

2

Männistö T, A Conceptual Modelling Approach to Product Families
and their Evolution. Acta Polytechnical Scandinavica, Mathematics and
Computing Series. No. 106, Espoo 2000, 166 p. Published by the Finnish
Academies of Technology. ISBN 951-666-543-8. ISSN 1456-9418.

Keywords: Product families, product data modelling, product evolution

Abstract
Many industries exhibit a growing trend towards better customisation.
This means a larger product variety, which can be implemented in the
form of product families. The main idea of product families is to
combine the economy of scale offered by mass-products with the high
degree of adaptation to customer needs provided by project products,
which necessitates a mechanism for capturing the variation in an
effective manner. In this thesis, the focus is on the conceptual modelling
of product families, particularly on the problems related to the evolution
of product family descriptions and the product individuals created
according to them. The main goal of this thesis is to find means for
representing product families in information systems so that their
evolution is adequately catered for.

Investigation of the STEP standard, namely its part AP214 for the
automotive industry, leads to observation of conceptual mismatch. That is, a
need for new conceptual modelling methods, which cannot be provided
directly by traditional databases or current PDM systems. A conceptual
platform with a set of invariants was defined to capture the semantics
for modelling product families and their individuals. Three detailed
studies were conducted on the relation of schema and individuals of
product families. The first detailed study concentrated on the instantia-
tion process, the second on the modelling support for reconfiguration of
product individuals and the third on elaborate modelling of product
individuals with multiple levels of abstraction, which enables systematic
support for the long lifetime and large variety of product individuals.

© All rights reserved. No part of the publication may be reproduced, stored, or
transmitted, in any form or by any means, electronic, mechanical, photocopy-
ing, recording, or otherwise without the prior written permission of the author.

To Satu

4

Supervisor

Professor Reijo Sulonen
Department of Computer Science and Engineering
Helsinki University of Technology
Espoo, Finland

Reviewers

Professor Pasi Tyrväinen
Department of Computer Science and Information Systems
University of Jyväskylä
Jyväskylä, Finland

Dr. Tech. Jouko Vuoskoski
IT Manager
Aker Finnyards
Rauma, Finland

Opponents

Professor Kaj A. Jørgensen
Department of Production
Aalborg University
Aalborg, Denmark

Professor Pasi Tyrväinen
Department of Computer Science and Information Systems
University of Jyväskylä
Jyväskylä, Finland

5

Contents

ABSTRACT ...2
LIST OF ORIGINAL CONTRIBUTIONS6
1 INTRODUCTION ..7

1.1 RESEARCH METHOD..9
1.2 RESULTS.. 10

2 REVIEW OF THE LITERATURE..................................... 12
2.1 CONCEPTUAL MODELLING ... 12
2.2 IS-INSTANCE-OF RELATION... 13
2.3 IS-A RELATION .. 14
2.4 HAS-PART RELATION... 16
2.5 PRODUCT VARIETY... 20
2.6 VERSIONING.. 23
2.7 SCHEMA EVOLUTION ... 27
2.8 EVOLUTION OF INDIVIDUALS ... 30

3 TERMINOLOGY..32
4 AIMS OF THE STUDY..34
5 RESULTS..35

5.1 MODELLING PRODUCT FAMILIES... 35
5.1.1 STEP and Product Families... 35
5.1.2 Conceptual Mismatch ... 37

5.2 EVOLUTION PROCESSES OF PRODUCT FAMILIES 40
5.3 INSTANTIATION PROCESS .. 42
5.4 EVOLUTION OF SCHEMA AND INDIVIDUALS 44

5.4.1 Concepts ... 45
5.4.2 Invariants... 47
5.4.3 Generic and Fixed References.. 49
5.4.4 Conceptual Platform for Evolution of Product Families............. 54

5.5 RELATION OF EVOLVING SCHEMA AND INDIVIDUALS 55
5.5.1 Reconfiguration ... 58
5.5.2 Modelling Product Family Individuals for After-Sales 62

6 DISCUSSION...66
7 CONCLUSIONS...73
8 KIITOKSET / ACKNOWLEDGEMENTS75
REFERENCES ..77

6

List of Original Contributions

This thesis is based on the following original contributions, which are
referred to in the text by their Roman numerals (I–V):

I Männistö T, Peltonen H, Martio A, Sulonen R. Modelling Ge-
neric Product Structures in STEP. Computer-Aided Design
1998;30(14):1111–8.

II Peltonen H, Männistö T, Alho K, Sulonen R. Product Configu-
ration—an Application for Prototype Object Approach. In: To-
koro M, Pareschi R, editors. ECOOP 94. Proceedings of the
8th European Conference on Object-Oriented Programming;
Bologna, Italy. Springer-Verlag; 1994. p. 515–34.

III Männistö T, Sulonen R. Evolution of Schema and Individuals
of Configurable Products. In: Chen PP, Embley DW, Kou-
loumdjian J, Liddle SW, Roddick F, editors. Advances in Con-
ceptual Modelling, Lecture Notes in Computer Science 1727;
Springer; 1999. p. 12–23.

IV Männistö T, Soininen T, Tiihonen J, Sulonen R. Framework and
Conceptual Model for Reconfiguration. In: Faltings B, Freuder
E, Friedrich G, Felfernig A, editors. Papers from the AAAI
Workshop on Configuration; AAAI Press; 1999. p. 59–64.

V Männistö T, Peltonen H, Soininen T, Sulonen R. Multiple Ab-
straction Levels in Modelling Product Structures. Technical re-
port. Laboratory of Information Processing Science, Depart-
ment of Computer Science, Helsinki University of Technology;
2000; Report no.: TKO-B148.

7

1 Introduction

In many industrial sectors, the large product variety is becoming
commonplace. Customers are no longer happy with “having the product
in any colour as long as it is black”. Operation on wider markets requires
adaptation to different environments, regulations and cultures. Thus, the
trend in many industrial sectors is increasingly towards better customisa-
tion leading to larger product variety, which can be implemented as
product families. Large product variety, however, does not come free. It
complicates sales and pricing, increases and imbalances inventories,
confuses manufacturing processes, just to mention a few problems. It
also makes product data management more difficult. Instead of single
products, the company needs to manage data on product families
comprising possibly millions of variants. This thesis concentrates on the
problems in data management of product families.

Figure 1 shows the industrial environment for the problem area of
this thesis. The order-delivery process is illustrated by transparent arrows
whereas, grey arrows show (partially) the information flow of product
descriptions. Product families require a selection of one variant for a
specific customer need. This selection process is in the figure referred to
as “Sales Configuration”. The selection of the variant is based on
product family descriptions, which are developed and maintained with
the help of a product data management (PDM) system (see e.g., Miller et al.
1997, Peltonen 2000) by the process labelled as “Design” in the figure. In
practice, the knowledge management of a sales configurator and PDM
system may be separate, which easily causes problems of consistency.
Therefore, in this thesis it is envisioned that changes to product families
are made in the PDM system and propagated to the sales configurator.
After the sales configuration, manufacturing information about the
product individual must be generated. This bill-of-materials (BOM) or
order-BOM is the structure of a product individual to be manufactured
and contains details irrelevant to the variant selection.

Traditionally, PDM systems have been rather weak in dealing with
product families, although better systems have emerged recently. In this
thesis, the management of product family information and the genera-
tion of order-BOM after the sales configuration are envisioned to be
within the scope of a PDM system. To distinguish from traditional
BOM-based PDM systems, such an imaginary PDM system is called an
advanced PDM system. An advanced PDM system has an extended scope in

8

managing the evolution of product families and the individuals created
according to them. Therefore, the scope of an advanced PDM system
also includes the evolution of product family individuals after they have
been delivered to a customer, i.e., after-sales operations. The scope is
illustrated in Figure 1 by a dotted line. Out of scope, as discussed in this
thesis, is still manufacturing, which is catered for by Enterprise Resource
Planning (ERP) systems. An advanced PDM system is thus an imaginary
system for which this thesis develops conceptual grounds for modelling
and managing the evolution of product families and their individuals.

In other words, this thesis addresses the conceptual modelling of
product families; in particular when a product family contains a large
number of variants. The idea in product family modelling is to capture
the potentiality of different structural variants of a product within a
single data representation. This thesis concentrates on certain funda-
mental aspects in modelling product families and the characteristics of
the evolution of product families. In the latter, the two main evolution
processes relevant to product families must be distinguished as follows.

Customer

Product family
descriptions

Manufacturing / ERP

PDM

Components
(materials, items)

Design

Component Supplier
Management

After-Sales

Sales
Configuration

Technical
Configuration

Physical
product

individual
Drawings,
3D-models

Technical
documentation Order-BOM

Customer
requirements

Technical order
specification

Configuration
model Models of

product
individuals

“as-manufactured”

“as-installed”

“as-maintained”

Figure 1. Industrial environment for the problem area of the thesis.

9

First, as companies develop their products, product family descrip-
tions are constantly changed. Product family descriptions conceptually
correspond to a traditional schema. However, in traditional database
schema evolution, the existing data is typically converted to reflect
changes in the schema. In product management, this is not the case—old
product individuals are typically not affected when a company changes
its product families. The evolution of the schema in product family
modelling, therefore, significantly differs from traditional schema
evolution.

Second, product individuals may have long lifetimes and histories of
their own. More importantly, they do evolve independently of the
schema since as a product individual is modified in after-sales, the change
typically involves new components from schemas newer than the one
used for creating the individual. Consequently, the modified product
individual consists of old and new components and thus typically
conforms to no schema version; that is, such a product individual could
never have been sold as a new product individual.

As the above points illustrate, the modelling needs of product fami-
lies crucially differ from the data modelling in traditional databases
because the evolution of individuals is not reflected in the schema and,
consequently, the individuals need not conform to the schema. There-
fore, for example, it is necessary to relax the strict conformance of
individuals to the schema in modelling the evolution related to product
families.

1.1 Research Method
This thesis is a methodological research which builds on the conceptual
analysis of a configuration task that has been developed within the
Product Data Management Group (PDMG) of Helsinki University of
Technology (Tiihonen 1994, Soininen 1996, Tiihonen et al. 1996,
Peltonen et al. 1998, Soininen 1998, Soininen et al. 1998, Tiihonen et al.
1998, Tiihonen 1999) and continues the earlier work of the author on
the evolution of product families (Männistö et al. 1993, Männistö et al.
1995, Männistö et al. 1996, Männistö 1998). This thesis concentrates on
the conceptual modelling of product families and their evolution, which
includes the conceptual modelling of product families, the conceptual
modelling of evolution of product families and the conceptual model-
ling of evolution of individuals of product families.

10

The work analysed the conceptual and ontological foundations of
product family modelling based on experiences in Finnish industry.
From this analysis, a framework for addressing the evolution of product
family descriptions and individuals were constructed. Within this
framework, three detailed studies were conducted in specific problem
areas identified in the industry.

1.2 Results
The main contribution of this work is in clarifying the conceptual
complexity of large product variety, in particular with respect to
evolution. The results are in more detail as follows.

The thesis clearly articulates the differences, i.e., the conceptual
mismatch, between the properties of traditional data modelling methods
and the needs of product family modelling. The focus of this thesis is
not on the actual concepts for modelling product families, as these have
been investigated elsewhere. The focus is on the fundamental aspects of
product family modelling as the problems in modelling product families
with traditional data modelling methods stem from them. The funda-
mental aspects are investigated mainly to understand and explain the
differences in the role of schema and individuals, and consequently to
motivate the proposed treatment of the schema and individuals in
capturing the evolution of product families. The fundamental problems
in modelling product families were clearly seen when the largest
standardisation effort in product data modelling, namely the STEP
standard, was investigated and its approach to modelling product families
was shown inadequate (I).

A conceptual framework that characterises the evolution of product
families and provides ontological foundations for supporting their
evolution in information systems was developed (III). The conceptual
framework addresses in more detail the relation of the schema and
individuals of product families. Product individuals are created according
to the schema. Thereafter, the schema and individuals are more inde-
pendent than their counterparts in databases, but they are not entirely
independent. The complicated relation of schema and individuals is
further investigated in three detailed studies.

One promising non-traditional approach for modelling product
families was investigated by developing a classless object model for
describing product families and supporting the instantiation process of
product individuals, i.e., configuration process, as object refinements (II).

11

The second detailed study (IV) addressed reconfiguration. Recon-
figuration is a significant area of after-sales, especially for companies
with product families. Individuals of product families are in many cases
investments with a long lifetime and are modernised at some point in
their lives. In reconfiguration, an existing product individual is modified
(i.e., reconfigured) to meet new requirements. In the constructed
approach, reconfiguration is modelled by reconfiguration operations,
which capture the valid conversions of old product individuals. The
selected approach is based on the experiences gathered from two dozen
Finnish industrial companies that manufacture configurable products.

The third detailed study (V) concentrated on the evolution of indi-
viduals of configurable products as experienced by one industrial
company. It defined a novel approach for modelling product individuals
that do not conform to any version of the schema used for creating the
individuals. The approach provides multiple abstraction levels for
representing the individuals by a specialisation hierarchy of models.

In summary, the results of this thesis establish a conceptual basis for
the product data management of product families in the manner hardly
any of the current PDM systems have begun to address. It, however, is
not assumed that an advanced PDM system would be a monolithic
system working with uniformly accepted concepts. On the contrary, the
concepts of the system should be adjustable, which essentially means
that product data management policies can be selected from predefined
options without a need for customisation by laborious programming.

