

HELSINKI UNIVERSITY OF TECHNOLOGY

Department of Computer Science and Engineering

Juha-Miikka Nurmilaakso

XML-based Supply Chain Integration:
A Review and a Case Study

A thesis to fulfill the requirements for the degree of Licentiate of Science in
Technology.

Supervisor: Professor (pro tem) Timo Soininen

HELSINKI UNIVERSITY OF ABSTRACT OF THE
TECHNOLOGY LICENTIATE THESIS

Author and name of the thesis:
Juha-Miikka Nurmilaakso
XML-based Supply Chain Integration: A Review and a Case Study
Date: 30.11.2003 Number of pages: 56 + 6
Department: Professorship:
Computer Science and Engineering T-86 Information Technology
Supervisor: Professor (pro tem) Timo Soininen
The thesis studies the extent to which Extensible Markup Language (XML) supports supply
chain integration Both a conceptual research with a literature study and a constructive research
with a case study were used. Supply chain integration is about information sharing between
trading partners. It is an important part of efficient supply chain management. The point-to-
point, hub-and-spoke and service-oriented models are the basic integration models of supply
chains. The basic XML technologies enable straightforward exchange of data in a supply chain.
XML is useful in syntactic interpretation but insufficient in semantic interpretation. Therefore,
e-business frameworks are necessary in supply chain integration. An e-business framework
answers at least one of the questions of what information should be shared, when, and how. The
e-business framework deals with business documents, business processes, or messaging needed
in information sharing between the trading partners. 26 XML-based e-business frameworks
were studied, eight of them were compared, and three were described in detail. Categories of
document-centric, cross-industry, industry-specific, and process-centric frameworks were
recognized.
The thesis also presents an XML-based integration system prototype that was implemented and
tested at ABB Control and InCap Electronics in Finland. In addition to business documents,
XML was used for describing “technical” processes. Since ABB and InCap used EDIFACT
standard for exchanging purchase orders, purchase order responses, and invoices, the prototype
were evaluated against Electronic Data Interchange (EDI). The corresponding XML documents
were based on the XML Common Business Library (xCBL) framework, and the XML
documents for purchase order lists and demand forecasts were developed. Since XML enables
customized business documents, and the prototype uses the Internet instead of the value added
network, the prototype was more flexible to implement and operate than EDI. In addition, the
engine-processor architecture together with its XML-based configuration facilitated the
maintenance of the prototype. Business benefits of the prototype were highly case-specific but
its use provided significant cost savings in comparison to EDI. The prototype had lower
implementation costs than EDI. On the other hand, a small or medium-sized enterprise does not
necessary need an integration system of its own but it can use the large enterprise’s XML-based
integration system by a browser. Operating costs were also lower for the prototype than for EDI.
Comparing XML and EDI shows that there are more XML-based e-business frameworks than
EDI standards. In this sense, XML is more flexible than EDI. However, a large number of the
frameworks causes difficulties. There are indications that XML-based integration is less
expensive than EDI-based integration. Unfortunately, the comparison between XML and EDI
may be biased, and the experiences from XML-based supply chain integration are quite limited
in general. Although XML does not remove all the integration problems, XML-based supply
chain integration can be a significant alternative to EDI. XML does not guarantee but it can
promote a shared understanding of business documents and business processes.
Keywords:
Supply chain, Integration, XML, E-business framework, Prototype

Table of contents

Abstract

List of publications

Abbreviations

1 Introduction ...1
1.1 Background ...1
1.2 Goals ..3
1.3 Methodology ...3
1.4 Scope..5
1.5 Structure ..5

2 Review ...7
2.1 Supply chain management ...7

2.1.1 Concept..7
2.1.2 Business impacts ...8
2.1.3 Integration models ...10

2.2 XML technologies ...12
2.2.1 XML standard..12
2.2.2 Validating: DTD and XSDL..13
2.2.3 Parsing: SAX and DOM..14
2.2.4 Transforming: XSLT...15

2.3 Expectations...15
2.4 E-business frameworks ..16

2.4.1 Basics...16
2.4.2 XML and frameworks ...18
2.4.3 Comparison..19
2.4.4 xCBL ...22
2.4.5 RosettaNet ...23
2.4.6 ebXML ..26

2.5 Experiences ..30
2.6 Critical summary..32

2.6.1 XML technologies revised ..32
2.6.2 Expectations revised..33
2.6.3 E-business frameworks revised ...34
2.6.4 Experiences revised...34

3 Case study...36
3.1 Case..36

3.1.1 Companies ...36
3.1.2 Requirements...37

3.2 Implementation ..39
3.2.1 Architecture ...39
3.2.2 Engine..39

3.2.3 Processors ..40
3.2.4 Configuration...41
3.2.5 Technical details..43

3.3 Evaluation ..44
3.3.1 Objectives ..44
3.3.2 Results ...45

4 Discussion ..48
4.1 Review discussed...48
4.2 Case study discussed..49
4.3 Further research ...49

5 Conclusions ..51

References ...53

Appendix ...1
Appendix 1: XML in the BNF...1
Appendix 2: Java interface of the processors ...1
Appendix 3: A DTD for system configuration ..2
Appendix 4: A DTD for interaction definition ..2
Appendix 5: Configuration of the Query Processor ..3
Appendix 6: Configuration of the Update Processor...4
Appendix 7: Configuration of the Messenger..4
Appendix 8: Configuration of the Access Processor ...5
Appendix 9: A DTD for interaction request ..5
Appendix 10: An interaction request embedded in HTML6

List of publications
This work is based to large extent on the following four publications, which are referred
to in the text by their roman numerals:

I Jansson, K., Karvonen, I., Mattila, V. P., Nurmilaakso, J., Ollus, M., Salkari, I.,
Ali-Yrkkö, J., Ylä-Anttila, P., 2001, Uuden tietotekniikan vaikutukset
liiketoimintaan (Impacts of Modern Information Technology on Business).
Teknologiakatsaus 111, National Technology Agency of Finland, Helsinki,
Finland. Pp. 28-32.

II Seilonen, I., Nurmilaakso, J. M., Jakobsson, S., Kettunen, J., Kuhakoski, K.,
2001, “Experiences from the development of an XML/XSLT-based integration
server for a virtual enterprise type co-operation”. In Thoben, K. D., Weber, F.,
Pawar, K. S. (Eds.), Proceedings of the 7th International Conference on
Concurrent Enterprising: Engineering the Knowledge Economy Through Co-
operation. ICE 2001, June 27-29, Bremen, Germany. Centre for Concurrent
Enterprising, Nottingham, United Kingdom. Pp. 321-328.

III Nurmilaakso, J. M., Kettunen, J., Lehtonen, J. M., Saranen, J., Seilonen, I.,
2001, “Seamless production planning and communication in distributed
manufacturing: Case ABB switchgear production”. In Stanford-Smith, B.,
Chiozza, E. (Eds.), E-Work and E-Commerce: Novel Solutions and Practices for
a Global Networked Economy, Vol. 2. e-2001, October 17-19, Venice, Italy.
IOS Press, Amsterdam, the Netherlands. Pp. 867-873.

IV Nurmilaakso, J. M., Kettunen, J., Seilonen, I., 2002, “XML-based supply chain
integration: A case study”, Integrated Manufacturing Systems, Vol. 13, No. 8
(Special Issue on Enabling Supply Chain Integration Using Internet
Technologies), pp. 586-595.

Abbreviations
ASC X12 Accredited Standards Committee X12
API Application Programming Interface
B2B Business-to-Business
B2C Business-to-Consumer
B2G Business-to-Government
BNF Backus-Naur Form
BOV Business Operational View
BPML Business Process Modeling Language
BPSS Business Process Specification Schema
CA Communication Application
CRM Customer Relationship Management
cXML Commerce XML
DOM Document Object Model
DTD Document Type Definition
EAI Enterprise Application Integration
ebCPP ebXML Collaboration Partner Profile
ebMS ebXML Messaging Services
ebRIM ebXML Registry Information Model
ebRS ebXML Registry Services
ebXML Electronic Business XML
EDI Electronic Data Interchange
EDIFACT Electronic Document Interchange for Administration, Commerce, and

Transportation
ERP Enterprise Resource Planning
FSV Functional Service View
HTML Hypertext Markup Language
HTTP Hypertext Transfer Protocol
HTTPS HTTP over SLL
HTTP/S HTTP or HTTPS
IFV Implementation Framework View
MIME Multipurpose Internet Mail Extensions
PIP Partner Interface Process
OAGIS Open Applications Group Integration Specification
ODBC Open Database Connectivity

OWL Web Ontology Language
PDM Product Data Management
RDF Resource Description Framework
RDFS RDF Schema
RNBD RosettaNet Business Dictionary
RNIF RosettaNet Implementation Framework
RNTD RosettaNet Technical Dictionary
S/MIME Security Multiparts for MIME
SAX Simple API for XML
SCM Supply Chain Management
SGML Standard Generalized Markup Language
SME Small and Medium Sized Enterprise
SMTP Simple Mail Transfer Protocol
SOAP Simple Object Access Protocol
SSL Security Socket Layer
UDDI Universal Description, Discovery, and Integration
UML Unified Modeling Language
URI Uniform Resource Identifier
VAN Value Added Network
WSDL Web Services Definition Language
xCBL XML Common Business Library
XML Extensible Markup Language
XMLDSIG XML Digital Signatures
XPDL XML Process Description Language
XSDL XML Schema Definition Language
XSL Extensible Stylesheet Language
XSLT XSL Transformation

 1

1 Introduction

1.1 Background
The move towards e-business has an impact on organizations in every industry. Supply
chain integration affects the way companies do business with their customers, suppliers
and any other partners. Many companies are implementing business-to-business (B2B)
initiatives aimed at automating trading relationships and making them more efficient.
There is a variety of such initiatives from simple exchange of transactional information
to complex supply networks (Jones 1997, Koski et al. 2001). The benefits of automated
B2B interactions have been recognized for a long time. Compared to mail, phone, and
fax, automated B2B interactions save money and time. They are faster and less error
prone than manual interactions. In addition, automated B2B interactions release human
labor resources from monotonous work. Of course, taking into account the
implementation and operating costs of automated B2B interactions, they do not always
reduce the overall costs but sometimes they only redistribute them.
Currently, the most widely used B2B communication method is Electronic Data
Interchange (EDI), which was established over 25 years ago (Copeland and Hwang
1997). EDI is commonly defined as the direct computer-to-computer exchange of
business documents, such as purchase orders and invoices, with messages in a
predetermined format. These messages are produced from the data in the sender’s
information system, transmitted electronically, and automatically entered into the
receiver’s information system. The key idea of EDI is that the B2B communication
takes place without human intervention.
EDI provides advantages compared to manual B2B communication methods. It has
shown that electronic data exchange between the trading partners leads to faster
transactions and cost savings (Pawar and Driva 2000). In addition, cross-industry
standards American National Standards Institute's Accredited Standards Committee
X12 (ASC X12) (ASC 2003) in North America and United Nations Electronic
Document Interchange for Administration, Commerce, and Transportation (EDIFACT)
(UNECE 2003) in the rest of the world, as well as multi-party communication
connections in Value Added Networks (VANs) have promoted the use of EDI
(Copeland and Hwang 1997).
Despite its widespread adoption, EDI is costly and rigid (Goldfarb and Prescod 2002).
Its expense and inflexibility has limited its spread to the large enterprises and acted as
an effective barrier to implementations by small and medium sized enterprises (SMEs).
Many SMEs use EDI only because their larger partners require it. EDI has had the
additional disadvantage that it does not support real-time communication but business
documents are exchanged using batch processing. It is not unusual that a company uses
EDI to communicate with a small fraction of its trading partners, whereas
communication with the remaining partners relies on other methods (Westarp et al.
1999). In addition, many company use EDI to exchange purchase orders and invoices
but other methods to exchange other business documents.
The Internet offers a cheap and flexible approach to B2B interactions. In principle, it
provides a channel for establishing relationships with a broad range of trading partners.

 2

This could enable companies to build on the progress they have already made using EDI
in integrating their supply chains. The Internet could open up the opportunities for these
benefits to be enjoyed by SMEs that have not used EDI. For example, the following
statistics shows that the use of the Internet has spread in a different way compared to the
use of EDI.
A survey of e-business in Nordic companies conducted in 2000 (Statistics Denmark et
al. 2001) shows that the volume of EDI sales of all Finnish companies was 23.0 billion
Euros, whereas the volume of Internet sales was 1.8 billion Euros. Although the volume
of EDI sales accounts for more than tenfold the volume of Internet sales, five per cent of
all Finnish companies made at least one per cent of their total turnover from orders
received via EDI, whereas 10 per cent made it from orders received via homepages.
When questions about the relevance of barriers regarding Internet sales were asked, 48
per cent of Finnish companies regarded considerations for existing sales channels, and
45 per cent products not suitable for selling via homepages as an important barrier. This
survey also shows that the use of EDI greatly depends on the enterprise size and has
concentrated on the largest enterprises. SMEs have been more eager to adopt the
Internet than EDI. Respectively, the use of the Internet to sell products is related much
to the industry. The difference between the volumes of EDI and Internet sales indicates
the growth potential of the use of the Internet in B2B interactions.
In principle, it should be easy for companies to start communicating electronically with
their trading partners. In practice, it can be far from straightforward to implement even
relatively simple B2B interactions with a small number of partners because any two
companies differ in their communication infrastructure, in the way they describe their
goods and services, and so on. The Internet alone does not solve this integration
problem. Tim Bray, a co-author of the Extensible Markup Language (XML) standard,
has claimed, "XML is the ASCII of the future". Although Bray may exaggerate the
significance of XML, many are convinced that XML will be the ASCII standard of e-
business (Economist 2001). According to Goldfarb and Prescod (2002), XML will
enable more efficient B2B communication than EDI. Tens of e-business frameworks
have been standardized to tackle the integration problems (e.g. Hasselbring and
Weigand 2001, Shim et al. 2000). An e-business framework answers at least one of the
questions of what information should be shared, when, and how. XML-based e-business
frameworks utilize XML in business documents, business processes, or messaging.
A large number of companies have directed their attention to integration systems, which
utilize both the Internet and XML. These systems are application servers (e.g. BEA
2003, IBM 2003, Microsoft 2003, SoftwareAG 2003, Tibco 2003, webMethods 2003)
that provide solutions for integration problems within and between companies. This
integration takes place through middleware instead of back-end integration with
“legacy” systems, like enterprise resource planning (ERP), supply chain management
(SCM), customer relationship management (CRM), and product data management
(PDM). There are high hopes that such integration systems would enable supply chain
integration in cases in which it has been impossible or unprofitable. However, it is not
clear that XML-based supply chain integration will satisfy these hopes.
Since the mid-1990s, Internet technologies have created increasing technical
opportunities for B2B communication between different companies. The integration
systems represent an applied type of Internet technologies that is becoming popular.

 3

Java and XML form a basic type of these technologies that is already popular. On the
other hand, companies in many industries have changed their operations into forms of
co-operation that could benefit from the increased communication opportunities. These
two parallel developments provide the motivation for studying a match between them.

1.2 Goals
The thesis aims to test a hypothesis that the XML-based integration systems provide a
sound basis for supply chain integration. In other words, XML-based integration would
be more flexible and less expensive than EDI-based integration. The thesis also strives
to correct possible misunderstandings of XML-based supply chain integration.

• The primary goal of the thesis is to examine XML-based integration systems and
how they support supply chain integration between companies. These
experiences are expected to be useful for both the developers and users of the
XML-based integration systems.

• The secondary goal of the thesis is to give a review of supply chain integration,
basic XML technologies, and e-business frameworks. The thesis analyses e-
business frameworks, expectations, and experiences.

1.3 Methodology
The research approaches applied in the thesis can be classified by the goals of the
thesis. A constructive approach and a case study are applied to the primary goal, a
conceptual approach, and a literature study to the secondary goal. The thesis takes a
computer science and engineering viewpoint rather than an industrial engineering and
management viewpoint.
A constructive approach has a long tradition in the engineering research and is widely
used in computer science. It provides a natural basis for the primary objective because
the purpose of this objective is to produce a novel solution to a practically and
theoretically relevant problem. In addition, a case study was needed to validate this
solution. Although it cannot be statistically generalized, it is strong on realism.
The constructive approach was employed by implementing a prototype of the XML-
based integration system in a research project named Virtual Switchgear Factory, which
was a subproject of the GNOSIS Virtual Factory project. This prototype called
Communication Application (CA) was studied with an industrial case, in which the
main contractor of the production network was a switchgear production company, ABB
Control. The other companies of the network were subcontractors and suppliers of the
main contractor. One of these subcontractors, InCap Electronics, was also involved in
the case. The CA was developed for and experimented with ABB and InCap. Since
these companies partly used EDIFACT in supply chain integration, it was possible to
evaluate the benefits and costs of the XML-based integration system. Research
scientists not involved in the implementation of the CA carried out this evaluation for
the main part. This was sensible for two reasons. On the one hand, developers of the CA
had no sufficient expertise of conducting such an evaluation. On the other hand, it was
necessary to minimize the potential bias resulting from expertise on the CA. Therefore,
the developers kept in the background in the evaluation process.

 4

The evaluation was conducted in the form of a two-tier cost-benefit analysis. The first
phase of the evaluation was a case study, whereas the second phase focused on the
generalization of the case-specific results. The idea was to produce more generic
information on the potential benefits and costs of the integration system.
The evaluation work was carried out in close cooperation with ABB Control. This
provided an invaluable opportunity to test new ideas and solutions in practice and to get
immediate feedback on their feasibility with regard the needs of ABB and InCap
Electronics. Since ABB and InCap were using EDI for exchanging a part of their
purchase order, purchase order response, and invoice data over the VANs, the case also
enabled a comparison between CA and EDI with regard to their support for operations
and costs.
The evaluation methodology was largely developed as the work in the case progressed.
Important methodological references included Anandarajan and Wen (1999), Luoma et
al. (1999), Willcocks and Lester (1999a, 1999b), and Zuboff (1988). The main
methodological challenges related to the identification and assessment of the potential
benefits and costs of a system that was not operational at the time of the evaluation. In
consequence, special emphasis was given to developing methods that would make it
easier to concretize what a corresponding operative system would be able to do if it was
actually made into a product and brought into production use at ABB. Therefore, not
only demonstrations and experiments with the CA but also discussions and workshops
with the representatives of the case companies had an important role in the evaluation
process. This resulted in a rich picture of the case companies’ processes and systems,
and the potential role of a CA type of integration system in that domain. Different kinds
of models, such as ABB’s order-delivery process models and interaction diagrams to
describe functionality of the CA, were used to facilitate discussions and analysis.
For the most part, the evaluation results were based on consensus. For example, the
results of functional tests were jointly investigated because the work required a
profound understanding of EDIFACT and XML Common Business Library (xCBL) 2.0
(xCBL 2003), which was used as an XML-based e-business framework in the case.
Estimates on the expected implementation demands and potential business impacts were
mainly founded on the views of the case companies. Configuration and maintenance
related demands and costs were estimated by the evaluator, who installed and
maintained the CA at ABB, and the developers of the CA based on their own
experience. Estimates on the EDI-related benefits and costs were provided by ABB’s
system specialists with extensive EDI development experience.
There were no particular reasons to worry about possible respondent bias in this case
because neither the representatives of the case companies were responsible for
implementing the prototype, nor were they committed to bringing it into production use.
It was concluded that the given estimations were sincere and based on the best available
knowledge and experience at that time. In addition, representatives of the case
companies as well as developers of the CA reviewed the evaluation results. Some of
these results were based on confidential information and, therefore, were not published
in the original form.
For part of the secondary goal, a conceptual approach is applied to supply chain
integration issues to illustrate different kinds of integration models. A literature study
reviews e-business frameworks based on their documentation. This review includes

 5

analysis to identify the basic features of the e-business frameworks, a comparison and
classification of these frameworks.

