Case study questions for studying
software product families

Mikko Raatikainen, Timo Soininen, Tomi Mannisto
Software Business and Engineering Institute (SoberIT)
Helsinki University of Technology
P.O. Box 9210, FIN-02015 TKK, Finland
{Mikko.Raatikainen, Timo.Soininen, Tomi.Mannisto } @hut.fi

Abstract. Software product families (SPF) are becoming more commonplace in many
industrial organizations due to the increasing variability requirements. One major
challenge with SPFs is to understand the challenges companies are facing as well as
solutions they have tried out. Feasible tools for gathering such knowledge are
qualitative research methods that include the case study method. In this paper, we
describe case study questions for a study framework for SPFs called CASFIS.
CASFIS builds on top of case study methodology and existing work and
understanding on SPFs with the aim of being a solid framework for investigating
industrial SPFs. CASFIS has been tested and tried out in several industrial companies
and adjusted accordingly

1 (33)

Introduction

A software product family (SPF) is typically understood to roughly consist of
common assets that are specifically developed for the SPF and then shared and reused
in the development of the product individuals in the SPF [1, 2, 3]. The concept of a
SPF has existed for decades [4], but only recently research results have shown that a
SPF may provide industrially relevant benefits. The benefits are, e.g., decreased
development effort and time-to-market [5, 6] and that a SPF itself and some of the
issues it addresses are important and predictive for success of reuse [7, 8, 9].
Examples of the success with reuse within SPFs concern various kinds of assets, such
as software architecture, instead of only code [3]. Furthermore, reuse is planned and
supported instead of opportunistically assumed reuse just happen [2], and reuse is not
assumed to be solely a technical problem, but to also concern other issues, such as the
business, process, organizational, and architecture (BAPO) concerns [10]. In addition
to reuse, another important aspect of a SPF is systematic management of variability.
These research results and issues of SPFs originate from industrial experience
including case studies in companies such as Securitas and Axis [11] and CelsiusTech
[12], and experience reports in companies such as Philips [13] and Nokia [14].
However, these report only little details on how the research has been carried out.

In addition to SPFs gaining popularity among researchers, recently, more attention is
also focused on the research process itself. On the one hand, a need for rigorous
research methods in software engineering is identified and, on the other hand,
software engineering research is required to focus on practical solutions for real
problems in the industry [15, 16, 17]. One class of such methods is qualitative
methods, which include qualitative case study method. The qualitative methods are
particularly applicable to acquire data of complex real life phenomena [18]. In
particular, for case studies based on qualitative data exists also rigorous methodology
such as in [19].

This report focuses on CASFIS (CAse Study Framework for Industrial SPF). CASFIS
is a tool for empirically studying SPFs in the industry using the qualitative research
methods. On the one hand, CASFIS forms one piece in a methodological toolbox of
scientific approaches that can be used to study SPFs. On the other hand, CASFIS is an
attempt to form a solid basis for further discussion and development of methodologies
for studying SPF. Consequently, CASFIS is defined to be used within the context of
SPFs by combining our experience of scientific qualitative methods and case study
methodology in particular with our experience with SPFs.

In this report, the case study questions of CASFIS are represented. These explicit case
study questions are a central element of CASFIS. The rest of this report is organized
as follows. In the next section, an overview of CASFIS methodology is presented.
After the overview, an overview of the questions and the structured of the questions
are given. The case study questions of CASFIS are in the last section.

CASFIS

CASFIS follows a qualitative case study strategy [19, 20]. We have used the steps
introduced in [19] to describe the framework. Theses steps are designing case study,
preparing data collection, collecting evidence, analyzing the evidence, and composing
a report (Table 1). The case study questions are published in this report whereas all

2 (33)

the other elements of CASFIS, as outlined in Table 1, are described in more depth in
[21].

Designing a study | Preparing data | Collecting Analysis and reporting,
collection evidence and composing a report
-Problem -Field -Interviews (CASFIS does
formulation procedures _Case study not suggest or
-Study proposition | -Case study database .
. fions require any
-Case selection ques . .
particular analysis
~Unit of analysis or reporting approach)

The structure of CASFIS follows division to business, artifact, process and
organization (BAPQO) concerns as introduced in [10]. The business concern refers to
how a company makes money with the SPF. The artifact concern refers to technology
in a SPF and all kinds of pieces of software assets that the SPF consists of. The
process concern refers to activities related to the SPF. The organization concern refers
to people and their relations in SPF development. Division into BAPO concerns is
similar with, for example, the evaluation framework [22]. However, the term
'architecture' is replaced with the term 'artifact' in order to emphasize that the term
referred to several kinds of assets in addition to the software architecture alone.

The focus of CASFIS is on SPF practices rather than software engineering practices
in general. The focus in the BAPO concerns is on the artifacts of a SPF and their
variability in particular.

CASFIS is a revisited version of the framework that was used in a case study of the
state of the practice of SPFs [23] which some results are published in [24, 25]
although the name CASFIS was not used at that time. These studies proved that
CASFIS is feasible to capture the state of the practice of SPF in a company. The
studies also report the actual use of the earlier version of the framework.

Closely related to CASFIS is the software product line questionnaire [6] that is a
survey instrument although it consists of mainly the questions. CASFIS differs from
the existing frameworks such as the evaluation framework [22] and the SPF probe [3],
and actual case studies, such as the above mentioned Securitas and Axis case studies,
by describing in detail and making publicly available the guidelines for the research
process.