12

2 Review of the Literature

This work is influenced by many scientific disciplines including computer
science, product design and industrial management. More specifically, it
includes areas, such as conceptual modelling, object-oriented databases,
design databases, temporal databases, schema evolution of databases,
product data management and product configuration modelling. The
purpose of this section, however, is not to provide an extensive review
of all these fields. Instead, the goal is to familiarise the reader with the
problem area and to help in understanding the contents of this thesis.

2.1 Conceptual Modelling
Information modelling is concerned with construction of computer-based
symbol structures that model some part of the real world (Mylopoulos
1998). In other words, the objective in all data and information model-
ling is to describe a universe of discourse (UoD). The representation of the
UoD should allow an accurate expression of the user’s conception of a
relevant portion of the world (Eastman and Fereshetian 1994). It has
also been acknowledged that evolving product data requires conceptual
models that are independent of the software and hardware environments
in which the models are implemented (McKay et al. 1996).

A conceptual information model or conceptual model offers semantic terms
for modelling an application. The terms may include, for example,
Entity, Activity and Agent (Mylopoulos 1998). Conceptual models are
distinguished from physical models and logical models, which describe the
structure of the database in terms of a database management systems
and the implementation of a database in the secondary memory,
respectively (Batini et al. 1992, Jørgensen and Raunsbaek 1998). The
most important components of conceptual modelling for this thesis are
static ontology and dynamic ontology (Theodoulidis and Loucopoulos 1991,
Mylopoulos 1998).

Within the static ontology, much of the power of conceptual mod-
elling comes from abstraction mechanisms, of which the most important
ones for this thesis are classification, generalisation and aggregation (Rumbaugh
et al. 1991, Batini et al. 1992, Fowler 1997, Mylopoulos 1998).

- Classification refers to the act of dividing a set of entities into classes,
according to similarities and dissimilarities they bear to each
other. The relation of an entity to a class is is-instance-of relation;

13

the entity is said to be an instance of the class. In object-oriented
programming, the same situation is seen from a different per-
spective. The classes are first defined and the instances are then
created according to the class definitions. The act of creating an
instance is thus called instantiation (Stefik and Bobrow 1986).

- Generalisation refers to the creation of generalisation taxonomy, in
which classes are related by is-a relation, between classes. The
opposite of generalisation is called specialisation (Abiteboul and
Hull 1987). Generalisations of a class are superclasses and speciali-
sations subclasses. The resulting taxonomy is also called a generali-
sation hierarchy or generalisation lattice depending on its structure.
The term lattice means, in this context, a directed graph without
cycles (Stefik and Bobrow 1986). The terms class hierarchy, type hi-
erarchy, inheritance hierarchy and is-a hierarchy (or lattice) are also
used.1

- Aggregation is an abstraction for combining wholes from parts via
has-part or part-of relation, which are inverses of each other. For
example, a product is an aggregation of its components.

The dynamic ontology concerns the modelling of temporal aspects of
the universe of discourse. There are various methods for modelling the
evolution related to product families including different versioning
mechanisms, schema evolution of databases, temporal databases and
design modelling. The abstraction mechanisms and temporal aspects of
conceptual modelling will be discussed in more detail in the following
sections.

2.2 Is-instance-of Relation
The is-instance-of relation relates individuals (i.e., instances, objects or data as
they are also called) to the schema (i.e., classes, types, frames, or concepts). The
relation is typically established by classifying existing individuals or by
instantiating class definitions.

In object-oriented modelling, individuals are called objects, which
are a uniform programming element for computing and saving a state
(Stefik and Bobrow 1986). An essential characteristic of an object is object

1 In the original papers annexed to this thesis, the term classification hierarchy was used to
refer to a generalisation hierarchy. In order to avoid confusion, in this summary part of
the thesis, the term classification hierarchy is avoided.

14

identity, which allows referencing to the object. It is required that the
object identity remains invariant across all possible changes to the
object’s value (Zdonik and Maier 1990).

The relation of individuals to the schema has different requirements
or freedoms in different approaches.

- In databases and class-based programming languages, individuals are
always assumed to have the structure described by the schema
(Wegner 1990). For example, an individual may only have attrib-
ute values for attributes specified in the schema. Individuals are
thus always required to conform to the schema.

- In description logic, the subsumption mechanism automatically
classifies an individual according to its properties. Consequently,
a change in the properties of an individual may result in the indi-
vidual changing its class. In design, it is also useful to have some
properties as classifying properties while the others are inherited
after the design object becomes classified (Hakim 1993, Hakim
and Garrett 1997).

- One approach is to separately record the is-instance-of relation
between an individual and its class and then investigate the valid-
ity of the individual with respect to its class (Soininen et al.
1998).

In this thesis, the relation between individuals and the schema is
investigated from the perspective of products. Study III addressed this
issue and proposed that for products, the last view of the above ones is
the most appropriate, but that will be discussed in due time later in the
thesis.

The classification is not only applicable between the schema and
individuals. In general, classification can form multiple levels, each level
consisting of instances of the level above. Classes in the schema can be
instances of meta-classes. At some point, however, the creation of new
meta levels is terminated. Typically, the termination is made at a special
level with a class being an instance of itself (Stefik and Bobrow 1986,
Peters and Özsu 1993, Mylopoulos 1998).

2.3 Is-a Relation
Classes are traditionally organised into taxonomies by is-a relation in the
sense that “Student is-a Person”. Person is a superclass of Student and

15

Student is a subclass of Person or, in other terms, “Person is a generalisa-
tion of Student” and “Student is a specialisation of Person”.

There are two main views on semantics of is-a relation and how to
establish the relation between classes.

In a cognitive view, classes and a class structure serve as a tool for
storing facts in our minds. One guideline for creation of a generalisation
hierarchy is thus cognitive economy, that is, to provide “maximum informa-
tion with the least cognitive effort” (Parsons and Wand 1997). This kind
of approach, which starts creating the concepts from individuals (i.e.,
objects), is called an object-centred view (Goyal et al. 1992). The subsumption
of description logic works with the same principle, by organising the
existing concepts into a generalisation hierarchy according to their
properties. Subsumption means that anything which is true of the
general concept must also be true of the more specific concept derived
from it (see, e.g., Searls and Norton 1990, McGuinness and Wright
1998a).

In a class-centred view, e.g., in object-oriented programming, the class
hierarchy is defined for a certain purpose (Goyal et al. 1992). The
hierarchy is assumed rather static and classes are typically not organised
automatically. In object-oriented programming, one particular property
of generalisation is subtyping. It means that instances of a subclass can be
used where an instance of the superclass is expected (Nierstrasz 1989,
Zdonik and Maier 1990).

Inheritance is a property in an object-oriented language that allows
defining classes based on the definition of other classes. The properties
of a class are inherited by its subclasses. A class can then define its own
properties in addition to the inherited properties and so distinguish itself
from its superclass. According to the model, it may be possible to refine
the properties in subclasses or even entirely override (or substitute) them
(Stefik and Bobrow 1986).

In uniform object approaches in which there is no distinction between
classes and objects, the delegation mechanism implements the sharing of
properties between objects. Each object independently delegates its
properties to other objects (Lieberman 1986, Almarode 1989).

Is-a induces a directed graph, which is required to be acyclic and is
thus called a class lattice or inheritance lattice (Stefik and Bobrow 1986). This
means that a class may have multiple superclasses but not even indirectly
be a superclass of itself. In the case of multiple superclasses, the class
inherits all properties of those classes, and therefore, this case is also
called multiple inheritance. Multiple inheritance creates multiple inheritance

16

paths for a class, which may lead to difficulties, for example, if the
properties are identified by their names, and properties with the same
name are inherited multiple times. Because of the difficulties, multiple
inheritance is not always supported and is-a is required to induce a tree
(or trees).

For a particular universe of discourse, multiple different ways exist
for defining the concepts and organising them into taxonomy (Parsons
and Wand 1997); in other words, design of a generalisation hierarchy
typically involves trade-offs (Taivalsaari 1997). Consequently, if a
generalisation hierarchy, i.e., especially in the case of single inheritance, is
constructed mainly for the purposes of inheriting common properties,
the result may not be optimal from the conceptual viewpoint. In this
thesis, the generalisation is primarily considered as a conceptual tool for
organising classes and secondarily as a mechanism for inheriting
properties. In other words, the generalisation would be constructed from
the viewpoint of product families, not with optimal inheritance in mind.

Generalisation is a powerful data modelling mechanism that can be
naturally applied to industrial products (Jørgensen 1994). Component
data, in particular standard components that are purchased, must be
organised for many reasons, such as efficient searching of components
for new designs and various groupings for statistical analyses of
component purchases, stock value, wear-out in use, etc. The PLIB
standardisation effort addresses generalisation for component libraries,
especially taking into consideration parametric components (ISO 1995b,
ISO 1996).

For industries in which after-sales is of great importance it is bene-
ficial to refer to the parts of delivered products with a standard termi-
nology. With such a dictionary on top of a database, one can, for
example, find all delivered products that use a particular kind of
component. The required type information of subsystems and compo-
nents can be organised into a class hierarchy or hierarchies. Within
STEP, this kind of work has been carried out in the development of AP
221 for process industries under the name STEPlib (ISO 1997a, ISO
1997b, Owen 1997).

2.4 Has-Part Relation
The part-of relation is studied from the philosophical point of view in
classical extensional mereology (CEM). The word mereology is derived from the
Greek work meros meaning part. The basic idea is that a whole consists of

17

parts so that the whole is actually defined by its parts. Simons (1987) has
given an axiomatisation for the part-of relation, which consists of the
following axioms (see e.g., Gerstl and Pribbenow 1995):

- EXISTS: If A is part of B, both A and B exist.
- ASYMM: If A is part of B, B is not part of A.
- SUPPL: If A is part of B, there exists such C that is part of B

and there is no X which is both part of A and part of C (i.e., B
also has part C that is disjoint from A).

- TRANS: If A is part of B and B is part of D, A is part of D.
- EXT: “wholes with same parts are identical.”
- SUM: “There is a unique mereological sum S for any non-empty

set of existing individuals.”

There are some controversial issues with respect to how people under-
stand part-of relationship (Gerstl and Pribbenow 1995). Identity, for
example, is in classical mereology tied to the parts that make the whole.
In many cases, the identity is considered independent of changes of
parts. For example, changing the tyres of a car is not perceived as
resulting in a new car. However, after changing the shaft and the head of
a hammer it may be difficult to speak of the same old hammer. In the
strict object-oriented sense, however, the identity of an object is its
immutable property independent of its other properties. This means that
changing of any or all parts of an object has no effect on its identity. If
one feels that after replacing all parts of an object, it is not the same
object any more, one must create a new object with a new identity.

The intuitiveness of the SUM axiom can also be criticised since it
says that there exists a whole for any set of objects; most of such
“randomly” defined wholes are meaningless (Törmä 1997).

The transitivity axiom TRANS is valid in a certain sense within the
physical artefacts, but is already controversial when the part-of relation is
extended, for example, to member relation (Winston et al. 1987, Artale et
al. 1996). For instance, is an arm of a violin player a part of the orches-
tra?

Classical mereology concerns the part-of relation between individu-
als only. The above axioms, therefore, are not valid for the schema level
representation of part-of relation. For example, an individual cannot be
a part of itself since that contradicts the ASYMM axiom. In the schema,
however, it is meaningful to make the general statement “component
has-part component”—two individuals, both of the type component can

18

be in part-of relation to each other if they are distinct individuals.
Classical mereology thus forms a philosophical foundation for has-part
relation, especially in the sense of modelling the real world around us,
but as such it provides little for the practical product family modelling
tasks.

Halper (1992) has addressed the part-of relationship in practical
terms and has discussed its semantics on the schema level, i.e., not only
as a relationship between individuals. Halper identifies the following
kinds of part-of relationship:

- Exclusive and shared. Part-of relationships are divided by whether
or not a single component individual can be simultaneously an
immediate part of multiple wholes, e.g., whether a motor indi-
vidual can be a part in multiple car individuals. There are three
subcases: shared part relationship, class exclusive part relationship and
(global) exclusive part relationship. These specify whether a compo-
nent individual can be shared, can only be shared by instances of
different classes or cannot be shared at all, respectively. The class
exclusiveness captures requirements, such as a scientific article
can be a part of a journal and a compilation, but not a part of
two journals or two compilations.

- Another distinction is made between single- and multi-valued part
relationships. For example, a car having 2 to 5 doors is a multi-
valued part relationship. These have subcases: single-valued, multi-
valued, range-restricted, fixed-cardinality, essential and multi-valued essen-
tial. These cases are not mutually exclusive; for example, essential
part relationships is a fixed-cardinality relationship with multi-
plicity 1.

- As an example of ordered part relationships, Halper (1992) gives
memo, which has multiple text blocks as parts that can be enu-
merated and have an order, e.g., header, body and trailer. This is
an ordered part relationship of definite number. Alternatively, the
chapters of a book are modelled using ordered part relationship of
indefinite number.

- Dependency is related to the deletion. For example, when a whole
is deleted, its parts may also be deleted automatically. A part rela-
tionship can be part-to-whole dependent or whole-to-part dependent.

- Values of certain properties can be propagated via part relation-
ships. For example, the age of a car may be determined by the

19

age of its frame and the colour of the doors may be the colour
of the body. The former is an upward propagating part relationship
while the latter is a downward propagating part relationship (with re-
spect to the particular property values).

Halper (1992) then discusses the combination of all these aspects and
derives the conclusion that including them all allows inconsistent
schemas.