1.4 Scope
For the primary goal, the thesis is limited for two reasons. Originally, there was no
intention to carry out detailed evaluation of the CA in the supply chain context because
only ABB Control was officially involved in the Virtual Switchgear Factory project as
an industrial partner. InCap Electronics was kindly willing to participate in the
experiments and evaluations. During these experiments, the CA resided at ABB and
ABB’s and InCap’s users had access over the Internet to the CA by a browser.
Interactions between the two integration systems were not tested in this industrial case
because it was not possible to install and maintain the CA at InCap. In all, alternative
options were few because only ABB and InCap were able to provide the information
needed.
A lack of research scientists capable of implementing or evaluating the CA resulted in
another major restriction with the project budget and schedule. Therefore, a number of
important security and reliability features were not implemented or evaluated in the CA.
These features include the use of Security Socket Layer (SSL) in data communication
and transaction management in database operations. In addition, the industrial case
focused on only six interactions although a large number of important interactions were
identified. Interactions related to purchase orders, purchase order responses, and
invoices were chosen. These are the most common EDI messages in Finland
(Kärkkäinen et al. 2001). xCBL 2.0 was chosen because it was ahead in the
development of XML-based e-business frameworks.
For the secondary goal, the thesis covers those XML technologies used to validate,
parse, and transform XML documents. This thesis does not deal with Web Services
standards Simple Object Access Protocol (SOAP) (W3C 2000b), Universal Description,
Discovery, and Integration (UDDI) (UDDI 2002), and Web Services Definition
Language (WSDL) (W3C 2001a) or Semantic Web standards Resource Description
Framework (RDF) (W3C 1999c), RDF Schema (RDFS) (W3C 2003a), and Web
Ontology Language (OWL) (W3C 2003b) although their importance seems to be
increasing. The family of the XML standards is large but many of them are still in the
unstable state. At least, tools with any real use are missing. This instability also applies
to e-business frameworks. These frameworks usually contain a lot of documentation.
This thesis gives a detailed view on xCBL, RosettaNet (2003), and Electronic Business
XML (ebXML) (ebXML 2003) because they have been more in the limelight. These
frameworks are compared to Business Process Modeling Language (BPML) (BPMI
2003), Commerce XML (cXML) (cXML 2003), Open Applications Group Integration
Specification (OAGIS) (OAG 2003), papiNet (2003), and XML Process Description
Language (XPDL) (WfMC 2003), which also seem to be suitable for industrial B2B e-
commerce.

1.5 Structure
Section 2 focuses on the secondary goal of the thesis. Subsection 2.1 deals with supply
chain management (I), and subsection 2.2 with XML technologies (IV). The other

 6

subsections are new contributions that summarizes expectations and experiences
concerning XML-based supply chain integration, and analyses, compares and classifies
XML-based e-business frameworks.
Section 3 addresses the primary goal. It reports experiences gained from the
implementation and evaluation of the prototype in an industrial case (II, III, IV).
Section 4 compares this research with previous research, discusses its results, presents
opinions about XML-based supply chain integration, and presents questions for further
research.
Section 5 concludes the thesis.

 7

2 Review
This section gives a review of XML-based supply chain integration. Supply chain
integration is a necessary rather than a sufficient requirement for efficient supply chain
management. XML provides a medium to facilitate information sharing between the
trading partners. XML is not a complete solution for information sharing but e-business
frameworks are needed to fill the gaps in interoperability. First, the section discusses the
concept of supply chain management, presents three reasons for and three impacts of
supply chain management, and identifies three integration models. Next, this section
goes through the XML standard and the basic XML technologies for validating, parsing,
and transforming XML documents. In addition, the section explains why e-business
frameworks are necessary, and identifies three basic features, and four categories of the
frameworks. This section summarizes 26 XML-based e-business frameworks, compares
the eight most important frameworks, and describes three of them in detail. In addition,
the section looks over expectations on and experiences from XML-based supply chain
integration. Finally, XML technologies, expectations, e-business frameworks, and
experiences are reviewed critically.

2.1 Supply chain management

2.1.1 Concept
A supply chain means a flow of goods, services, money, and information through
different units (Tan 2001). These units are legally independent companies, physically
distant factories or offices, or organizational entities having autonomy to make
decisions over their information systems. Supply chain management encompasses
logistics that studies material and information flows, purchasing, and selling in terms of
operative questions, such as transportation, ordering and packing, as well as strategic
questions, such as competition. Although there are a large number of definitions for
supply chain management, it is a more comprehensive concept than logistics. Supply
chain management plans and controls various flows from the raw material suppliers to
the end customers.
Literally speaking, the concept of supply chain management is problematic because
supply refers to operations management through push, i.e. inventories and supplier
control. In comparison, demand chain management reflects operations management
through pull, i.e. orders and customer control. Operations management is not
independent of the general economic situation. During recessions, supply-based
management is often utilized because of overcapacity and more intense competition. On
the other hand, undercapacity and less intense competition lead to demand-based
management during booms. The concept of supply chain management is associated both
with supply-based and demand-based management.
Supply chain management is closely related to Porter’s (1985) idea of a value chain that
is based on the process view of organizations. According to this idea, an organization
can be seen as a system that is made up of subsystems, each with inputs, transformation
processes and outputs. The Supply Chain Operations Reference (SCOR) model (Supply

 8

Chain Council 2003) is a description of processes in the supply chain. It consists of the
following processes:

• Plan: Demand/supply planning

• Source: Sourcing/material acquisition, manage sourcing infrastructure

• Make: Production execution, manage make infrastructure

• Delivery: Order management, warehouse management, transportation and
installation management, manage deliver infrastructure

This model requires that participants in the supply chain share their information. These
participants are not only different units within the same company but they often belong
to the different companies. The former case is related to an internal supply chain
because one participant has authority over other participants. The latter case is related to
an external supply chain because all participants have autonomy. The latter case is in
many ways more difficult than the former one. Since a supply chain is based much on
cooperation, competition is not necessary between companies but between supply
chains. However, supply chains are not isolated but they often cross and form a supply
network. Figure 1 illustrates that a company may have a number of units and may be
involved in a number of supply chains at the same time. The company cooperates with
its customers and suppliers that may compete with each other. Similarly, these
customers and suppliers may cooperate with the competitors of the company. There is a
tradeoff between competition and cooperation. Since management is about decision
making, which requires information, supply chain management requires integration,
which is about information sharing between the participants. Therefore, the basic
challenges originate from the difficulties in balancing competition and cooperation
between the participants in the supply chains.

External supply chains

Supplier Customer
Supplier’s
supplier

Customer’s
customer

C o o p e r a t i o n

Internal supply chains

C
o
m
p
e
t
i
t
i
o
n

Head-
quarter

Unit

Unit

Unit

Unit

 Figure 1: Competition and cooperation in a supply network

2.1.2 Business impacts
Supply chain management aims to intensify the processes from raw-materials suppliers
to end customers. Its purpose is to increase the added value and to improve the resource
utilization and cost efficiency by getting the right product at the right time to the right

 9

place with a minimum handling and buffering. The following reasons emphasize the
role of supply chain management:

• Internationalization of companies: Globalization has lead to a situation, in which
companies, even medium-sized ones, have units in different countries. Since
operations often take place over a geographically wide area, needs arise to
economize warehousing and transportations.

• Complex products: Products have become complex and a single company does not
have the necessary resources to realize them. Since development of resources from
scratch may take a lot of time and efforts, it may be the best choice to utilize the
existing resources of other companies. Although a product is not complex, it often
has to be customized.

• Changes in market conditions: Rapid technological development has resulted in
shortening product life cycles. Since profitable opportunities come and go quickly,
the market is saturated fast and new products have to be brought onto the market
frequently. Therefore, the needs and abilities of different trading partners have to be
found and matched quickly.

Supply chain management has impacts on the following objectives at least:

• Response time is the time when the customer places an order and receives this order.
Since shorter response time increases customer satisfaction, it improves
competitiveness.

• Inventory level has an important effect on profitability because a smaller inventory
reduces the working capital costs. It also reduces the risk of obsoleteness.

• Lead time is the sum of the processing time to convert raw materials into finished
products and the waiting time at the buffers. In principle, competitiveness and
profitability should not be mutually exclusive. In practice, increasing safety
inventories may reduce the response time. Similarly, a longer response time may
enable smaller inventories. Since a shorter lead time enables faster reactions, it
opens up a way to improve both competitiveness and profitability.

• Capacity utilization plays an important role. On the one hand, underutilization
erodes both competitiveness and profitability because idle employees and machines
generate costs but no revenue. It is possible to balance these costs to the revenues
but adjustment of capacity may also be costly. On the other hand, overutilization
wears out capacity fast. Although it would be profitable in the short term,
deterioration of capacity may be very costly in the long run. In order to improve
capacity utilization, the company has to be capable of selling its own capacity when
that is possible and buying capacity from others when it is needed.

Supply chain management performs accurate assignment of resources and exact
synchronization of activities in the supply chain. It has potential for considerable
positive or negative business impacts. In the best case, supply chain management
enables a seamless supply chain that reduces the response time, lead time, and inventory
level, and improves capacity utilization. In the worst case, its failure leads to
redistribution of rewards and risks that is costly and creates no new value added.

 10

2.1.3 Integration models
As information sharing, integration can be categorized in many different ways. The first
basic classification deals with the nature of communication.

• Manual communication means human-to-human communication between the
trading partners. Human intervention is needed because this communication
takes place by meetings, mails, phone calls, faxes, and e-mails. The fact is that
technology can never replace all social aspects related to this kind of
communication.

• Semi-automated communication is human-to-system communication. Exchange
of information is performed in one end by the information system, and in the
other end, human intervention is necessary.

• Full-automated communication means system-to-system communication.
Information is exchanged between the trading partners’ systems automatically.
No human intervention is needed.

The second basic classification is based on the nature of the trading partners.

• B2B e-commerce occurs between organizational units of the company or
between companies.

• Business-to-consumer (B2C) e-commerce takes place between companies and
households.

• Business-to-government (B2G) e-commerce occurs between companies and
public institutions.

Integration can be internal or external. Internal integration occurs within an
organizational unit. It is integration of applications from different software vendors and
in-house systems with packaged applications. Enterprise application integration (EAI)
focuses on these issues. Linthicum (2001) suggests five approaches to internal
integration. These are data-oriented, application interface-oriented, method-oriented,
portal-oriented, and process integration-oriented solutions.
External integration takes place between organizational units. These units are different
units within the company or different companies. External integration includes sharing
information with customers and suppliers as well as activities brokered through
intermediaries. Supply chain integration is related to these issues. Goldfarb and Prescod
(2002) suggest four approaches to external integration. In traditional commerce, each
customer and supplier may be automated internally. These customers and suppliers
connect their systems by manual processes, such as mail, fax, and phone calls. Through
a web storefront, the customers can view a supplier’s catalog of goods and services and
place orders directly into a supplier’s system. Nothing is necessary automated on the
customer’s side. With an e-commerce portal, customers go to the portal website to view
the supplier’s catalogs and place orders. Suppliers also go to the same website to view
and respond to orders. In integrated e-commerce, the systems of different companies
exchange information directly, which eliminates manual processes.
Without loss of generality, three models can be presented for supply chain integration.
The first two model represent the prevailing solutions, whereas the third model reflects

 11

some recent developments in the B2B e-commerce. The following models are
independent of whether it is a question of bilateral or multilateral relationships.

Supplier Customer

Figure 2: The point-to-point model
Figure 2 presents the point-to-point model. This model is traditional because EDI
solutions rely on it. According to the point-to-point model, integration takes place
directly between the trading partners who have signed a trading partner agreement,
which defines and describes B2B interactions. There may be a number of brokers in
between but their role is to route the messages. The point-to-point model enables
flexibility to automate different kinds of interactions. Standards are not a necessity but
they reduce the implementation costs. If a point-to-point solution is trading-partner-
specific, the implementation costs may be very high. In that case, a profitable solution
requires a long-term, high volume trading relationship.

HubSupplier Customer

Figure 3: The hub-and-spoke model
Figure 3 illustrates the hub-and-spoke model that was born along with the Internet.
Usually this model is based on an electronic marketplace. There are three kinds of
electronic marketplaces. Buyer-side marketplaces are more likely in the B2B and B2G
contexts and seller-side marketplaces in the B2C context. Third-party marketplaces are
not limited to one of these contexts. For example, FastParts (www.fastparts.com) for
electronic components, MetalSite (www.metalsite.com) for metals, PaperSpace
(www.paperspace.com) for pulp and paper, Commerce One Net
(www.commerceone.net), and Ariba Supplier Network (service.ariba.com) are third-
party B2B marketplaces, whereas General Motors’ TradeXchange for automobile
components is a buyer-side B2B marketplace. Project portals also reflect the hub-and-
spoke model in the broad sense. According to the hub-and-spoke model, the trading
partners are integrated through a hub. The hub is not only a broker but also an
intermediary aggregating a demand for the suppliers and a supply for the customers.
The trading partner agreement is prepared between the intermediary and the trading
partner manually. The hub-and-spoke model is limited to interactions, such as product
searches, catalog updates, orders, and auctions in the electronic marketplaces and read
and write operations of the electronic notice board in the project portals. In order to
reach a critical mass of trading partners, standards are necessary.

Registry1st 1st

2nd
Supplier Customer

Figure 4: The service-oriented model

http://www.fastparts.com/
http://www.metalsite.com/
http://www.paperspace.com/
http://www.commerceone.net/
http://service.ariba.com/

 12

Figure 4 presents the service-oriented model that has received much publicity along
with XML. With this respect, ebXML (2003) and Web Services standards SOAP (W3C
2000b), UDDI (UDDI 2002), and WSDL (W3C 2001a) have been important. Trading
partners, i.e. a customer, a supplier, or an intermediary, are integrated by a party who
possesses a registry. This registry contains information about the business and technical
capabilities of the trading partners. In the first phase, the trading partners store their
capabilities into the registry and retrieve an intersection of capabilities supported by
both of these trading partners. A trading partner agreement is generated automatically.
In the second phase, these partners perform interactions according to this intersection.
The service-oriented model requires standards. Their expressive power determines what
kind of interactions can be performed. The service-oriented model may resemble a
combination of the point-to-point and hub-and-spoke models. However, the registry is a
kind of an electronic directory. Interactions do not pass through the registry but are
executed directly between the trading partners.

2.2 XML technologies

2.2.1 XML standard
The XML standard (W3C 2000a) was designed to improve the functionality of the
Internet by providing flexible information structuring. XML standard 1.0 was
introduced in 1998. XML is extensible because it is not a fixed format like Hypertext
Markup Language (HTML) (W3C 1999b) but a metalanguage for describing other
languages. XML can be utilized to design customized markup languages for different
types of documents. XML is a subset of Standard Generalized Markup Language
(SGML) (ISO 1986), with some exceptions. SGML is a standard for defining
descriptions of the structure of an electronic document. SGML is very powerful but
complex, whereas XML is a lightweight version of SGML cleansed of all the features
that make SGML too complex for the Internet. SGML is very comprehensive, which
makes it hard to learn and expensive to implement.
The XML standard defines the syntax of a markup language that is applied to represent
the structure of an electronic document. These documents are formed of a set of objects
that contain elements. Each element may have a number of attributes, according to
which the document will be processed. XML provides a formal syntax to describe the
dependencies between the objects, elements and attributes, and to build an electronic
document. Namespaces were added to XML shortly after the XML Standard 1.0. A
namespace is a collection of names for a particular domain with specific meaning. The
same name may be used in several namespaces with different meanings because
uniqueness of the namespaces is achieved using Uniform Resource Identifiers (URIs).
Figure 5a shows an example XML document without namespaces, and 5b with a
namespace. PurchaseOrder is a root element of this document, other elements are non-
empty, and Unit is an attribute of the element Quantity. This document is well formed.
Why do namespaces matters? In Figure 5b, a namespace http://www.soberit.hit.gi/b2b
may define that the element ProductID means a product name as a string, whereas there
may exist other namespaces in which this same element means a product code as a
number.

 13

<?xml version="1.0" encoding="utf-8"?>
<PurchaseOrder>
<BuyerParty>
<PartyID>X</PartyID>

</BuyerParty>
<SellerParty>
<PartyID>Y</PartyID>

</SellerParty>
<Product>
<ProductID>ZZZ</ProductID>
<Quantity Unit="kgs">
12.3

</Quantity>
</Product>

</PurchaseOrder>

(a) (b)

<?xml version="1.0" encoding="utf-8"?>
<PurchaseOrder xmlns="http://www.soberit.hut.fi/b2b">
<BuyerParty>
<PartyID>X</PartyID>

</BuyerParty>
<SellerParty>
<PartyID>Y</PartyID>

</SellerParty>
<Product>
<ProductID>ZZZ</ProductID>
<Quantity Unit="kgs">
12.3

</Quantity>
</Product>

</PurchaseOrder>

Figure 5: Example of an XML document
The XML document has to be well formed. The XML document has only one root
element that is the parent element of other elements in the document. A non-empty
element must have a start-tag and an end-tag in between the start-tag and end-tag of its
parent element. It has either child elements or content in between its start-tag and end-
tag. An empty element has an empty-tag but neither child elements nor content. A tag
always starts with a left angle bracket (<), contains the element name, and ends with a
right angle bracket (>). In fact, an end-tag begins with a left angle bracket and slash (</)
and an empty-tag ends with a slash and right angle bracket (/>). XML is also case-
sensitive. Only start-tags and empty-tags can contain attributes. If there is an attribute,
the attribute name must be followed by an equal sign (=) and an attribute value enclosed
in single (') or double quotes ("). XML is a context-free language that can be
represented in the Backus-Naur form (BNF) (Appendix 1).
In practice, the XML standard alone is not enough but a number of XML technologies
are necessary in supply chain integration. Figure 6 illustrates one possible case in
supply chain integration, in which business documents are exchanged between trading
partner X’s and Y’s databases. The idea is to employ basic XML technologies for
validating, parsing, and transforming XML documents as business documents.