Introduction to the case study questions

CASFIS includes the case study questions as a central element. These questions serve
a dual role: On the first hand, the questions are interview questions to be asked from
responders, on one hand, the questions serve as a guideline how an interview should
proceed and to structure the interview. That is, the interviews follow principles of a
semi-structured interview. An interviewer can omit some questions that seem
unimportant for the particular SPF, change the wordings and the order of the
questions, and ask additional questions for clarification and deepening of the topic
under discussion. In addition, an interviewer can ask additional questions in addition
the questions in CASFIS. Additional questions can be summarizing comments in a

3 (33)

question format to generalize the responses and enable the respondents to correct
misinterpretations and misunderstandings, or questions that go deeper to a particular
topic of interest, for example. However, the questions also structure an interview. A
deviation from the structure may lengthen the study and distort the focus.

The case study questions of CASFIS are mostly open-ended in order to enable true
semi-structured interview and to achieve a rich qualitative description. The structure
of the questions (Figure 1) is broken down into BAPO concerns. This division was
done in order to take into account several points of views to a SPF. Each concern is in
its own section. The order of the sections is business, process, organization, and
artifacts. This order was selected in order to start from the overview and going later
into the detail. That is, the artifacts are handled in most detailed manner. Further,
organization follows process because these two are closely related and tied together.
However, the order is not fixed, but can be changed if necessary.

For each concern, several aspects are identified that are properties of the concerns.
For each aspect is a set of factors that characterize the aspects. The questions measure
the factors. If a question includes a figure, the figure appears after the question. In
addition, each section concludes with explicit question of what is important for
success of a SPF and what are the problems with a SPF. Since each section represent
different point of view following the BAPO concern, some questions are repeated in
all sections. An outline of concerns and aspects are presented as follows and the
questions in the next section.

The business concern covers profile of the company, SPF strategy, and SPF business
aspects. Profile of the company includes business characteristics and the application
domain factors. Business characteristics illustrate the internal characteristics of the
company in terms of size and turnover, for example. The application domain
illustrates the environment in for which the SPF is developed such as the kind of
products in SPF and whether the software is embedded. SPF strategy includes present
and history factors. The present factor characterizes how SPF is perceived from the
point of view of business today while the past factor characterizes how the change to
SPF has taken place. The SPF business aspect includes SPF quantified and product
details factors. SPF quantifies concerns number of products individuals and prices.
The product detail deals with detailed characteristics of product individuals in a SPF
such as commonalities and variability.

The process concern covers general aspects, SPF development and SPF derivation.
The general concern consists of the SPF concepts aspect that deals with understanding
of SPF and nature of division of processes to development and derivation phases. The
SPF development aspect consist of general, development phase, and maintenance
factors. The general factor deals with phases and activities, and organizing them in
SPF asset development whereas development phase factors deals with how these
activities are performed. The maintenance factor outlines maintenance process of
assets such as change requirements. The SPF derivation aspects is consist of the same
factors as SPF derivation, except, naturally, these deal with product individuals
instead assets.

The organization concern is divided into static and practices aspects. The static aspect
deals with existing structure including the stakeholders and organizational model
factors. The stakeholders deals with those individual involved in SPF development,
whereas the organizational model deals with how these individuals are organized. The

4 (33)

practices aspect concerns how organization operates consisting of responsibilities
factor that deals with who is responsible of what in the SPF.

The artifact section covers concepts, and variability and evolution aspects. Concepts
aspect deals with concepts of main artifacts in a SPF consisting of factors the concept
of SPF, concept of products individuals, concept of SPF architecture and shared
assets, and concept of SPF architecture and shared assets in a product individual. The
concept of SPF deals with how a SPF is understood as a whole, while the concept of
products individuals aspect deals with product individual that the SPF includes. The
last two aspects deal with what kind of pieces the SPF consists of and how these
pieces are reuses in product individual, respectively. Variability and evolution aspect
consists of the variability and evolution in the SPF, resolving variability in the SPF,
variability in the SPF architecture, and resolving variability in the SPF architecture
and shared assets factors. These factors in the order introduced deal with how
variability and evolution are perceived in the SPF, handled and mean in product
individuals, embedded in the shared assets and SPF architecture, and handled and
resolved when the shared assets and SPF architecture are used in product individuals.

5(33)

Business

— Profile of the company

I— Business characteristics

L The application domain

F strategy

I— Present

— History

F business aspects

— SPF quantified

— Product details

Process

—Ge

—spP

neral
SPF concepts

F development

— General
— Development phase
'— Maintenance

F derivation

— General

I— Development phase

'— Maintenance

Artifact

Concept of SPF
Concept of products individuals

Concept of SPF architecture and shared assets

Concept of SPF architecture and shared assets
in a product individual

— Variability and evolution

Variability and evolution in the SPF
Resolving variability in the SPF
Variability in the SPF architecture

Resolving variability in the SPF architecture and shared
assets

Organization

— Static

Stakeholders

Organizational model

— Pthices

Responsibilities

Figure 1 Organization of the questions

6 (33)

The case study questions

1 Software product family business

1.1 Profile of the company

1.1.1 Business characteristics
Q:1.1.1.1 How much was the last annual turnover of the company?
Q:1.1.1.2 The company can focus on areas such as product development, product

installation, education, consulting etc. In which areas does the company operate? In
which areas is the focus of the company in the sense from where comes the money?

Q:1.1.1.3 How many employees does the company employ? How many
employees work with the software product family?

Q:1.1.1.4 Does the company use formal or external verifications or validations,
such as CMM or ISO9000?
1.1.2 Application domain

Q:1.1.2.1 What software products and software product families does the
company have?

Q:1.1.2.2 The company can operate in market areas such as telecommunications,
enterprise information systems, embedded software. In which market areas does the
company operate?

Q:1.1.2.3 Is the product a physical one, which includes software, e.g., as
embedded? If so, how important role does the software part have if compared to, e.g.,
mechanical and electronic parts in cost and profit causing sense?

Q:1.1.2.4 Maturity can be defined as a property of an industry, a market, or a
product that is no longer subject to great expansion of users or development of the
core technology. How mature are the application domains, measured in amount of
growth in the markets and changes in the core technology from the viewpoints of the
products the company develops and markets in general.