Artale et al. (1996) had made a survey on the concepts for modelling
part-of relations. The main thesis of their paper is that part-whole
relations should not be modelled as ordinary relations and the burden of
capturing their special semantics left to the designer. They make various
distinctions in kinds of part relations. For example, they make a
distinction between implicit and explicit modelling of wholes. That is,
values of the attributes wife and husband in objects representing humans
define implicitly wholes that can be called families. Alternatively, a family
may be represented explicitly by a separate family object, which has two
parts, wife and husband. In addition, they distinguish between vertical and
horizontal relations. Vertical relations model how the existence or proper-
ties of the whole depend on the existence or properties of its parts, or
vice versa. Horizontal relations describe the integrity of the whole as
constraints between the parts.

One object-oriented approach for modelling part-whole relations is
that of ORION (Kim et al. 1987, Kim et al. 1989). It has composite objects,
for which the part relation is defined by means of composite reference. For
example, the class Vehicle may have a composite reference through
composite attribute Body to the class Autobody, which acts as the domain of
the composite reference. The subclasses of Vehicle inherit the composite
attribute. The composite attribute corresponds to the term part name of
some others (Artale et al. 1996, Soininen et al. 1998).

Mereology focuses on the philosophical and conceptual basis of the
part-whole relation of single entities. Object-oriented modelling of
composite objects provides an intentional view to the has-part relation.
With product families, these do not suffice. Product families include
multiple structural variants and thus their representations need to
incorporate some generic aspects for modelling that variety. The next
section introduces different means for modelling product variety.

20

2.5 Product Variety
Product variation has become a common phenomenon. Most companies
now offer large product variety in order to compete in marketplace
(Sanderson and Uzumeri 1997, Ho and Tang 1998). From product data
modelling viewpoint, two major types of variation are distinguished here:
variety within components and structural variety. The variants of a component
coexist representing the alternative designs of the component. A similar
form of variety is provided by parametric components (ISO 1995b, ISO
1997c). That is, a component has parameters, typically some dimensions,
which can be given values. These both model the variety within a component.
A different form of product variety is structural variety, which refers to the
variation in the product structure. For example, for a personal computer
there may be a selection of different keyboards as alternative parts, and an
external microphone as an optional part. Alternative and optional parts are
typical forms of structural variety. The relation of the terms variant and
version will be addressed in the next section.

This thesis concentrates on the structural variety of products. It is
sometimes a matter of judgement whether the variety is modelled within
a component or as structural variety. For example, various hard disks for
a computer may be represented by a component type with a parameter
for its size or all disks of different sizes may be separate component
types. The choice depends on the intended usage of the representation,
as in all modelling.

Product configuration is an active area of research in which the rep-
resentation of product variety is central. The focus in this thesis is on the
modelling of product families. Therefore, the approaches to product
configuration are only described from that perspective. For a more
thorough view on product configuration, the reader is referred to the
special issues published recently (Faltings and Freuder 1998, Darr et al.
1998) and the reports from the AAAI workshops on configuration
(Faltings and Freuder 1996, Faltings et al. 1999).

There are several ways of modelling product variety. Some methods
are based on explicit representation of the product structure, some
represent the possible and valid sets of components and not necessarily
the product structure at all (Männistö et al. 1996). The latter kind of
methods are especially suitable for products in which the basic architec-
ture is well known and a product individual can easily be assembled from
the given set of components. Instead of or in addition to a product
structure, a method may model the connection of components into a

21

network of some sort. Some methods enable automatic search for
solutions to the configuration task after some initial selections are made.
Naturally, various combinations of basic methods are used. In the
following, methods based on product structure description are intro-
duced first.

- Set of BOMs is a trivial case and not actually a product family
model. The method, however, is widely used in the industry, even
for modelling large numbers of variants.

- Generic, variant and parametric BOMs. These define alternatives for
certain components in a BOM and possibly global variables or
selection tables for determining the choice. (van Veen 1991,
Schönsleben and Oldenkott 1992, Tiihonen et al. 1995, Erens
1996)

- AND-OR graphs, in which each node either breaks down to parts
(AND) or to a selection between choices (OR). The AND and
OR levels alternate, so that an AND level is followed by an OR
level and vice versa. (Kemper and Moerkotte 1994)

- Combined class and component hierarchies. This is a sophisticated ver-
sion of an AND-OR graph as a combination of component and
classification hierarchies. There each non-leave node can be ei-
ther divided into its components (just like AND) or it can be
specialised in its subclass (a kind of an OR). This approach is
used in the PLAKON model (Cunis et al. 1989) and in SAP Con-
figurator (SAP 1994).

- Classless object models. One potential approach for modelling prod-
uct families is the uniform object model. The approach abandons
the distinction between classes and instances and models every-
thing uniformly as objects that can inherit (by delegation) prop-
erties from each other (Lieberman 1986, Stein 1987). The ap-
proach has been used for design modelling (Zucker and Demaid
1992b) and for product family modelling (II).

- Composite Instance Variable. Composite instance variables are used
in object-oriented models for representing components (Kim et
al. 1987, Kim et al. 1989). Such a variable actually represents a set
of components if its domain is a class that has subclasses; any of
its subclass being an eligible component type.

Other methods that have been used for describing the valid sets or
combinations of components include:

22

- If-then rules. In many expert systems, if-then rules can be used for
implicitly describing product structure (Hayes-Roth 1985). For
example, IF component A OR B is in configuration THEN component
X must be included, too.

- Description logic provides a powerful conceptual modelling mecha-
nism with deduction capabilities, which include a subsumption
for automatic classification. Description logic has also been used
for configuration modelling and solving the configuration task
(Weida 1996, McGuinness and Wright 1998b).

- Compatibility and incompatibility constraints state which components
can or cannot be together in a configuration, respectively. These
constraints can be recorded as n-ary tuples and various algo-
rithms exist for satisfying the constraints (Mittal and Frayman
1989, Mittal and Araya 1992, Sabin and Freuder 1996, Weigel and
Faltings 1996, Fleishandler et al. 1998, Soininen and Gelle 1999).

- Interfaces, ports and connectors provide deeper modelling for com-
patibility of components. The basic idea is that certain compo-
nents need, can or cannot be connected. This is modelled by
ports and connectors that must fit together in a valid configura-
tion (Mittal and Frayman 1989, Tiihonen 1994).

- Resources. In resource-based modelling the idea is that some com-
ponents consume something, such as power, fuel, ventilation, etc.,
while other components supply these resources. In a valid con-
figuration, all resources need to be in balance (Heinrich and
Jüngst 1991, Heinrich and Jüngst 1996, Jüngst and Heinrich
1998). For example, the total produced net power must be more
than maximum consumption.

Regardless of research and commercial activities, there is still no
universal model for product configuration modelling. In addition, the
long-term maintenance of configuration knowledge has been known to
be a major problem for some time. For example, one of the earliest
examples is the XCON configurator, which after a few years of opera-
tion was reported to provide work for tens of developers and maintain-
ers (Barker and O'Connor 1989). However, there is still amazingly little
work on the evolution aspects of product configuration, besides this
thesis. The problem has mainly been referred to as a promising area for
future research.

23

2.6 Versioning
Version is a concept for describing the evolution of products (Katz
1990). In addition, versions can be used for various other purposes, such
as concurrency control, recovery, performance enhancement and update-
free databases (Dittrich and Lorie 1988). Therefore, no single semantics
for versioning exists. In the following, some of the most common ones
are described (Björnerstedt and Hultén 1989, Katz 1990, Feiler 1991, van
den Hamer and Lepoeter 1996).

- History. Versions can represent historical development of designs.
In other words, a version is a semantically meaningful snapshot
of a design object at a point in time. Version history allows one
to go back to previous versions.

- Experimental path of development. In a design process, multiple ver-
sions may be generated as alternative solutions with the idea that
one of them is finally selected for further development.

- Variants. One product can have two slightly different variants, for
example, for different market areas. The variants are intended to
co-exist.

- Concurrent development. Separate versions can be used for enabling
concurrent modifications of a design. The separate versions are
subsequently merged into a single one.

- Changing types. Object versioning may be needed to cope with
changing type definitions so that the instances of the old type
can be retained with the old type version.

Many of other terms, including revision, equivalent representation, alternative
and variant, have been introduced for describing versioning and related
phenomena (Katz 1990).

The concept of a version can represent the evolution of many kinds
of objects, such as source files, product components or design objects in
a very general sense. Usually, no attempt is made to define the precise
meaning of a version, although some authors have required that all
versions of an object are implementations of the same interface (Batory
and Kim 1985, Joseph et al. 1991). In industry, a new version is typically
required to be substitutable, i.e., it can be used in place of older versions.
This is sometimes expressed by saying that versions are compatible with
respect to “form, fit and function” (van den Hamer and Lepoeter 1996).

24

Many authors relate a versionable object with a set of versions. Such
an object with a set of versions is called, for example, a generic version,
generic instance or generic object (Katz et al. 1986, Kim et al. 1987, Kim et al.
1989, Biliris 1989). Typically, a generic object works as a point of
reference for the set of its versions and can contain the definitions that
are common to all of the versions in the version set. A set of versions, as
such, is a rather general notion for modelling versioning, and therefore,
many approaches propose structure between versions. Dittrich and Lorie
(1988) use clusters to organise the version set of a design object. They
show an example where design object has alternatives, which have revisions,
which in turn have versions. The top left-hand corner of Figure 2
illustrates such an organisation. Kemper and Moerkotte (1994) give a
similar hierarchy, but have the concepts in the order object, representation,
alternative and version, which is essentially the model in DAMASCUS
system (Mülle et al. 1988). This is illustrated in the top right-hand corner
of the figure. Kemper and Moerkotte also give examples of more
complex hierarchies with alternatives, representations, again alternatives, and
then versions. Some companies have products that have revisions, which in
turn have variants, in that order (Peltonen 2000). This is shown in the
bottom left-hand corner of Figure 2.

Design object X

alt. 1 alt. 2

rev. 1 rev. 2 rev. 3

ver. 1 ver. 2 ver. 3 ver. 4

Design object Y

rep. 1 rep. 2

alt. 1 alt. 2 alt. 3

ver. 1 ver. 2 ver. 3 ver. 4

Design object Z

rev. 1 rev. 2

var. A var. B var A

rep. 2

alt. 4

var B

Design object W

rev. 1

rev. 2

var. A var. B

Figure 2. Different hierarchies for clustering versions of a design object.

25

It has also been argued that the terms revision and variant cannot be
ordered in such a fashion, because they are actually orthogonal to each
other (Reichenberger 1989, Wedekind 1994). The orthogonal dimensions
identified by Estublier and Casallas (1995) are temporal, logical and
cooperative, which correspond to the terms history, variant and concurrent
development of the list above. Assume that in the case of the bottom left-
hand corner of Figure 2, variant ‘var. A’ has the same intended meaning
in both revisions ‘rev. 1’ and ‘rev. 2’. Thus, the concepts revision and
variant are actually orthogonal and should be represented as in the
bottom right-hand corner of Figure 2, where each empty box would
store the data related to a particular revision and a particular variant of
the design object.

There can be two kinds of component references to versions: statically
bound and dynamically bound (Kim et al. 1987). A statically bound reference
specifies explicitly a component and one of its versions. Allowing only
statically bound references has severe limitations, for example, rebinding
of references must be considered each time when a new version is
introduced. It is, therefore, common that some dynamic version
referencing mechanism is introduced.

A dynamically bound reference is a reference to a generic object and
is called a generic version reference. A generic reference is intended to be
bound to “one version from the set” (Chou and Kim 1986). A resolution
mechanism is needed for telling which version from the version set is the
correct one in a particular usage of a generic version reference. A generic
reference can also be bound at various points in time.

The idea of a current version is that at any time one of the versions,
i.e., the current version, is a valid representative for the generic object. A
generic reference is bound to the version that is the current version at
the resolution time. The current version can be explicitly stated or the
resolution may be based on time. The latter is appropriate when versions
represent the evolution in time; in resolution of variants, other mecha-
nisms are needed.

In the context of products, the versioned objects form part-of
structures. Therefore, one particular issue that needs to be addressed is
the semantics and effects of a change in one component with respect to
the entire part-of structure; a phenomenon also called change propagation
(Katz 1990). Sometimes the term change propagation means propagation of
a change in the schema to the instances of that schema (Nguyen and
Rieu 1989b, Casais 1990).

26

Change propagation deals with the question of whether the creation
of a new version of a component leads to the creation of new versions
of assemblies that contain the component. If new versions are created
automatically and recursively all the way up to the root of the product
structure, the result is a large number of possibly unnecessary versions
(Skarra and Zdonik 1986, Katz and Chang 1987, Katz 1990, Ramakrish-
nan and Ram 1996). Version substitutability is one of the most practical
ways to limit change propagation. That is, if the new version is form, fit
and function compatible with the old one, there is no need to propagate
the change (van den Hamer and Lepoeter 1996). Complete change
propagation was close to impossible with manually maintained parts lists.
Modern product data management systems enable easy propagation of
changes in product structures, even when this creates a large number of
new versions. However, it still makes sense to stop the propagation at the
appropriate level (van den Hamer and Lepoeter 1996).

A version is typically related to its predecessor by is-derived-from rela-
tion (Katz 1990), sometimes also called is-a-derivative-of (Wagner and Lima
1991). It is possible to distinguish between successor and is-derived-from
relations. Is-derived-from denotes the origin of the new version while
successor represents the concept that the new version replaces the
current version in use. In many cases, the successor of an old version is
also derived from the old version, but this need not always be the case.