Transforming
XSLT

Business document
XML

Validating
DTD/XSDL

Parsing
SAX/DOM

Transforming
XSLT

Database Database

Trading partner X Trading partner Y

 Figure 6: Basic XML technologies in supply chain integration.

2.2.2 Validating: DTD and XSDL
An XML document can be validated against a Document Type Definition (DTD) or
schema that is included in or referenced by the document. Since DTD and schemas
describe the metadata of the document, they can be used to define a vocabulary that is a
shared specification for documents in a particular domain of interest.
Although DTDs are a part of XML Standard 1.0, they originate from SGML. A DTD
specifies the structure of the XML document by defining elements of the document,
one, zero-or-one, zero-or-more, and one-or-more occurrences of the elements and the
hierarchical order between the elements. The DTD may define required and optional
attributes of the elements and alternative values of the attributes. It may also contain

 14

references to other DTDs. Unfortunately, DTDs are not well-formed XML documents
and provide little support for data typing, cardinality, and namespaces. A schema is an
XML document for describing the structure of XML documents. XML Schema
Definition Language (XSDL) (W3C 2001b), which is also known as XML Schema, is
an XML language for schemas. XSDL offers a number of built-in datatypes and
capabilities of defining datatypes. It allows to apply datatypes to both element content
and attribute values. In addition to XSDL, there are also other schema languages, such
as Microsoft’s XML Data-Reduced, Schematron, and RelaxNG, which are used less
frequently. Figure 7a shows an example DTD and 7b an example XSDL.

<!ELEMENT PurchaseOrder (
BuyerParty,
SellerParty,
Product+)>

<!ELEMENT BuyerParty (
PartyID)>

<!ELEMENT SellerParty (
PartyID)>

<!ELEMENT Product (
ProductID,
Quantity)>

<!ELEMENT PartyID
(#PCDATA)>

<!ELEMENT ProductID
(#PCDATA)>

<!ELEMENT Quantity
(#PCDATA)>

<!ATTLIST Quantity
Unit (kgs|lbs)
#REQUIRED>

(a) (b)

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified">
<xs:element name="PartyID" type="xs:string"/>
<xs:element name="ProductID" type="xs:string"/>
<xs:element name="Quantity">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs:decimal">
<xs:attribute name="Unit" type="QuantityUnit"

use="required"/>
</xs:extension>

</xs:simpleContent>
</xs:complexType>

</xs:element>
<xs:element name="PurchaseOrder">
<xs:complexType>
<xs:sequence>
<xs:element ref="BuyerParty"/>
<xs:element ref="SellerParty"/>
<xs:element ref="Product“maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

</xs:element>

<xs:element name="BuyerParty">
<xs:complexType>
<xs:sequence>
<xs:element ref="PartyID"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="SellerParty">
<xs:complexType>
<xs:sequence>
<xs:element ref="PartyID"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="Product">
<xs:complexType>
<xs:sequence>
<xs:element ref="ProductID"/>
<xs:element ref="Quantity"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:simpleType name="QuantityUnit">
<xs:restriction base="xs:string">

<xs:enumeration value="kgs"/>
<xs:enumeration value="lbs"/>

</xs:restriction>
</xs:simpleType>

</xs:schema>

 Figure 7: Example of DTD and XSDL
Although not all XML parsers are validating, the most popular ones enable that XML
documents are validated against DTDs. In comparison, a number of XML parsers
supporting validation against XSDL is small but increasing.

2.2.3 Parsing: SAX and DOM
There are two approaches for parsing XML documents. Simple API for XML (SAX)
(SAX 2002) is an event-based application programming interface (API) that reports
parsing events, such as the start and end tags, directly to the application through
callbacks. The application implements handlers to deal with the different events. Since
the original SAX did not support namespaces, SAX2 was developed. Document Object
Model (DOM) (W3C 2002) is a tree-based API that converts an XML document into a
tree structure. The application has access to navigate and manipulate this structure. It
can also generate a well-formed XML document.
Comparing the parsing approaches, the SAX requires more programming due to
handlers and makes it harder to visualize XML documents than the DOM. However, the
SAX is faster and less memory-intensive because it does not load entire XML
documents as tree structures into the memory.
There are several XML parsers for parsing XML documents. The most popular XML
parsers support both SAX and DOM approaches.

 15

2.2.4 Transforming: XSLT
XSL Transformation (XSLT) (W3C 1999a) is an XML language for transforming XML
documents into other XML documents. XSLT is not intended as a complete general-
purpose XML transformation language but it is designed for use as a part of Extensible
Stylesheet Language (XSL), which is a stylesheet language for XML. XSL includes a
vocabulary for specifying formatting. For example, the block formatting represents the
breaking of the content of a paragraph into lines.
A transformation expressed in XSLT describes the rules for transforming a source
document into a result document. This stylesheet contains a set of template rules that
consist of patterns and templates. This allows a stylesheet to be applicable to a wide
class of documents that have structures similar to the source document. A pattern is
matched against elements in the source document. A template is instantiated to create
the part of the result document that is separate from the source document. In
constructing the result, elements from the source can be filtered and reordered, and
arbitrary structure can be added. Figure 8a shows an example of an XSLT document
and 8b is the output document of the transformation of the document in Figure 5.
<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="xml" version="1.0" encoding="UTF-8"
indent="yes"/>

<xsl:strip-space elements="*"/>
<xsl:template match="PurchaseOrder">
<PurchaseOrder>
<BuyerPartyID>
<xsl:value-of select="BuyerParty/PartyID"/>

</BuyerPartyID>
<SellerPartyID>
<xsl:value-of select="SellerParty/PartyID"/>

</SellerPartyID>
<ProductID>
<xsl:value-of select="Product/ProductID"/>

</ProductID>
<Amount>
<xsl:value-of select="Product/Quantity"/>

</Amount>
</PurchaseOrder>

</xsl:template>
</xsl:stylesheet>

<?xml version="1.0" encoding="UTF-8"?>
<PurchaseOrder>
<BuyerPartyID>X</BuyerPartyID>
<SellerPartyID>Y</SellerPartyID>
<ProductID>ZZZ</ProductID>
<Amount>12.3</Amount>

</PurchaseOrder>

(a) (b)

 Figure 8: Example transformation from one format to another
Previously, an XSLT processor was a separate tool. Currently, many XML parsers are
capable of XSLT processing.

2.3 Expectations
The literature provides a number of expectations for the benefits of XML in supply
chain integration. The following list reviews the most common arguments for XML.

• XML is flexible (Cummins 2002, Fitzgerald 2001, Goldfarb and Prescod 2002,
Reimers 2001): Rather than being fixed in describing a particular set of data,
XML with its DTDs or schemas is able to define a number of documents that
together form a separate language. XML documents can easily be extended by
adding further elements and attributes. Documents can be defined by sharing a
new DTD or schema within the user community. Since XML is simple in its

 16

nature, requirement for considering an XML document well-formed is to follow
basic syntax rules.

• XML is human-readable (Cummins 2002, Fitzgerald 2001, Reimers 2001):
XML documents can be read and written by humans unlike the documents
created by applications in a machine-readable format.

• XML is self-describing (Cummins 2002, Goldfarb and Prescod 2002): The DTD
or schema can guarantee at the time of document creation that all the elements
are correctly specified in the right order. The usage of a DTD or schema can
help guarantee that the values of the contained elements are valid and fall within
acceptable ranges. Documents can be validated at the time of creation or at the
time of receipt and be rejected or accepted without human intervention.

• XML is structured (Fitzgerald 2001, Goldfarb and Prescod 2002): The nature of
XML is a structured document format that represents not only the information to
be exchanged but also the metadata encoding the structure of the information to
be exchanged. Most text files cannot offer this simple advantage because they
represent the information to be exchanged without the metadata. File formats,
such as tab-delimited text files, contain data in predefined locations in the file.
Relational databases have similar advantages but their formats are only
machine-readable.

• XML is widespread and inexpensive (Cummins 2002, Fitzgerald 2001): XML
tools have become relatively widespread and inexpensive because XML shares
many of the properties of SGML and HTML.

• XML is platform-neutral and widely supported (Cummins 2002, Fitzgerald
2001): XML is a platform-neutral data format. This means an XML file is the
same thing regardless of the platform that processes it. As an open-source
technology, XML provides developers a wide base of resources that can provide
assistance in the implementation.

• XML-based systems have lower costs (Goldfarb and Prescod 2002, Reimers
2001): Compared to EDI, XML offers serious cost and development timesaving.
There are many open source tools for document creation, validation, parsing,
and transformation.

• XML separates processing from content (Goldfarb and Prescod 2002): Since
XML represents information and the metadata about the information, it does not
specify any particular way for how the data should be processed. In contrast,
other formats, such as text files and databases, explicitly require accessing the
documents in a specific way. Of course, the data contained within XML needs to
be processed but the method for processing this information is not specified
anywhere within the XML document.

2.4 E-business frameworks

2.4.1 Basics
Companies draw up their documents and perform their processes in different ways. The
differences in meanings of terms and modes of operation between companies result in

 17

errors. The companies also have different information systems. Heterogeneous systems
cannot exchange information but a lot of manual work is needed to prepare the input for
the various systems to process the output. Not only companies are “islands on
automation” but units within a company may face the basic problem of supply chain
integration, which is information sharing.
To operate across organizational boundaries, trading partners must have shared
understanding of their ways of doing business. To automate business interactions, the
trading partners’ systems must be capable of communicating. The trading partners have
to know what information should be shared, when, and how. Interoperability of
business documents, business processes, and messaging is an answer to the questions of
information sharing. An e-business framework is a standard for this purpose. In a non-
philosophical sense, the framework is a kind of ontology that enables communication
between systems in a way that is independent of the individual system technologies,
architectures, and application domain. The framework often combines other standards,
specifications, and classifications.
E-business frameworks cover business and technical aspects of business documents,
business processes, and messaging in supply chain integration but they are not limited
to these issues. Since only a few of frameworks deal with all business documents,
business processes, and messaging issues, frameworks are not only substitutes but in
part complements. The following list outlines the basic interoperability issues:

• Business document issues are about what information to share. The framework
contains a vocabulary that describes the structures and parts of the business
documents, and defines meanings of the terms to be used in these documents.
For example, if trading partner X sends a purchase order to trading partner Y,
this document includes elements for a customer’s name, a supplier’s name, a
product name, and an ordered quantity as well as an attribute for a measuring
unit.

• Business process issues are about when to share information. The frameworks
take different approaches to these issues. The rough process approach explains
in which order to exchange particular business documents. The detailed process
approach describes the purpose of particular business processes and the trading
partners’ roles in them. It also defines what kinds of business documents are
needed and in which order to exchange them. The generic process approach
deals with neither particular business processes nor the exchange of particular
business documents. It provides a way to model a combination of the roles,
actions, and interactions as choreography of the business process. For example,
if Y has received a purchase order from X, Y sends a purchase order response to
X.

• Messaging issues are about how to share information. This also includes how to
handle basic exceptions, such as message losses. Since the message is an
envelope consisting of headers, attachments, and content, the framework defines
the structure and parts of the headers, and packing, e.g. Multipurpose Internet
Mail Extensions (MIME), security, e.g. Security Multiparts for MIME
(S/MIME), and transportation standards, e.g. Hypertext Transfer Protocol
(HTTP), to be used with these messages. For example, if X and Y exchange

 18

purchase orders and purchase order responses, they use HTTP over SLL
(HTTPS) to transport these documents.

2.4.2 XML and frameworks
Since many e-business frameworks utilize XML, this raises the question of the division
of labor between XML and the frameworks. Automated document communication
comprises the syntactic and semantic interpretations (Russell and Norvig 1995) that are
necessary for understanding of the business documents. The syntactic interpretation is
divided into lexical and syntactic analyses and the semantic interpretation into semantic
and pragmatic analyses:

• Lexical analysis scans the characters of the business document and produces
tokens according to the lexicon that defines the acceptable combinations of
characters in the language. Since XML does not define element and attribute
names as well as element contents and attribute values, DTDs or schemas are
needed. A framework may provide these DTDs or schemas.

• Syntactic analysis obtains the tokens and generates a tree of symbols according
to the grammar that defines the structure of the language. If the meanings of the
symbols are independent on this structure, XML is enough. Otherwise, the
framework needs to provide DTDs or schemas.

• Semantic analysis recognizes what the symbols denote and associates the
alternative meanings to the symbols in the tree. XML, DTDs, and schemas alone
cannot help if the symbol is ambiguous or non-descriptive. The framework
defines the meanings for each symbol that are relevant for supply chain
management.

• Pragmatic analysis interprets the symbols in the prevailing context. For each
symbol, the most suitable meaning is chosen from the alternative ones taking
into account other symbols and their alternative meanings. Since XML, DTDs,
and schemas are context-free languages, their assistance is incomplete in this
choice. The framework should guide the choice of the meaning. However, if the
knowledge related to this choice cannot be explicated, it is difficult to record
this knowledge in the framework.

The following example illustrates these analyses. Trading partner X retrieves a purchase
order from the database and sends it. Trading partner Y receives and stores this
purchase order in the database.

<PurchaseOrder>
<BuyerPartyID>X</BuyerPartyID>
<SellerPartyID>Y</SellerPartyID>
...

</PurchaseOrder>

<PurchaseOrder>
<PartyID>X</PartyID>
<PartyID>Y</PartyID>
...

</PurchaseOrder>

<PurchaseOrder>
<BuyerParty>
<PartyID>X</PartyID>

</BuyerParty>
<SellerParty>
<PartyID>Y</PartyID>

</SellerParty>
...

</PurchaseOrder>

(a) (b) (c)

 Figure 9: Lexically invalid, syntactically invalid, and valid document

 19

In Figure 9, each XML document is well formed but Y understands only business
document 9c. This document should be in accordance with the DTD or schema in
Figure 7. An e-business framework provides a lexicon in a DTD or schema. In Figure
9a, a lexical analysis does not recognize the elements BuyerPartyID and SellerPartyID.
Since these elements are not in the lexicon, the document is lexically invalid. The
framework also provides a grammar in a DTD or schema. In Figure 9b, a syntactic
analysis finds out that the element PartyID is in the lexicon but its position does not
match with the grammar. Since the elements BuyerParty and SellerParty do not exist,
the document is syntactically invalid. Figure 9c presents a valid XML document to be
stored in the relational database. The framework provides a vocabulary. According to
the vocabulary, the element PurchaseOrder means the document is a purchase order. It
also tells that BuyerParty contains the customer’s and SellerParty the supplier’s
information, and PartyID a trading partner’s name. Using the vocabulary, Y can map
the document into a table related to the purchase orders in the database. However, a
semantic analysis is not enough to map the data into correct columns in this table. For a
pragmatic analysis, the vocabulary may say that if PartyID is within BuyerParty, its
content is a customer’s name, and if this element is within SellerParty, its content is a
supplier’s name. Since Y is a supplier, it is important to ensure that the purchase order
was intended to Y before its data is recorded by a row having X in a column related to
the customer name in the table. This example shows that more information may be
necessary to deploy applications for supply chain integration that an XML document is
able to convey.
In addition to business documents, there are business processes and messaging. XML
does not have a self-evident role in business process issues. The frameworks, which are
based on the rough or detailed process approaches, utilize diagrams and verbal
descriptions rather than XML in business process issues. If the framework follows the
generic process approach, it uses XML to represent a business process in a machine-
executable format. The business process faces the same kinds of phases in its automated
execution as the business document does in the automated communication.
With regard to messaging issues, the framework may use XML in the headers, which
contain data to route the message and to process its attachments and content. This
content is always a business document. Other use of XML depends on those standards
referred to by the framework.

2.4.3 Comparison
Business document, business process, and messaging issues give a sound basis for
comparing different e-business frameworks. The literature provides a number of studies
of e-business frameworks (Hasselbring and Weigand 2001, Li 2000, Shim et al. 2000,
Zhao and Sandahl 2000). These studies are more descriptive than comparative, and they
are already outdated. Novel frameworks have been published, many frameworks have
changed, some have ceased to exist, e.g. BizTalk Framework (www.biztalk.org), and
some have become inactive, e.g. XML/EDI (www.xmledi-group.org). In addition, there
are frameworks that do not use XML, e.g. Open Buying on the Internet (OBI)
(www.openbuy.org). Table 1 reviews XML-based e-business frameworks supporting
industrial procurement, design, production, or distribution, which have been active after
2001.

http://www.biztalk.org/
http://www.xmledi-group.org/
http://www.openbuy.org/

 20

Table 1: XML-based e-business frameworks active after 2001
Framework Site Initiator Purpose

AEX (Automating
Equipment
information
eXchange)

www.fiatech.org/projects/
idim/aex.htm

National Institute of
Standards and
Technology

To exchange information for capital
facility equipment engineering,
procurement, construction, and operations
and maintenance work processes

BMEcat www.bmecat.org Federal Association
of Materials
Management,
Purchasing and
Logistics

To exchange product catalogs
electronically

BPEL4WS (Business
Process Execution
Language for Web
Services)

www-106.ibm.com/
developerworks/library/ws-
bpel

BEA, IBM,
Microsoft

To describe business processes and to
exchange messages

CIDX (Chemical
Industry Data
exchange)

www.cidx.org To exchange business documents in the
chemical industry electronically

CITE (Construction
Industry Trading
Electronically)

www.cite.org.uk Centre for e-Business
in Construction

To exchange business documents in the
construction industry electronically

eBIS-XML www.ebis-xml.net Business Application
Software Developers
Association

To exchange orders and invoices between
different accounting applications

eBuild-XML www.basda.org Business Application
Software Developers
Association

To exchange orders and invoices between
house builders and suppliers

isXML (iron and
steel XML)

www.steel.org/xml American Iron and
Steel Institute

To exchange business documents in the
steel industry electronically

iXF (interoperable
product data
eXchange Format)

www.ixfstd.org SmarTeam To exchange product data electronically

IXRetail
(International XML
Retail)

www.nrf-arts.org Association for
Retail Technology
Standards of the
National Retail
Federation

To interface applications within the retailer

MTML (Marine
Trading Markup
Language)

www.meca.org.uk Maritime e-
Commerce
Association

To exchange information in marine trading
electronically

OpenTrans www.opentrans.org Fraunhofer Institute To exchange orders and invoices
electronically

PDX (Product
Definition exchange)

www.pdxstandard.org To exchange product data between original
equipment manufacturers, electronic
manufacturing service providers and
component suppliers

PIDX (Petroleum
Industry Data
exchange)

committees.api.org/
business/pidx/index.html

American Petroleum
Institute

To exchange business documents in the oil
and gas industry electronically

PSL (Process
Specification
Language)

ats.nist.gov/psl/xml/process-
descriptions.html

National Institute of
Standards and
Technology

To exchange process metadata for
applications involving discrete processes

STAR (Standards for
Technology in
Automotive Retail)

www.starstandard.org To exchange information between
automotive dealers and manufacturers
electronically

TranXML www.openapplications.org/
downloads/tranxml/
tranxml.htm

OAG To exchange information between shippers
and carriers for procurement and delivery
of transportation and logistics services

UBL (Universal
Business Language)

www.oasis-open.org/
committees/ubl

OASIS A vocabulary based on existing
vocabularies

http://www.fiatech.org/projects/ idim/aex.htm
http://www.fiatech.org/projects/ idim/aex.htm
http://www.bmecat.org/
http://www-106.ibm.com/developerworks/library/ws-bpel
http://www-106.ibm.com/developerworks/library/ws-bpel
http://www-106.ibm.com/developerworks/library/ws-bpel
http://www.cidx.org/
http://www.cite.org.uk/
http://www.ebis-xml.net/
http://www.basda.org/
http://www.steel.org/xml
http://www.ixfstd.org/
http://www.nrf-arts.org/
http://www.meca.org.uk/
http://www.opentrans.org/
http://www.pdxstandard.org/
http://committees.api.org/ business/pidx/index.html
http://committees.api.org/ business/pidx/index.html
http://ats.nist.gov/psl/xml/process-descriptions.html
http://ats.nist.gov/psl/xml/process-descriptions.html
http://www.starstandard.org/
http://www.openapplications.org/ downloads/tranxml/ tranxml.htm
http://www.openapplications.org/ downloads/tranxml/ tranxml.htm
http://www.openapplications.org/ downloads/tranxml/ tranxml.htm
http://www.oasis-open.org/ committees/ubl
http://www.oasis-open.org/ committees/ubl

 21

Table 2 shows XML-based e-business frameworks that are compared in more detail in
this thesis. cXML, OAGIS, and xCBL are pioneers in XML-based supply chain
integration and, therefore, included in the comparison. papiNet and RosettaNet are of
interest because Finnish companies are involved in their development. BPML, ebXML,
and XPDL, in turn, provide a new insight into the use of XML in supply chain
integration.