1.2 The software product family strategy

1.2.1 Present
Q:1.2.1.1 How does the company understand and define a software product
family?

Q:1.2.1.2 Does the company have data of efficiency of the software product

7 (33)

family approach based on quantitative measures such as costs, profits, lead times, or
other factors? If this has been measured, how is the measurement done and what are
the results of the measurement?

Q:1.2.1.3 Does the company have data of efficiency of the software product
family approach based on, qualitative measures such as customer satisfaction? If this
has been measured, how they are measured and what are the results?

Q:1.2.14 How do sales and marketing influence on the development of the
software product family?

Q:1.2.1.5 What are the strengths, weaknesses, opportunities, and threats (SWOT)
of the software product family approach?

Strengths Weaknesses

Opportunities Threats

1.2.2 History

Q:1.2.2.1 Has there been a clear strategic change towards the software product
family approach or has the change taken place slowly?

Q:1.2.2.2 When did the change to the software product family approach start?
Q:1.2.2.3 How did the company operate before the software product family?
Q:1.2.24 Did the software product family replace existing products?

Q:1.2.2.5 The software product family approach can be more or less goal
oriented meaning that the approach is, e.g., incidental, desired, intentional or aimed.

How goal oriented has the adaptation of the software product family approach been
on this scale?

8 (33)

»

®

Incidental Desired Intentional Aimed
“It just happened” “Good thing, “A direction, “The goal”
but not the focus” but not the goal”

Q:1.2.2.6 What led the company to adapt the software product family approach?
1.3 The software product family oriented business.
1.3.1 The software product family quantified

Q:1.3.1.1 What are the sales volumes of product individuals in terms of annually
sold different variants and number of each sold variant?

Q:1.3.1.2 How much does a product individual cost at the minimum, typically
and maximum?

1.3.2 Product details

Q:1.3.2.1 A feature is a logical unit of behavior that is specified by a set of
functional and quality requirements [2]. From the customer or sales viewpoint, what
are important features in the software product family?

Q:1.3.2.2 From the customer or sales viewpoint, are some of performance,
security, modifiability, portability, and operational reliability important quality
characteristics, and are there other quality characteristics of the products?

Q:1.3.2.3 Commonality means that something is shared or duplicated between
the product individuals. From the customer or sales viewpoint, what are the
commonalities in product individuals?

Q:1.3.24 Differences are opposite to commonalities, i.e. characteristics that
make product individuals different. From the customer or sales viewpoint, what are
the differences between product individuals?

Q:1.3.2.5 After a product individual is delivered to a customer, does the
company, customer, or some other company change characteristics of the product
individual, for example, by adding features? If characteristics are changed, what are
changed characteristics and who does it?

Q:1.3.2.6 What is most important to success in software product family
development?

9 (33)

Q:1.3.2.7 What are the biggest problems and needs when applying the software
product family approach? What would the company need?

10 (33)

2 Processes

2.1 General

211 Software product family concepts

Q:2.1.1.1 How does the company define and understand a software product
family?

Q:2.1.1.2 A software product family is defined many ways. Jan Bosch [2]
defines: “[A software product family] consists of a product line architecture, a set of
reusable shared assets and a set of products derived from shared assets.” Does the
company understand the software product family concept similarly as Bosch? If
concept is understood differently, what are the differences?

Q:2.1.1.3 Did some kind of changes in software development processes take
place at the time the company adopted the software product family approach? If
changes took place, what were changed?

Q:2.1.14 Processes in reuse oriented software development within organization
are typically divided into two processes. In one process, assets are developed for reuse
whereas in other process the assets are reused to develop product individuals for
customers. However, these processes may be organized in different ways. For
example, both processes might be constantly ongoing in the company, processes can
alternate such that when assets are being developed for reuse products are not
development whereas when products are being developed assets are not developed.
Are there these two processes? If there are the two processes, how do these two
processes take place?

Q:2.1.1.5 If there are the two processes, are these processes explicitly identified
somewhere, e.g., in a process model?

Q:2.1.1.6 What kind of meetings does the company hold during the software
product family development?

Q:2.1.1.7 Are there meetings in which are present employees that develop the
software product family as well as people who derive product individuals? If such
meetings are hold, how often do they take place and who are present in them?

2.2 Software product family development

2.21 General

Q:2.2.1.1 What kinds of processes and activities are included in production of
reusable assets in the software product family, i.e. development?

Q:2.2.1.2 There are several types of process models for organizing specification,
design, implementation, and test phases[26]. In the waterfall model, the phases follow

11 (33)

each other in a sequence. In the incremental model, the phases are like in the waterfall
model but there are several iterations. In the agile models, such as in the extreme
programming, the phases are not separated and are rather short. What kind of process
model does the company have for software product family development? Which one
of the above-mentioned models is closest to the model that the company uses?

Specification

Time [[|
Implementation [D [|:|
—
Test U Ml -
Waterfall Iterative/Incremental XP
Q:2.2.1.3 Does the software product family development contain other essential

phases in addition to the above mentioned specification, design, implementation, and
test phases?

Q:22.14 In the development process might be constraints such as time to be
completed, implementation quality of wanted features, scarce resources and in
addition several others. What are the dominating constraints?

Q:2.2.1.5 Is the development process documented, e.g., in a process guide or
model? If the process is documented, what kind of documentation is used?

Q:2.2.1.6 If the process is documented, how well the documented process is
followed?
Q:2.2.1.7 Is the development process periodical or continuous? If the process is

periodical, how often do the periods take place and how long do they take?
2.2.2 Development phase

Q:2.2.2.1 What does the company do to capture the requirements of the software
product family?

Q:2.2.2.2 How does the company capture the requirements of the software
product family?

