledge and tools to capture software products ade-
quately.

1. Introduction

Software product families (or lines) have been proposed
as a means for increasing the efficiency of software devel-
opment and controlling complexity and variability of
software products. They have become increasingly impor-
tant in the software industry [1,2]. A sofiware product
family can be roughly defined to consist of a common
architecture, a set of reusable assets used in systematically
producing, i.e. deploying, products belonging to the fam-
ily, and the set of products thus produced.

In this paper we pursue one approach to modelling and
managing the variability of software product families,
based on viewing them as configurable software product
families. A configurable product is such that each product
individual is adapted to the requirements of a particular
customer order on the basis of a predefined configuration
model [3]. Such a model explicitly and declaratively de-
scribes the set of legal product variants by defining the
components out of which it can be constructed and their
dependencies on each other. A specification of a product
individual, i.e., a configuration, is produced based on the
configuration model and particular customer requirements
in a configuration task. Efficient knowledge based systems
for configuration tasks, product configurators, have re-
cently become an important application of artificial intelli-

gence techniques for companies selling products adapted
to customer needs [4,5]. Stated roughly, a configurator
supports the deployment process by preventing combina-
tions of incompatible components, by making sure that all
the necessary components are included, and by deducing
the consequences of already made selections of compo-
nents based on the dependencies in a configuration model.
They are also capable of automatically generating an entire
correct configuration based on requirements posed by a
user. The tools are based on declarative, unambiguous
modelling methods and sound inference algorithms for
these. Thus, only the configuration model needs to be cre-
ated to support a new product family. There are also sev-
eral reports on successful use of product configurators in
practice [6,7,8].

The most systematic software product families closely
resemble configurable products in that they are composed
of standard re-usable assets and have a predefined archi-
tecture [1]. Our approach is based on the assumption that,
although customer-specific programming may be required,
a significant portion of the assets can be developed and
systematically modelled in advance of their deployment.

A major effort has been spent on developing architec-
ture description languages (ADLs) that can be used for
representing these re-usable assets and software architec-
tures. Thus, product families and ADLs seem natural coun-
terparts in the software domain for configurable products
and configuration modelling languages. There are many
ADLs and large differences between them [9,10].

We study the possibility of applying methods and tools
developed for modelling and configuring mechanical and
electronics products to configuring software. A prerequi-
site for coming up with a general solution to this problem
is to define a mapping from the conceptualisation of soft-
ware systems to a conceptualisation of configuration
knowledge. Towards this end, we analyse three prominent
ADLs at the conceptual level and compare them with the
major concepts used for modelling configuration knowl-
edge. Based on the analysis and comparison, we show how
to represent main concepts of ADLs using the configura-
tion modelling concepts. In addition, we identify several

! This is an extended and revised version of a paper presented in the Configuration workshop of the 15 European Conference on Artificial Intelligence

(ECAI 2002).

potential needs for extending the configuration modelling
concepts with ADL derived concepts.

For the purposes of this paper we concentrate on three
important ADLs: Acme [11,12,13], Wright [14,15] and
Koala [16,17,18]. Out of these, Acme has been designed to
include features of other ADLs that its designers consid-
ered central. The relevance of Acme is further promoted
by the fact that one of the goals of Acme is to serve as an
interchange language for other ADLs. Wright is a widely
cited ADL that has a rigorous semantics and describes
behavioural aspects of software. Both the use of formal
methods and description of behaviour make Wright impor-
tant among ADLs. Koala is not precisely an ADL, but it is
in commercial use at Philips Consumer Electronics for
documenting products in a product population. Therefore,
being one of the few ADLs in industrial use, Koala is an
important example of the practical aspects of ADLs.

As the reference point in the comparison, we employ a
configuration ontology presented by Soininen et al. [19].
This ontology synthesises prior conceptualisations of con-
figuration knowledge [6,7,8,20]. Moreover, it is very simi-
lar to another recognised configuration ontology presented
by Felfernig et al. [21]. Thus, as it seems to cover most
approaches to configuration modelling, it is a natural ref-
erence point for conceptual level analysis.

The remainder of this paper is organised as follows: An
overview of the central concepts in product configuration
and the modelling concepts in the configuration ontology
is given in Section 2. An overview of software architecture
and ADLs is provided in Section 3. Section 4 introduces
our framework for analysing and comparing ADLs along
with the most important characteristics of three ADLs. In
Section 5, a comparison between the ADLs and the con-
cepts of the configuration ontology is presented. A map-
ping from the most important concepts of ADLs to the
concepts of the configuration ontology is given in Section
6 and potentially needed extensions of the ontology are
discussed in Section 7. We discuss our findings and previ-
ous work in Section 8 and finally give our conclusions and
topics for further research in Section 9.

2. Product configuration

In this section, we first define the fundamental concepts
of product configuration. Thereafter, we introduce a con-
figuration ontology, i.e., a conceptualisation for modeling
configuration knowledge, which conceptualises these con-
cepts.

2.1. Fundamental concepts

We define a product as an abstract specification of an
entity that a company sells. A product instance is a product
that is to be delivered to a customer or a design of a prod-
uct, which is concrete enough to serve as a specification
for producing it. [22]

In the domain of configurable mechanical and electron-
ics products, a configurable product (or a product family)
is defined as a product that comprises a large number of
variants and serves the specific needs of the individual

customer by allowing customer-specific adaptation of the
product.

Configurable products are specified through configura-
tion models, which define the basic product properties and
the possibilities for tailoring them. Product instances, in
turn, are specified through configurations, which result
from completing the configuration task. Information sys-
tems are used to support the configuration task; such in-
formation systems are called configurators. As mentioned
in the introduction, configurators can provide a wide range
of functionality, including, e.g., making deductions based
on choices a user has already made, and preventing in-
compatible combinations of components.