Table 2: XML-based e-business frameworks compared
Fra
me
work

BPML cXML ebXML OAGIS papiNet RosettaNet xCBL XPDL

Site www.bpmi.
org

www.cxml.
org

www.
ebxml.org

www.open
application
s.org/oagis

www.papi
net.org

www.
rosettanet.
org

www.xcbl.
org

www.
wfmc.org

Initiat
ed by

Intalio Ariba OASIS,
UN/
CEFACT

OAG IDEAlli-
ance, AF&
PA, CEPI

 Commerce
One

WfMC

Initiat
ed in

2000 1999 1999 1998 (non-
XML 1995)

1999 1998 1997 1998 (non-
XML 1993)

Ver
sion

1.0 1.2 BPSS 1.0,
ebRIM 2.0,
ebRS 2.0,
ebCPP 2.0,
ebMS 2.0

8.0 2.1 About 100
PIPs ready,
RNBD 2.1,
RNTD 3.0,
RNIF 2.0

4.0 1.0

Tar
get

Internal Cross–
industry

Cross–
industry

Internal,
cross-
industry

Paper and
forest
product

Information
and com-
munication
technology

Cross–
industry

Internal

Bas
ed on

 ASC X12,
EDIFACT

Open-EDI Open-EDI ASC X12,
EDIFACT

Docu
ments

No Yes Modeling Yes Yes Yes Yes No

Num
ber of

 34 About 190
as verb-
noun-pairs

22 About 120 44

Valid
ation

 DTD XSDL XSDL DTD XSDL

Pro
ses
ses

Generic Rough Generic Rough Detailed Detailed Rough Generic

Pro
cess
de
script
ion

XSDL Request-
response
and one-
way
categories

DTD,
XSDL

Scenario
diagrams

Business
scenarios
and dialog
diagrams

Business
scenarios,
flow and
dialog
diagrams

Verbal
scenarios

XSDL

Mess
aging

Web
Services

 ebMS 2.0 Modified
RNIF 2.0

Modified
ebMS 2.0

RNIF 2.0 Web
Services

Trans
portat
ion

 HTTP/S,
SMTP

 HTTP/S,
SMTP

Pack
ing

 SOAP MIME/
Multipart-
Related

Signa
ture

 XMLDSIG S/MIME

http://www.bpmi. org/
http://www.bpmi. org/
http://www.cxml. org/
http://www.cxml. org/
http://www.ebxml.org/
http://www.ebxml.org/
http://www.open applications.org/oagis
http://www.open applications.org/oagis
http://www.open applications.org/oagis
http://www.papi net.org/
http://www.papi net.org/
http://www.rosettanet.org/
http://www.rosettanet.org/
http://www.rosettanet.org/
http://www.xcbl. org/
http://www.xcbl. org/
http://www.wfmc.org/
http://www.wfmc.org/

 22

The summary of the 18 frameworks in Table 1 gives a rough view. Excluding some
exceptions, e.g. CIDX and PIDX, these frameworks fit into the following category:

• Document-centric frameworks concentrate on business document issues,
ignoring business process and messaging issues. This category is composed of
cross-industry and industry-specific vocabularies for business documents.

The comparison of the eight frameworks in Table 2 results in the following categories:

• cXML, OAGIS, and xCBL are cross-industry frameworks. They provide cross-
industry vocabularies but are limited to the rough process approach and are not
greatly concerned with messaging. This category is the oldest one and
emphasizes that supply chain integration is mainly about the interoperability of
business documents.

• papiNet and RosettaNet are industry-specific frameworks. These frameworks
give industry-specific vocabularies. However, their main contribution is in
business processes because papiNet and RosettaNet provide a comprehensive
description of business processes in a particular industry by applying the
detailed process approach. In addition, they take into account messaging.

• BPML, ebXML, and XPDL are process-centric frameworks: They provide no
vocabularies but focus on business processes taking the generic process
approach. This category is the newest one, and therefore very fragmented. Only
ebXML clearly deals with public business processes between trading partners
and puts efforts into messaging and other issues, such as the collaboration
infrastructure. In comparison, BMPL and XPDL are newcomers that focus on
private business processes within a trading partner. All these frameworks
include potential ideas for automated process execution.

2.4.4 xCBL
Common Business Library (xCBL 2003) was started in 1997 by Commerce One, and is
a pioneer framework applying XML to e-business. xCBL is a set of XML-based
components that allows the creation of XML-based business documents. A vocabulary
of the most common cross-industry business documents has been developed after ASC
X12 and EDIFACT. Utilizing the EDI semantics, xCBL aims at to speed and facilitate
the implementation for existing systems based on EDI. xCBL also strives to preserve
and extend the investments made in EDI.

Library

The library of xCBL 4.0 consists of 44 business documents in eight namespaces in
addition to the core. These categories are Order Management, Preorder Management,
Financial, Material Management, Message Management, Application Integration,
Catalog, and Statistics and Forecasting areas. The library comprises Global Elements,
which are business documents in a certain namespace. There are also verbal scenarios
for exchange of these business documents. In addition, the library includes
ComplexTypes, which are components consisting of elements with attributes, and

 23

SimpleTypes, which are enumerations for the elements and attributes. xCBL provides
schemas for business documents in the XSDL format.

• Core: This contains components used several times in other namespaces.

• Order management: These documents are used for general order creation and
processing. These include any documents exchanged between trading partners
for the procurement of goods or services.

• Preorder management: These are used before order creation. These include
documents used for confirmation or validation of price and inventory
information.

• Financial: These are used for the processing of payment for invoicing the goods
or services. This generally includes documents that are exchanged between a
trading partner and a financial institution.

• Materials management: These are used for managing inventory. This includes
documents associated with the forecasting, shipment, or receipt of goods or
services.

• Message management. These are associated with generic xCBL document
processing. This includes any documents that are to be used for general
acknowledgement, response, and error communication.

• Application integration: These are used to interface with backend ERP systems.

• Catalog: This document is associated with catalog content creation, processing,
and inquiries.

• Statistics and forecasting: These documents are used to provide statistical data
and forecasting data for products over a specified time period.

Summary

xCBL stems from the eCo framework project (Glushko et al. 1999). xCBL focuses on
business document issues although it provides business process information on the
exchange of these documents in the form of verbal scenarios. Otherwise, it does not
deal with business process and messaging issues. xCBL raises some questions:

• Since xCBL has been modeled after both ASC X12 and EDIFACT, this leads to
problems in interoperability due to the differences between ASC X12 and
EDIFACT.

• The newest version of xCBL is to some extent incompatible with the older
versions.

2.4.5 RosettaNet
RosettaNet (2003) started in 1998 as a consortium of information technology companies
for implementing and promoting open e-business standards. It was expanded to include
electronic component companies in 1999, and semiconductor manufacturing companies
in 2000.
RosettaNet divides the supply chain to eight clusters:

 24

• RosettaNet Support provides administrative functionality.

• Partner Product and Service Review allows information collection, maintenance
and distribution for the development of trading-partner profiles and product-
information subscriptions.

• Product Information enables distribution and periodic update of product and
detailed design information.

• Order Management supports price and delivery quoting, purchase order
initiation, status reporting, and management, and order invoicing, payment and
discrepancy notification.

• Inventory Management enables collaboration, replenishment, price protection,
reporting and allocation of constrained product.

• Marketing Information Management enables communication of campaign plans,
lead information and design registration.

• Service and Support provides post-sales technical support, service warranty and
asset management capabilities.

• Manufacturing enables the exchange of design, configuration, process, quality
and other manufacturing floor information to support virtual manufacturing.

Clusters 1, 2 and 3 extend processes already specified in EDI. Cluster 4 is much like
the VICS Collaborative Planning, Forecasting and Replenishment standard
(www.cpfr.org). Clusters 5, 6 and 7 provide new kinds of processes. Each cluster is
subdivided into two or more segments, each of which comprises several Partner
Interface Processes (PIPs). A PIP contains one or more business activities, which in
turn specify business actions. In the middle of 2003, there were about 100 PIPs
published.

Two steps can present the use of RosettaNet:
1. In the implementation phase a trading partner acquires RosettaNet specifications

and downloads the RosettaNet Dictionaries. The trading partners make a trading
partner agreement on PIPs, and implement them.

2. In the run time phase a trade partner’s RosettaNet-compliant software creates a
payload from the system, places this payload into a message, and sends the
message as a request to another trading partner. The other trading partner’s
RosettaNet-compliant software receives this message, opens and validates its
payload, wraps the payload in the system, and sends a response according to the
choreography of a business process.

Partner Interface Processes

PIP specifications are based on peer-to-peer message exchange between the RosettaNet-
compliant software systems. This relies on prior knowledge of the peer identities and
their addresses, which should be exchanged by the trading partners in advance. A PIP
shows the roles, messages, and their sequence of exchange. It is limited to the public
process between the trading partners that trigger the execution or are triggered by the
execution of the private processes within the trading partner. The PIP includes the
Business Operational View (BOV), Functional Service View (FSV), and

http://www.cpfr.org/

 25

Implementation Framework View (IFV) based on the Open-EDI Reference Model (ISO
1997). The PIP uses Unified Modeling Language (UML) as a notation for flow and
dialog diagrams.
The BOV captures the semantics of business data entities and their flow of exchange
between roles as they perform business activities. The BOV defines the business
process of the PIP, describes its purpose, and specifies its start state and end state
conditions. The PIP Business Process Flow Diagram illustrates the business activities
and business documents that are exchanged in the PIP. The Partner Role Descriptions
describe roles in the PIP. The Business Activity Descriptions describe business
activities between these roles. The Business Activity Performance Controls specify the
security, audit, and process controls relating to these activities. The PIP Business Data
Documents specify business documents that are generated and exchanged by the roles.
The FSV is systematically derived from the BOV. The FSV specifies the network
component design and possible network component interactions. A network component
design is comprised of agent components and service components that enable the roles
to perform business activities. Agents are often implemented as clients and services as
servers. A service component can both initiate requests to other services and respond to
requests from other services and agents, whereas an agent component can only initiate
requests but cannot respond to requests. A browser is a particular type of agent that acts
on behalf of a human. The network components collaborate by exchanging business
action messages and business signal messages. The Network Component Collaboration
specifies the network components and their message exchange. The Network
Component Specification specifies the roles in the BOV as network components in the
FSV. The Business Action and Business Signal Specification specify business
documents in the BOV as business actions in the FSV. The Business Transaction Dialog
Specification specifies business activities between the roles in the BOV as network
component interactions in the FSV. A network component interaction is a dialog
diagram that represents the message exchange when the network components
collaborate to execute the PIP. The Message Exchange Controls show the properties for
each of the messages exchanged by these interactions.
The IFV specifies the message formats and communication requirements between the
network components supported by the RosettaNet Implementation Framework. The
Business Message and Communication Specification specify the business messages and
their communications requirements by the network component interactions in the FSV.
Each PIP delivers schemas for its business action messages in DTD format. It also
delivers the Message Guidelines. The Message Guidelines are structure definitions of
the business action messages that outline cardinality of business properties and business
data entities, and provide user notes. They provide more complete information than
DTDs.

Dictionaries and Codes

The dictionaries ensure the consistency of the information exchanged between the
trading partners when executing the PIPs. The RosettaNet Business Dictionary (RNBD)
2.1 defines the business properties, business data entities, and entity instances for the
PIPs. The business data entity represents structured business information and is made of
other business data entities, whereas the business property is the association between

 26

the business data entities. The RosettaNet Technical Dictionary (RNTD) 3.0 provides
common properties for defining products for the PIPs. It is a table that organizes
product descriptions into reusable atomic properties and relationships and can be used
to search electronic catalogs and maintain technical information. However, it is up to
the trading partners to develop this content.
RosettaNet uses both the Global Trade Item Number (GTIN), which is a multi-industry
standard to uniquely and globally identify goods and services, and the Universal
Standard Products and Services Classification (UNSPSC), which allows trading
partners worldwide to uniformly classify goods and services. RosettaNet also employs
the Data Universal Numbering System (D-U-N-S) that is a worldwide standard for
company identification distinguishing unique business locations around the world.
These codes are intended to be used with the PIPs.

Implementation Framework

The RosettaNet Implementation Framework (RNIF) 2.0 provides implementation
guidelines to create software that executes PIPs. The RNIF specifies how to transport,
route, and pack messages between the trading partners. The RNIF supports the use of
HTTP/S and Simple Mail Transfer Protocol (SMTP) protocols for the message
exchange. A message always contains three headers and the content, which contains a
business action message or business signal message. If this content is a business action
message, one or more attachments may be included. A MIME/Multipart/Related
envelope is used to package the headers and content. S/MIME is used for digital
signatures. The RNIF delivers schemas for headers and business signal messages in
DTD format. It also delivers MessageGuidlines for these messages.

Summary

RosettaNet covers business document, business process, and messaging issues.
RosettaNet contributes a concrete combination of business processes and business
documents. It is a good practice that a new PIP has to pass through a secured test or
production use for a period to be published. This requires a software implementation. A
drawback is that the total number of PIPs is not known for certain. Obviously, the
specification of the simplest PIPs is behind but that of the most difficult ones is ahead.
In addition, some questions need to be answered:

• How does an individual PIP depend on other PIPs?

• How does RosettaNet enable multi-party B2B interactions?

• How does RosettaNet support transactional management?

• How does RosettaNet ensure that the new versions of PIPs are backward
compatible?

2.4.6 ebXML
ebXML (ebXML 2003) started in November 1999 with an 18-month timeframe and the
final specifications were finished in May 2001. This framework was officially
established by OASIS (Organization for the Advancement of Structured Information
Standards) and UN/CEFACT (United Nations Center for Trade Facilitation and

 27

Electronic Business). Its mission was to create a global e-business standard for
companies of all sizes.
ebXML is neither industry-specific nor is it merely cross-industry. It aims to be a cross-
industry standard that can be developed for use within the industry-specific ones. That
is other frameworks, such as RosettaNet, can plug into ebXML. ebXML aims to build
on existing standards. It also uses the Open-EDI Reference Model (ISO 1997). The
BOV addresses the semantics of the business data in data interchanges and the
architecture for business transactions. Its results are Business Process and Information
Meta Models for ebXML-compliant software. The FSV addresses the supporting
services and focuses on the information technology aspects. The assumption is that
software vendors may use the FSV as a reference model to guide them in the software
development. Figure 10 gives an overview of ebXML.
Three steps can present the use of ebXML:

1. In the implementation phase, a trading partner acquires ebXML specifications,
studies them, and downloads the Core Library and the Business Library. The
trading partner either requests the other trading partners’ Business Process and
Information Metal Model for analysis, or it implements its Business Service by
utilizing third party applications. This Business Service should support updates
to Core Libraries and Business Libraries. After implementation, this trading
partner submits its Collaboration Protocol Profile to Registry Service.

2. In the discovery and retrieval phase, a trading partner requests the Collaboration
Protocol Agreement of another trading partner and submits it to this.

3. In the run time, phase messages are being exchanged between these trading
partners utilizing the Messaging Service.

Business ProcessesCore Components
Core Library

Business Operation View

Functional Service View

Registry
Registry Service

Business Service
Business Application

Collaboration Protocol Profile

Business Library

Trading Partner A Trading Partner B

Collaboration Protocol Agreement

Messages

Business Process and Information Meta Models

Business Application
Messaging Service Business ServiceMessaging Service

Collaboration Protocol Profile

Business Context

 Figure 10: An overview of ebXML

Core Components

Since the exchange of business documents supports the business processes,
interoperability requires that the same semantics lead to the same information in
different business processes. Therefore, the core components are based on reusable
building blocks and the use of context. A component is a building block of business
documents that contains information belonging to a single concept, whereas a core

 28

component is a generic building block that is context-free. When a core component is
used in a business process, it has to be set into a context that is the description of the
environment. Each context-specific use of a core component is cataloged under a
business information name. A core component is either an atomic block or an aggregate
of these blocks semantically completing each other. Atomic core components that
naturally fit together can be grouped into aggregate core components. A core
component is a common component when it is generic and can be used across several
business sectors. Respectively, a domain component is specific to an individual
business sector and is only used within that domain. It becomes a common component if
it is suitable for use by another domain. ebXML did not deliver a specification for core
components. This work is continued by UN/CEFACT and OASIS.