Q:2.2.2.3 What sources are used to capture the requirements of the software
product family?

Q2224 Characteristic, such as features, have to be selected either to be

12 (33)

included in the software product family or to be excluded from the software product
family. How does the company do this selection?

Q:2.2.2.5 Is the selection process documented? If the selection process is
documented, how is it documented?

Q:2.2.2.6 Is the selection done in certain intervals? If it is done in certain
interval, what kind of intervals is it done?

Q:2.2.2.7 When does the selection process take place?
Q:2.2.2.8 Who is responsible for the selection process?
Q:2.2.2.9 What kind of documentation is produced in the selection?

Q:2.2.2.10 What kind of process did the company follow to design, construct, and
test the software product family architecture?

Q:2.2.2.11 Is the software product family architecture design, construction, and
test process documented? If the process is documented, how is the process

documented?

Q:2.2.2.12 Who is responsible for designing, constructing, and testing the
software product family architecture?

Q:2.2.2.13 What kind of process does the company follow to design, construct,
and test the shared assets?

Q:2.2.2.14 Are the shared assets design, construction, and test process
documented? If the process is documented, how is the process documented?

Q:2.2.2.15 Who is responsible for designing, constructing, and testing the shared
assets?

Q:2.2.2.16 If the company produces or has earlier experience in producing one of
kind products, what is different in the architecture and shared assets design for the
software product family when compared with one of kind products?

Q:2.2.2.17 How are software product family architecture and shared assets tested?

223 Maintenance

Q:2.2.3.1 Required characteristics of the software product family change and on
the other hand all of them may not be captured once or they are not correctly handled,

e.g., wrongly prioritized. How are required changes handled?

Q:2.2.3.2 If during product individual derivation is constructed software that
could become a part of shared asset, how is this handled?

13 (33)

Q:2.2.33 What are the biggest problems and need when developing the software
product family and what kind of solutions would the company need?

2.3 Product derivation
2.31 General

Q:2.3.1.1 What kinds of processes and activities are included in production of a
product individual in the software product family, i.e. derivation?

Q:2.3.1.2 There are several types of process models for organizing specification,
design, implementation, and test phases[26]. In the waterfall model, the phases follow
each other in a sequence. In the incremental model, the phases are like in the waterfall
model but there are several iterations. In the agile models, such as in the extreme
programming, the phases are not separated and are rather short. What kind of process
model does the company have for product individual derivation? Which one of the
above-mentioned models is closest to the model that the company uses?

|
Specification H [I]

Time
Implementation [D [|:|
—
Test ml]]m
Waterfall Iterative/Incremental XP
Q:2.3.1.3 In the derivation process might be constraints such as time to be

completed, implementation quality, scarce resources, and in addition several others.
What are the dominating constraints?

Q:23.14 Is the derivation process documented, e.g., in a process guide or
model? If the process is documented, what kind of documentation is used?

Q:2.3.1.5 If the process is documented, how well the documented process is
followed?

Q:2.3.1.6 How long does the derivation process take, from the first thing done,
e.g. from requirement specification, to delivery?

Q:2.3.1.7 Does the company establish a specific project for each derivation?

Q:2.3.1.8 How complex is the derivation in each phase: requirement
specification, design, and instantiation? Are some special skills needed? Can a sales

14 (33)

representative, a fresh programmer out of school do it or does it need a moderately
experienced programmer, experienced software designer, or even a long experience

on the domain as well as software design?

Salesman A fresh A moderately A long
programmer experienced experience on
or designer programmer the domain as
out of school well as

programming
2.3.2 Development phase

Q:2.3.2.1 What does the company do to capture customer requirements for a
product individual?

Q:2.3.2.2 How does the company capture other than customer requirements such
as local regulations?

Q:2.3.2.3 Who captures the requirements?
Q:2.3.24 How are the captured requirements documented?

Q:2.3.2.5 How is wvalidated that requirements are fulfilled in a product
individual?

Q:2.3.2.6 What kind of design and implementation process is needed for a
product individual?

Q:2.3.2.7 In the derivation may be activities in construction such as parameter
setting, programming, copy-pasting code. What does the company do in the product
derivation phase and how is this done?

Q:2.3.2.8 How does the company test a product individual?

Q:2.3.2.9 How does the company document testing?

Q:2.3.2.10 Testing of a product individual can be included in the software product
family, e.g., in form of test plans or cases in assets or already tested software

components. How does the company take advantages of the software product family
in testing?

15 (33)

2.3.3 Maintenance

Q:2.3.3.1 Is a product individual possible to change after delivery to customer,
e.g., by adding features, components or configuration? If such a change is possible,
what is changed and how is the change done?

Q:2332 How does the company assure that a change after delivery work as
intended?

Q:2.3.33 How bugs in a product individual are taken care of?

Q:2.3.34 A product individual may need deficiency or bug fixes. If a product
individual is complemented with such new things, what does the company do to
assure that the new things work and how is this done?

Q:2.335 What are the biggest problems and needs when deriving a product
individual? What kind of solutions would the company need?

16 (33)

3 Organization
3.1 Structure
3.1.1 Stakeholders

Q:3.1.1.1 Who are the stakeholders that influence on the software product
family? What kind of influence does each of them have?

Q:3.1.1.2 How strict are the roles in the organizational structure in software
product family development? Does everybody do everything or is there a clear
separation, e.g., between developers of software product family and derivators of a
product individual?

Q:3.1.1.3 Who dominates the software product family centric decision-making in
the company? Are they software product family producers, architect, derivators of
product individuals of the software product family, marketing staff, or some others?