During the configuration task, user requirements are
used to constrain the set of possible configurations repre-
sented by the configuration model until there is only one
correct (with respect to the configuration model) configu-
ration that satisfies the user requirements left.

Putting pieces together, configurable products form an
approach to satisfying variable customer needs. The ap-
proach involves two separate processes: first, a product
(family) is defined through a configuration model; second,
configurations of the product matching specific needs of a
customer are formed. Product configurators can support
both of the processes. What is essential is that the effort
required to create a configuration of the product is moder-
ate compared to designing a product from scratch.

2.2. Configuration Ontology

Next, we will give a short overview of a de facto stan-
dard configuration ontology used for modelling configur-
able products. For full details, the reader should refer to
[19].

The configuration model consists of a set of types.
More specifically, a configuration model consists of: a set
of component types, a set of port types, a set of resource
types, a set of function types - all the above-mentioned
sets of types are organised in is-a hierarchies, and all types
can be given attributes that present relevant information
about the types. Additionally, component and function
types are organised in composition hierarchy. Finally, a
configuration model includes a set of constraints. A con-
figuration is defined as a set of instances of the types.
These instances are called individuals.

Component types represent distinguishable wholes in
products.

Example. Figure 1 (a) depicts a simple configuration
model of a computer, and will be used as a running exam-
ple to illustrate the concepts of the ontology. Figure 1 (b)
contains the legend of the notation used. The notation is no
standard notation, but UML extended with some additional
symbols. Type names are typeset using Arial, and instance
names using Courier. In the figure, there are a number
of component types: Home PC, Office PC, PC etc. Further,
there are a number of is-a relationships between the com-
ponent types: Home PC is-a PC, SW1 is-a Software etc. m

2.2.1. Structure. The structural composition of component
types is modelled by means of part definitions. Each part

Home PC

ide1

ide2

Office PC sw hd
0..20 1.2
hsm Software Disc space ided IDE disc
2GB
0.1 2GB | |
SW1 | | SW2 | Hard disk | | cD |
Headset
microphone
600 MB
| Hp1 | | HD2 |

10 GB
|

(a)

Component type Resource type <f———————— Isa

pname

@ ————— Partof Il rrame

(b)

Port

amount
Resource production/

consumption

Figure 1 (a) A simple configuration model (b) Legend of the notation used

definition includes a part name, a set of possible part
types, and a cardinality. The set of possible part types
consists of the component types the individuals of which
can occur as a part of the type containing the part defini-
tion (whole type). Further, cardinality specifies the amount
of individuals that must occur as part of the whole type.

Example. Component types PC and Office PC include
parts: the former has two parts, sw of type Software, and
hd of type IDE disc; the latter has part hsm with cardinal-
ity of 0..1, which implies that the part is optional. In com-
mon terms, this means that an Office PC may, but is not
required, to include a headset microphone, whereas a
Home PC never includes one. m

Alternative parts can be specified by defining multiple
possible part types.

2.2.2. Topology. Connections between component indi-
viduals, i.e., the topology of a configuration, can be mod-
elled by supplying component types with port definitions.
In common terms, ports define the connection points, i.e.,
interfaces, components have. A port definition includes a
port name, a set of possible port types, and a cardinality.
The semantics of a connection are that there is a physi-
cal or logical connection between the two port individuals
and the two component individuals containing them.
Example. In Figure 1 (a), there are three ports: compo-
nent type PC defines ports idel and ide2, and compo-
nent type IDE disc defines port ided. m
2.2.3. Resources. Resources are used in the ontology to
model the production and use of entities, or the flow of
such entities from one component individual to another.
Resource type defines the properties of a resource. A re-
source type defines whether the resource production or use

must be satisfied or balanced. 1f the production or use is to
be balanced, the production must exactly match the use; in
the case they must be satisfied it is enough that production
is greater than or equal to use.

The production and use of resources is specified by
production definitions and use definitions in component
types. These definitions specify the resource types and
quantities produced or used.

Example. There is a single resource type, namely Disc
space in our sample model. This resource type is con-
sumed by individuals of component types SW1 and SW2,
and produced by individuals of HD1 and HD2. =

2.2.4. Functions. All the above-presented properties of
configuration models are related to technical aspects of
products. However, in many cases it is necessary to com-
municate more abstract characterisations of the features or
functionality of configurable products to salespersons and
customers.

The configuration ontology includes functions as a
means for communicating non-technical information. A
function type is an abstract characterisation of the product.
As an example, the configuration model of Figure 1 could
be supplemented with the function type MusicCD with the
semantics of being able to play music from CDs.

To be of any use, the function concept must be some-
how related to the technical concepts. This is achieved
through special constraints (see section 2.2.5 below), im-
plementation constraints. They specify that a certain func-
tion be implemented by one or more technical concepts,
e.g., component or port individuals. Returning to the ex-
ample, MusicCD type could be implemented by individuals

of component types CD and Speaker (not in the model)
together.

Similarly as for component types, function types can be
defined a compositional structure through part definitions,
with the natural exception that the possible part types must
be function types.

2.2.5. Constraints. Constraints can be used to capture
aspects of products that cannot be reasonably modelled
using the concepts presented above. A constraint is a for-
mal, mathematical or logical, rule specifying a condition
that must hold in a correct configuration. They can be used
to specify arbitrarily complex interactions of types, indi-
viduals, and their properties. Typical conditions used in
constraints include require and incompatible: the seman-
tics of the afore-mentioned are that a certain component
individual in a configuration implies that another compo-
nent individual must (require) or must not (incompatible)
be in the configuration.