In a design process, versioning has some special semantics. In addi-
tion to deriving new revisions and variants, designers experiment with
alternative solutions. These alternatives are typically represented as new
versions derived from the current version. At some stage, experiments
are over and one of the alternatives is selected as the next current
version (Ramakrishnan and Ram 1996). A slightly more general approach
is to allow multiple version derivation hierarchies within a version set
(Ahmed and Navathe 1991).

Most of the approaches to versioning in modelling the evolution of
product designs reflect the usage of versions as intermediate stages of a
design object during a design process, and alternatives typically represent
tentative development lines. As pointed out by Biliris (1989), in design it
is more important to keep track of the current status of design objects
than preserve historical information.

27

2.7 Schema Evolution
In this section, research on schema evolution of databases is first
presented in its pure form and the relation to product family modelling is
drawn only thereafter.

Each database has a data model, also called a schema, typically de-
fined using a data definition language (Ullman 1988). Schema evolution
has been an active area of database research addressing the problems
that arise from the changes to the schema of a database (Roddick 1992,
Roddick 1995). The most central problem is what to do with the existing
population of data instances when the schema is changed. In addition,
the new data should also be viewable though old schema definitions
(Roddick 1995). The approaches to schema modification, especially if
the schema contains classes, can be classified to (Casais 1990, Gibbs et
al. 1990):

- Tailoring, in which the new aspects are achieved by deriving new
subclasses.

- Surgery is based on a certain well-defined set of primitive opera-
tions, e.g., ‘add method’ or ‘change class name’, that can be com-
bined to modify classes. An example of class surgery operations
is the taxonomy of schema changes given by Banerjee et al.
(Banerjee et al. 1987, Banerjee et al. 1987).

- Versioning enables the recording of the history of class modifica-
tions. In class versioning, the existing class definition is not
changed but rather a new version of the class is created (Monk
and Sommerville 1993).

- Reorganisation of a class library is needed when major changes are
made to the classes and relationships between them.

To clarify the terminology of the research dealing with schema evolu-
tion, Roddick (1995) gives the following definitions for the basic terms.
The definitions are based on the concept of data population and reflect
the database researchers’ view of schema evolution.

- Schema modification. A database system allows changes to the
schema definition of a populated database.

- Schema evolution. A database system facilitates the modification of
the schema without a loss of existing data.

- Schema versioning. A database system allows accessing of all data,
both retrospectively and prospectively, through user definable

28

version interfaces. Schema versioning is partial if only viewing is
supported both retrospectively and prospectively and full if up-
dates are supported too (Roddick 1996).

After a schema modification, the data population needs to reflect the
changes in the schema (Nguyen and Rieu 1989a, Tanaka et al. 1989). The
approaches to change propagation can be classified to (Penney and Stein
1987, Casais 1990):

- In filtering, or screening (Banerjee et al. 1987), database manager
needs to provide filters to allow an operation defined for a par-
ticular type version to be applied to an instance of any version of
the type (Skarra and Zdonik 1986, Skarra and Zdonik 1988).

- In conversion, the modified instances are stored in the database.
The conversion can be eager, in which case all instances are con-
verted right after the schema modification, or it can be lazy (Tan
and Katayama 1989), in which case the conversion takes place
only when the instance is accessed. Lazy conversion is also called
incremental conversion (Björnerstedt and Hultén 1989).

- Change avoidance is an approach in which only changes that do not
necessitate modification of instances are made, for example,
adding a new class or renaming an attribute (Casais 1990).

In addition to changes to data, i.e., structural changes, the consequences of
a change to the programs accessing the data, i.e., behavioural changes, have
been considered (Skarra and Zdonik 1986, Skarra and Zdonik 1988,
Zicari 1991, Clamen 1992, Zicari 1992, Peters 1994). A behavioural
consistency means, for example, that a method of a class does not result in
an unexpected error after a schema change.

A different approach to schema evolution is provided by description
logic with the idea not to explicitly define the generalisation hierarchy
but have it implied by the properties of the classes. In a model defined
by Peters and Özsu (1997), the class lattice is formed based on essential
properties and essential supertypes (i.e., superclasses) of a class, which are
explicitly stated for each class. Hakim defined sufficient conditions that
determine whether an instance is an instance of class (Hakim 1993). In
this approach, the focus is on the design process, which is supported as
instance evolutions. The approach exhibits a different kind of schema
evolution because, if the sufficient conditions of a type are changed,
then, instead of being converted, its instances may be reclassified and
thus no longer be its instances.

29

Monk (1993) has pointed out that there is more to a change than the
structural conversion. For example, changing the attribute ‘name’ for a
class ‘person’ to ‘surname’, is more than just renaming the attribute,
which is an operation that does not necessitate conversion of instances.
The old attribute ‘name’ could have stored values such as “Teppo Ilkka”,
“Jones, T. A.” and “Otto von Bismarck”. Converting all possible values
of ‘name’ to surnames only is thus not trivial. Skarra and Zdonik (1986,
1988) also discuss the semantics of class versions, i.e., what is needed for
two definitions to be versions of a class instead of being two classes.
They do not provide any solution; in fact their model allows “a conver-
sion of a frog to a prince”, as they put it. They, however, do assume that
most modifications will involve only minor alterations, which their model
is actually meant to support.

The previous research in database schema evolution is next com-
pared with the problem area of the evolution of configuration models
(see Männistö et al. 1996). Product families are typically modelled using
classes, and therefore, modifications of them are more schema than
instance level operations. For example, for a company that manufactures
a large variety of products, the addition of a new product variant is more
a schema operation than a modification of an instance. Similarly, the
company needs to retain the history of the schema to efficiently support
its after sales processes.

The assumption in database schema evolution is that instances can
be converted. This assumption is based on the principle that the schema
constantly represents the same (or at least almost the same) world and a
schema modification only alters the way the entities are represented.
Therefore, the conversion of old instances to the new schema is
meaningful. A product family description, however, represents product
individuals to be sold and manufactured. When the description is
modified, it does not represent the same set of product instances from a
different angle; it represents an entirely new set of product individuals.
The old product individuals are not represented by the new description
because they contain old components, for example. Thus, a conversion
of the representations of old product individuals to the new schema is
often not meaningful. This shows the different role of the schema in
databases and in product family modelling. This distinction is a major
differentiating factor between the schema evolution research in databases
and this thesis.

30

2.8 Evolution of Individuals
In addition to the evolution of schema, of importance also is the
evolution of individuals. In many systems, the data is just modified
without keeping the history of changes. When needed, the temporal
aspects are sometimes modelled, for example, by means of DATE type
attributes. This, however, is not an adequate solution as the system gives
no support for the semantics of manipulation of temporal aspects
(Snodgrass 2000). Temporal databases provide a solution for capturing
the time with data. There are, however, also other approaches for
modelling the evolution of individuals, of which some are summarised
as follows:

- State change according to the schema refers to modification of data,
i.e., change of attribute values, in a database. When time is re-
corded for each change, the result is a temporal database (Goyal
et al. 1992). There are three typical temporal events that cause ob-
jects to evolve: update, delete and insert (Su et al. 1998).

- Object migration is needed, for example, to support an employee
becoming a manager. That is, an individual changes its class,
which is also called dynamic multityping (Goyal et al. 1992).

- State change independently of the schema. Evolution of object may also
be independent of the schema, so that properties may be given
to the object and its membership in classes is investigated there-
after. This kind of evolution with dynamic classification is useful
for supporting design processes (Hakim and Garrett 1997).

- Individual evolution without the schema. In uniform object approaches,
there is no schema, only individuals (or objects, as they are
called). Each individual describes its own properties. An individ-
ual may be used as a prototype in the creation of new individuals,
which captures the evolution of individuals similarly to the way
in which prototyping does in design (Demaid and Zucker 1992,
Zucker and Demaid 1992a, Zucker and Demaid 1992b).

- Object evolution beyond the schema. In after-sales processes of indus-
trial companies, product individuals may be modified by custom-
ers practically as they please (Männistö et al. 1996). In this kind
of evolution, the individual is not entirely represented by the
schema but may still have a representation understandable to an
intelligent observer.

31

The support for temporal aspects may need to consider the time of
change. Changes may be recorded at a time different to the time of the
change. This has led to the distinction of most important times of
change: transaction time and valid time (Goyal et al. 1992, De Castro et al.
1997, Snodgrass 2000). The former refers to the time the change is
recorded in a database whereas the latter to the effective time of the
change. These times are considered orthogonal (Jensen and Snodgrass
1996).

A major issue in conceptual modelling with time is the nature of
time and what properties it has (Theodoulidis and Loucopoulos 1991).
Decisions should be made in the following ontological assumptions
about the nature of time (Theodoulidis and Loucopoulos 1991, Jensen
and Snodgrass 1996, Bettini et al. 1998, Goralwalla et al. 1998, Jensen et
al. 1998):

- Whether valid time or transaction time or both are supported.
- Whether time primitives are anchored (absolute) or un-anchored (relative),

e.g., X happened last week. There are two kinds of anchored
time primitives: the instant (moment, chronon) and the interval. An
interval is the duration between two specific instants.

- Whether time is discrete, i.e., time primitives are isomorphic to
integers, or dense, i.e., time primitives are isomorphic to real num-
bers.

- Whether time is determinate or indeterminate. The distinction is
whether an event occurs “during the whole time instant” or
sometime within the instant. For example, “a person is in a train
the whole day” or “a person leaves Paris that day”, respectively.

- Whether time is linear, non-linear, e.g., branching to different future
scenarios, or even periodic, such as weekly meetings.

- Whether time has variable span, e.g., length of a month, which
varies between months, or fixed span, e.g., one hour.

There is no need for retrospective updates in design databases, or more
accurately, the versioning mechanism is also set up to handle corrections
to old designs. Therefore, in design databases transaction time and valid
time can be treated as identical (Biliris 1989). The temporal aspects
needed in this thesis are thus valid time with anchored primitives with
determinate discrete instants and determinate discrete intervals.

32

3 Terminology

In this section, a brief summary of the basic terms used in this thesis is
given. This is not a complete terminology. The purpose of this section is
to familiarise the reader with the terminology of this thesis and to relate
that to the reader’s own, possibly different, terms for the same concepts.

This work concerns product data modelling. The term model means
sometimes a modelling method with its basic concepts, e.g., ER-model,
object-oriented data model or relational model. Sometimes, however, a
schema level description is called a model, e.g., configuration model. In
addition, a product model can also refer to a description of a single
product, which is typical usage for large products such as ships or power
plants. In this thesis, the term model is used in the both meanings
mentioned above with the assumption that the context clarifies the
meaning. To avoid confusion, the term product model is avoided.

In common language, the term product is used both on the type level
and on the individual level. For example, a representative of a company
may well say “our best-selling product is ZaXi” and “if our product breaks
down, we’ll replace it within 48 hours”. The former refers to product types
while the latter refers to physical products, also called product instances or
product individuals. In normal communication, the distinction between
types and individuals is typically clear from the context or not of great
importance. The term type will be used as a synonym to class, also used in
object-oriented modelling, to entity type of E-R modelling and to the
terms frame and concept of other approaches. A collection of types forms
a schema. The term individual is a synonym for the term instance. Some-
times the set of individuals is also called data or extension (in particular
that of a class). The term object is mainly used in this thesis as a general
data modelling concept that incorporates both types and individuals.

In general, it is impossible to distinguish between a product and a
component because that depends on the viewpoint. What is a product to
someone may be a component to someone else. Therefore, the terms are
regarded as rough synonyms here. The term product is mostly used as a
general term referring to the whole product and a component more as a
technical term for the pieces of a product but it may also refer to the
whole product. Components of a product do typically form structures,
called simply product structures. Another closely related term is part. In this
thesis, the term part is reserved for the relation between components that
defines a product structure. That is, a component may have other

33

components as its parts; they are in has-part relation. Similarly, a compo-
nent may be a part-of another component. Has-part and part-of describe
the same relation but from different directions. In other contexts, the
terms assembly, aggregation, compound object, composite object and complex object
may refer to an object that has parts.

Data models are needed for products on both levels of abstraction,
the type level as well as the individual level. A product structure
describing a physical product is called a specific product structure. A physical
product is manufactured according to a specific product structure. A
specific product structure is sometimes called a Bill-of-Materials (BOM).
This is in contrast to a product family description, which describes a number
of different specific product structures. A product family description is
considered here synonymous to the terms configuration model, generic product
structure and generic Bill-of-Materials (GBOM). Product family descriptions
are needed when the number of product variants becomes too large to
simply enumerate. Sometimes the terms configurable product and product with
a large number of variants is used for referring to such products.

A configuration process is a process for producing a specific product
structure from a configuration model for a specific customer need. In
this case, the specific product structure is also called a configuration.
However, sometimes also the configuration process is called configuration.
In this thesis, the term instantiation also refers to creation of an instance.

The evolution of products is typically modelled by means of versions.
Other similar terms, such as alternative, revision and variant are used. The
term alternative refers typically to the alternative designs during a design
process, which are not addressed in this thesis. The term revision refers to
improvement of some sort with the intention of replacing the old
version. The term variant refers to a version that is meant to exist in
parallel with other variants. For example, a company may manufacture
different variants of a product for different market areas. In the
terminology of software configuration management (SCM), version is a
general term with two main special cases: revision and variant. In many
cases, the term version is also used in the sense of the term revision of the
SCM terminology.