3.1.2 Organizational model

Q:3.1.2.1 Bosch [2] identifies four different structures for organizing the
software product family development. The first is the development department model
that has no clear separation of software product family assets developers and product
individual derivators. The second is the business unit model, in which each business
unit is specialized around one subset of product individuals. These business units
develop and evolve the shared assets without separate organizational unit for taking
care of them. The third is the domain engineering unit model, in which one unit,
called domain engineering unit, is responsible for developing and evolving the shared
assets and separate business units produce product individuals. The fourth is
hierarchical domain engineering unit that is similar with domain engineering unit
model, but several domain engineering units are organized hierarchically to take care
of the assets. Does the company apply some of these models or does it apply some
other model?

17 (33)

L

d) 1

Legend I:l Shared assets developers
I:l Product individual derivators
------ A
: Organizational unit
Q:3.1.2.2 Did the company reorganize the organization at the time the software

product family approach was adopted? If there was reorganization, what was
reorganized?

Q:3.1.2.3 Has the organizational model changed during software product family
development?

3.2 Practices
3.21 Responsibilities

Q:3.2.1.1 Who is responsible for the management of the software product family
and where in the organization structure does he reside?

Q:3.2.1.2 Who is responsible for the product individual derivations and where in
the organization structure does he reside?

18 (33)

4 Product

4.1 Concepts

411 The concept of software product family
Q4.1.1.1 How does the company understand or define a software product
family?

Q4.1.1.2 What software product families does the company develop?

Q:4.1.1.3 Was the software product family based on existing products, or was it
developed for new products?

Q4.1.1.4 Why does the company have the software product family?

Q4.1.1.5 How complex is it to develop a software product family? Are some
special skills needed to develop a software product family? Can a fresh programmer
or designer out of school do it or does it need a moderately experienced programmer,
experienced software designer, or even a long experience on the domain as well as
software design?

5 v
A fresh A moderately A moqerately A long
programmer or experienced experienced experience on
designer out of programmer Soft.ware the domain as
school designer well as software

design

Qi4.1.1.6 What are the biggest problems and challenges in developing a software
product family?

4.1.2 Concept of a product individual in the software product
family

Q:4.1.2.1 What are product individuals in the software product family?

Q:4.1.2.2 What information does the company have for deriving a product
individual?

Q:4.1.2.3 How does the company document and store the information for

19 (33)

deriving a product individual?

Q4.1.24 What would the company need in order to be able to take advantage of
the software product family better?

Q:4.1.2.5 What are the biggest problems and challenges in deriving product
individuals?

41.3 The concept of a software product family architecture and
shared assets

Q:4.1.3.1 How does the company define and understand the software product
family architecture?

Q:4.1.3.2 One definition of software architecture is “a structure or structures of a
system, which comprise software components, externally visible properties of those
components, and relationships among them” [27]. Is this definition applicable for the
company, does the definition lack something, or is there something that should not be
included in the architecture definition?

Q:4.1.33 Does the software product family contain a common architecture?

Q4.1.34 Does the software product family architecture and single system
architecture differ from each other? If these architectures differ from each other, what
are the differences?

Q:4.1.3.5 The software product family architecture may consist of entities such
as interfaces, connectors, and components. What entities does the software product
family architecture consist of? How many of each entity are there in the software
product family architecture? How large are these entities?

Q:4.1.3.6 What is documented about the software product family architecture?
Q:4.1.3.7 How is the software product family architecture documented?
Q:4.1.3.8 Does the software product family architecture documentation contain
different views? If documentation contains different views, what are the views and

how are they documented?

Q:4.1.3.9 What kind of knowledge does designing the software product family
architecture require?

Q:4.1.3.10 How complex is to design the software product family architecture?
Can, e.g., a fresh programmer or designer out of school do it, or does it need a
moderately experienced programmer, experienced software designer, or even a long
experience on the domain as well as software design?

20 (33)

(3 v‘ P

A fresh A moderately A moderately A long

programmer or experienced experienced experience on

designer out of programmer software the domain as

school designer well as software
design

Q:4.1.3.11 One class of shared assets are reusable software entities that can be, for
example, in form of modules, components, or libraries. In what form are the reusable
software entities in the company?

Q:4.1.3.12 What are examples of reusable software entities in the software
product family?

Q:4.1.3.13 Different kinds of things of reusable software entities may be
documented such as features, behavior, functional requirements, and non-functional
or quality requirements. What is documented about a reusable software entity and
how is it documented?

Q:4.1.3.14 In addition to reusable software entities, a software product family can
contain other assets. Examples of such assets are models, requirement specifications,
functional specifications, feature specifications, interface specifications, and test
cases. What kinds of assets are there in the software product family and in what form
are they?

Q:4.1.3.15 What is documented of the shared assets and how is it documented?

Q:4.1.3.16 What are examples of shared assets in addition to reusable software
entities?

Q:4.1.3.17 If measured, e.g., in quantities of shared assets, lines of source code or
amount of documentation, how much does the company have each kind of shared
assets in the software product family?

Q:4.1.3.18 What is the size of each type of shared asset in minimum, maximum
and typically, when measured e.g. in KLOC, lines of documentation, or work needed

to produce it?

Q:4.1.3.19 Does the company have shared assets that are used in all product
individuals? If there are such assets, what are they?

Q:4.1.3.20 Are the shared assets developed to be used only in one specific

21 (33)

software product family or are the shared assets designed such that they are or will
probably be used in several different software product families?

Q:4.1.3.21 How does the company manage shared asset and their documentation,
i.e. where are they stored and how are they retrieved for usage?

Q:4.1.3.22 How complex is it to design and implement shared assets? Are some
special skills needed? Can a fresh programmer or designer out of school do it or does
it need a moderately experienced programmer, experienced software designer, or even
a long experience on the domain as well as software design?

5 v
A fresh A moderately A moqerately A long
programmer or experienced experienced experience on
designer out of programmer Soft.ware the domain as
school designer well as software

design

Q:4.1.3.23 Interface is a point of outside interaction or communication of a
reusable software entity. What kind of interface is in a reusable software entity?