3. Software architectures and architecture
description languages

Software architecture of a system purports to describe
the high-level structure of a software system. The signifi-
cance of considering architecture when designing software
systems is well understood. There is, however, no single,
generally accepted method for describing software archi-
tecture: UML is a good candidate for such a method, but
as noted e.g. in [23], it is by no means an optimal tool for
documenting all aspects of architecture. Simple methods,
such as referring to an existing architectural style or using
box-and-line diagrams with no or vague semantics, have
been recognised to be inadequate for the task [24]. Hence,
there is a need for better methods.

Architecture description languages (ADLs) are a prom-
ising candidate solution for the architecture description
problem. Loosely defined, ADLs are formal notations with
well-defined semantics, whose primary purpose is to rep-
resent the architecture of software systems. A large number
of ADLs have been proposed. ADLs have in common the
concept of component, although different ADLs have dif-
ferent names for the same concept [10]. But in their other
characteristics, ADLs differ from each other radically.
Some of them address a special application domain and
others are dedicated to a specific architectural style [10].
ADLs also employ different formalisms for specifying
semantics, and there is variety in how rigorously the syn-
tax and semantics are defined.

The most fundamental elements of architectural de-
scriptions include components, connectors and their con-
figurations [10,11,24].

Components represent the main computational elements
and data stores of the system. Intuitively, they correspond
to the boxes in the box-and-line diagrams. Clients, servers
and filters are examples of components. In a working sys-
tem, a component might manifest itself as an executable
file or a dynamic link library. [11]

Unlike components, connectors are not loci of applica-
tion specific computation in software systems. Instead,

they represent interactions between components. In a box-
and-line diagram, connectors are depicted as lines between
the boxes. Examples of connectors include method invoca-
tion, pipes and event broadcast. [11]

Components can be connected to each other to form
configurations. They are sometimes referred to as systems
[11] or architectural configurations [10]. In many ADLs,
components can only be connected through connectors;
explicit use of connectors has even been proposed a defin-
ing characteristic of an ADL [10]. Typically, components
are connected to each other through connection points.
Different ADLs call these connection points with different
names, e.g. port, role or interface.

In some ADLs, components can also have an inner
structure. Such components are called compound compo-
nents and they represent a subsystem that has an architec-
ture of its own. With composite components it is important
to be able to specify how the inner parts of the component
are linked to the component itself. Usually, the linkage is
defined by binding connection points of the compound
component with connection points of its parts. Intuitively,
binding means that the connection point of the compound
component is in fact a connection point of some other
component inside the compound component.

A practical concern with ADLs is the tool support
available for them. Tool support is out of the scope of this
paper, since the goal is to analyse the modelling languages.
However, it should be noted that support for generating
executable systems out of architectural descriptions is one
of the goals of research on ADLs [10]. This is a goal
shared by research on configuration modelling.

4. Analysis of three architecture description
languages

In this section, we first define a framework for analys-
ing and comparing the concepts of ADLs with those of
configuration. Thereafter, we use the framework to study
three ADLs: Acme [11,12,13], Wright [14,15] and Koala
[16,17,18]. A more detailed analysis can be found in [25].

4.1. Framework for analysis and comparison

The fundamental phenomena described by the configu-
ration ontology and that presented in [21] are: taxonomies,
structure, topology, resources, functions, and constraints.

In the following three subsections, we will analyse the
above-mentioned ADLs using a comparison framework
composed of three parts. The first part includes the key
concepts of ADLs and the configuration ontology, and the
relations between them. The concepts include components,
connectors, configurations, connection points, attributes,
resources, functions, and constraints. The relations include
topology, taxonomy, and structure. The second part con-
siders the existence of different concepts for types and
instances. The last part of the framework is the variation
mechanisms provided by ADLs and the configuration
ontology.

4.2. Acme

The basic concepts of Acme are components, connec-
tors, and systems. System is the Acme term for configura-
tion. On the other hand, there are no constructs for
resources or functions in Acme. Both components and
connectors have connection points that are called ports for
components and roles for connectors. Design elements
include component, connector, port, and role. Components
are connected to connectors by defining an attachment
between the port of a component and the role of a connec-
tor. One connector may connect multiple components.
Components cannot be connected directly to each other
and neither can a connector to another connector. [11]

Components and connectors can have attributes that are
called properties in Acme. Properties are uninterpreted
values, i.e. they do not have any semantics defined.

In Acme, design constraints can be defined using first
order predicate logic. They can be either invariant or heu-
ristic: invariant constraints must hold, whereas heuristic
constraints are merely hints of what should be true for an
Acme system. Constraints can be used to express various
aspects of Acme systems: e.g. the existence and values of
properties and the connections present in a system. [12]

In addition, Acme includes a structure called represen-
tations that can be used for describing an alternative view
of a component or a connector. Rep-maps, or in other
words, representation maps, can be used to specify the
correspondences between different representations of a
design element. There is, however, no semantics defined
for either representations or rep-maps. One possible use of
these constructs is representing the compositional structure
of a component and the correspondences between the ports
and roles of the compound component and those of the
contained components. [11].

Although types are not first class entities in Acme, it
has two type systems: one for design element types and,
and another for systems. Types in the design element type
system are sets of required structure, i.e. design element
declarations, and values. New types can be formed from
existing types through subtyping. System types are called
Sfamilies. A family consists of design element type defini-
tions. Subtypes of families can be formed through single
or multiple inheritance. Also, a system can be declared to
be a member of many family types. [13]

What makes types a secondary concept in Acme is that
design elements and systems need not have a type or be a
member of a family, respectively. A design element being
of a given type merely implies that the design element has
the structure and values specified by that type. Similarly
with families, a system being a member of a family signals
that the type definitions of the family are type definitions
of the system, too. Therefore, type systems of Acme can be
considered a sort of macro expansion mechanism.

The syntax and semantics of Acme are formally de-
fined, the latter in terms of a mapping to first order predi-
cate logic.