Business processes

Business processes describe how the trading partners take shared roles, relationships,
and responsibilities to facilitate interactions with other trading partners. An interaction
between the roles follows a choreographed set of business transactions, each of which is
expressed as an exchange of electronic business documents. Business process and
information modeling is not mandatory but if the users want to model their business
processes and information, they should use the UN/CEFACT Modeling Methodology
(UMM) that utilizes UML. The UMM metamodel describes the semantics. Since a full
UMM model contains more information than is needed to configure ebXML-compliant
software, the Business Process Specification Schema (BPSS) 1.0 adopts a subset of
UMM for this particular purpose. The BPSS is represented in both UML and XML. It
provides information necessary to specify the choreography of interactions between
trading partners. In addition, it provides configuration parameters for the trading
partner’s applications to execute these interactions. The BPSS is intended to be
interpretable by ebXML-compliant software. Therefore, the BPSS is available in DTD
and XSDL formats

Collaboration Protocol Profiles and Agreements

The ebXML Collaboration Partner Profile (ebCPP) 2.0 provides definitions for a
collaboration protocol profile (CPP) that describes the trading partner’s business and
technical capabilities but excludes the legal terms and conditions. The exchange of
information between two trading partners requires each party to know the other party’s
supported business collaboration and the technical details about how the other party
sends and receives messages. A trading partner may have multiple CPPs that describe
business collaborations that it supports, e.g. in different regions of the world or different
parts of its organization. Respectively, collaboration protocol agreement (CPA)
describes the capabilities that two trading partners have agreed to use to perform
particular business collaboration. The CPA is an intersection of the trading partners’
CPPs that can be processed by these partners’ systems to execute the exchange of
information. The CPP and CPA are available in DTD and XSDL formats.

Registry

The ebXML Registry Services (ebRS) 2.0 defines the syntax and semantics of the
registry services. A registry provides services that enable sharing of information
between the trading partners, and maintain the information as objects in a repository.

 29

The registry supports information, such as collaboration protocol profiles, core libraries
and business libraries. The object management service provides allows a client to
manage the life cycle of objects. The object query management service allows a client
to search for a repository entry. The repository entries are stored according to the
ebXML Registry Information Model (ebRIM) 2.0. This model does not deal with the
content of the repository but represents the metadata of the content. The model can be
used to create ebXML-compliant software. Since all objects in the repository have a
unique identification, this identification of an object is generated by the repository and
may be used by other objects to reference this object.

Message Services

The ebXML Messaging Services (ebMS) 2.0 defines formats and protocols for
exchanging messages. In fact, it describes how to exchange XML-based business
documents with HTTP/S and SMTP. The specification also covers the definition of a
message structure to package payload and the behavior of the message service handler
that sends and receives those messages. The message service is defined as a set of
extensions to the SOAP and SOAP Messages with Attachments. A message is a
MIME/Multipart envelope containing the header container, SOAP message, and zero or
more MIME parts of payloads. The header container consists of the SOAP envelope
element containing SOAP Header element with ebXML-specific header elements and
SOAP Body element with message service handler control data and information related
to the payload. XML Digital Signatures (XMLDSIG) is used for digital signatures.

Summary

ebXML deals with business document, business process, messaging, and other issues.
However, it approaches messaging issues at a concrete level but the rest of the issues at
an abstract level.
The ideas of the BPSS and registry can be regarded as main contributions of ebXML. A
drawback is that ebXML specifications are incomplete with respect to essential parts,
i.e. core components are missing. Another drawback is that ebXML have been tested
only in the proof-of-concept sessions. The software implementations during the
specification process would have improved the validity of the ebXML specifications.
There are also open questions:

• Does the aggregation of core components make sense if a business document
can be a core component consisting of multiple other core components?

• Do multilateral collaborations have to be combined from bilateral
collaborations?

• Does transactional management have to be modeled explicitly as part of the
choreography of a business process?

• Since the legal aspects are excluded from the CPPs and CPAs, it may be difficult
to replace the trading partner agreements.

• It may be easy to store information but difficult to retrieve exactly the
information that is needed if the repository offers only a structure of name-value
pairs to classify objects.

 30

2.5 Experiences
There seems to be little experiences from XML-based supply chain integration after
excluding the software vendors’ success stories. The literature provides few scientific
papers and public reports. The following experiences are based on ten studies. The first
five studies focus on the technical aspects of the prototypes, the sixth study deals with
the technical aspects of the operative system, and the last four studies concentrate on the
business aspects of the operative systems.
Fürst and Schmidt (2001) present a prototype using XML. This prototype called Data-
Extractor was developed for BMW Motors Steyr in Austria to enable that data for
controlling the parts delivery is available for all customers, suppliers, and carriers of
this factory. The prototype is Java Servlet running on a web server. It handles the
requests from the different systems and users working with a browser. The prototype
was designed to support warnings of the problems in parts deliveries, reports of the
actual status of a parts transport from the carriers, report of the actual parts stock at
BMW and the suppliers, report of the incoming of a delivery, and sending of the actual
delivery data to BMW. The prototype was tested with simulation data stored in XML
on a web server but no connections to the systems at BMW, the carriers and the
suppliers were realized.
Sundaram and Shim (2001) present a prototype for RosettaNet. This prototype is a
three-tier client-server that allows the customers to order by a browser. The client tier
provides a web form using HTML and JavaScript. The business logic tier processes the
request from the client tier and sends the response. This tier is implemented by Java
Servlet that communicates with the sales and fulfillment application by HTTP. It
encapsulates the functionality required to perform the RosettaNet PIPs, and to transform
data to XML documents. The business logic tier also uses the database tier for storing
and retrieving information. The database contains information obtained from the
RNTD. The sales application displays the catalog to browse different products and to
query information for these products, and allows to submit a purchase order as an XML
document to the fulfillment application. The fulfillment application processes the XML
document, sends the order number to the customer, and maintains a detailed profile of
each customer and the status of the orders. The administrator of this application can
update the order status to either being approved or shipped. Unfortunately, Sundaram
and Shim do not report the experiences from the use of their prototype.
Buxmann et al. (2002) present a prototype called SIMPLEX. The prototype uses XML
to describe and structure business documents. Based on these documents, it supports the
execution of information exchange, the translations between different XML
vocabularies, and the integration into in-house systems. The prototype was written in
Java using a web server of Apache that was integrated to Tamino XML database. It also
uses the XML parser Xerces and the XSLT processor Xalan of Apache. The prototype
is capable of handling the following business documents: Invoice, CatalogueQuery,
DeliveryConfirm, Delivery Schedule, Forecast, InventoryQuery,
MonitoringTransaction, OrderConfirm, Reclamation, SalesOrder, and PurchaseOrder.
The supported e-business frameworks are xCBL, OAGIS, and eBIS-XML. Although the
prototype was not tested in real cases, Buxmann et al. concluded that the trading
partners can use XML as a common language building on it different business
vocabularies, and XSLT for translations between these vocabularies.

 31

Lu et al. (2002) present an XML/EDI prototype for Taiwan’s flower distribution
channels. This prototype server was implemented using Microsoft Internet Information
Server, and the XML parser Xerces and the XSLT processor Xalan of Apache. The
prototype server using the XML/EDI framework was developed because many farmer
associations, retailers, carriers, and wholesalers cannot afford maintaining a server, and
there was no EDI standard in Taiwan’s agricultural industry. The basic idea was that an
outside organization could be in charge of running this server. Farmer associations
upload bills of lading to the server daily. This server notifies wholesalers by e-mail, the
wholesalers download the bills, process them, and upload the invoices. Then the server
notifies the farmer associations by e-mail and these associations download the invoices.
Lu et al. do not report experiences from their prototype server in a real case.
Chan et al. (2002) present a prototype for retailing inventory control. This prototype is a
two-tier client-server system that was implemented with Java Servlets. In addition, an
Inventory Control Markup Language was developed based on XML that is used to
construct data models and specify the data exchange format between the client
applications and the mediators, and also between the mediators. Common Object
Request Broker Architecture (CORBA) was used to implement the communication
infrastructure between the mediators. The mediator is based on CORBA objects running
on a web server. The prototype provides services for transaction data capture,
assortment planning, and automated replenishments. The transaction data capture
services are aimed at defining and maintaining basic item information, at recording and
issuing purchase orders to the suppliers, at updating information on the received items,
at adjusting inventories, and at performing item information lookups, calculating
discounts and capturing sales related information. Inventory Control XML defines
DTDs for ServiceRequest, ServiceResponse, ResourceAccess, ResourceAccessResult,
Buyer, Supplier, Item, and PurchaseOrder documents. Chan et al. provide some test
results of the computational performance of their prototype.
StoraEnso North America (papiNet 2002) has implemented the papiNet framework with
Time Inc. for PurchaseOrder, Invoice, DeliveryMessage, and OrderConfirmation
documents. The system was implemented so that orders received in EDI were sent in
parallel via XML. All documents in question were mapped to the order database and an
XML document was created when the order became available, paralleling the EDI
messages. Time Inc. began by testing purchase orders based on their test scenarios, and
StoraEnso North America stored these orders into a database and generated order
confirmations. The tests indicate feasibility of the chosen documents.
Avnet (Olson and Williams 2001) has implemented the RosettaNet PIPs 3A4 (Request
Purchase Order), 3A6 (Distribute Order Status), and 3B2 (Notify of Advance Shipment)
with one supplier of its Computer Marketing Group. The previous implementation was
based on EDI. The net present value of cost savings including start-up costs of the PIPs
was two million dollars over five years with an interest rate of 11 per cent. These cost
savings were realized by eliminating VAN maintenance costs and reducing the order-
processing time.
Arrow (RosettaNet 2001) has implemented the RosettaNet PIP 3A4 with UTEC to
replace an EDI-based purchase order process. During the first six months of operation,
the implementation shows that manual order processing was reduced by 93 to 95 per
cent, the inventory turnover rate was doubled, order response time was reduced from 8-

 32

10 hours to 2 hours for exceptions requiring manual intervention and to less than 20
minutes for non-exceptions.
STMicroelectronic (RosettaNet 2002a) has implemented the RosettaNet PIPs 4A4
(Notify of Planning Release Forecast), 4B2 (Notify of Shipment Receipt), and 4C1
(Distribute Inventory Report) to enable collaborative forecasting, inventory allocation
and reporting with its customers and key suppliers. This process was manual before the
implementation. During four weeks of operation, this implementation resulted in a 50
per cent reduction in contract costs and eliminated 80 per cent of the manual
transactions. In addition, a 30 per cent increase in the utilization of capacity was
realized.
RosettaNet (2002b) provides a field study covering 12 implementations in the
RosettaNet PIPs 3A4, 3A8 (Request Purchase Order Change), 3A9 (Request Purchase
Order Cancellation), 3D8 (Distribute Work in Process), 3D9 (Query Work in Process),
and 5D1 (Request Ship from Stock and Debit Authorization). In four of the five
common tasks, RosettaNet earned greater compatibility than EDI, measured by a five-
point scale so that strongly disagree was marked as one and strongly agree as five.
RosettaNet also earned more than twice the compatibility rating of semi-automated
integration. Cost savings ranged from 16 to 87 per cent. This includes both the
implementation and operating costs.

2.6 Critical summary

2.6.1 XML technologies revised
XML is nothing more but a context-free language (Appendix 1). Open source tools,
such as Lex and Yacc (Aho et al. 1986), capable of scanning and parsing context-free
languages have existed for 20 years. Validation and parsing documents of XML-like
languages is possible but requires more programming with these tools than with
validating XML parsers. On the other hand, these older tools are capable of processing
languages with much richer expressive power than XML. There is a trade-off between
the ease of XML and the expressive power of the older tools.
The basic XML technologies enable straightforward wrappers to exchange data as XML
documents between the trading partners’ databases. However, the use of XML in
business documents does not provide much new compared to EDI. XML cannot specify
the content of the business document in an unambiguous way. Applying XML to
business processes and messaging is something that EDI cannot do. Using XML for
describing business processes is an interesting starting point for automated process
execution. Unfortunately, there seems to be neither implementations nor open source
tools for this purpose. One problem is that DTDs and XSDL schemas are able to
validate XML documents against simple rules. There can be situations, in which
complex constraints associated with combinations of elements, element content,
attributes, and attribute values have to be taken into account. At the moment, the DTDs
and XSDL schemas do not support this kind of validation but constraint checks have to
be programmed.

 33

2.6.2 Expectations revised
XML has been loaded with expectations. It has clear advantages over HTML and
SGML. However, not all the features of XML are comparable with EDI. Some
expectations are relevant in web publishing but not in supply chain integration. The
following counterarguments point out the fact that one coin has two sides:

• XML is flexible: The ability to define other languages can potentially lead to
problems because agreement on a common DTD or schema is not self-evident
even in a small user community. Tens of e-business frameworks have been
standardized using XML. This indicates that XML can be too flexible for this
domain.

• XML is human-readable: If the XML document is indented for full-automated
communication, human readability makes no sense. Even in semi-automated
communication, it is easy to create quite unreadable XML documents. For
example, the element ProNa may mean a product name. What about XML
documents created in a different language?

• XML is self-describing: Although DTDs and schemas guarantee a certain
amount of validity to XML documents, one may use a DTD, whereas another
uses a schema to validate the document. How can it be ensured that the trading
partners use the same version of DTDs or schemas?

• XML is structured: There are difficulties to store some characters, e.g. angle
brackets, and binary data in XML documents. Since XML is structured text, it
may take a lot of memory to store and a lot of time to process this data. The
possibility of specifying the contents is not free.

• XML is widespread and inexpensive: Processing data in XML documents does
not necessarily stop at validation, parsing, or transformation of the documents
but more steps are needed for many applications. For example, storing
information in or retrieving it from the relational database is often necessary.
The necessary widespread and inexpensive tools for all the steps that process the
XML documents are not available.

• XML is platform-neutral and widely supported: Although XML is platform-
neutral and widely supported, the applications using XML are not guaranteed to
be such. For example, a less-supported application may use a proprietary XML
document format.

• XML-based systems have lower costs: Modification of legacy systems is not
necessary because middleware can be built to transform data between XML and
the native format. However, this does not eliminate the costs but shifts them
from the legacy systems to the middleware.

• XML separates processing from content: Although XML separates processing
from content, it depends on the developers to ensure that this separation really
occurs. For example, if certain elements or attributes require processing that is
not supported by the basic XML technologies, these element or attribute names
may need to be hard coded into the program.

 34

2.6.3 E-business frameworks revised
XML in itself does not specify what information should be shared, when, and how. E-
business frameworks have appeared to standardize business documents, business
processes, and messaging between the trading partners. Their aim is to solve the
integration problems that XML alone cannot solve in the supply chains. In a sense, the
frameworks are a response to the flexibility of XML. Business document and business
process issues are the most important ones. For messaging issues, some frameworks
rely on a solution of another framework, e.g. ebXML or RosettaNet.
The literature lists tens of e-business frameworks using XML to support industrial
procurement, design, production, or distribution. However, only a minority of them
have been active in 2002 and 2003. The e-business frameworks are mostly cross-
industry and industry-specific vocabularies that include DTDs and schemas for a
number of business documents. Unfortunately, these frameworks do not pay much
attention to the business processes or messaging. As industry-specific frameworks,
RosettaNet and papiNet seem to be the most promising ones. Their conceptualization
has been based on a limited set of meanings of terms and models of operation. In
addition to the business documents, these frameworks take into account also the
business processes and messaging in detail. For RosettaNet, a success factor is that new
business documents and business processes have to be implemented and tested before
they are approved as a part of the framework. Document-centric frameworks, such as
cXML, OAGIS, and xCBL, emphasize cross-industry business documents. They are
vocabularies that give simple information about the business processes. Process-centric
frameworks, such as BPML, ebXML, and XPDL, are novelties that mainly use XML to
represent the business processes. This is something XML can do but EDI cannot.
Unfortunately, there seems to exist no open source tools for automated process
execution with XML.
Instead of outlining documents from the scratch, the use of existing frameworks reduces
the time needed to design and negotiate. However, a large number and new versions of
the frameworks cause a problem because transformations between the different
frameworks and versions are not free. Complete transformations are even not always
possible. The question is which frameworks to support? Divergence has led to an
increasing number of the e-business frameworks together with more frequent changes in
them. This kind of development jeopardizes adoption of the frameworks. In order to
promote XML-based supply chain integration, convergence is necessary.

2.6.4 Experiences revised
The papers dealing with the prototypes are limited to the technical aspects. The
prototypes seem to provide the experience that the basic XML technologies for
validation, parsing, and transformation are applicable in practice. XML has been used
only in business documents. XML in business processes or messaging has not been
considered. At least, this was not reported. Many prototypes are intended for semi-
automated communication in the point-to-point model. The significance of full-
automated communication and the hub-and-spoke model is unclear.
The papiNet case follows much the same line as the prototypes. Respectively, other
papers on the operative systems are the RosettaNet cases focusing on the business

 35

aspects. The RosettaNet cases represent full-automated communication in the point-to-
point model. They provide a number of qualitative results that are difficult to interpret.
The quantitative results of the cases shed more light on the business impacts. According
to these cases, XML-based supply chain integration seems to result in time and cost
savings.
Generally, experience from XML-based supply chain integration is quite limited. The
implementations are crucial for evaluating the technical aspects of XML in supply chain
integration. However, real cases are also needed to evaluate its business impacts.
Considering how much efforts have been devoted to developing XML technologies and
XML-based e-business frameworks, it is amazing how few experiences have been
publicly reported from implementation in supply chain integration.

 36

3 Case study
This section summarizes a prototype of the XML-based integration system, the CA,
implemented and evaluated in an industrial case. First, the section deals with the
companies and requirements of supply chain integration in the case. It also presents the
structure and configuration of the CA, and the technologies used in the implementation
of the CA. Finally, the section presents the objectives and results of the evaluation of
the CA in the case.

3.1 Case

3.1.1 Companies
ABB Control has a switchgear factory that is located in Vaasa, Finland. ABB Control is
a part of the global ABB group and it produces switchgear assemblies for both internal
and external use. The application area of switchgears is power distribution and control.
Their purpose is to protect low voltage motors in the process industry. A switchgear
order is called a project that consists of functional units. The order may include one
switchgear with one functional unit or many switchgears with hundreds of functional
units.
ABB Control has an in-house information system called COPIS (Customer Oriented
Process Information System) that manages many aspects of the order-delivery process
related to a switchgear order. The functionality of COPIS covers engineering design,
product configuration, material requirements planning (MRP), production planning,
quotations, and order tracking. It makes quotes and production resource predictions
based on labor requirements, however, activity-based costing is being implemented.
Many of ABB Control’s customers require switchgear orders at short notice. The
company policy is to deliver special customer tailored solutions by the requested day.
ABB’s switchgear factory in Vaasa often works very close to or over full capacity and
over the last few years the final delivery dates have not been met in some orders.
Production planning with a short delivery time is difficult.
The order-delivery process related to a switchgear order is quite traditional in ABB
Control. The customer sends a tender request to sales persons or the sales department.
The planner feeds the technical data of the tender request into COPIS and configures the
switchgear unit. After that, COPIS develops drawings and the tender is sent to the
customer. If the customer accepts the offer, all the data and information are available
from COPIS.
Using COPIS, ABB Control has visibility of the present factory loading and anticipated
loads. When the loads threaten to exceed the factory capacity, the management has
looked for alternative production resources in order to clear the overload. ABB Control
has several methods for outsourcing the production. These are local ABB outsourcing,
i.e. ABB companies in Finland, global ABB outsourcing, i.e. ABB companies world
wide, and subcontracting.
InCap Electronics in Vaasa is one of ABB Control’s subcontractors providing
production resources for switchgear assembly. It is also a subcontractor of, e.g. ABB

 37

Drive and ABB Industry. Although the InCap Electronics’ factory is located inside the
ABB Control’s factory in Vaasa, InCap Electronics and ABB Control use EDI to
exchange some business documents.