Q:4.1.3.24 Does a reusable software entity have several interfaces? If an entity has
several interfaces, why does the entity have several interfaces?

Q:4.1.3.25 A provided interface means that a component provides certain
functionality whereas required interface means functionality that a component needs.
An example is an HTTP component, which provides interface to retrieve web pages
whereas it requires TCP/IP interface. Does the company make difference between
required and provided interfaces of a reusable software entity?

Q:4.1.3.26 What does the company documented of an interface and how is it
documented?

Q:4.1.3.27 How does the company document the syntax or the signature of an
interface?

Q:4.1.3.28 How does the company document the behavior or semantics of an
interface?

Q:4.1.3.29 If the company makes difference between required and provided
interfaces documented, what is different in documenting?

22 (33)

Q:4.1.3.30 What is most challenging in developing a software product family
architecture and shared assets?

Q:4.1.3.31 What are the problems and needs when developing a software product
family architecture and shared assets?

41.4 Concept of architecture of a product individual

Q4.14.1 What are the similarities and differences between architecture of the
software product family and architecture of a product individual?

Q:4.14.2 Is the software product family architecture used ‘as-is’ for product
individuals, is it only a part of the product individuals in the software product family
which is extended, are entities removed, or are entities both removed and added?

O Added

Software product As-is” part
family architecture 1 Removed
Architecture of - =
a product
individual tJ =

| /=

Removed Added “As-is” Added and removed
Q:4.143 How many entities are in the architecture typically, minimally and

maximally? How many of these entities are based on the software product family
architecture?

Q4.1.44 Is the architecture of a product individual documented? If the
architecture of a product individual is documented, how is it documented?

Q:4.14.5 How much typically, minimally and maximally are there shared assets
in a product individual, broken down as the company does, e.g., to percents of assets

of a product individual, lines of source code, or number of shared assets?

Q:4.14.6 Does the company document what assets are used in product
individuals? If use of assets is documented, how is it documented?

Q:4.1.4.7 How does a developer find right shared assets and information about
shared assets?

Q:4.14.8 Different kinds of tools and techniques can be used for deriving a

23 (33)

product individual such as generators, copy-paste and build tools. What tools and
techniques does the company use in derivation?

Q:4.14.9 If the company cannot fulfill customer’s requirements totally with the
assets in the software product family, the company may end up doing some special
customization by writing product specific code. How often does this take place?

Q:4.1.4.10 What is the reason for the product specific code?

Q:4.14.11 How much is in a product individual product specific code, when
measured e.g. in extra work, needed time, or KLOC?

Q:4.1.4.12 How much does the software product family, for example, in form of
reuse save efforts in the producing of a product individual, approximated e.g. by
costs, person-hours or amount of code?

Q:4.1.4.13 What are the problems and needs when deriving a product individual,
and the shared assets and architecture for the product individual?

4.2 \Variability and Evolution
4.2.1 Variability and evolution in the software product family

Q:4.2.1.1 The term wvariability is used for differences between product
individuals in certain point of time. The term evolution is used for changes in time in
the software product family. Variability can concern e.g. functionality, user interface,
quality, performance, platform, or underlying hardware. What varies in the software
product family?

Q:4.2.1.2 What are the reasons for variability in the software product family?

Q:4.2.1.3 Is there variability in the software product family that the company has
not yet taken advantage of systematically, but knows it exists or could be taken
advantage of? If such variability exists, why has the variability or commonality not
been exploited?

Q4214 The term evolutionary software product family means that the
company starts to develop software product family such that when commonality is
noticed between any products, it is added to a common base. The term revolutionary
software product family means that large effort is put to produce a common base that
serves as a base from which products are derived. Which approach did the company
use?

4.2.2 Resolving variability in the software product family

Q:4.2.2.1 How many different product individuals in the software product family
are possible in theory? How many different product individuals have been actually
derived?

24 (33)

Q:4.22.2 How do the product individuals in the software product family
distribute in quantities of different individuals and quantities of copies of an
individual?

Number of 4 Number of 4 Number of
°

products products products

u

]

24 °

L 4
EEEEEEEEN] ‘0
et
Ll r EEEEEER
Product variant Product variant Product variant
Q4223 Commonality means that something is shared or duplicated between

the product individuals in the software product family. What are commonalities in all
product individuals?

Q4.224 Are there such commonalities that are common for some, but not all
product individuals? If there are, what are such commonalities?

Q:4.22.5 What are differences between product individuals?
Q:4.2.2.6 What is unique in each product individual?

Q:4.2.2.7 How many decisions have to be made for resolving variability of a
product individual typically, minimally and maximally?

Q:4.2.2.8 What are the biggest problems and challenges in variability in the
software product family?

423 Variability in the software product family architecture and
shared assets

Q:4.2.3.1 Does the software product family architecture contain variability? If
the software product family architecture contains variability, what varies in the

software product family architecture?

Q:4.232 What is the reason for variability in the software product family
architecture?

Q:4.233 Are there examples of variability in the software product family
architecture?

Q4234 A variability point is a predefined point where variability takes place.
How many variability points does the software product family architecture contain?

Q:4.23.5 How are variability points documented in the software product family

25 (33)

architecture?

Q:4.23.6 Variability within a variability point can be optional, which means
something is added or removed, or alternative, which means choosing from a set of
possibilities. Does the company have optional, alternative or both types of variability
in the software product family architecture?

Q:4.2.3.7 How many percent is optional variability and how many percent is
alternative variability in the software product family architecture?

Q:4.23.8 How many different alternatives exist for a variability point in the
software product family architecture typically, minimally and maximally?

Q:4.23.9 How are optional and alternative variability documented in the
software product family architecture?