There seem to be no constructs in Acme for modelling
variety. What seems to come closest to modelling variabil-
ity is the family construct. It can be used to specify a set of

type definitions shared by a set of systems. Furthermore,
constraints can be used to enforce the instantiation of cer-
tain design elements. Hence, the family definitions com-
plemented with constraints seem to provide a mechanism
for specifying product families with certain properties.

4.3. Wright

As in Acme, there are components, connectors, systems,
ports, roles and attachments in Wright and their semantics
are the same in both languages. There are no attributes,
resources or functions. What distinguishes Wright from
Acme and makes it special among ADLs is its way of
specifying the behaviour of ports, roles, connectors and
components, and the possibilities for analysis based on
these specifications. Wright uses CSP (Communication
Sequential Processes) [26], a formal approach for two
purposes: (1) specifying processes that reside in Wright
elements and (2) defining semantics of non-CSP parts of
the language. CSP is a formal method for specifying and
analysing the behaviour of objects in terms of sequences
of events in which they engage. The pattern of events that
is possible for an object is termed a process. [14,15]

Each port and role is associated with a CSP process. In
addition, each connector and component includes a sepa-
rate glue and computation process, respectively. The glue
of a connector defines the operation of the connector as an
entity. That is, the glue coordinates the operations of the
other processes in the connector. Ports are attached to roles
to form systems. Which ports can be attached to which
roles, is determined by their process descriptions: a port
can be attached to a role if the port will behave well in all
situations enabled by the role, i.e., CSP defines a compati-
bility relation between ports and roles.

The second usage of CSP in Wright, defining semantics
of non-CSP parts of the language, allows using tools oper-
ating on CSP to reason about properties, most notably
about dead-lock freedom, of a Wright connector. This is an
important class of tool support enabled by the rigorously
defined semantics of Wright.

Wright allows describing hierarchical structure of both
components and connectors. This is done by enclosing a
system into the place of a process. In addition to the nor-
mal system specification, bindings between the port and
role names in the enclosing element and those specified in
the enclosed system need to be specified.

Wright distinguishes between component and connector
types and instances. Each connector and component is of
exactly one type. There is, however, no taxonomy of types.

In addition to component and connector types, Wright
includes a construct called style. Styles are collections of
type definitions and constraints. They are expressed in
first order predicate logic and they can be used in a man-
ner similar to that in Acme described above. In addition to
component and connector type definitions, a style can
include interface type definitions. They are process de-
scriptions that can be used in port and role definitions.

Type definitions in styles can be parameterised. That is,
parts of the type definition can be left open and a value can
be filled in when the type is instantiated. New styles can

be defined in terms of existing ones through subtyping: the
new style has the same type definitions and constraints as
the old one plus some additional type definition or con-
straints.

Variation mechanisms of Wright are similarly limited as
for Acme, although Acme uses the term family where
Wright uses style. In short, styles supplemented with con-
straints seem to be able to express variability.

4.4. Koala

As the languages described above, the Koala model has
components as a main design element. But in other re-
spects, Koala differs greatly from its peers. In Koala, there
is no notion of connectors, resources, functions or con-
straints. Components are connected, or bound, as it is said
in Koala, to each other through interfaces that are the con-
nection points in Koala. The connection between compo-
nents is not symmetric: a distinction is made between
provided and required interfaces. Loosely defined, a com-
ponent having a provided interface means that the compo-
nent offers some service for other components to use.
Similarly, a required interface signals a service being re-
quired by the component from some other component.
Koala interfaces are similar to those in COM or Java.

Compound components can be used to express compo-
sitional structure in Koala, i.e. other components can be
contained within a component. An interface of a com-
pound component can be bound to an interface defined by
a contained component. A configuration is defined as a
component that is not contained in another component and
defines no interfaces.

In addition to binding interfaces to each other, it is pos-
sible to bind constituent parts of interfaces directly. These
parts are called functions. Hence, interfaces in Koala are
not atomic even when considered as connection points.

There are some limitations on how interfaces can be
connected to each other: These limitations are best illus-
trated with the aid of Figure 2. In the figure, components
are depicted as boxes and interfaces as squares containing
triangles inside them. A required interface is depicted as a
triangle pointing outwards from the component, and a
provided interface with a triangle pointing inwards. The
binding rules are that must be bound by its tip to exactly
one base of an interface, and any number of interfaces can
be bound to the base of an interface. Notice that these rules
cover both bindings between interfaces in contained com-
ponents and interfaces in independent component, i.e.,
components such that neither is contained within another.

Another rule concerning the bindings is that the type of
the tip interface must be a supertype of the type of the base
interface: interface type A is a supertype of B exactly when
B contains all the functions of A.

Koala has a type system: a distinction is made between
both interface and component types and instances. There
is, however, no taxonomy of component or interface types
beyond the supertype relation mentioned above.

Koala includes a construct, module, which is a compo-
nent without an interface of its own. Modules are used
inside compound components for gluing interfaces. Sup-

b

Figure 2 Koala components and interfaces

pose, for example, that each component contained in a
compound component has an initialisation interface to be
called before using the component. Due to binding rules, it
would not be possible to bind all these interfaces to any
single interface of the compound component. Therefore, a
new configuration specific module is added: when the
initialisation function for the compound component is
called, the call is routed to the module, which in turn calls
the initialisation functions of all necessary components in
the order desired.

In addition to the constructs already mentioned, Koala
provides mechanisms for handling both the internal diver-
sity of components and the structural diversity in a con-
figuration. Internal variety is manifested as variation of
component parameters. There may be dependencies be-
tween parameters: a parameter value may imply that an-
other parameter has a certain value. Structural diversity
pertains to alternative provided interfaces for a required
interface: e.g. there may be multiple components that pro-
vide the same interface required by a certain component.
The choice between the interfaces is made by a construct
called switch either statically, that is at compile time, if the
information required for the selection is available, or, oth-
erwise, dynamically at runtime.