In this thesis, the focus is on the temporal aspects of versioning and
structural variation (not the variation within components) so the
distinction between the terms revision and variant is not needed. There-
fore, the term version is used to refer to temporal evolution of objects.

34

4 Aims of the Study

The aim of this study was to develop a methodology for modelling
product families and temporal aspects in them. The principal aims
stemming from that were to understand the fundamentals of modelling
product families and to understand the evolution of product families as a
phenomenon as well as its implication to information technology,
especially to the data representation mechanisms needed. These general
aims were divided into more detailed ones as follows:

(1) To understand the problems in modelling product families with the
concepts is-a relation, has-part relation and version and to explain why
the problems differ from those addressed in traditional data model-
ling.

(2) To investigate the suitability of the STEP product data modelling
standard, which is the largest integrated effort in the area of product
data modelling, for modelling product families (I).

(3) To examine the classless object approach for modelling the
configuration process of product families and for representing
product families with uniform objects (II).

(4) To provide a conceptual framework for modelling the evolution of
schema and individuals of a product family with concepts is-a relation
and has-part relation (III).

(5) To investigate the reconfiguration of product individuals in Finnish
industry and propose conceptual framework for representing their
reconfiguration knowledge (IV).

(6) To develop a conceptual model for representing individuals of
product families on the basis of experiences with an industrial com-
pany in situations where the individuals are different and the level of
detail by which the individuals are known varies (V).

35

5 Results

5.1 Modelling Product Families
The problem area of this thesis is product families and evolution related
to them. The area was approached from the conceptual modelling
perspective. This work, therefore, aims at finding concepts and semantics
of product family and individual evolution. More concretely, the goal is
to describe a basis for an advanced PDM system that enables the
support of product family management policies of a company, in
addition to basic concepts, such as versions of various entities. It is also
important to control the effects of versioning, for example, in product
structures and in generalisation hierarchy. Currently, such policies are
mainly controlled by company standards or traditions. It would be
beneficial to encode these policies in an advanced PDM system, which
would then not only control them, but also help in conveying the
policies, for example, to newly acquired organisations.

Certain special aspects of product family modelling characterise
their evolution. Therefore, the modelling of product families, especially
the structural variation, is next addressed by investigating the problems
in modelling product families within the STEP standard (I).

5.1.1 STEP and Product Families

STEP, which is officially known as the ISO-10303 standard, is a large
undertaking for standardising the modelling of industrial products for
their complete life cycles (ISO 1994a, Owen 1997). STEP is based on
schema-individual paradigm with a static schema, which in STEP
becomes standardised. Therefore, STEP provides an excellent case for
investigating how product families can be modelled on top of a strict
schema-individual paradigm. Study I of this thesis conducted a survey to
STEP in the area of product family modelling; results of which are
summarised in this section.

The idea in STEP is to provide means for defining application spe-
cific concepts for modelling products in a particular application area.
The application specific concepts are standardised into parts of STEP
called Application Protocols. STEP includes the Application Proto-
col 214 (AP214), which, among other things, addresses the representa-

36

tion of product families. In Study I, the First and Second Committee
Drafts of AP214 (ISO 1995a, ISO 1997d) were examined in addition to
the basic constructs of STEP (ISO 1994a, ISO 1994b, ISO 1994c, ISO
1994d, ISO 1994e). It should be noted that this thesis is only concerned
with certain aspects of product structure modelling, clearly excluding,
for example, geometry, which constitutes a major part of STEP.

STEP also includes special parts, such as EXPRESS-X language
(ISO 1999), which is a mapping language for converting individuals of
one schema to individuals of another schema. EXPRESS-X helps in
schema evolution and can also be used for mapping data from a
company specific schema to a standard schema.

Study I argued that the approach proposed in AP214 for modelling
product families is not adequate. Moreover, it was identified that the
reasons for the inadequacy were not due to the draft status of the
Application Protocol, but are more fundamental in nature. These reasons
will be explained next, but before going into the problem, the structure
of STEP is briefly reviewed.

Figure 3 shows the overall relation of the main parts of STEP. One
of them is EXPRESS (ISO 1994b), which is a modelling language for
defining the other parts of STEP including Integrated Resources and
Application Protocols. These parts defined using EXPRESS become
parts of the standard, which means that they are characteristically static,
corresponding to a database schema. Companies would then describe
their product families as instances of the standardised schema.

STEPSTEP

EXPRESSEXPRESS

Integrated Generic ResourcesIntegrated Generic Resources
++

Application specific definitionsApplication specific definitions
==

Application ProtocolsApplication Protocols

description description
language language

forfor

Product data of Product data of
a company, e.g.,a company, e.g.,
product family product family

descriptionsdescriptions
(STEP file, SDAI…)(STEP file, SDAI…)

schema schema
forfor

Figure 3. Relation of the main parts of STEP

37

Modelling of product families needs powerful concepts, such as the
is-a relation with inheritance and conditions on the valid combinations of
components. These were also introduced in AP214. The problem is that
classes representing product families must be introduced as EXPRESS
instances. Consequently, the inheritance between these classes is between
instances. Moreover, these ‘classes’ and ‘instances’ are indifferent, that is,
both the product family descriptions and descriptions of product
individuals are similar EXPRESS instances.

In other words, product family descriptions are schema in their na-
ture, as they need concepts such as the is-a relation with inheritance. In
STEP, the schema becomes standardised. Product family descriptions, on
the other hand, cannot be standardised since they are specific to each
company and change frequently. This is how STEP is structured and
thus AP214 needs to work around it by modelling classes as instances.

Therefore, it was concluded in Study I that without major refine-
ment STEP does not suit well for product family modelling. Study I also
proposed an alternative solution, which is only briefly addressed in the
next section, where the focus is more on the fundamental problem,
which in the following will be called conceptual mismatch.

5.1.2 Conceptual Mismatch

Study III argued that there is a conceptual mismatch between the traditional
data modelling methods and the modelling of product families. The
argument is based on the need for more conceptual levels in modelling
product families than that provided by traditional data modelling
methods. The modelling of product families and their individuals
requires the following conceptual levels:

- Basic concepts are the modelling basis containing, for example,
‘class’, ‘attribute’, ‘generalisation’, ‘inheritance’, etc.

- Product data modelling concepts. On top of the basic concepts, one
needs some concepts for modelling products. These are concepts
not available as basic concepts, but are common to many product
data modelling tasks. They include, for example, ‘component’,
‘has-part relation’, ‘optional part’, ‘alternative parts’, etc. In STEP,
these are standardised in detail.

- Product family descriptions constitute the description of the product
families of a company including class hierarchies of products
and components. These are the descriptions of the product

38

families unique to a particular company, for example, different
types of elevators and variation possibilities designed for them.
In product configuration, a product family description is called a
configuration model.

- Product individual descriptions. Finally, descriptions of product indi-
viduals are created according to product family descriptions.
These are the descriptions of physical product individuals manu-
factured and delivered to the customers.

The term traditional data modelling method refers to methods based on the
three conceptual levels of abstraction (Ullman 1988, Batini et al. 1992):

- Concepts (or language) contain the basic elements for constructing
models about the world (or universe of discourse).

- Schema (or entity types or classes) is the model of the world con-
structed using the concepts.

- Individuals (or instances, objects, data or entities) are representations
for entities that exist in the modelled world.

The conceptual mismatch thus refers to the fact that modelling of
product families needs the four above mentioned conceptual levels and
traditional data modelling approaches have three.

In product modelling, the problem of conceptual mismatch, how-
ever, becomes most relevant with large product variety, which is
managed as product families. This statement is justified by the following
comparison with mass products and project products.

For mass products, the product data modelling concepts can be
introduced as a traditional schema. Product structures, i.e., BOMs, are
then individuals of that schema. This leaves no level for the product
individuals, which however, is not a problem since the descriptions of
product individuals are typically not kept. If the records of individuals
are needed, they can easily be obtained as copies of BOMs and then
modified to reflect the ‘as-manufactured’ or other life-cycle status of the
individual. In modelling for the design phase, the situation is similar, as
there are no individuals yet.

Large project products, such as power plants and ocean cruisers are
too complex to have a complete model, i.e., a product family description
or equal, from which they could be instantiated.

In modelling of product families, the product family descriptions
have the characteristics of the schema. Product individuals are instanti-

39

ated according to that schema and the descriptions of them need to be
stored separately as each individual is typically different.

The conceptual mismatch explains difficulties traditional product
data modelling approaches such as STEP have with product families (I).
The problem is fundamental in nature and has various reflections on the
modelling of product families and their evolution. It necessitates
rethinking the role of the schema and consequently some elaboration on
research results, for example, from schema evolution of databases.

One solution to the conceptual mismatch is to combine the product
data modelling concepts with the basic concepts, and consequently, there
would be only three levels. Many modelling efforts in product configura-
tion actually work in this direction, as they search for the appropriate
concepts for modelling product variety. This, however, easily leads to
specific models for each application area or very large models in the lines
of STEP. If the systems treat product family descriptions as schema,
changes to the schema must be communicated between systems.
Manufacturing, however, may not need full schema information, i.e., it
can operate with concepts in which product structures simply consist of
components. If the schema, however, needs to be transferred to after-
sales, the class-information must either be embedded into the manufac-
turing instances or communicated pass the manufacturing.

Study I, proposed a solution in which the company specific schema
was modelled as an extension to a standard schema. In practice, this
requires, for example, that CAD systems need to be tailored to under-
stand the schema of the company or they should have a general
mechanism for reading in schema extensions. In both cases, it would be
possible to work internally within the company using the specific
schema. Transferring the product data, however, requires either tailoring
the CAD system of the receiver if the systems cannot read schema
extensions. Tailoring the CAD systems makes the propagation of
changes to the schema tedious, as reprogramming may be needed each
time the product changes. Therefore, it would be preferable to have
systems capable of treating at least the schema extensions as data.
Another possibility for transferring the data is to convert it to a STEP
application protocol. If the company specific schema contains only
specialisations of the application protocol concepts, the mapping is
straightforward to implement—all individuals are just represented
according the application protocol concepts. That is, all company
specific definitions would be ignored and the conversion thus loses
information. The EXPRESS-X mapping mechanisms can also be used

40

for implementing the conversion. It has the advantage that the data need
not be imported to a CAD system for conversion, as conversion can be
carried out with EXPRESS-X tools. The approach proposed in Study I
thus sets requirements not only for STEP standardisation but also for
the computer applications of the company, which need to be more
flexible in adapting to new schemas.

 Whichever the solution, the person making the decisions, should be
well aware of the conceptual mismatch. Moreover, product family
descriptions of a company would still be schema and the non-static role
of the schema remains an open issue, as does the non-strict confor-
mance of product individuals to the schema.

These observations need to be taken into account in definition of
the concepts for modelling product families and their evolution. The
approach taken in this thesis is to assume some very primitive basic
modelling concepts, such as object and relation, and with them construct
the modelling concepts for product families. However, since the focus is
here on the aspects related to evolution, only the product family
modelling concepts most relevant in capturing evolution will be defined.

As has been already argued, there should, in addition, be some sup-
port for semantics that reflects the evolution of products. This problem
setting is explored and discussed in the following with the intention of
finding some conceptual grounds for the needed support in advanced
PDM systems.

5.2 Evolution Processes of Product Families
For the rest of this thesis, Figure 4 provides an overall picture of the
evolution processes related to product families. The figure shows the
schema and product individuals that are created according to the schema.
The creation process is called instantiation, or also configuration process.

For the schema and individuals, the figure shows separate evolution
processes. The evolution of the schema results from the changes made
to the product. The evolution of a single product individual reflects the
after-sales modifications made after the individual was manufactured and
delivered to a customer (Männistö et al. 1996).

41

In addition to the evolution processes, interesting questions arise in
the relation of product individuals to the schema when time passes.
What can be done with old individuals when the schema has changed?
How does a modified individual relate to the schema? How should
individuals that are different and have no common schema be managed?
These questions will be addressed in the rest of this thesis.

First, however, the instantiation process is investigated concentrat-
ing on the evolution of an individual within the process. The instantia-
tion is not necessarily instantaneous, but can be a gradual refinement
from many possibilities, i.e., a configuration model, to a description of a
single variant.

Thereafter, the evolution of schema and individuals is addressed.
The goal is to conceptually understand the whole in which the schema
and individuals evolve rather independently, but still the relation between
them is important. That is, the manufacturer does not forget the
individuals as soon as they are delivered to customers.

Description of
product family X at t

Description of
product family X at t'

independent maintenance
disciplined maintenance

upgrade

advanced reconfiguration

modernisation

product
evolution

Sc
he

m
a

In
di

vi
du

al
s

relation of
modified individuals
to modified schema

instantiation

Figure 4. Relation of the schema and individuals [adapted from
(Männistö et al. 1996)].

42

5.3 Instantiation Process
Configuration, i.e., instantiation2, is a process in which a description of a
product individual fulfilling the requirements of the customer is created
from a configuration model. A configuration process links the schema to
product individual descriptions, i.e., the configuration model to configu-
rations. The configuration process, however, is not necessarily instanta-
neous, as the customer order specification may gradually be refined
towards the final configuration. The configuration process can be seen as
a series of refinements removing all the variability expressed in the
configuration model. The result of the refinements is an unambiguous
description of a product individual to be manufactured. The other
important aspects of configuration, such as backtracking and advanced
search for the solution, are beyond the scope of this thesis (see, e.g.
Peltonen et al. 1998, Soininen et al. 1998).