Q:4.2.3.10 Relations between variability points may be mutually exclusive or
inclusive. Mutually exclusive variability means that one choice in a variability point
causes that some choice cannot be made in another variability point. Inclusive
variability means that if one alternative has selected then also some other alternative
needs to be selected. Does the software product family architecture contain such
inclusive and exclusive relations? If there are such relations, how are they
documented?

Q:4.2.3.11 How many inclusive and exclusive relations does the software product
family architecture contain?

Q:4.23.12 How many variability points in the software product family
architecture have inclusive or exclusive relations, measured, e.g., in percents?

Q:4.2.3.13 How many other variability points does an inclusive or exclusive
relation affect typically, minimally and maximally in the software product family
architecture?

Q:4.2.3.14 Software product family architecture can evolve differently: It can be
further developed in the domain to realize more functionality, it can be developed to
cover better the current domain, or it can be expanded to new domains, for example.

How does the software product family architecture evolve?

Q:4.2.3.15 What are the reasons for evolution of the software product family
architecture?

Q:4.2.3.16 Do shared assets of the software product family vary? If they do, what
kinds of shared assets vary?

Q:4.2.3.17 Are there invariable shared asset? If invariable assets exist, how many
assets are invariable measured, e.g., in percents?

Q:4.2.3.18 What varies in the shared assets?

26 (33)

Q:4.2.3.19 What are the reasons for variability in the shared assets?

Q:4.2.3.20 Does every shared asset vary or do only some shared assets vary? If
only some of the shared assets vary, how many of them vary, measured, e.g., in
percents?

Q:4.2.3.21 If there are shared assets that do not vary, what kinds of shared assets
do not vary?

Q:4.2.3.22 How many variability points are in total in the all shared assets in
minimum, typically, and maximally?

Q:4.2.3.23 How many variability points are in total in one shared asset typically,
minimally and maximally?

Q:4.2.3.24 How many different alternatives exist for a variability point in a shared
asset typically, minimally and maximally?

Q:4.2.3.25 Are there examples of variability in the shared assets?

Q:4.23.26 Does the company have optional, alternative, or both types of
variability in the shared assets?

Q:4.2.3.27 How many percent is optional and how many percent is alternative
variability in the shared assets?

Q:4.2.3.28 Variability in a shared asset may be implemented at least in two
different manners. A shared asset has several implementations or only one
implementation exists in which variability is implemented, e.g., by parameters. How
does the company resolve variability?

C C

name:type {value=1,2,3}

Cl C2 C3

Q:4.2.3.29 How often do several implementations exist and how often does only
one implementation with parameters exist?

Q:4.2.3.30 Do variability points have default variants? If such default values exist,
how many variability points have a default value?

27 (33)

Q:4.2.3.31 How is variability documented?

Q:4.2.3.32 Do the shared assets contain inclusive and exclusive relations? If there
are such relations, how are they documented?

Q:4.2.3.33 How many variability points in a shared asset has inclusive or
exclusive relations typically, minimally, and maximally, measured, e.g., in percents?

Q:4.2.3.34 How many other variability points does an inclusive or exclusive
relation affect typically, minimally and maximally in a shared asset?

Q:4.2.3.35 If, e.g., behavior, an interface, or quality attributes of a shared asset
change, is it still the same asset? When is there variability and when are there two
different shared assets?

Q:4.2.3.36 Can an interface of reusable software entity vary? If an interface can
vary, how does it vary and how variability is documented?

Q:4.2.3.37 Do shared asset evolve? If they do, what evolves in the shared asset?
Q:4.2.3.38 What are the reasons for the evolution?

Q:4.2.3.39 Is it possible that an interface of a reusable software entity evolves? If
evolution is possible, how does an interface evolve?

Q:4.2.3.40 How often do shared assets evolve?

4.2.4 Resolving variability in the software product family
architecture and shared assets

Q:4.2.4.1 How many variability points are resolved in total for the architecture of
a product individual typically, minimally and maximally?

Q:4.24.2 Variability can be resolved, e.g., by selecting one from the alternatives
defined for the variability point or designing a new variant for the variability point. Is
it possible to design such a new alternative for a variability point in the software
product family architecture during derivation?

Q:4.243 How often is a new variant designed and how often is an existing
alternative or option chosen in the software product family architecture?

Q4.24.4 How is the usage of alternatives in a variability point distributed in the
software product family architecture? Is, e.g., some alternative used most of time or
are all alternatives equally often used?

28 (33)

Number of 1 Number of % Number of
products products products

EEEEEEEENI *

rlllllll

» »
»

»
» »

Product variant Product variant Product variant

Q:4.2.45 Is in the software product family architecture something invariable
such that it is in every product individual, and does not vary? If there is such
invariables, what are they?

Q:4.2.4.6 Different kind of techniques, such as selecting a component, can be
used to derive a variant of the software product family architecture. What techniques
are used in a variability point for resolving a variant in the software product family
architecture?

Q:4.24.7 Why is the company using those specific techniques for achieving and
resolving variability? What are strengths and weaknesses of the techniques?

Q:4.24.38 What other techniques have been considered and why are they not in
use?

Q:4.24.9 How does a derivator know about variability in the software product
family architecture?

Q:4.2.4.10 Variability points can be resolved, e.g., during designing time, coding
time, compile time, linking time, or execution time. What are the possible points of

time for variability resolving in the software product family architecture?

Q:4.2.4.11 When is resolving in the software product family architecture usually
done?

Q:4.24.12 How is resolved variability in the software product family architecture
documented?

Q:4.2.4.13 Does the company have shared assets that are used only in some
product individuals? If there are such assets, what are they?

Q:4.24.14 How does variability resolving in the shared assets differ from
variability resolving in the software product family architecture

Q:4.2.4.15 Is it possible to design a new variant for a variability point in the
shared assets during derivation?

Q:4.24.16 How often is a new variant designed and how often is an existing

29 (33)

alternative or option chosen in a shared asset typically, minimally, and maximally?