5. Comparison of concepts of the adls with
the configuration ontology

In this section, we use our framework defined in the
previous section for comparing the concepts and con-
structs found in the ADLs with those of the configuration
ontology.

5.1. Key concepts and relations between them

Component is the central concept of Acme, Wright and
Koala. It is also present in the configuration ontology with
that same name. The semantics are as well similar: com-
ponents represent the defining parts of a system in con-
figuration modelling, too. In addition, systems as defined
in Acme and Wright and configurations as defined in Ko-
ala have a counterpart in the configuration ontology,
namely configuration.

The notion of connection points is also common to all
the studied modelling methods. In Acme and Wright they
are called ports and roles in components and connectors,
respectively. In Koala connection points are termed inter-
faces and in the ontology ports. The semantics of connec-
tion points are also similar in all the disciplines: they
denote the mechanism for connecting other entities.

Connectors are first-class citizens in Acme and Wright.,
but there are no connectors in the configuration ontology.
In Koala, modules can be considered as a form of connec-
tors. Thus, there is a major difference in how the disci-

plines handle architectural connection — an important issue
in both ADLs and in the configuration ontology.

What then is the reason for this disagreement in archi-
tectural connection? We believe that at least a partial rea-
son for the importance of connectors in Acme and Wright
can be found in the underlying assumptions of them and
several of the ADLs not studied in this paper: a major
issue in software architecture has been reusing existing
components. Furthermore, there has been considerable
effort in the software engineering community to reuse
heterogeneous components, which cannot be connected
directly to each other due to different communication
mechanisms and various other reasons. Therefore, connec-
tors have been introduced in ADLs as a vehicle for con-
necting heterogeneous components.

In Koala, the situation is rather different: components
are generally rather homogenous, and it seems that there is
no need to require that connectors be used whenever con-
necting components: modules are used as needed. Hence,
in this respect, Koala is closer to the configuration ontol-
ogy than Wright and Koala.

Resources, a feature present in the configuration ontol-
ogy but not in any of the ADLs, is similar to the notion of
provided and required interfaces present in Koala in the
sense that they are both anti-symmetric. What is more,
resources are produced and consumed by components, just
as interfaces are provided and required. However, re-
sources are produced and consumed in certain quantities,
which gives them more expressive power compared with
the notion of provided and required interfaces.

In addition to simulating provided and required inter-
faces, resources can be used to model other relevant quan-
tities. Such quantities include memory, power, output
capacity and throughput. The software engineering com-
munity has considered similar issues important [27].
Hence, resources could very well be an important feature
of the configuration ontology when used to model soft-
ware architecture.

Modelling functions is another feature of the configura-
tion ontology that all three ADLs presented in this paper
lack. Functions are an important aspect of software engi-
neering usually termed features in the domain [28]. We
believe that also functions could be very useful when
modelling software with the ontology.

All the ADLs have some mechanisms for modelling
structure. However, the configuration ontology provides
much stronger mechanisms: the configuration ontology
provides a wide range of variation mechanisms. Further-
more, in the configuration ontology a component can be a
part of many components simultaneously, which is not
possible in any of the ADLs.

All the disciplines except Koala have explicit mecha-
nisms for expressing constraints. Further, in all disciplines
where constraints exist, they are logical expressions about
the non-behavioural properties of a system modelled in
that discipline. A difference is that in the configuration
ontology, there is no direct support for heuristic constraints
as defined in Acme. Support for modelling preferences and
optimisation criteria have been identified as important and
developed in other research on configuration.

5.2. Distinction between types and instances

All the three ADLs have some distinction between
types and instances. In Acme, the distinction is rather
weak, as the type systems can be seen as a simple macro
expansion mechanism. Nevertheless, there is taxonomy
between the Acme types. The situation is rather similar in
Wright: types bear a little meaning as such. The only func-
tion of types seems to be facilitating in defining and alter-
ing recurring patterns. In Koala, the supertype relation
constraints bindings between interfaces. This relation is
not, however, declared explicitly, but implicitly based on
interface types. The component types seem to have no
function beyond defining the structure of a set of compo-
nents. Hence, component types seem to be as a construct
as weak as types in Acme and Wright.

In the configuration ontology, strong distinction be-
tween types and instances is one of the basic assumptions
and is made for all kinds of entities. Types are organised in
taxonomies.

5.3. Variation mechanisms

A question closely related with the distinction of types
and instances is: What is being modelled, one product or a
product family. The configuration ontology aims at model-
ling product families. Configuration model knowledge
defines the common properties of the family members. A
lot of variation mechanisms are provided.

As stated in the analysis of Acme and Wright, both of
these languages can be seen to provide some support for
modelling variability: there are no explicit variation
mechanisms, but the combination of system types and
constraints seem to be able to express common structure
shared by a set of products.

In Koala, there is some knowledge about the common
properties of all the products: component and interfaces
definitions are stored in a component repository and they
are common to different systems to be constructed [17]. In
fact, type definitions shared by a set of products is exactly
the same phenomenon be have already seen in family con-
struct Acme and in the style construct in Wright. As there
are no constraints to complement the shared type defini-
tion in Koala, the support provided by Koala for variability
is weaker than that Acme and Wright.

In the previous section, it was stated that Koala could
model both internal and structural variety. How does this
statement relate to the above observation that Koala pro-
vides a weaker support for variability than Acme and
Wright? We claim that we are dealing with two distinct
forms of variability. The variability in Acme and Wright
can be used to span a set of products with many similari-
ties, or a product family. On the other hand, the variation
mechanisms in Koala seem to model behavioural variety
of software embedded in a physical product instance: e.g.
a television set can behave differently depending on some
parameters. Of course, it could be argued that the televi-
sion set in our example is, in fact, a product family. How-
ever, we consider the variation mechanisms discussed
above examples of different phenomena.