3.1.2 Requirements
The basic requirement was to continue using COPIS but expand its functionality
relative to production management and purchasing with respect of the internal and
external production resources. Internal production resources mean ABB Control’s own
capacity, whereas external production resources mean capacity of other ABB
companies or subcontractors. The combination of internal and external production
resources forms a supply chain. The prototype integration system extends the
functionality of COPIS to support supply chain integration.
The idea behind the integration is that the flexible transparency of the internal and
external production resources. With this transparency view to the production resources,
the production management has possibilities to plan external resources as internal ones.
For ABB Control, the expected business benefits through the supply chain integration
are related to the growing production flexibility and more profitable data exchange.
Figure 11 illustrates a cooperation model in which a subcontractor produces ABB-
specific products, whereas a supplier does not.

ABB ControlSubcontractor Supplier

Purchase order

Request for quotation

Quote

Intermediate product

Invoice

Final product

Purchase order response

Invoice

Purchase order response

Purchase order

Figure 11: A cooperation model
This cooperation model of supply chain integration could be implemented with the
current software technologies. A number of commercial integration systems (e.g.
Microsoft 2003) were available. However, taking into account the unstable status of the
new technologies, the case gave an opportunity to design and implement a prototype
integration system. The objective was to achieve a prototype that can be easily
maintained and used, and to utilize XML-based technologies. The purpose was for

 38

XML to be used to extend supply chain integration to those subcontractors who had not
accepted EDI. Perhaps later XML will be used to replace EDI.
The architecture of the prototype integration system was based on the model, in which a
server supports EDI, XML or both. The clients of this server can be browsers, other
integration systems, or applications. This was not the only possible model but many
commercial integration systems at least partially conform to this architecture. The
implementation of supply chain integration required the design of the required messages
and their interaction-handling logic.
A large number of potentially useful interactions were identified in the context of
supply chain integration (Kalliokoski et al. 2000). Some of these interactions were so
primitive that they are not business transactions. In the case, the objective was that the
prototype integration system would be capable of performing the following interactions:

• ABB sends a specific purchase order to a specific subcontractor. Query the database
for the EDI segments of a purchase order, translate the purchase order from the EDI
segments to the xCBL format, send this purchase order in the xCBL format as an e-
mail or a message to the subcontractor, and a return success/failure status.

• A subcontractor queries for one of its purchase orders by a browser. Query the
database for the EDI segments of a purchase order, translate the purchase order from
the EDI segments to the xCBL format, and return the purchase order.

• A subcontractor queries for a list of all its purchase orders by a browser. Query the
database for the EDI segments of purchase orders, translate the purchase orders
from the EDI segments to the XML format, and return a list.

• A subcontractor updates a purchase order response in the xCBL format into a
database of ABB by a browser. Translate the purchase order response in the xCBL
format to SQL INSERT statements for the EDI segments, update the database with
the EDI segments, and return a success/failure status.

• A subcontractor updates an invoice in the xCBL format into a database of ABB by a
browser. Translate the invoice in the xCBL format to SQL INSERT statements for
the EDI segments, update the database with the EDI segments, and return
success/failure status.

• A subcontractor queries for a demand forecast of all its possibly forthcoming
purchase orders by a browser. Query for possibly forthcoming orders, translate the
possibly forthcoming purchase orders from the EDI segments to the XML format,
and return a demand forecast.

All these interactions without the last one were used as a starting point in the design and
implementation of the prototype. ABB Control suggested them. The last interaction was
identified after the implementation and suggested by InCap Electronics. It gave an
opportunity to evaluate the maintainability of the prototype.
The content of the purchase order, purchase order response and invoice documents was
based on one XML-based e-business framework (ebXML 2003, RosettaNet 2003,
xCBL 2003). xCBL 2.0 was utilized in the case because it provided the corresponding
XML-based business documents and was interoperable with EDI. XSLT was needed to
make the necessary transformations between XML and EDI formats.

 39

3.2 Implementation

3.2.1 Architecture
The prototype conforms to a layered software architecture that could be described as
engine-processor architecture. The motivation for this type of architecture is
maintainability. The CA is integrated to other systems using standard techniques, such
as HTTP, Open Database Connectivity (ODBC), and SMTP. Figure 12 illustrates the
engine-processor architecture of the CA.

Application

Browser

Servlet Interaction

Query Processor

Update Processor

Messenger

Translator

Application

File

Database

Email

Engine

Processors

HTTP

SMTP

ODBC

HTTP

Communication Application

Access Processor

Figure 12: Architecture of the CA
An engine that processes the interaction requests and executes them according to the
configured interaction definitions forms the top layer of the architecture. These
definitions describe the interaction-handling logic in terms of parameters and
operations. The bottom layer of the architecture contains a set of processors that are
able to perform the operations. The CA can load these processors and their
configuration data "on demand" from the local file system or the Internet. This makes it
possible to maintain the functionality of the prototype without code changes to the
engine. In addition to portability, Java supports the previous kind of extendability. The
system configuration data has to reside on the same host as the system itself whereas all
other configuration data can be retrieved from the Internet.

3.2.2 Engine
The engine of the CA processes the interaction requests according to their configuration
data. The processing logic is as follows:

• A Servlet processes the interaction requests from the clients. The requests can be in
either HTML or XML format. According to this request, the Servlet passes the call
to an Interaction, which is associated with the configured interaction definitions.

 40

• The Interaction executes the requested interactions with the given parameter values
and the configured interaction definition as inputs. It interprets the XML-based
interaction configuration language and calls the processors according to the
configured definitions. When a processor has executed an operation successfully, it
saves the output and the Interaction object passes it to another processor if
necessary. When all operations of the interaction are executed, the Interaction
returns the result.

• The Servlet sends the result to the client as an interaction response. The response
can be presented in different formats, e.g. plain text, XML or HTML.

The engine also keeps a log on the executed interactions. For each interaction request, it
records information about when the request was executed and from which address it
was made. In addition, the engine records the parameter values and result of the
interaction. If the interaction fails, an error message is recorded.

3.2.3 Processors
In the case study, the CA has five processors. Since the CA is designed to be
expandable, it is capable of loading and calling an object as a processor if the object
implements a generic processor interface. The roles of the processors are presented in
the following:

• The Query Processor retrieves data from a relational database via ODBC. Its inputs
are values associated with the SQL SELECT statement to be executed. The output is
a result of this statement translated into XML format.

• The Update Processor manipulates the data content of a relational database via
ODBC. The input consists of SQL UPDATE, INSERT, or DELETE statements in
XML format. The processor has no output.

• The Messenger saves a document or sends a request to a specified target. Its inputs
are either a document or request and a target name. In the case of a request, the
Messenger is left waiting for a response, which is its output. The request can be an
interaction request and the target may be another integration system. In this way, it
is possible to delegate the processing of interactions between integration systems in
the different sites.

• The Translator is an essential processor from the point of view of supply chain
integration. It transforms input from one XML format into another. The output of
the processor is a result of the XSLT translation specified as a part of the
configuration data.

• The Access Processor checks the password given by the user. Its inputs are a user
name and password. If the password is invalid, the processor aborts the execution.
Otherwise, the output of the processor is the identification associated with the user
that can be used by other processors.

The generic processor interface (Appendix 2) is based on methods for initializing a
processor with configuration data, setting its input values, executing the processing, and
getting its output value. If an object implements the interface, it is utilized as a
processor. This is important because the engine is able to interact with the processor by
only these methods.

 41

3.2.4 Configuration
A large part of the actual functionality of the CA is defined with XML-based
configuration languages instead of lower level programming languages, such as Java.
This is motivated by easier maintainability. However, the element or attribute names in
DTDs used to validate configuration data cannot be changed because DTDs do not
support some checks, e.g. if a particular element with a particular attribute value has
occurred already. Therefore, some changes can be done in run-time by modifying DTDs
but a lot of information related to validation of the configuration data has to be hard
coded in compile-time. Although XML-based configuration languages do not remove
the problems of maintenance, they facilitate it being without graphical user interfaces
that are often expensive to develop.
The configuration data is divided into three levels. At the system level, the configuration
data (Appendix 3) specifies which interactions are defined for the system. At the
interaction level, the configuration data (Appendix 4) defines which parameters and
operations are required for execution of an interaction. At the operation level, the
configuration language is specific to the processor that executes the operation
(Appendix 5, 6, 7, 8).
Interaction definitions form the core of the configuration of the integration system. A
balance between flexibility and simplicity has been aimed for by defining the
interactions as operation block models. The interaction has parameters the values of
which are given by the sender of the request. These parameters are inputs for operations
that are sequentially executed in the order of appearance. Each operation has a link to
the processor that executes the operation with the given configuration and inputs. Some
operations return output that works as input for the following operations or as a result of
the interaction. If an exception is detected during execution of the interaction, it will be
reported to a receiver and the execution will be aborted.
The following example shows the configuration of the CA at the system and interaction
level. In this example, a user from ABB Control wants to get information on a purchase
order. Figure 13 shows an interaction request (Appendix 9) sent by an application at
ABB. This interaction request could also be sent through a homepage (Appendix 10) by
a browser.

 42

<interaction-request operation="query" format="xcbl"
document="order" presentation="xml">
<parameter name="user">

abb
</parameter>
<parameter name="password">

control
</parameter>
<parameter name="order-id">

123
</parameter>

</interaction-request>

Figure 13: An interaction request in XML
Figure 14 shows the configuration data at the system level. An interaction is identified
by an operation-content-document-triple that refers to the interaction definition. The
example demonstrates a query-xcbl-order-interaction whose definition is located in
file://query-xcbl-order.xml.

<configuration dtd="file:request.dtd" html="file:xml-to-html.xsl">
<interaction operation="send" content="xcbl" document="order">
file:send-xcbl-order.xml

</interaction>
<interaction operation="query" content="xcbl" document="order">
file:query-xcbl-order.xml

</interaction>
<interaction operation="receive" content="xcbl" document="invoice">
file:receive-xcbl-invoice.xml

</interaction>
</configuration>

Figure 14: An engine configuration
Figure 15 illustrates an interaction definition that has both parameters as input and a
result as an output. In the example, parameter values user, password, and order-id are
given by an interaction request. The first operation, access, has configuration data that
is located in file://query-xcbl-order-access.xml. The program code of this operation is
located in file://AccessProcessor.class. The access operation checks the username and
password. If they are valid, the execution proceeds to the second operation, query. This
operation retrieves the EDI segments for a purchase order with a value order-id from a
relational database and represents the result as a result set in the XML format. The third
operation, translation, transforms the output of the query operation into the xCBL
format. Finally, the interaction returns the output of the translation operation that is
transmitted to the user as the interaction response.

 43

<interaction-definition>
<parameter name="user" type="String"/>
<parameter name="password" type="String"/>
<parameter name="order-id" type="String"/>
<operation name="access"

processor="file:AccessProcessor.class"
configuration="file:query-xcbl-order-access.xml">
<input name="user"/>
<input name="password"/>

</operation>
<operation name="query"

processor="file:QueryProcessor.class"
configuration="file:query-xcbl-order-database.xml">
<input name="order-id"/>

</operation>
<operation name="translation"

processor="file:Translator.class"
configuration="file:query-xcbl-order-translation.xsl">
<input name="query"/>

</operation>
<result name="translation"/>

</interaction-definition>

 Figure 15: An interaction definition (query-xcbl-order.xml)
At the operation level, the configuration data can be presented in many different ways.
Although a processor may have very sophisticated needs considering configuration, it is
recommended that the configuration data is represented in XML.
From the viewpoint of maintainability, the hierarchical structure of the configuration
data has an advantage by providing independence between the different levels. For
example, if the passwords of the users are changed, there is no need to make changes at
the system or interaction level. On the other hand, if the access check is removed, the
configuration data remains the same at the system level.

3.2.5 Technical details
The implementation of the CA is based on the following open source tools:

• Java 2 platform, standard edition, version 1.3.0 (Sun 2000a)

• Jakarta-Tomcat servlet container, version 3.1 (Apache 2000)

• JAXP (Java API for XML Processing) parser, version 1.0.1 (Sun 2000b)

• Saxon XSLT processor, version 5.4.1 (Key 2000)
The engine of the CA is Java Servlet that is running on Jakarta-Tomcat, a servlet
container. A servlet container is not a web server but a runtime shell that manages and
invokes servlets on behalf of the users. The engine is implemented by using Java
Servlet API. Since the engine loads and calls the processors of the CA dynamically, the
communication between the engine and processors is based on Java Reflection API.
Where XML is said to provide data portability, Java provides code portability.
Moreover, Java Servlet API and Java Reflection API enable accessibility and
extendability of the CA in the Internet.

 44

The Query Processor and Update Processor use JDBC (Java Database Connectivity)
API to communicate with a relational database via ODBC. The engine, Access
Processor, and Messenger use JAXP to validate and parse XML documents according
to the SAX approach. In comparison, the Query Processor and Update Processor use a
self-made parser to process configuration data. The engine and Translator use Saxon to
perform XSLT translations.

3.3 Evaluation

3.3.1 Objectives
The main objective of the evaluation was to find out how and to what extent the CA
could support supply chain integration between companies. An objective of the study
was to assess the viability of the chosen approach by identifying its potential benefits
and expected implementation and operating costs in a supply chain context.
The evaluation plan was originally drafted on the basis of a set of assumptions about the
main benefits of XML-based integration systems, such as the CA. The main hypothesis
was that they could provide a good basis for supply chain integration between
companies. In particular, it was assumed that they would be more flexible to maintain,
and less expensive to implement and operate than most currently used B2B systems,
such as EDI.
On the basis of these assumptions, it was considered that SMEs especially would be
interested in the integration system, provided that its benefits can be identified and
illustrated in a proper way. In consequence, it was also considered that even larger
companies might regard it as a feasible extension to their existing communication
solutions when collaborating with SMEs. An objective of the evaluation process was to
assess the adequacy of these assumptions.
The main challenges of the evaluation were related to the identification of those factors
that might add either to the cost or to the benefit side of the calculation. Finally, six
groups of factors were identified as important contributors to the viability of the
integration system concept by evaluators after discussions with developers and
representatives of the case companies. The following key areas were given special
emphasis in the evaluation:

• Functionality and technical feasibility: This area of the evaluation aimed at
assessing the applicability of the chosen mechanism to mapping structured
business documents of diverse syntax to each other. In addition, attention was
paid to the functioning of the implemented interactions as well as to the overall
technical feasibility of the prototype.

• Scope of interactions: This area was more theoretical in nature and related to the
expressive power of the chosen architecture and its configuration mechanism.
The objective was to determine the extent to which they could possibly cover
ABB’s communication needs in subcontracting and related collaborating.

• Impact on business: The objective was to identify the potential business benefits
as well as the expected disadvantages of operating a CA type of integration
system at ABB. Areas, such as flexibility, reliability, efficiency, speed, and

 45

costs, i.e. the key attributes of any process or practice, were addressed during the
evaluation.

• Implementation demands on the organization: The objective was to identify the
challenges and needs for change that the implementation of a CA type of
integration system might cause in ABB’s processes, practices and organization.

• Configuration and maintainability: The objective was to determine the basic
requirements for the definition and modification of interactions in terms of the
necessary knowledge and work inputs. Another related objective was the
specification of a feasible model and arrangements for the initial configuration
process and the related systems support.

• Use of EDI: The objective was to examine the utilization of EDI at ABB, to
identify its main benefits and support for purchasing practices, and to construct
an extensive picture of all EDI-related implementation and operating costs. The
purpose of analyzing the use of EDI was to establish a kind of reference point
for the CA.

3.3.2 Results

Functionality and business benefits

The implementation process of the CA appeared to be flexible due to the fact that
interaction definitions are stored in text files that can be created and maintained by
means of ordinary text editors. Functional tests of the implemented interactions were
completed successfully, including those that were run over the Internet. However, with
regard to purchase order, purchase order response, and invoice the content checks
revealed some disparities between the corresponding business documents in xCBL and
EDI formats. The identified deviations mostly related to differences between the two
formats, which actually made a perfect match impossible. Compared to EDIFACT,
xCBL 2.0 did not make the difference between the net and gross price in the purchase
orders and invoices. xCBL 2.0 also required information about the document language.
This indicates the disparity of xCBL 2.0 and EDIFACT. Such problems can usually be
resolved because data structures can be flexibly added to or removed from XML-based
business documents.
The chosen engine-processor architecture together with its XML-based configuration
mechanism proved to function well and to form a good basis for further development of
XML-based integration systems. For example, all interactions that were identified as
potentially useful by ABB were either implemented or could have been implemented in
the CA. Some of those interaction types were not supported by EDIFACT, and only a
few of them were actually used in Finland. Therefore, the test case would suggest the
feasibility of the chosen architecture and configuration mechanism as an
implementation approach to the integration system.
The test case suggests that the business benefits of integration systems in general are
highly dependent on the scope of their implementation and on case-specific needs. In
the case of ABB, they mostly related to production planning and supervision, and
functioning of the customer interface. In consequence, ABB was especially interested in
the possibility of exchanging subcontractor capacity and information related to the

 46

order-processing status. The assessed benefits related to enhanced information
management, more efficient use of available production resources, and consequently,
shorter lead times. InCap emphasized the importance of demand forecasts as a medium
in its production planning practice. With regard to purchase orders, purchase order
responses and invoices, the expected benefits were similar to those of EDI: higher
efficiency of administrative routines.