Q:4.2.4.17 How many different variants are, both in practice and in theory, of a
shared asset typically, minimally and maximally?

Q:4.24.18 Do all variable shared assets vary also in practice or are they used
similarly in all product individuals?

Q:4.2.4.19 How many percents of variable shared asset do not vary in practice and
why do they not vary?

Q:4.2.4.20 How is the usage of alternatives in a variability point distributed in the
shared assets? Is, e.g., some alternative used most of time or are all alternatives
equally often used?

Number of 4 Number of 4 Number off

products products products

EEEEEEEENI] *

rlllllll

> »
»

»
» »

Product variant Product variant Product variant

Q:4.24.21 Several techniques exist to achieve variability in the shared assets,
such as selecting implementation, setting a parameter, conditional compiling, and
inheritance. What techniques does the company use to achieve variability?

Q:4.24.22 Why is the company using those specific techniques for achieving
variability in the shared assets, i.e. what are their strengths and weaknesses and what
other techniques have been considered?

Q:4.24.23 How resolved variability in the shared assets is documented?

Q:4.2.4.24 The specification of a variant can be done in designing time, coding
time, compile time, linking time, or execution time. When the variant can be specified
and when is it usually done?

Q:4.2.4.25 How complex is it to resolve variability within a shared asset? Are
some special skills needed? Can a fresh programmer or designer out of school do it or
does it need a moderately experienced programmer, experienced programmer, or even
a long experience on the domain as well as programming?

30 (33)

A fresh A moderately A mo@erately A long

programmer or experienced experienced experience on

designer out of programmer software the domain as

school designer well as software
design

Q:4.2.4.26 What are the problems and needs in resolving variability in the
software product family?

31 (33)

References

10.

11.

12.

13.

Weiss, D. and Lai, C. T. R.: Software product-line engineering: a family based
software development process. Addison Wesley (1999)

Bosch, J.: Design and use of software architectures - adopting and evolving a
product-line approach. Addison-Wesley (2000)

Clements, P. and Northrop, L. M.: Software Product Lines: Practices and Patterns.
Addison-Wesley (2001)

Parnas, D. L.: On the Design and Development of Program Families. IEEE
Transactions on software engineering 17(4) (1976) 40-52

Knauber, P., Bermejo, J., Bockle, G., Julio Cesar Sampaio do Prado Leite, Linden,
F. v. d., Northrop, L. M., Stark, M., Weiss, D.: Quantifying Product Line Benefits.
Lecture Notes in Computer Science 2290(2002) 155-163

Cohen, S.: Product Line State of the Practice Report. CMU/SEI-2002-TN-017
(2002)

Tracz, W.: Software Reuse Myths. ACM SIGSOFT Software Engineering Notes
13(1) (1988) 17-21

Frakes, W. B., Fox, C. J.: Sixteen Questions About Software Reuse.
Communications of the ACM 38(7) (1995) 75-87

Morisio, M., Ezran, M., Tully, C.: Success and Failure Factors in Software Reuse.
IEEE Transactions on software engineering 28(4) (2002) 340-357

Linden, F. v. d.: Software Product Families in Europe: The Esaps and Café
projects. IEEE Software 19(4) (2002) 41-49

Bosch, J.: Product-Line Architectures in Industry: A Case Study. In: International
conference on software engineering, ICSE'99ACM Los Angeles (1999) 544-554

.Brownsword, L., Clements, P.: A case study in successful product line
development. Technical report CMU/SEI-96-TR-016 (1996)

Ommering, R. v.: Building Product Populations with Software Components. In:
Proceeding of the International Conference on Software Engineering (ICSE'02)
(2002)

32 (33)

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Jaaksi, A.: Developing Mobile Browsers in a Product Line. IEEE Software 19(4)
(2002) 73-80

Shaw, M.: What Makes Good Research in Software Engineering? International
Journal on Software Tools for Technology Transfer 4(1) (2002) 1-7

Glass, R. L.: The Software Research Crisis. IEEE Software 11(6) (1994) 42-47

Tichy, W. F.: Should Computer Scientists Experiment More? Computer 31(5)
(1998) 3-40

Kitchenham, B. A., Pfleeger, S. L., Pickard, L. M., Jones, P. W., Hoaglin, D. C.,
Emam, K. E., Rosenberg, J.: Preliminary Guideline for Empirical Research in
Software Engineering. IEEE Transactions on software engineering 28(8) (2002)
721-734

Yin, R. K.: Case study Research. Sage (1994)

Eisenhardt, K. M.: Building Theories from Case Study Research. Academy of
Management Review 14(4) (1989) 532-550

Raatikainen, M., Ménnisto, T., Soininen, T.: CASFIS-Approach for studying
software product families in industry. In: 2nd Groningen Workshop on Software
Variability Management (2004)

Linden, F. v. d., Bosch, J., Kamsties, E., Kidnsila, K., Obbink, H. J.: Software
Product family evaluation. Lecture Notes in Computer Science 3154 (Proc. of
SPLC 2004)(2004)

Raatikainen, M. 4 Research Instrument for an Empirical Study of Software
Product Families, Master's Thesis. Helsinki University of Technology. 2003.

Raatikainen, M., Soininen, T., Mannistd, T., Anttila, M.: Characterizing
Configurable Software Product Families and their Derivation. Software Process:
Improvement and Practice To appear(2005)

Raatikainen, M., Soininen, T., Ménnisto, T., Anttila, M.: A Case Study of Two
Configurable Software Product Families. Lecture Notes in Computer Science
3014(2004)

Beck, K.: Embracing Change with Extreme Programming. Computer 32(10)
(1999) 70-77

Bass, L., Clements, P. and Klein, D. V.: Software architecture in practice.
Addison-Wesley (1998)

33 (33)