6. Modelling software architecture with the
configuration ontology

In this section, we strive to synthesise the configuration
ontology with the domain of software architecture. We do
this by mapping the concepts in the ADLs to some concept
or concepts in the configuration ontology. Components,
ports, properties, and constraints are represented in the
obvious manner using their direct counterparts, whereas
the representation of connectors and roles is more prob-
lematic. Hence, we will present a mapping of connectors
to components, and provided and required interfaces to
ports with the aid of type specifications.

Due to limited space, we will only present the main
ideas of the mapping. For full details, please refer to [25].

6.1. Modelling connectors as a type of component

In translating the semantics of connectors in Acme and
Wright into concepts in the configuration ontology, it helps
to observe that components and connectors have structures
very similar to each other. Therefore, it is natural to view
connector as a subtype of component with special seman-
tic constraints. Indeed, defining connector to be a subtype
of component will enable us to express part of the seman-
tics associated with connectors. Furthermore, we can de-
fine roles in connectors to be ports in the connector-type
components. To enforce the right use of connectors, we
define suitable constraints that enforce the right use of
connectors: e.g. in Wright, the only class of allowed con-
nections is that between a component and a connector.

Subtyping can also be used for distinguishing provided
and required interfaces from one other. By defining com-
mon supertypes for provided and required interfaces it is
possible through multiple inheritance to have two versions
of each port type, a provided and a required. By using
constraints it is possible to assert that invariants concern-
ing provided and required interface types hold. For in-
stance, the fact that in Koala a required interface must be
connected to exactly one provided interface of the same
interface type can be easily captured using constraints.

6.2. Capturing diversity

Internal diversity of Koala can be captured with attrib-
utes defined by components and constraints. Dependencies
between different parameters can be captured using con-
straints between attribute values of component types.

In the configuration ontology, cardinality of a port de-
fines the amount of ports that can be connected to it. Car-
dinality can be used to capture some aspects of structural
diversity in Koala. By defining cardinality greater than one
for a port representing a required interface, multiple pro-
vided interfaces represented as ports could be connected to
that port. This is only a partial solution as it says nothing
about deciding which ports should actually be connected;
constraints can be used to model this.

7. Extensions needed for modelling software
architecture

Albeit the ontology captures a major part of aspects of
all the studied ADLs, each of them has some features the
modelling of which would require extending the ontology.

Capturing all of the idea behind heuristic constraints
of Acme may require adding some method of representing
optimisation criteria and preferences in the ontology.

There is no mechanism in the configuration ontology
for modelling behaviour similar to the way how CSP is
used in Wright. In fact, the configuration ontology ignores
behavioural aspects entirely. In case considering behaviour
should be required in the configuration ontology, it would
be natural to extend the constraint language to cover be-
havioural aspects, as the constraint language can be seen
as the extension mechanism of the ontology.

Koala includes the method of function binding, in
which the constituent functions of interfaces are connected
directly to each other instead of connecting interfaces [17].
This construct gives an internal structure to Koala inter-
faces. Given that interfaces of Koala are modelled with
ports in the configuration ontology, this contradicts with
the underlying assumption of ports being undividable con-
nection points. As a result, there is a mismatch between
interfaces in Koala and ports in the configuration ontology.

There is a number of possible ways to capture ports
with internal structure. The first one is to make Koala
functions the basic level of connection. Unfortunately, this
approach introduces major problems. Firstly, interfaces
would lose their counterpart in the configuration ontology.
Secondly, following the approach would likely lead to
increased complexity in models of software products: that
an interface can contain several functions implies this.

The second approach would be to introduce composi-
tional structure for ports of the configuration ontology.
Applied to the problem at hand, interface types correspond
to port types that have ports corresponding to functions as
their parts. This approach is appealing: it models the rela-
tion between interfaces and functions in a way correspond-
ing to the intuitive understanding of the issue. This
approach would require major changes to the ontology.

Binding of interfaces of a compound component
with the interfaces of the inner parts is another feature
of Koala lacking a counterpart in the ontology. It seems
that the ontology would need to be extended in order for it
to model this phenomenon.

8. Discussion, comparison to previous work

There is an apparent difference in the natures of the sets
of product variations modelled in different disciplines. In
the configuration domain, this set is typically termed as
configurable product or a product family. One of the defin-
ing characteristics of this concept is a pre-designed general
structure with a lot of variation in the configurations [29].
On the other hand, it was found that Koala supports no
common structure for a set of products. In fact, Koala is
not targeted at modelling a product family or a set of them,
but product populations, defined as a sets of products with

many commonalities but also with many differences [16].
Hence, the underlying aims of the ADL modelling and
configuration modelling are not totally similar.

In the previous section, it was stated that no satisfactory
mapping could be found for function binding of Koala.
One possibility to respond to this and similar problems is
to ignore the problematic feature. Even though we do not
light-heartedly ignore aspects of ADL that are of practical
or theoretical importance, we still believe that doing so in
some cases will increase the usefulness of the configura-
tion ontology in modelling software products. Therefore,
the question is: which features of ADLs should be mod-
elled. This question can only be fully answered by empiri-
cally studying software product families.

Research closely related to this paper has been con-
ducted earlier. We do not know of earlier attempts of com-
paring the concepts of software architecture description to
those of configuration modelling. This is the main contri-
bution of our paper: studying the feasibility of configura-
tion techniques to software variability management.

In their work, Mannistd et al. have pointed out the exis-
tence of the research area of configurable software and
identified some key concerns in the area [30]. They have
not, however, studied the concepts of ADLs in detail or
proposed any mapping from these concepts to those of
configuration modelling domain.