Demands and costs of implementation and operation

When assessing the potential starting-points for implementing the CA, two different
scenarios were identified: establishing a new electronic connection between ABB and
one of its subcontractors, or replacing an existing EDI connection. The general
conclusion was that in both cases the implementation demands on an organization
would be very similar to those of any other information system, i.e. involving extensive
negotiations and cooperation with the two partners as well as a great deal of
specification and testing. However, some special characteristics were identified.
The first relates to the utilization of the Internet instead of tailor-made connections. As a
result, there would be no mediator between the two organizations, which in turn would
probably result in significant savings in the communication charges. On the other hand,
in such a situation it is up to the end-user organizations to establish proper arrangements
for managing the connection, e.g. ensuring data security and eliminating duplicate
messages. Usually the EDI operator provides this service. It is not clear what the most
feasible future solution to this particular challenge would be and how much it might
cost.
Another special characteristic has to do with the case when the subcontractor decides to
operate the system through a browser instead of an integration system of its own. In
such a case, the subcontractor’s implementation process would be relatively
straightforward. From the main contractor’s point of view, this scenario involves
several uncertainties, however. For example, the number of erroneous messages is
likely to increase in case of a growing number of manual working stages involving
direct database operations. Such errors are likely to end up in operative information
systems, thus causing excess administrative work. There is no obvious solution to this
challenge although proper training is certainly a key issue here. However, it can be
reckoned that the main contractor would have to invest more time and resources in
supervising the use of the system.
Configuration of the CA requires a lot of background information. Getting that
information requires work and takes time. In the test case, the total amount of time
needed for defining one interaction was reported to range from a couple of hours up to a
couple of weeks. The large variation mostly relates to the complexity of XSLT
translations determined by the characteristics of the data structures to be mapped to
each other. A rough estimate was that about 80 per cent of the XSLT code is easy to
write, whereas the remaining 20 per cent could require considerably more effort at least
in the learning phase. The translation is often considerably alleviated by splitting it into
a set of consecutive translations. It was estimated that on average the interaction
definition takes around one week of work. In some cases, only about five per cent of
the time was actually spent on writing the interaction definitions. These are based on the
developers’ estimate provided that the work is done by an external expert with a good

 47

knowledge of XML, XSLT, and xCBL, with a profound understanding of the
integration system, and with no previous knowledge of the company information system
to which the integration system is to be connected. These conditions applied to the
evaluators and developers of the CA. In addition, the data contents have to be specified
in advance, as they were in the test case apart from one interaction. If the configuration
process involves business planning, e.g. negotiations between several partners on the
content of the messages, much more time will be needed.
In the course of time, things get easier due to the learning effect. For example,
modifications to the existing interactions were effected swiftly. The existing interaction
definitions also formed a good basis for the definition of new ones of a similar kind.

Comparing the costs of EDI and CA

The implementation costs of EDI were assessed to be clearly higher than the costs of
the CA. With regard to the amount of the necessary work alone, the introduction of a
new message type that corresponds to the definition of a new interaction in the CA, was
found to require a new EDI module and about 200 hours of related specification and
testing work. Opening a new connection, i.e. taking a particular message type in use
between two partners was found to require a couple of days of testing. Provided that the
testing times are about the same with regard to EDI and CA it can be assumed that
establishing an EDI connection for a new message type is at least three to four times
more expensive than implementing a new interaction in the CA. This figure was based
on ABB system specialists’ experience on EDI development.
Finnish software firms have shown interest in further development of the CA. They
have not been able to give any estimate of the order of the future market price (license
fees) for a CA type of commercial integration system. When the charges for use are
taken into account, the XML-based integration system seems certainly less expensive
because it is based on the use of the Internet. However, it is hard to say whether the
application service provider concept will also make progress in this field. Should this
happen, could the charges for communicating through an XML-based integration
system be commensurate with those of EDI, especially if the related services are
provided by EDI operators? This remains to be seen.

 48

4 Discussion
This section compares this research with previous research, discusses its results,
presents opinions about XML-based supply chain integration, and presents questions for
further research.

4.1 Review discussed
Studies of e-business frameworks (e.g. Hasselbring and Weigand 2001, Shim et al.
2000) are to a large extent outdated, which reflects the rapid development of the
frameworks. These studies are simply descriptive and they do not analyze
systematically the frameworks to identify their features or to classify them.
A review presents three models for supply chain integration. The point-to-point model
reflects EDI thinking. It is still feasible. The hub-and-spoke model is very much a result
of the Internet. It often takes the form of an electronic marketplace. Finally, the service-
oriented model represents the XML era but its real implementations are missing.
The basic XML technologies enable straightforward exchange of data as XML
documents between the trading partners’ systems. XML has clear advantages over
HTML and SGML. Expectations on XML suggest that XML is flexible, human-
readable, self-describing, structured, widespread and inexpensive, platform-neutral and
widely supported, and it has low costs, and separates processing from content. Not all
the features of XML that are important in web publishing are relevant in supply chain
integration. The first impression is that XML is much ado about nothing. The context-
free languages can be scanned and parsed using well-known open source tools.
However, transformation and simple validation are easier with XML because less
programming is required. Unfortunately, DTD and XSDL are sometimes insufficient.
Then, the validation may require parsing with a lot of programming. There seems to be
many XML technologies under development, e.g. Web Services and Semantic Web. Is
it reasonable to develop new XML technologies despite the fact that existing XML
technologies suffer from deficiencies? The new versions and XML technologies can
even complicate the selection of technologies used in supply chain integration and,
therefore, slow down the adoption process.
XML-based e-business frameworks solve integration problems but their large number
and frequent versioning also cause problems. Although e-business frameworks reduce
the costs needed to agree on interoperability issues, interoperability between different
frameworks or versions can be incomplete and the adoption of the framework or its
version is not free. Messaging issues are in a mature state but there is much to do with
business document issues and business process issues. The basic problem is to jump
from revolution to evolution. This requires convergence of the frameworks instead of
their divergence, and a reduced number of them. At the moment, industry-specific
frameworks seem the most credible because they have a clear focus and industrial
usage. Especially, RosettaNet has required in its standardization that novelties have to
lead to implementations. This may encourage also other industries to adopt RosettaNet.
This review succeeded to identify the basic features and categories of XML-based e-
business frameworks. It also provided a critical summary of the basic XML

 49

technologies, expectations and experiences associated with XML-based supply chain
integration.

4.2 Case study discussed
There is not much experience from XML-based supply chain integration. Considering
how much efforts have been devoted to developing XML technologies and e-business
frameworks, it is amazing how few experiences have been properly reported from the
prototypes and operative systems. In addition, none of the reported studies (e.g.
RosettaNet 2002b, Sundaram and Shim 2001) cover both the technical and business
aspects of supply chain integration.
The case study focuses on a prototype of the XML-based integration system that was
implemented using Java language and open source tools. The configuration of the
prototype that is divided into three layers can be done solely with XML and its
functionality that is based on processors can be updated dynamically by an engine.
XML is not used only for business documents but also for processes. Instead of
business processes, “technical” processes are represented by XML. These processes
define the operations and their inputs, outputs, and configuration data in interactions,
when the engine executes the processors as operations. In addition to the engine-
processor architecture and XML-based configuration mechanism, XSLT for
transforming XML documents and xCBL as an e-business framework were a matter of
interest.
Instead of using a commercial integration system, design and implementation of the
prototype shed more light on the capabilities and limitations of XML and the basic
XML technologies although a number of important security and reliability features were
not taken into account. Since purchase orders, purchase order responses, and invoices
are the most common EDIFACT message types in Finland, the case study covered
them. The xCBL 2.0 framework was chosen. It is a pioneer of XML-based e-business
frameworks that is based on the EDIFACT standard. However, the case study revealed
disparities between the corresponding business documents in xCBL and EDIFACT. For
example, the xCBL documents did not make the difference between net and gross
prices. These problems can be easily resolved by adding new structures to these
business documents. Unfortunately, this causes new problems because the extended
business documents are no longer compatible with the framework. In all, incomplete
frameworks do not guarantee interoperability.
This case study was successful because it took a stand to both the technical and business
aspects of XML-based supply chain integration. Although the result of the case study
cannot be generalized as well as the results of the survey, it gives a deep understanding
of XML-based supply chain integration.

4.3 Further research
Comparison between XML and EDI is problematic. Traditional EDI-based integration
has been implemented with an older programming language, e.g. Cobol, over a tailor-
made connection, e.g. VAN, whereas XML-based integration often employs Java over
the Internet. If the effects of the programming language and connection are eliminated,

 50

what advantages and disadvantages do XML-based e-business frameworks have over
EDI standards in supply chain integration? This is the first question for further research.
There are hopes that Web Services and Semantic Web standards will facilitate supply
chain integration (Ding et al. 2002, Staab et al. 2003). Therefore, it would be important
to analyze the effects of SOAP, UDDI, WSDL, RDF, RDFS, and OWL on supply chain
integration. How they do support supply chain integration? This is the second question
for further research.

 51

5 Conclusions
Supply chain integration means information sharing between trading partners. These
partners may be different companies or units within a company. If the trading partners
use different kinds of documents, processes, or systems, it is difficult for them to
communicate efficiently. This costs both money and time.
The trading partners must have a shared understanding of their ways of doing business
before their systems are able to communicate. The trading partners have to know what
information should be share, when, and how. XML is a format for representing
documents and process but it does not define any particular document or processes.
Therefore, e-business frameworks are necessary for information sharing. The thesis
identifies that the frameworks cover the business and technical aspects of business
documents, business processes, and messaging. In addition, the framework may take the
rough, detailed, or generic approach to the business processes. XML has an important
role in the business documents and messaging but only the generic approach applies
XML to the business processes.
Analyzing the XML-based e-business framework, it is possible to identify four
categories. Most frameworks are document-centric concentrating on cross-industry or
industry-specific business documents. Cross-industry frameworks provide business
documents and rough business processes across industry, whereas industry-specific
frameworks describe business documents and detailed business processes in a particular
industry. Finally, process-centric frameworks focus on generic business processes.
This thesis presents a prototype of the XML-based integration system called the CA that
was implemented using Java and tested at ABB Control and InCap Electronics. It was
used in an industrial case for studying the properties of the XML-based integration
systems from both the development and usage perspectives. The development
perspective focused on experiments with some implementation approaches to the
prototype. Respectively, the usage perspective concentrated on evaluation of the
potential benefits and costs of the prototype in an industrial case. Since ABB Control
and InCap Electronics used EDIFACT in supply chain integration, it was possible to
compare XML-based integration to EDI-based integration.
The prototype exchanged purchase orders, purchase order responses, and invoices based
on the xCBL framework, as well as demand forecasts over the Internet successfully,
whereas EDIFACT did not support the exchange of demand forecasts. Since XML
enables customized business documents, which can be validated by DTDs, parsed by
SAX, and transformed by XSLT, and the integration systems are based on the Internet
instead of VAN, the prototype was more flexible to implement and operate than EDI. In
addition, the engine-processor architecture together with its XML-based configuration
facilitates the maintenance of the prototype. Therefore, the prototype provides a sound
basis for XML-based supply chain integration.
At this point, only preliminary results concerning the industrial use of the prototype
exist. The results show that within the test case the prototype can fulfill the functional
requirements of supply chain integration. The business benefits of the prototype are
highly case-specific but its use could provide significant cost savings in comparison to
EDI. However, it is not completely clear to what extent these savings are attributable to

 52

the properties of the prototype or to other contributing factors, e.g. how EDI operators
do price their services. An EDI connection for a new message type was three to four
times more expensive to implement than a new message type with the prototype.
Therefore, the implementation costs seems to be lower for XML than for EDI. On the
other hand, a subcontractor needs no integration system of its own but it can use the
main contractor’s XML-based integration system by a browser. For SMEs requiring less
frequent data exchange, this is an important factor. When charges for VAN are
compared to those for the Internet, the operating costs seems to be lower for XML than
for EDI. This is not necessarily a permanent situation because more intense competition
between EDI operators may bring down charges for VAN.
There are more XML-based e-business frameworks than EDI standards. On the other
hand, EDI cannot represent business processes, which XML can do. This indicates that
XML is more flexible than EDI. The same coin has another side. Which framework to
support, if any? Adoption of a large number of frameworks is more expensive than
adoption of a small number. Choosing a framework that matches with the trading
partners tends to be more difficult from a large number of frameworks than from a small
number. Experiences also indicate that XML-based integration is less expensive than
EDI-based integration. These indications are tentative due to the lack of accumulated
experiences.
In the short run, XML and EDI are more likely complements than substitutes. Large
enterprises will not abandon EDI in many industries until the uncertainty about XML is
dispelled. However, XML provides large enterprises a way to extend supply chain
integration with SMEs, which have no legacy systems and are thus unwilling to invest
in integration systems. The idea is that a SME has an e-mail address and access to the
Internet, and a large enterprise has an integration system to be used over the Internet by
a browser.
In the long run, XML-based supply chain integration can be a significant alternative to
EDI although XML does not remove all the integration problems. Shared understanding
of business documents and business processes is still necessary in the future. XML does
not guarantee but it can promote achieving a shared understanding that is needed in
supply chain integration.

 53

References
Aho, A., Sethi, R., Ullman, J., 1986, Compilers: Principles, Techniques, and Tools.
Addison-Wesley, Reading, MA.
Anandarajan, A, Wen, H., 1999, “Evaluation of information technology investment”,
Management Decision, Vol. 37, No. 4, pp. 329-337.
ASC, 2003, ASC X12, http://www.x12.org
Apache, 2000, Jakarta-Tomcat, http://jakarta.apache.org/tomcat
BEA, 2003, WebLogic Server, http://www.bea.com
BizTalk, 2002, BizTalk Framework, http://www.biztalk.org
BPMI, 2003, Business Process Modeling Language, http://www.bpmi.org
Buxmann, P., Díaz, L., Wünstner, E., 2002, “XML-based supply chain management: As
SIMPLEX as it is”. In Proceedings of the 35th Annual Hawaii International Conference
on System Sciences, Vol. 7. HICSS 02, January 7-10, Big Island, HI. Pp. 2141-2150.
Chan, S., Dillon, T., Siu, A., 2002, “Applying a mediator architecture employing XML
to retailing inventory control”, Journal of Systems and Software, Vol. 60, No. 3, pp.
239-248.
Copeland, K., Hwang, C., 1997, “Electronic data interchange: Concepts and effects”.
The 7th Annual Conference of the Internet Society. INET 97, June 24-27, Kuala Lumpur,
Malaysia.
cXML, 2003, Commerce Extensible Markup Language, http://www.cxml.org
Cummins, F., 2002, Enterprise Integration: An Architecture for Enterprise Application
and Systems Integration. Wiley, New York, NY.
Ding, Y., Fensel, D., Klein, M., Omelayenko, B., 2002, “The semantic web: Yet another
hip?”, Data & Knowledge Engineering, Vol. 41, No. 2-3, pp. 205-227.
ebXML, 2003, Electronic Business XML, http://www.ebxml.org
Economist, 2001, “Survey: Battle of the platforms”, Economist, April 14, pp. S15-S19.
Fitzgerald, M., 2001, Building B2B Applications with XML: A Resource Guide. Wiley,
New York, NY.
Fürst, K., Schmidt, T., 2001, “Turbulent markets need flexible supply chain
communication”, Production Planning & Control, Vol. 12, No. 5, pp. 525-533.
Goldfarb, C., Prescod, P., 2002, Charles F. Goldfarb’s XML Handbook. Prentice-Hall,
Upper Saddle River, NJ.
Glushko, R., Tenenbaum, J., Meltzer, B., 1999, ”An XML framework for agent-based
e-commerece”, Communication of the ACM, Vol. 42, No. 3, pp 106-114.
Hasselbring, W., Weigand, H., 2001, “Languages for electronic business
communication: State of the art”, Industrial Management & Data Systems, Vol. 101,
No. 5, pp. 207-216.
IBM, 2003, webSphere Server, http://www.ibm.com

http://www.x12.org/
http://jakarta.apache.org/tomcat
http://www.bea.com/
http://www.biztalk.org/
http://www.bpmi.org/
http://www.cxml.org/
http://www.ebxml.org/
http://www.ibm.com/

 54

ISO, 1986, Standard Generalized Markup Language, ISO 8879.
ISO, 1997, Open-EDI Reference Model, ISO/IEC 14662.
Jones, R., 2001, “B2B integration”, Manufacturing Engineer, Vol. 80, No. 4, pp. 165-
168.
Kalliokoski, P., Seilonen, I., Ollus, M., Koskinen, K., 2000, “Virtual enterprise co-
operation model for web-enabled production management for SME-networks”. In
Stanford-Smith, B., Kidd, P. (Eds.), E-Business: Key Issues, Applications and
Technologies, Vol. 2. e-2000, October 18-20, Madrid, Spain. IOS Press, Amsterdam,
The Netherlands. Pp. 639-645.
Kay, M., 2001, Saxon, http://users.iclway.co.uk/mhkay/saxon
Koski, H., Rouvinen, P., Ylä-Anttila, P., 2001, Uuden talouden loppu (The End of New
Economy)? ETLA B-184, SITRA 245, Taloustieto, Helsinki, Finland.
Kärkkäinen, S., Maunuksela-Malinen, P., Saloranta, A., 2001, Yritysten välinen
sähköinen liiketoiminta. EDI/OVT:n käyttö Suomessa (Business-to-Business E-
Commerce. The Use of EDI in Finland). Julkaisusarjan osa 4, Finnish Information
Society Development Centre, Helsinki, Finland.
Li, H., 2000, “XML and industrial standards for electronic commerce”, Knowledge and
Information Systems, Vol. 2, No. 4, pp. 487-497.
Linthicum, D., 2001, B2B Application Integration: E-Business-Enable Your Enterprise.
Addison-Wesley, Boston, MA.
Lu, E., Tsai, R., Chou, S., 2001, ”An empirical study of XML/EDI”, Journal of Systems
and Software, Vol. 58, pp. 271-279.
Luoma, J., Muhonen, T., Huomo, T., 1999, Uudistuva tietotekniikka-arkkitehtuuri
(Renewing Information Technology Architecture). HM&V Research, Espoo, Finland.
Microsoft, 2003, BizTalk Server, http://www.microsoft.com/biztalk
OAG, 2003, Open Applications Group Integration Specification,
http://www.openapplications.org/oagis
OASIS, 2003, Universal Business Language, http://www.oasis-
open.org/committees/ubl
OBI, 2003, Open Buying on the Internet, http://www.openbuy.org
Olson, E., Williams, P., 2001, E-Commerce with Web-Based Standards: A Case Study
in Implementing RosettaNet Process Standards at Avnet. White paper,
PriceWaterhouseCoopers LLP.
OMG, 2001, Unified Modeling Language, http://www.omg.org/uml
papiNet, 2002, From Theory to Reality Using the papiNet XML Standards: A Case
Study by StoraEnso North America. White paper, papiNet Consortium.
papiNet, 2003, papiNet, http://www.papinet.org
Pawar, K., Driva, H., 2000, “Electronic trading in the supply chain: A holistic
implementation framework”, Logistics Information Management, Vol. 13, No. 1, pp 21-
32.

http://users.iclway.co.uk/mhkay/saxon
http://www.microsoft.com/biztalk
http://www.openapplications.org/oagis
http://www.oasis-open.org/committees/ubl
http://www.oasis-open.org/committees/ubl
http://www.openbuy.org/
http://www.omg.org/uml
http://www.papinet.org/