In a gradual configuration process, it is not clear where to draw the
line between the schema and instances. For example, consider Figure 5.
Without going into details, the basic notation in the figure is as follows.
Boxes represent objects (there are no classes, only objects) and lines
between them the specialisation relation (so that a lower object is a
specialisation of the upper one). Each object has a name (on top of the
box) and properties (below the name). Object properties include
attribute declarations, e.g., “speed: float”, attribute assignments, e.g.,
“speed ←1.0” and constraints on attribute values, e.g., {0.6 ≤ speed ≤1.6}.

In the strict class-instance paradigm, the bottom-most entity, i.e.,
‘order 123/actual configuration’, would be an instance and the others
would be classes. This would be awkward, for example, with respect to
the entity ‘order 123/specification’, which is not a part of the configura-
tion model, i.e., it should be an instance. However, in an order specifica-
tion it is, for example, possible to constrain the attribute values, not only
to assign them. This would make the ‘order 123/specification’ more a
class than an instance.

The point is that it is impossible to draw a clear line between classes
and instances (or the schema and individuals according to the main
terminology of this thesis) in a gradual configuration process. Therefore,
in Study II an approach that abandons the clear distinction between

2 In Study II, the term instantiation was used to mean the freezing of the result of a
configuration process. Here instantiation means the configuration process of creating an
individual from the schema, i.e., the whole process.

43

classes and instances was utilised. The study covers the evolution of a
configuration inside the configuration process and gives directions for
future work in modelling the evolution of schema and individuals with
versioning of uniform objects, which was then elaborated in Study III.

The approach of Study II provides the required flexibility to class-
instance paradigm for the configuration process. Abandoning the class-
instance paradigm is justified for the time of the configuration process.
However, the extension of the ideas to the evolution of schema and
individuals is not trivial. It was already stated in Study II that although
the model contains only objects, some objects are more class-like and
some more instance-like. Consequently, it is meaningful to conceptually

lift

speed : float

rope lift

rope thickness : float
{0.6 ≤ speed ≤ 1.6}
rope thickness ← 10

lift model RX

{0.8 ≤ speed ≤ 1.2}
speed ← 1.0

order 123/specification

{0.8 ≤ speed ≤ 0.9}

order 123/configuration

speed ← 0.85

hydraulic lift

{0.4 ≤ speed ≤ 0.9}

Figure 5. Example of a configuration process as refinement (II).

44

distinguish between the configuration model and the final representa-
tions for physical product individuals, i.e., the schema and individuals,
respectively.

5.4 Evolution of Schema and Individuals
In Figure 4, there are the two evolution processes, namely the evolution
of schema and the evolution of product individuals. With them as a
problem setting, a question arises: “would the solution be a temporal
database with the support for schema evolution?”

As was already discussed, there is an important difference between
the role of the schema for product families and databases. The main
distinction, as was stated in Study III, is the independence between the
schema and individuals. Firstly, schema modifications are not propagated
to product individuals. For example, when a new component (type) is
taken in use in new products, the existing product individuals are
normally not affected. Secondly, not all modifications to an individual are
captured by the schema. For example, when a component is replaced in a
product individual, the resulting individual contains components of old
and new component types. Most probably, there has never been a single
schema (version) with all component types of the modified product
individual. Therefore, it would have been impossible to manufacture
such an individual.

The independence thus means that: 1) individuals are not converted
to reflect schema changes, 2) individuals of multiple schema versions
may coexist and 3) an individual does not necessarily conform to any
schema version. These points clearly contradict the data representation
paradigm of databases, in which the schema strictly describes the
individuals. Therefore, the evolution of product families needs some-
thing else that can directly be provided by a temporal database with
schema evolution.

The solution proposed in Study III will be explained next. In addi-
tion, some aspects of the model will be elaborated further than what was
possible within the limited length of the original paper. The solution has
the goal of defining a conceptual platform for the evolution of the
entities needed in modelling product families. The point is not to provide
only the concepts, which have been investigated widely elsewhere, but
also to incorporate the semantics of evolution so that the product data
management policies of the company could be captured in advanced
PDM systems.

45

5.4.1 Concepts

In this section, the concepts for the model in Study III are explained in a
quite condensed form. The model is based on uniform objects and, in
addition to objects, it includes relations. The relations are binary and are
also called references from the first object to the second. To capture the
evolution, the model uses generic objects similar to those discussed in
Section 2.6; each generic object contains a non-empty set of versions.
Each oval in Figure 6 represents a generic object and the small circles
inside a generic object are its versions. Versions capture the evolution of
a generic object and thus each version has effectivity. The effectivity of a
version is an interval, shown next to the circle. For the clarity of illustra-
tion, the time axes of different generic objects are not aligned, but within
a single generic object the time increases horizontally to the right. For
simplicity, the versioning only captures the history of a generic object,
therefore, no branching and no effectivity gaps are allowed. In other
words, the effectivity intervals of consecutive versions of a single generic
object are required to meet, i.e., there is no time instant between them
and they do not overlap (Allen 1983). The effectivity of a generic object is the
union of the effectivities of its versions.

The evolution of generic objects is modelled in a strict versioning
sense. This means that all changes are implemented by creating new
versions; versions themselves are not modified. That is, the creation of a
generic object implies the creation of its first version, the change of a
generic object leads to the creation of a new version and the deletion of a
generic object means that the effectivity of its current version is ended.
It is important to keep this usage of the terms in mind when reading this
section.

Modelling all objects in products by generic objects provides a sim-
ple and powerful means for capturing the evolution of them as inde-
pendent entities. That, however, is not enough since it is also very
important to capture how the generic objects and their versions relate.
Perhaps the most important relation in modelling products is the has-
part relation, which is therefore included in the model. Another
abstraction mechanism that is especially relevant in modelling product
families is generalisation. It allows the modelling of abstract concepts,
such as ‘car’ and ‘motor’, which are generalisations for the actual
component types, such as ‘sedan’ and ‘Model XY 2.0L’. Finally, the
relation between the schema and individuals, i.e., the is-instance-of
relation, differs from its counterpart in traditional data modelling, and

46

therefore, it will be represented explicitly. There are many other relations
that could be included in the model, such as connections of compo-
nents, physical location, compatibility, just to mention few. In order to
keep the model relatively simple, the three first mentioned relations
provide a small set of fundamentally important relations that was
selected for further investigation. Inclusion of other relations is left as
future work.

The arrows in Figure 6 are examples of relations between various
objects. The interest in the work was to capture the evolution of the
three above mentioned relations. To sum up, relations are: the is-a
relation with inheritance between types, has-part relation both between
types and between individuals (but not between a type and an individual)
and is-instance-of relation between individuals and types. Of interest is also
conformance, that is, whether an individual is a valid representative of its
type.

Objects in the schema are called types and individual objects are sim-
ply called individuals. Each type and individual is either a generic object or
a version. Consequently, the lowest level objects in the taxonomy of

Individuals

Schema

Legend:

referencegeneric object
version
effectivity of version

Figure 6. Overview of the modelling concepts (III).

47

concepts shown in Figure 7 are generic type, type version, generic individual and
individual version.

Relations (i.e. references) are allowed between all kinds of objects,
e.g., from individual version to generic type or from type version to type
version. There can be generic references and fixed references. A generic
reference is a reference to a generic object and bears the intention to be
bound to one of its versions. A fixed reference, on the other hand,
specifies the version, and thus, no resolution is needed. A reference from
a generic object concerns all its versions, i.e., they all have the reference,
whereas a reference from a specific version concerns that version only.
References, once set cannot be modified—a reference from a version
can be effectively changed by creating a new version with a new
reference. The semantics of these will be discussed shortly, but before
that the invariants for capturing the evolution of different objects with
respect to the above-mentioned relations are presented.

5.4.2 Invariants

The concepts presented thus far enable capturing the evolution of
objects that represent product families and product individuals. There is
yet nothing for the semantics needed in product family modelling. The
concepts can be used in various ways, and therefore, in Study III,
invariants were defined to constrain the usage of the concepts. The
invariants were defined separately for each relation, and the goal was to

object

generic
object version type individual

generic
type

type
version

generic
individual

individual
version

Figure 7. Taxonomy of concepts.

48

find a combination of invariants that meaningfully captures the evolu-
tion of product families and their individuals. That is, by fixing the
concepts and considering different ways of constraining their usage, the
intended semantics can be approximated.

The invariants defined in Study III are repeated here with brief ex-
planations of their intended semantics. Details concerning generic
references will be discussed thereafter.

Is-instance-of relation
Is-instance-of is a relation between individuals and types. For an
individual, it denotes the type of the individual (if any). The validity of
an individual with respect to its type is controlled by means of confor-
mance. Two invariants were defined, a strong and a weak.

Strong conformance invariant: An individual is constantly kept in
conformance to the type it is-instance-of.

(1)

Invariant 1 requires that at any given time t the effective individual
version relates by is-instance-of and conforms to exactly one effective
type version. For modelling product families, however, this is too strict.
Therefore, a weak conformance invariant was also defined.

Weak conformance invariant: The first version of a generic individual
conforms to the type version it is-instance-of at the time of its creation.

(1')

When a generic individual, i.e., its first version, is created, it must
conform to its type, but may thereafter evolve independently. This
reflects the situation with product individuals that are manufactured and
then delivered to the customers, where they may evolve rather independ-
ently of the manufacturer.

Is-a relation
Is-a is a relation in the schema that organises the types into taxonomy,
and provides a mechanism for sharing common properties by means of
inheritance. Two invariants were defined for controlling the effects that
changes have via inheritance. Nothing in the model actually prohibits
multiple inheritance, but for simplicity, only single inheritance is
considered here.

Strong effectivity invariant for is-a: Effectivity of each (sub)type
version must be contained in the effectivity of the single version of its supertype.

(2)

49

Consequently, a new version may be created for a generic type without a
need to update its supertypes, but for its subtypes, new versions need to
be created. Invariant 2 guarantees that the inherited properties of a type
version remain unchanged. It provides a strict modelling basis in which
the properties of a type version never change during its effectivity.

Existence of supertype invariant: Effectivity of type must be
contained in the effectivity of its (super)type.

(2')

Invariant 2' is a weaker form of Invariant 2. The main difference
between them is that Invariant 2' only requires that an effective version
for the supertype exists, not that the changes in it are propagated
downwards. Consequently, the inherited properties of a type version may
change during its effectivity.

Has-part relation
Invariants defined for the has-part relation are similar to those of the is-a
relation.

Strong effectivity invariant for has-part: Effectivity of each version
must be contained in the effectivity of single version it has as part.

(3)

Existence of part invariant: Effectivity of an object must be contained
in the effectivity of an object it has as part.

(3')

The invariants are applicable to has-part between types as well as
between individuals. For has-part between types, Invariant 3 corresponds
to the versioning semantics in which a modification to a component is
propagated to all composites using it as a part. Invariant 3' corresponds
to the semantics in which components may evolve independently,
typically as long as changes are internal to the component.

5.4.3 Generic and Fixed References

The invariants were given above without discussing generic and fixed
references. Although, resolving generic references has been widely
discussed in the literature, here the references are in a new context in
which it is not immediately clear what they mean. The role of generic
references in capturing the semantics of evolution is central, and
therefore, their relation to invariants will be discussed in detail in this
section.

50

A reference from a version or to a version is clear in the sense that it
is fixed to the version. The references from and to generic objects
deserve a more detailed discussion.

A reference from a generic object concerns all versions of the ge-
neric object. That is, each version has the reference, including also the
future versions of the generic object; the reference has been predeter-
mined for them.

A reference to a generic object is a reference to the version set with
the intention that the reference will be bound to one of the versions
when needed. How and when this resolution is made is the main
semantic consideration of these references. One resolution mechanism
with effectivity intervals is global time. That is, given a time t, all
references to generic objects are bound to the versions effective at t. This
semantics was also used in Study III, with the exception of the weak
conformance invariant (i.e., Invariant 1'), which speaks of the creation
time of the generic individual. Therefore, an is-instance-of reference to a
generic type becomes bound to the type version effective at the creation
time of the generic individual when conformance is inspected.

The cases for different kinds of references with the invariants are
illustrated in Figure 8 and commented on in Tables 1–3. In the figure,
each case is represented by a pair of generic objects. In each pair,
effectivities of versions are aligned vertically. Labels identify the cases so
that S stands for strong (i.e., Invariants 1, 2 and 3), W for weak (Invariant
1') and E for existence (Invariants 2' and 3'). The pair of letters right of
the colon denotes the reference kind, e.g., “g-v” means a reference from
a generic object to a version. For example, in the S:g-g case of is-a, the
upper generic object is a superclass of the generic object below, the solid
arrow represents the is-a relation between the generic objects and the
dashed arrow the propagation of the change when a new version is
created for the superclass.

51

S:g-g S:g-v S:v-g S:v-v

E:g-g E:g-v E:v-g E:v-v

Legend:
S = Strong, W = Weak,
E = Existence
g = generic, v = version

W:g-g W:g-v W:v-g W:v-v

reference
change propagation

generic object
version
effectivity of version

Figure 8. Cases of different kinds of references and invariants.

52

Table 1. Reference cases for the is-instance-of relation with confor-
mance invariants. (In Figure 8, the lower object is the individual and the
upper one the type.)
Case Comments
S:g-g At any time, the effective individual version conforms to the effective

type version. If a new type version is created, a new individual version
needs to be created to retain the conformance. That is, a schema change
is propagated to individuals.
(Actually, the invariant would not necessitate the propagation if the
change implied conformance. Such changes are ignored for simplicity.)