On the other hand, [31] presents a formalised software
configuration management (SCM) ontology. The concepts
of the SCM ontology are, however, different from those of
the configuration ontology. They are aimed at representing
the modules, files, or packages, their versions and the de-
pendencies between these. The ontology does not take into
account the connections and interfaces between compo-
nents of a system.

Felfernig et al. have proposed a scheme for constructing
configurators based on UML descriptions of configuration
knowledge [21]. Their approach could be used for creating
configurators for software products as well. Their ap-
proach is, however, different from our approach: theirs is
based on presenting configuration knowledge in UML,
while our approach is based on modelling software with
the concepts of product configuration.

In [32], Kiihn has presented an approach to software
configuration based on structure and behaviour. He uses
statecharts, a method similar to finite state machines, for
specifying the behaviour of a module. This approach is
similar to Wright in that it describes both structure and
behaviour. With its focus on using behavioural constraints
for making decisions during the configuration process, this
approach is different from ours.

Feature models have been suggested as a modelling
method for software product lines (see, e.g., [33]). Appar-
ently, feature models share much with the configuration
modelling concepts presented in this paper: features, and
both components and functions in the configuration ontol-
ogy are organised in composition hierarchies. What seems
to be different in the two approaches is that the configura-
tion ontology distinguishes between technical and non-
technical aspects of a product, whereas in features models,
both aspects are contained in the same hierarchy.

Lars Geyer et al. have identified the need and enumer-
ated a number of requirements for a configuration tech-
nique for software product families [34]. Of the
requirements, the configuration ontology supports hierar-
chical structures for both technical and non-technical enti-
ties, i.e., components and functions, respectively. Further,
the ontology incorporates a constraint mechanism. Finally,
a prototype tool for configuring mechanical products that
supports a subset of the configuration concepts presented
in this paper corresponding to the requirements posed by
Geyer et al., visualises the aggregation hierarchy and is
able to assist in configuring the product, as required by
them [35]. Therefore, although Geyer et al. have deemed
knowledge-based configuration techniques rather useless
in the context of software product families, we feel that
knowledge-based configuration techniques provide con-
siderable potential in domain of software product families.

9. Conclusions and further work

We have presented an analysis and comparison of three
ADLs and a conceptualisation of configuration knowl-
edge. We defined a mapping from the concepts of ADLs to
those of the conceptualisation of configuration knowledge.
Our goal is to use the configuration concepts and their
supporting tools for configuring software product families.

We found counterparts and close correspondences in
the configuration ontology for the main elements of the
ADLs we have studied and were able to propose a map-
ping between them that shows that configuration lan-
guages can be used for representing architectural
knowledge. For instance, both share the notion of compo-
nents. Furthermore, compositional structure, systems
formed of connected components and constraints are phe-
nomena present in both disciplines. Hence, it seems that
the concepts of the configuration ontology can be used for
modelling software products.

Capturing some aspects of ADLs seems to require ex-
tending the configuration ontology. These aspects include
function binding and binding the connection points of
compound components with connection points in its inner
parts. Another important aspect is modelling behaviour. Of
the ADLs, Wright models behaviour. Additionally, the
approach presented by Kiihn also emphasises behaviour
[32]. The question whether behavioural aspects really are
important and should be modelled when configuring soft-
ware product families, should be resolved through empiric
studies with real products. The existence of Koala, a com-
mercial ADL with no behaviour modelling, suggests that
modelling behaviour is not absolutely necessary.

There are still open questions and a need for further
work. An ontology and a configuration language for soft-
ware products should be defined, and a configurator sup-
porting this language constructed. This work is currently
in progress. This will probably require investigating more
thoroughly the current ADLs and the conceptualisations of
disciplines such as SCM, generative and feature based
programming [28,36], and, of course, the developments in
the UML community, as well as case studies of real soft-
ware product families. After completing this, case studies

are needed to verify the applicability of the configuration
language to modelling software. Another issue to be con-
cerned is the computational complexity of configuring
software products. Theoretical complexity analysis can
provide insight into this issue, but only experiments with
real products will give relevant information on the practi-
cal feasibility from this point of view. When moving to-
wards empirical studies, it is also necessary to consider
which of the existing configurators and their modelling
languages best support software configuration at a more
detailed level than in this study.

Finally, the economics of our approach should be stud-
ied. Particularly for simpler products, the overhead from
developing a configuration model of a software product
family using a configurator is higher than the advantages
that can be gained. However, we believe that there are
cases where the product family is complex enough, includ-
ing even thousands of variation points, that the support for
deployment process would outweigh the costs.

Acknowledgements

We gratefully acknowledge the financial support from
Academy of Finland (project 51394) and National Tech-
nology Agency of Finland (Tekes).

References

[1] J. Bosch, Design and Use of Sofiware Architectures: Adapting and
Evolving a Product-Line Approach, Addison-Wesley, 2000.

[2] P. C. Clements and L. Northrop, Sofiware Product Lines - Practices
and Patterns, Addison-Wesley, 2001.

[3] T. Soininen, An approach to knowledge representation and reasoning
for product configuration tasks. PhD thesis, Helsinki University of
Technology, 2000.

[4] B. Faltings and E. C. Freuder, eds., Special Issue on Configuration.
IEEE Intelligent Systems 13(4), 1998.

[5] T. Darr, M. Klein, and D. L. McGuinness, eds., Special Issue on
Configuration Design. Al EDAM 12(4), 1998.

[6] D. Mailharro, ‘A Classification and Constraint-Based Framework for
Configuration’, Artificial Intelligence for Engineering Design,
Analysis and Manufacturing, 12(4), 383-397, 1998.

[7] G. Fleischanderl, G. Friedrich, A. Haselbock, H. Schreiner, and M.
Stumptner, ‘Configuring Large Systems Using Generative Con-
straint Satisfaction’, IEEE Intelligent Systems, 13(4), 59-68, 1998.