 55

Porter, M., 1985, Competative Advantage: Creating and Sustaining Superior
Performance. Free Press, New York, NY.
Reimers, K., 2001, “Standardizing the new e-business platform: Learning from EDI
experience”, Electronic Markets, Vol. 11, No. 4, pp. 231-237.
RosettaNet, 2001, Case Study: Arrow and UTEC Replace EDI-Based Purchase Order
Process with RosettaNet Standards. White paper, RosettaNet Consortium.
RosettaNet, 2002a, Achieving Streamlined Operations through Collaborative
Forecasting and Inventory Management: STMicroelectronics E-Chain Optimization
Project. White paper, RosettaNet Consortium.
RosettaNet, 2002b, Measuring Business Benefits of RosettaNet Standards: A Co-
adoption Model Conducted by the University of Illinois. White paper, RosettaNet
Consortium.
RosettaNet, 2003, RosettaNet, http://www.rosettanet.org
Russell, S., Norvig, P., 1995, Artificial Intelligence: A Modern Approach. Prentice-Hall,
Englewood Cliffs, NJ.
SAX, 2002, Simple API for XML, http://www.saxproject.org
Shim, S., Pendyala, V., Sundaram, M., Gao, J., 2000, “Business-to-business e-
commerce frameworks”, IEEE Computer, Vol. 33, No. 10, pp. 40-47.
SoftwareAG, 2003, EntireX, http://www.softwareag.com
Staab, S., Aalst, W. van der, Benjamins, V., Sheth, A., Miller, J., Bussler, C., Maedche,
A., Fensel, D., Gannon, D., 2003, “Web services: Been there, done that?”, IEEE
Intelligent Systems, Vol. 18, No. 1, pp. 72-85.
Statistics Denmark, Statistics Finland, Statistics Norway, Statistics Sweden, 2001, Use
of IC in Nordic Enterprises 2000/2001. Statistics Norway, Kongsvinger, Norway.
Supply Chain Council, 2003, Supply Chain Operations Reference, http://www.supply-
chain.org
Sun, 2000a, Java 2 Platform Standard Edition, http://java.sun.com/j2se
Sun, 2000b, Java API for XML Processing, http://java.sun.com/xml/jaxp
Sundaram, M., Shim, S., 2001, “Infrastructure for B2B exchanges with RosettaNet”. In
The 3rd International Workshop on Advanced Issues of E-Commerce and Web-Based
Information Systems. WECWIS 2001, June 21-22, Milpitas, CA. Pp. 110-119.
Tan, K., 2001, “A framework of supply chain management literature”, European
Journal of Purchasing & Supply Management, Vol. 7, No. 1, pp. 39-48.
Tibco, 2003, ActiveEnterprise, http://www.tibco.com
UDDI, 2002, Universal Description, Discovery and Integration, http://www.uddi.org
UNECE, 2003, EDIFACT, http://www.unedifact.org
W3C, 1999a, Extensible Stylesheet Language Transformations,
http://www.w3.org/TR/xslt
W3C, 1999b, Hypertext Markup Language, http://www.w3.org/MarkUp
W3C, 1999c, Resource Description Framework, http://www.w3.org/RDF

http://www.rosettanet.org/
http://www.saxproject.org/
http://www.softwareag.com/
http://www.supply-chain.org/
http://www.supply-chain.org/
http://java.sun.com/j2se
http://java.sun.com/xml/jaxp
http://www.tibco.com/
http://www.uddi.org/
http://www.unedifact.org/
http://www.w3.org/TR/xslt
http://www.w3.org/MarkUp
http://www.w3.org/RDF

 56

W3C, 2000a, Extensible Markup Language, http://www.w3.org/TR/REC-xml
W3C, 2000b, Simple Object Access Protocol, http://www.w3.org/TR/SOAP
W3C, 2001a, Web Services Description Language, http://www.w3.org/TR/wsdl
W3C, 2001b, XML Schema Definition Language, http://www.w3.org/XML/Schema
W3C, 2002, Document Object Model, http://www.w3.org/DOM
W3C, 2003a, RDF Schema, http://www.w3.org/TR/rdf-schema
W3C, 2003b, Web Ontology Language, http://www.w3.org/TR/owl-ref
webMethods, 2003, Integration Platform, http://www.webmethods.com
Westarp, F. von, Weitzel, T., Buxmann, P., König, W., 1999, “The status quo and the
future of EDI: Results of an empirical study”. In Pries-Heje, J., Ciborra, C., Kautz, K.,
Christiaanse, E., Avison, D., Heje, C. (Eds.), Proceedings of the 7th European
Conference on Information Systems. ECIS 99, June 23-25, Copenhagen, Denmark.
Copenhagen Business School, Copenhagen, Denmark. Pp. 719-731.
WfMC, 2003, XML Process Description Language, http://www.wfmc.org
Willcocks, L., Lester, S., 1999a, “Information technology: Transformer or sink hole?”
In Willcocks, L., Lester, S. (Eds.), Beyond the IT Productivity Paradox. Wiley,
Chichester, United Kingdom. Pp. 1-36.
Willcocks, L., Lester, S. 1999b, “In search of information technology productivity:
Assessment issues”. In Willcocks, L., Lester, S. (Eds.), Beyond the IT Productivity
Paradox. Wiley, Chichester, United Kingdom. Pp. 69-97.
xCBL, 2003, XML Common Business Library, http://www.xcbl.org
XML/EDI Group, 2001, XML/EDI, http://www.xmledi-group.org
Zhao Y., Sandahl, K., 2000, “XML-based frameworks for Internet commerce”. In
Proceedings of the 2nd International Conference on Enterprise Information Systems.
ICEIS 2000, July 5-7, Stafford, United Kingdom. Pp. 511-516.
Zuboff, S., 1988, In the Age of the Smart Machine: The Future of Work and Power.
Basic Books, New York, NY.

http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/SOAP
http://www.w3.org/TR/wsdl
http://www.w3.org/XML/Schema
http://www.w3.org/DOM
http://www.w3.org/TR/rdf-schema
http://www.w3.org/TR/owl-ref
http://www.webmethods.com/
http://www.wfmc.org/
http://www.xcbl.org/
http://www.xmledi-group.org/

 1

Appendix

Appendix 1: XML in the BNF
The Backus-Naur form is a formal notation used to describe syntax of languages (Aho
et al. 1986). The following grammar expresses a language of the XML Standard 1.0
without DTDs and namespaces. Figure A1 shows those productions of this grammar
that contain non-terminal symbols, e.g. Letter, on the right-hand side of the production.
Terminal symbols are enclosed in quotes, e.g. “<”.
Document ::= Element
Element ::= EmptyTag | StartTag Content EndTag
EmptyTag ::= “<” Name (S Attribute)* S? “/>”
Name ::= (Letter | “_” | “:”) (NameChar)*
Letter ::= BaseChar | Ideographic
NameChar ::= Letter | Digit | “.” | “-” | “_” | “:” | CombiningChar | Extender
Attribute ::= Name S? “=” S? Value
Value ::= “'” ([^<&"] | Reference)* “'” | “"” ([^<&'] | Reference)* “"”
Reference ::= “&” Name “;” | CharRef
StartTag ::= “<” Name (S Attribute)* S? “>”
Content ::= CharData? ((Element | Reference | CDSect | PI | Comment) CharData?)*
CDSect ::= “<![CDATA[” (Char* - (Char* “]]>” Char*)) “]]>”
PI ::= “<?” Name - ((“X” | “x”) (“M” | “m”) (“L” | “l”)) (S (Char* - (Char* “?>” Char*)))? “?>”
Comment ::= “<!--” ((Char - “-”) | (“-” (Char - “-”)))* “-->”
EndTag ::= “</” Name S? “>”

Figure A1: Productions of the grammar
This grammar also has ten other productions that consist of terminal symbols on the
right-hand side of the production. If all the productions of the grammar have a single
non-terminal symbol on the left-hand side of the production, the language is context-
free (Russell and Norvig 1995). Since XML satisfies this requirement, it is a context-
free language.

Appendix 2: Java interface of the processors
The engine and processors are not fitted together in compile-time but the engine loads
and calls the processors in run-time. Figure A2 shows a CAProcessor that implements
this interface.

public interface CAProcessor {
public void setInput(Integer nro, Object val);
public Exception execute();
public Object getOutput();

}

Figure A2: CAProcessor
Each processor has a constructor with at most one argument of the String type. This
argument is often an URI to the configuration data. The “setupInput” method sets an
object “val” as an input in a variable that has a running number “nro” (0, 1, …). It is
possible that the processor has no inputs. The “execute” method performs the process
with the given inputs. This method returns an exception if it has occurred. Otherwise, it
returns null. Finally, the output of the processor is obtained by the “getOutput” method.
If the process has no output, this method returns null.

 2

Appendix 3: A DTD for system configuration
The engine has one file that contains its system configuration data. This data includes
attributes “dtd”, which is a URI to a DTD for an interaction request (Appendix 9), and
“html”, which is a URI to an XSLT translation to transform an interaction response into
the HTML format. An interaction is identified by a unique triple of attributes
“operation”, “content”, and “document”. A content of the interaction is a URI to an
interaction definition. Figure A3 presents a DTD for system configuration.

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE configuration [
<!ELEMENT configuration (interaction)*>
<!ATTLIST configuration
dtd CDATA #REQUIRED
html CDATA #IMPLIED

>
<!ELEMENT interaction (#PCDATA)>
<!ATTLIST interaction
operation (query|receive|send) "query"
format (vsf|xcbl) "vsf"
document (demand-forecast|invoice|order|order-list|order-response) "order"

>
]>

Figure A3: A DTD for system configuration

Appendix 4: A DTD for interaction definition
An interaction definition has at least one operation. It may also have parameters and a
result. Each parameter has a unique attribute “name”, attributes “type”, and “state”. This
type is Date, Double Integer or String to construct an object with the parameter value,
or a URI to a DTD to validate the parameter value. If the state has a value “variable”,
the engine gives the parameter value. Otherwise, the parameter value is a content of the
parameter defined in the interaction definition. Each operation has attributes “name”
and “processor”. This name is unique so that parameters and other operations do not
have the same name. The processor is a URI to a class to construct a processor object. If
the operation has an attribute “configuration”, which is a URI to its configuration data,
the processor object is constructed with this data. The operations may also have inputs.
The input has an attribute “name” that refers to the name of the parameter or previous
operation. If there is a result, its value is given to the engine. The result has a name that
refers to the name of the operation. Figure A4 presents a DTD for an interaction
definition.

 3

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE interaction-definition [
<!ELEMENT interaction-definition (parameter*,operation+,result?)>
<!ELEMENT parameter EMPTY>
<!ATTLIST parameter
name CDATA #REQUIRED
type CDATA #REQUIRED
state (constant|variable) "variable"

>
<!ELEMENT operation (input)*>
<!ATTLIST operation
name CDATA #REQUIRED
processor CDATA #REQUIRED
configuration CDATA #IMPLIED

>
<!ELEMENT input EMPTY>
<!ATTLIST input
name CDATA #REQUIRED

>
<!ELEMENT result EMPTY>
<!ATTLIST result
name CDATA #REQUIRED

>
]>

Figure A4: A DTD for interaction definitions

Appendix 5: Configuration of the Query Processor
Configuration data of the Query Processor contains an attribute “connection” to open a
database, and a SELECT statement to create a result set in XML format from the data
retrieved from this database. The SELECT statement may include a number of question
marks (?). For each question mark, there must be an input. Figure A5 presents an
example.

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE query [
<!ELEMENT database-query EMPTY >
<!ATTLIST database-query

connection CDATA #REQUIRED
>
]>
<database-query connection="jdbc:odbc:vsfdb">

SELECT * FROM Orders WHERE order_id = ? and company _id= ?
</database-query>

Figure A5: Configuration data of the Query Processor
Since the Query Processor has a simple configuration, its configuration data is
processed without the XML parser, and not validated against a DTD.

 4

Appendix 6: Configuration of the Update Processor
Configuration data of the Update Processor contains an attribute “connection” to open a
database. In order to manipulate the content of this database, the Update Processor has
one input that may consist of a number of UPDATE, INSERT, and DELETE
statements. Figure A6 presents an example.

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE query [
<!ELEMENT database-update EMPTY >
<!ATTLIST database-update
connection CDATA #REQUIRED

>
]>
<database-update connection="jdbc:odbc:vsfdb"/>

Figure A6: Configuration data of the Update Processor
The Update Processor also has a simple configuration. Therefore, its configuration data
is not validated against a DTD, and no XML parser is used.

Appendix 7: Configuration of the Messenger
Configuration data of the Messenger contains an attribute “mail” that is a mail server
for sending e-mails, and pairs of attributes “name” and “address”. If the first input of
the Messenger equals with a name, the second input is sent to an address related to this
name. The address is a URI, which has a prefix “mailto:” to send an e-mail, “http://” to
send a message, and “file:” to save a file. Figure A7 presents an example with a DTD.

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE partners [
<!ELEMENT partners (send)*>
<!ATTLIST partners

mail CDATA #REQUIRED
>
<!ELEMENT send EMPTY>
<!ATTLIST send

name ID #REQUIRED
address CDATA #REQUIRED

>
]>
<partners mail="vttmail.vtt.fi">

<send name="smtp" address="mailto:autjmn@vtt.fi"/>
<send name="http" address="http://autjmn:8080/vsf/servlet/CA"/>
<send name="file" address="file:vsf/CA.txt"/>

</partners>

Figure A7: Configuration data of the Messenger

 5

Appendix 8: Configuration of the Access Processor
Configuration data of the Access Processor contains triples of attributes “user”,
“password”, and “id”. If the first input of the Access Processor equals with a user and
the second input with a password of this user, the Access Processor returns a value of
the attribute id related to the user. Figure A8 presents an example with a DTD.

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE permissions [
<!ELEMENT permissions (access)*>
<!ELEMENT access EMPTY>
<!ATTLIST access
user ID #REQUIRED
password CDATA #REQUIRED
id CDATA #REQUIRED

>
]>
<permissions>
<access user="jmn" password="aut" id="%"/>

<permissions>

 Figure A8: Configuration data of the Access Processor

Appendix 9: A DTD for interaction request
A DTD for interaction request includes attributes “operation”, “format”, and
“document” to identify the interaction to be performed. An attribute “presentation” tells
the format of an interaction response. The DTD also contains parameter attributes
whose values are conveyed to the interaction. These values can be XML documents
included in the interaction request. Figure A9 presents a DTD for an interaction
definition.
<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE interaction-request [
<!ELEMENT interaction-request (parameter)*>
<!ATTLIST interaction-request
operation (query|receive|send) "query"
format (vsf|xcbl) "vsf"
document (demand-forecast|invoice|order|order-list|order-response) "order"
presentation (html|plain|xml) "plain"

>
<!ELEMENT parameter (#PCDATA)>
<!ATTLIST parameter
name CDATA #REQUIRED>

>
]>

Figure A9: A DTD for interaction requests

 6

Appendix 10: An interaction request embedded in
HTML
An interaction request can be embedded in a web page by a web form that is always
sent using “post” method and “multipart/form-data” encoding. The attributes operation,
format, document, and presentation are replaced by hidden inputs “interaction-
request:operation”, “interaction-request:format”, “interaction-request:document”, and
“interaction-request:presentation”. Since the interaction request is sent via the web
page, the input “interaction-request:presentation” should always have a value “html”.
Parameters of the interaction request “user”, “password”, and “order-id” are replaced by
hidden inputs “parameter:user”, “parameter:password”, and “parameter:order-id”.
Figure A10 presents an example with a DTD that corresponds to an example in Figure
13.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>Query Purchase Order</TITLE>

</HEAD>
<BODY>
<H1>Query Purchase Order</H1><P>
<FORM METHOD="post" ACTION="http://autjmn:8080/vsf/servlet/CA"
ENCTYPE="multipart/form-data">
<INPUT TYPE="hidden" NAME="interaction-request:operation"
VALUE="query">
<INPUT TYPE="hidden" NAME="interaction-request:format"
VALUE="xcbl">
<INPUT TYPE="hidden" NAME="interaction-request:document"
VALUE="order">
<INPUT TYPE="hidden" NAME="interaction-request:presentation"
VALUE="html">

User:
<INPUT TYPE="text" NAME="parameter:user" FRAMEWIDTH="4"
SIZE="31" MAXLENGTH="256">

Password:
<INPUT TYPE="password" NAME="parameter:password" FRAMEWIDTH="4"
SIZE="31" MAXLENGTH="256">

Order ID:
<INPUT TYPE="text" NAME="parameter:order-id" FRAMEWIDTH="4"
SIZE="31" MAXLENGTH="256">

<INPUT TYPE="submit" NAME="send" VALUE="Send">

</FORM>
</BODY>

</HTML>

Figure A10: A home page for an interaction request of the query purchase order

	Table of contents
	List of publications
	Abbreviations
	1Introduction
	1.1Background
	1.2 Goals
	1.3Methodology
	1.4 Scope
	1.5Structure

	2Review
	2.1 Supply chain management
	2.1.1 Concept
	2.1.2 Business impacts
	2.1.3 Integration models

	2.2 XML technologies
	2.2.1 XML standard
	2.2.2 Validating: DTD and XSDL
	2.2.3 Parsing: SAX and DOM
	2.2.4 Transforming: XSLT

	2.3 Expectations
	2.4 E-business frameworks
	2.4.1 Basics
	2.4.2 XML and frameworks
	2.4.3 Comparison
	2.4.4 xCBL
	Library
	Summary

	2.4.5 RosettaNet
	Partner Interface Processes
	Dictionaries and Codes
	Implementation Framework
	Summary

	2.4.6 ebXML
	Core Components
	Business processes
	Collaboration Protocol Profiles and Agreements
	Registry
	Message Services
	Summary

	2.5 Experiences
	2.6 Critical summary
	2.6.1 XML technologies revised
	2.6.2 Expectations revised
	2.6.3 E-business frameworks revised
	2.6.4 Experiences revised

	3 Case study
	3.1 Case
	3.1.1 Companies
	3.1.2 Requirements

	3.2 Implementation
	3.2.1 Architecture
	3.2.2 Engine
	3.2.3 Processors
	3.2.4 Configuration
	3.2.5 Technical details

	3.3 Evaluation
	3.3.1 Objectives
	3.3.2 Results
	Functionality and business benefits
	Demands and costs of implementation and operation
	Comparing the costs of EDI and CA

	4 Discussion
	4.1 Review discussed
	4.2 Case study discussed
	4.3 Further research

	5 Conclusions
	References
	Appendix
	Appendix 1: XML in the BNF
	Appendix 2: Java interface of the processors
	Appendix 3: A DTD for system configuration
	Appendix 4: A DTD for interaction definition
	Appendix 5: Configuration of the Query Processor
	Appendix 6: Configuration of the Update Processor
	Appendix 7: Configuration of the Messenger
	Appendix 8: Configuration of the Access Processor
	Appendix 9: A DTD for interaction request
	Appendix 10: An interaction request embedded in HTML