S:g-v Each version of the individual must conform to the referred type
version. New versions can be created for an individual as long as the
conformance is maintained. A change to the type necessitates deletion
(logically, not physically from the database) of the individual, i.e., the
effectivity of its current version is ended.

S:v-g As the reference is from an individual version, a new individual version
must specify its type, but this can be done independently of the previous
versions. This case allows the conversion of an individual into a different
type by creating a new version for the individual.

S:v-v Same as S:v-g.
W:g-g The first version of an individual must conform to its type (i.e., the type

version effective at the creation time of the individual). Thus, an
individual is created according to its type, but thereafter no conformance
is required. Both the type and the individual can evolve freely.
There must be an effective type version at creation time of the individual.

W:g-v Same as W:g-g, except that the conformance must be to the referred type
version, which need not be effective at creation.

W:v-g For the creation of the individual as W:g-g. However, a conversion of an
individual can be recorded as a reference from the converted version to
the new type (version).
Conformance, however, is only required for the first version of the
generic individual.

W:v-v Same as W:v-g, except that conformance must be to the referred type
version.

53

Table 2. Reference cases for is-a invariants. (In Figure 8, the lower object
is the subclass and the upper one the superclass.)
Case Comments
All
strong

Each case differs from the respective one in Table 1 only by the detail
that the definition is based on effectivity containment instead of
conformance. The difference is that effectivity containment requires
propagation, that is, whenever a generic object is changed or deleted, that
change must be propagated. (See also the comment on S:g-g in Table 1.)

E:g-g It is only required that the union of effectivities of a type contain the
union of effectivities of its subtype. Thus, a deletion of a type must be
propagated to its subtypes by deleting them.

E:g-v Same as S:g-v.
E:v-g The deletion of the type requires creation of a new subtype version,

which may become a subtype of another type. The is-a relation from a
(sub)type can be changed any time by creating a new type version.

E:v-v Same as S:v-v.

Each case for has-part is similar to the respective is-a case. Therefore,
only the effect is summarised in the following table with terms of part
relations. The figure, however, should be read so that the whole is
(awkwardly) the lower object and its part the upper object.

Table 3. Reference cases for has-part invariants.
Case Comments
S:g-g A change in a component is propagated to all objects that have it as part,

which then become changed.
S:g-v A change in a component implies the deletion of the whole!
S:v-g The change of a component requires the change of all wholes using it as

part. The reference is from a version and thus a new version of the
whole must specify its part, although independently of previous versions.

S:v-v Same as S:v-g.
E:g-g The deletion of a component must be propagated to the wholes by

deleting them.
E:g-v Same as S:g-v.
E:v-g The deletion of a component requires a new version for the whole,

which then re-defines its parts. Parts of the whole can be changed any
time by creating a new version for it.

E:v-v Same as S:v-v.

54

5.4.4 Conceptual Platform for Evolution of Product Families

In Study III, three kinds of invariants were defined: strong, existence and
weak. For a traditional database, the strong invariant would be appropri-
ate for all cases. For capturing the evolution of product families and the
individuals that is too strict. For them, Study III thus proposed the
following selection of invariants as a “normal” selection:

- weak conformance invariant for is-instance-of (i.e., Invariant 1')
- strong effectivity invariant for is-a (i.e., Invariant 2)
- existence of part invariant for has-part (i.e., Invariant 3')

This selection of the conformance invariant allows rather independent
evolution of the schema and individuals only requiring that individuals
are created according to the schema. Invariant 1' also allows the
recording of individual conversion (when reference cases W:v-g and
W:v-v of Table 1 are used). The invariant only requires the conformance
for the first version of an individual; thus, recording the type for other
individual versions bears no semantics, but can act as an annotation. In
reality, however, there hardly exists a schema version to which the
individual could be converted. The relation of modified individuals and
the schema was addressed in Studies IV and V, which will be discussed
later.

For conformance with a weak invariant, the most appropriate kinds
of references would be W:g-g and W:v-g. The other two differ from
these only slightly and the references to generic type are preferred here
as they leave the resolution for other possible aspects open, such as
multiple versioning sequences or branches within the versions of a
generic object—these, however, are beyond the scope of this thesis.

For is-a, strict change control was required. This is to prohibit
changes in the inherited properties of a type version during its effectivity.
That is, if any of the supertypes of a type is changed, the change must
be propagated to the type (and its subtypes), which means that new type
versions with new effectivity intervals needs to be created.

Of the kinds of references, S:g-g is probably the most useful one
for a generalisation hierarchy. It ties all versions of a type to the same
supertype. If that is not wanted, i.e., versions of a generic type may have
different supertypes, S:v-g could be used. Case S:g-v seems odd since it
only allows the subtype to live for the effectivity of a single supertype

55

version. Case S:v-v is same as S:v-g and the latter is preferred for the
same reasons as was discussed with conformance.

Has-part is an important relation in products. It has rich semantics
in companies and there are change processes and policies for controlling
evolution in product structures. One particular issue is the substitutabil-
ity of component versions, which typically means that a new component
version can be used in place of older versions of the component. If
substitutability cannot be maintained, a new component must be created
instead of a new version. From this principle it follows that a change in a
component need not be propagated to the wholes using it as part. The
invariants for has-part were defined and selected to capture this particu-
lar semantics of evolution.

With the reference kind E:v-g it is possible to version the compo-
nent without change propagation, but the deletion of the component
must be propagated. The case also allows the whole to change its parts.
The reference kind E:g-g is stricter because all versions of the whole
have the same generic object as part. E:g-v is again somewhat odd since
once the component is changed the whole must be deleted. E:v-v
requires propagation of all component changes.

This framework for supporting the evolution of schema and indi-
viduals contains a selection of invariants and guidelines for the usage of
different kinds of references. Simple semantics are already included, but
in an advanced PDM system, there should be a mechanism for selecting
various constructs for the needed semantics, which could also vary
between product lines. The framework provides a platform that needs to
be refined by the systems. However, as it stands, it is already a small
breakthrough since it shows how the semantics of evolution of product
families and their individuals could be captured in product data man-
agement systems.

The results presented thus far are on a rather high level of abstrac-
tion. In particular, the evolution of individuals of product families is far
more complicated than what is accurately captured by the given form of
weak conformance. In the following, solutions for capturing the
evolution of individuals were searched from the after-sales viewpoint.

5.5 Relation of Evolving Schema and Individuals
As has already been pointed out, the schema and individuals of product
families differ from their counterparts in databases. The main distinction
is the independence of an individual of the schema after the creation of

56

the individual. The individual, however, is not entirely independent of
the schema. After-sales modifications of a product individual typically
utilise component types introduced in newer schemas. Next, a closer
look is taken at the world of product individuals.

The world of product individuals is illustrated in Figure 9. The
whole picture represents all imaginable product structures, i.e., configu-
rations. Areas within the figure represent various sets of (potential)
individuals from the modelled world. The sizes of areas are not propor-
tional to the number of individuals contained.

In Figure 9, the largest area drawn with a thick solid line represents
all meaningful products. That is, configurations of components that are
meaningful in the sense that they form a functional product that has
specific usage. Inside the meaningful configurations are areas drawn with
a thin solid line. These areas represent configurations that are valid
according to a schema, i.e., a configuration model, at a particular time.

These areas are within meaningful configurations, since a configura-
tion model is required to represent only functional products. It is,
however, not required to represent all meaningful configurations
achievable from the component types of the company. That is, the
approximation made by a configuration model is a subset of all meaning-
ful configurations that can be made of the component types of the
company.

The point in Figure 9 is to illustrate how product individuals are
represented in the different modelling approaches addressed in the
studies of this thesis. The figure thus combines into one picture the
results of the Studies II, III, IV and V.

Study III focused on the modelling of evolution with an emphasis
on the independence of the evolution processes of the schema and
individuals. The weak conformance only requires that individuals are
created according to the schema. In the figure, this means that the dot
representing an individual initially appears within the area representing
the schema of the creation time of the individual. The configuration
process creating product individuals was addressed in Study II.

The evolution of an individual, which was represented by versions
of a generic individual in Study III, is represented in the figure by
arrows. After a change, an individual may remain within the initial
schema, may be represented by another schema version or the modified
individual may be no longer represented by any schema version. It is also
possible that an individual ceases to be a meaningful configuration if, for
example, an essential component is removed from it.

57

In Study III, the versioning of objects in the schema induce sche-
mas of different times, i.e., areas ‘schema at ti’ shown in Figure 9. The
chains of arrows represent the evolution of individuals, which in
Study III was represented by individual versions independently of the
schema. Studies IV and V were carried out for finding means for
capturing the evolution of the individuals more appropriately.

Study IV modelled individuals to which a reconfiguration operation
can be applied by a reconfiguration precondition. A precondition is
exemplified in Figure 9 by an area drawn with a thin dashed line. In
principle, the source individual to a reconfiguration operation may be
non-functional, e.g., broken. In such case, however, reconfiguration
operations are not required to fix a broken individual since in Study IV
the aim was to provide means for modelling reconfiguration operations
that keep originally valid individuals within the boundaries of meaningful
configurations.

The purpose of Study V was to provide means for uniformly mod-
elling all product individuals that are serviced by the company. The
population represented by the model must thus include all product
individuals configured by the company and some others. The purpose of
the model, unlike a configuration model, is not to provide exact
manufacturing instructions for a new product individual. Its purpose is

meaningful configurations
schema at ti

ap
pr

ox
im

at
io

n
by

an
 e

lem
en

t m
od

el

Legend:

individual version

change to individual

reconfiguration
operation

precondition

reconfiguration action

Figure 9. Approximations of the population of product individuals.

58

to identify some aspects from existing (working) product individuals.
Therefore, the approximation of this model is by a superset, as it is more
important to represent all existing individuals than not to represent any
non-functional ones. Studies IV and V will be dealt with in turn below.

5.5.1 Reconfiguration

The instantiation process creates a description of a product individual
from a product family description. Reconfiguration, on the other hand,
refers to the process in which an existing product individual is modified
to meet new requirements of the customer. Reconfiguration is an
important business for companies that offer customer-specific solutions.
Moreover, it is importance is increasing with the general trend towards
better customer satisfaction.

Reconfiguration is in many respects a complicated business. How-
ever, some trends make it more desirable than before. For example,
extending the lifetime of product individuals can be motivated by
environmental arguments and extensible products are attractive when
investment budgets are put under tight scrutiny. Reconfiguration is
problematic because it cannibalises the markets from new products.
Maintaining a high degree of reconfigurability may also hinder product
development by making it harder to introduce new technologies into
products.

Reconfiguration is not equally feasible for all kinds of products. For
very complex products, such as power plants, it may be difficult to define
systematic reconfiguration knowledge, and therefore, reconfiguration
must be carried out as projects. Mass-products, on the other hand, may
be too cheap, so that it is not economically feasible to reconfigure
them—as it is cheaper for a customer to buy a new product. Therefore,
from different kinds of products, the best candidates for reconfiguration
are configurable products.

Another factor that affects the feasibility of reconfiguration is the
length of the lifetime of product individuals. Product individuals that
have a long lifetime and high cost are typically investments. It is very
likely that such products are modernised at some point in their lives. In
addition, although reconfiguration would principally be feasible for some
products, the high rate of technological change may make it unfeasible.
For example, personal computers become quickly outdated and thus
modernisation would require changing almost every component, which
is more expensive than buying a new computer.

59

Reconfiguration typically happens some time after the product was
originally configured, when both the schema and the product individual
have probably changed. Therefore, reconfiguration is an issue of the
relation between modified schema and modified individuals of Figure 4.
The old individual as input makes reconfiguration more difficult than
configuration. For example, something that does not affect the actual
configuration process may be a critical input to reconfiguration, such as
the support structures in the installation environment.

There are several ways how companies have handled the reconfigu-
ration (IV). One is to initiate a project that investigates the old individual
and designs and implements the modification. This is an expensive, but
in many cases the only, possibility. Some companies have tried to find
less costly solutions for reconfiguration in cases that are close to each
other and rather frequent. One such solution is to define reconfiguration
packages, which are pre-designed to be reusable. Another, more
advanced, approach is to systematically design the product to be
reconfigurable so that a significant portion of new features can also be
offered to old product individuals. This approach lays a burden on the
product development in the sense that it is more difficult to introduce
new technology to the product. Nevertheless, the approach also ties
customers more tightly to the company and gives customers the
confidence that with small gradual investments they can keep their
products functionally modern.

In Study IV, a conceptual model was defined to represent reconfigu-
ration independently of configuration models. The model consists of
reconfiguration operations and reconfiguration invariants. A reconfiguration
operation is of form <pre-condition, action>. The idea is that a reconfigu-
ration operation can be applied to a product individual if the pre-
condition evaluates to true. The effect of applying a reconfiguration
operation is described by the action, which tells how to change the
individual. Reconfiguration invariants are conditions; it is required that
the resulting product individual must fulfil the reconfiguration invariants.
The model is based on the approach used by one industrial company for
providing systematic reconfigurability for product individuals they have
manufactured.