[8] B. Yu and J. Skovgaard, ‘A Configuration Tool to Increase Product
Competitiveness’, I[EEE Intelligent Systems, 13(4), 34-41, 1998.

[9] S. Vestal, A Cursory Overview and Comparison of Four Architecture
Description Languages. Technical report, Honeywell Systems &
Research Center, 1993

[10] N. Medvidovic and R. M. Taylor, ‘A Classification and Comparison
Framework for Software Architecture Description Languages’,
IEEE Transactions on Software Engineering, 26(1), 70-93, 2000.

[11] D. Garlan, R. T. Monroe, and D. Wile, ‘Acme: An Architecture
Description Interchange Language’, in: Proceedings of CAS-
CON’97,1997.

[12] D. Garlan, R. T. Monroe, and D. Wile, ‘Acme: Architectural De-
scription of Component-Based Systems’, in: Foundations of Com-
ponent-Based Systems, G. T. Leavens and M. Sitaraman, eds.
Cambridge University Press, 47-68, 2000.

[13] R. T. Monroe, D. Garlan, and D. Wile. Acme Reference Manual.
Available at http://www-2.cs.cmu.edu/afs/cs/project/able/www/
AcmeWeb/ACME%20StrawManual.html, 2002. Cited January
10", 2003.

[14] R. Allen and D. Garlan, ‘A Formal Basis for Architectural Connec-
tion’, ACM Transactions on Software Engineering and Methodol-
ogy, 6(3), 213-249, 1997).

[15] R. Allen, A Formal Approach to Sofiware Architecture. PhD thesis,
Carnegie Mellon University, 1997.

[16] R. van Ommering, ‘Configuration Management in Component
Based Product Populations’, in: Proceedings of Tenth Intl Workshop
on Software Configuration Management (SCM-10), 2001.

[17] R. van Ommering, F. van der Linden, J. Kramer, and J. Magee,
‘The Koala Component Model for Consumer Electronics Software’,
IEEE Computer, 33(3), 78-85, 2000.

[18] R. van Ommering, ‘Building Product Populations with Software
Components’, in: Proceedings of the 24th International Conference
on Software Engineering (ICSE 2002), 255-265, 2002.

[19] T. Soininen, J. Tithonen, T. Méannistd, and R. Sulonen, ‘Towards a
General Ontology of Configuration’, 41 EDAM, 12(4), 357-372,
1998.

[20] L. Ardissono, A. Felfernig, G. Friedrich, et al, ‘Customer-Adaptive
and distributed online product configuration in the CAWICOMS
project’, in: Proceedings of 1IJCAI-01 Workshop on Configuration,
2001.

[21] A. Felfernig, G. Friedrich, and D. Jannach, ‘UML as Domain Spe-
cific Language for the Construction of Knowledge-Based Configu-
ration Systems’, International Journal of Software Engineering and
Knowledge Engineering, 10(4), 449-469, 2000.

[22] J. Tiihonen and T. Soininen, Product configurators - information
system support for configurable products. Technical report TKO-
B137, Helsinki University of Technology, 1997

[23] P.Clements, F.Bachmann, L.Bass, et al, = Documenting Software
Architecture, Addison Wesley, 2002.

[24] D. Garlan, ‘Software Architecture’, in: Encyclopedia of Sofiware
Engineering, J. J. Marciniak, ed. John Wiley & Sons, 2001.

[25] T. Asikainen, Representing Software Product Line Architectures
Using a Configuration Ontology. Master’s thesis, Helsinki Univer-
sity of Technology, 2002.

[26] C. A. R. Hoare, Communicating Sequential Processes, Prentice-
Hall, 1985.

[27] D. Garlan and D. E. Perry, ‘Introduction to the Special Issue on
Software Architecture’, IEEE Transactions on Software Engineer-
ing, 21(4), 1995.

[28] K. Czarnecki and U. W. Eisenecker, Generative Programming,
Addison-Wesley, 2000.

[29] J. Tiihonen, T. Lehtonen, T. Soininen, et al, ‘Modeling Configur-
able Product Families’, in: Proceedings of the 12th International
Conference on Engineering Design (ICED’99), U. Lindemann, H.
Birkhofer, H. Meer-kamm and S. Vajna, eds. 1139-1142, 1998.

[30] T. Ménnistd, T. Soininen, and R. Sulonen, ‘Product Configuration
View to Software Product Families’, in: Proceedings of the Tenth
International Workshop on Software Configuration Management
(SCM-10),2001.

[31] T. Syrjdnen, ‘Including Diagnostic Information in Configuration
Models’, in: Proceedings of the First International Conference on
Computational Logic, 2000.

[32] K. Kiihn, ‘Modeling Structure and Behavior for Knowledge-Based
Software Configuration’, in: Proceedings of the ECAI 2000 Work-
shop on New Results in Planning, Scheduling, and Design, J.Sauer
and J. Kohler, eds., 2000.

[33] K. Kang, J. Lee, and P. Donohoe, ‘Feature-oriented Product Line
Engineering’, IEEE Software, 19(4), 58-65, 2003.

[34] L. Geyer and M. Becker, ‘On the Influence of Variabilities on the
Application-Engineering Process of a Product Family’, in: Proceed-
ings of the Second International Conference on Software Product
Lines, SPLC2.,2002.

[35] J.Tiihonen, T.Soininen, I.Niemeld, and R.Sulonen, “Empirical
Testing of a Weight Constraint Rule Based Configurator”, in: Con-
figuration workshop of the 15th European Conference on Artificial
Intelligence (ECAI 2002), 2002.

[36] C. Prehofer, ‘Feature-Oriented Programming: A Fresh Look at
Objects’, in: Proceedings of ECOOP’97, 1997.