Figure 10 shows a practical example of reconfiguration operations.
The schema changes according to product evolution, which is illustrated
at the top of the figure. With a modified schema, it is then possible to
consider how new components in the schema relate to old ones.
Typically, some substitution rules are given. In the figure, for example,

60

the component types (motors) 97998 and 97999 are at some point
replaced by a new one, i.e., 98070. In addition, the figure shows an
upgrade operation, which allows certain 8 to 10 tons cranes to be
upgraded to a 12 tons crane when preconditions are met. The approach
thus allows capturing reconfiguration operations even when there are
only few of them and extends to more systematic support of reconfigu-
ration, possibly with a reconfiguration system for automatically validating
or finding sequences of reconfiguration operations.

In addition, some notion of optimality is needed as otherwise a re-
configuration task could be solved by changing all the components, i.e.,
configuring a new product individual for the customer (which, however,
may be most optimal in some cases). The solution with the cheapest
components is also not necessarily optimal, although it might be a good
candidate.

A configuration model describes only valid combinations of com-
ponents—it must not allow any invalid configuration. For reconfigura-
tion modelling, the approach taken in Study IV is weaker as it assumes
that the starting point for reconfiguration is a valid product individual.

…

H017 #699862
10 ton

Motor 97998
40 kW

…

At t1
as delivered

…

H017 #699862
10 ton

Motor 98070
42 kW

…

At t4
after replacing
hoisting motor

…

H019 #700219
12 ton

Motor 98127
50 kW

…

At t7
after replacing
hoist

Component type
replacement added at t3:
97998 ⇒ 98070
97999 ⇒ 98070

Schema at t0

Upgrade to 12 ton, added at t6:
if capacity 8-10 ton and
hoist type H016 or H017,
change hoist to H019 with
motor 98127

Schema at t5
with new hoist H019

Sc
he

m
a

R
ec

on
fig

ur
at

io
n

op
er

at
io

ns
Sa

m
pl

e
in

di
vi

du
al

Schema at t2
with new component
type 98070

time

Figure 10. Examples of reconfiguration operations.

61

The same applies to reconfiguration invariants; they are set to guard
against combinations of reconfiguration operations that may lead to
invalid individuals. If the starting point is an invalid individual, the
reconfiguration operations and invariants are not needed to detect or
correct that.

In Figure 9, the area drawn with a thin dashed line illustrates indi-
viduals for which the precondition is true. The area also includes some
non-functional configurations. Evaluating the reconfiguration action for
a non-functional individual would most probably lead to another non-
functional individual. Therefore, it was required that the starting point
for a reconfiguration operation must be a valid individual.

In Study IV, it was argued that capturing the reconfiguration within
the configuration model is unfeasible, the main argument being that the
configuration knowledge was in all investigated companies very much
surface knowledge. Consequently, incompatibilities between the
components of different schema versions would not be automatically
detected, because the reasons for such incompatibilities are easily
abstracted away from the configuration models. Constructing a configu-
ration model with deeper knowledge increases costs and, although it
would reduce the problem, the model would nevertheless be an abstrac-
tion. The proposed model provides another approach for reconfigura-
tion modelling. The model is derived from the experiences with
industrial companies and it incorporates the methods used by the
companies that supported reconfiguration.

Reconfiguration is flavoured by characteristics of after-sales. This is
also reflected in the optimality criteria of reconfiguration. A company
may want to reduce the number of components in service or to use the
existing storage of old components. Such considerations may make a
selection of more expensive components optimal. Sometimes it may also
be wise to change more components than is actually necessary, for
example, some cheap components that have a tendency of wearing out.
Therefore, modelling reconfiguration separately from configuration
models is also backed-up by the fact that configuration and reconfigura-
tion are separate business processes, which leads to different require-
ments on the systems supporting them. The separation of reconfigura-
tion and configuration tasks is also proposed by Stumptner and Wotawa
(1998).

62

5.5.2 Modelling Product Family Individuals for After-Sales

Product individuals of a product family are rather different from each
other because they are individually adapted to the requirements of each
customer. This can be partly solved by keeping records of each product
individual, e.g., ‘as-manufactured’, ‘as-installed’ or ‘as-maintained’. With
such information, details of each individual are known and the individual
can be serviced and maintained accordingly. If a company wants to sell
customers “uptime” instead of service hours after something breaks
down, the company needs to known accurately the wear-out characteris-
tics of products it maintains and have consistent records of all per-
formed service operations. The heterogeneity of the individual popula-
tion, however, still makes it difficult to acquire information about
different component types used in similar functions or to distinguish
between components of the same type used in different functions. For
example, to estimate the wearing out of brakes of end-carriages or to
find out the number of times a certain motor type is used as a hoisting
motor in cranes.

Representation of the individual population of a product family is a
particular problem in modelling the relation between the schema and
individuals of product families that was presented in Figure 4. Not only
are the individuals different because of the initial adaptation to the
customer requirements but also because the individuals are created at
different times. That is, the individuals may be created according to
different schema versions. Furthermore, the evolution of the individuals
is not captured by the evolution of the schema—changes made to the
product families do not describe after-sales operations for product
individuals. Nevertheless, for after-sales a schema that would describe,
even approximately, the heterogeneous population of individuals would
be beneficial.

Study V developed a mechanism for defining such schemas with
element models. An element model captures the essential elements of each
individual in a standardised manner. Figure 11 shows a largely imaginary
example in which the BOM structure of an individual is associated with
an element structure. The idea is that an element structure contains general
elements such as ‘end-carriage’ or ‘hoisting motor’. To each element in
an element structure, a component or components from the BOM are
associated; these associations are indicated in Figure 11 by dashed lines.

63

Because of the generality of elements, most BOMs could be de-
scribed by a rather small set of elements. With the association to the
elements in an element structure, it becomes easier to identify from a set
of BOMs motors that have been used as hoisting motors. The element
structure also serves as a point of reference, independent of physical
components, for service operations. For example, it allows recording the
change history for brakes of a hoisting motor. These records are retained
even if the whole hoist is changed (as it is assumed that the element
structure does not change during the life of an individual, at least not in
a manner that would destroy history).

In order to be useful for analysing the population of product indi-
viduals, the element structures must be constructed in a standard
manner. The number of elements should be small, the element struc-
tures for different product families should be as similar as possible and
the association with the BOMs should be complete enough. The

Crane #699861

T012

99875

H017 #699862

E044

bridge crane

cabin

end-carriage
connection

traversing
mechanism

hoist

end-carriage

97999

14411

33279

51231

65574

14411

hoisting motor

load lifting system

BOM with components Element structure with elements

trolley

hoist trolley

54432

brakes

Figure 11. Example of a BOM associated with an element structure.

64

standardisation of element structures was achieved in the study by
element models, which define the allowed element structures.

Figure 12 (partially) shows examples of product individuals that
have been manufactured at different times. Although the BOMs of the
individuals use different types of components, their element structures
are similar. This similarity is guaranteed by an element model. The
element model has specified the element ‘cabin’ as optional, and
therefore, not all element structures need to have a cabin.

The population of product individuals, however, is more compli-
cated than described so far. Product individuals may have very long
lifetimes, tens of years or so, and consequently, there is very little
recorded information about the oldest ones. Moreover, it is typical that a
company services product individuals manufactured by others, in which
case, the information available may be incomplete or hard to find. Even
in these cases, some information can be acquired on the product
individual; its main parts, for example, can be identified. Nevertheless,
the element structures for these individuals must be more general than

Crane #699861

H017 #699862

97999…

crane

hoist

hoisting
motor …

Crane #699862

96875

H017 #699863

97998…

crane

cabin

hoist

hoisting
motor …Crane #699903

H017 #699902

98070…

crane

hoist

hoisting
motor …

Crane #699951

H020
 #700012

98070

…

crane

hoist

hoisting
motor

…

Crane #699952

96875

H019 #700013

98072…

crane

cabin

hoist

hoisting
motor …

T017

Sc
he

m
a

3
Sc

he
m

a
2

Sc
he

m
a

1

Figure 12. Sample product individuals with associated element struc-
tures.

65

for the product individuals currently manufactured by the company
itself.

For supporting the representation of product individuals at different
levels of abstraction, Study V provided a mechanism for organising the
element models in a specialisation hierarchy. Specialisation between
models means that a model S is a specialisation of model M, if S
represents a subset of the individuals represented by M. For example, if
the most general crane model requires that each crane has exactly one
hoist, each specialisation of it must have an element hoist (or its
specialisation). Thus, it is possible to identify the components of the
hoist in any crane individual.

The above definition of specialisation does not directly tell how to
make a specialisation of an element model and it may be difficult to see
whether that is the case by looking at element models. Therefore, a set of
specialisation operations was defined for creating specialisations. The
operations were also proved sound.

The element models proposed in this thesis originate from a co-
operation with an industrial company and the problems they had in
managing the population of product individuals in after-sales. The idea
of the approach is to cover all the product individuals that are serviced
by the company. These include old individuals manufactured by the
company and individuals manufactured by others but serviced by the
company. It is impossible to model such sets of individuals as strictly as
new potential individuals are represented by a configuration model. The
approximation of individuals by an element model is illustrated in
Figure 9 by a thick dashed line. The idea is thus to create product
individuals with a configuration model, let the individuals evolve
independently and then utilise element models to represent them
systematically for the purposes of after-sales. The schema of element
models is thus independent of the configuration models according to
which the product individuals are originally created. The company tested
the approach by defining some three hundred element classes and during
the research project implemented a prototype tool for modelling their
products with the element classes.

66

6 Discussion

In this section, the thesis is compared with related work and product
data management in industrial companies. The discussion begins with a
general view to the fundamental issues and problems of conducting
research in the area of industrial products and organisations.

Research on Industrial Products—General Remarks

Design and modelling of product structures and product families
belongs to the sciences of the artificial, according to the term coined by
Simon (1996). In contrast to natural sciences, the sciences of the
artificial deal with artefacts constructed by humans. The world investi-
gated is not stable as in addition to being constructed it is continuously
modified by humans. This certainly applies to product families. The
product families we are modelling today did not exist a century ago and
most probably the product families of the next decade will be quite
different from the current ones. Gravitation, on the other hand, does not
change, although our understanding of it may.

Moreover, the product families of different companies need not
have much in common. Nevertheless, there are some principles that can
be applied to a wide range of different kinds of products, but, the more
detailed the concepts, the fewer products there are to which they nicely
fit. This leads to a dilemma as the most general concepts are very
abstract and can be (mis)used in various ways so that their semantics
become blurred from the product data modelling viewpoint.

In defining suitable concepts and semantics for product families,
one is also faced with another problem. Namely, should the model
reflect the reality or should one reach for better and cleaner concepts
and suggest changing the reality to reflect them. Typically, the best
solution seems to be somewhere in between. That is, the concepts
should be derived from the real world but they need not exactly reflect
the real world if it is too messy, which typically is the case.

Many of the difficulties in companies are independent of informa-
tion systems, or more precisely, they cannot be solved by introducing an
information system. An implemented system affects the company as it
forces the operation within the concepts, semantics and functions
supported by the system. If the choice of concepts is correct enough, an

67

information system may consequently help in improving the data
management processes of a company.

The results of this thesis emphasise the conceptual aspects of
product family modelling. The research has been conducted in a close
contact with industrial companies. Study II stemmed from co-operation
with a large elevator manufacturer, Study IV was based on the results
from over two dozen Finnish companies manufacturing configurable
products and Study V on co-operation with a crane manufacturer.
Study I investigated the largest product data modelling standard.
Study III then built a framework from the experiences of the other
studies. Overall, the idea was to construct a holistic view to product
families of industrial companies.

The purpose of this summary part is to provide a unified view on
the separate original studies behind this thesis. The original studies were
rather independent studies made at different times, in distinct research
projects and with various industrial companies. Consequently, they do
not form a natural whole with a consistent terminology. The terminol-
ogy, for example, reflects the evolution of ideas during the research as
well as the viewpoint taken in conducting a particular study and in
reporting its results. Nevertheless, the original studies address the very
same phenomena and thus exhibit notable commonality, which was then
made explicit in this summary part of the thesis.

When the results of this thesis are evaluated for practical usage, for
example, when considering their implementation in the product
management processes of a company or in a PDM system, the relation
of the studies to each other must be understood. That is to say, the
studies should not be blindly combined; instead, a consistent whole
should be looked for in the manner of this summary.

The implementation of the results of this thesis into a PDM system
would require the system to be built relatively cleanly on an object-
oriented basis and to provide an object-oriented model for modelling
products. This, however, does not necessitate the underlying database
being object-oriented. The implementation of the effectivity and generic
version referencing mechanisms that are behind the proposed approach
necessitates, in practice, representation of generic object separately of its
versions. However, it may be that the basic concepts for modelling
product families, e.g., generalisation, optional and alternative parts and
conditions for modelling valid component combinations, set tougher
implementation requirements for a PDM system than addition of the
support for evolution in the proposed form.

68

One major new requirement for an existing PDM system is the
keeping of records of product individuals. In fact, it can be argued how
tightly the after-sales operations and basic product data management
should be integrated. It may not be necessary to include them within a
single system. Although if implemented in separate systems, the systems
would nevertheless share a great deal of information, e.g., component
types, and therefore, they need to be rather tightly integrated anyway.

The support for multiple abstraction levels in modelling the indi-
viduals is based on similar modelling concepts to the modelling of
product families. The main distinction is in the approximation; i.e., only
the validity of element structures is checked: The system does not need
to generate individuals. For implementation, perhaps most challenging
would be the support for specialisation between models. The proposed
approach, however, provides operations for creating specialisations,
which means there is no need to investigate whether a model is a
specialisation of another model.

This is a general view of implementing the proposed concepts in a
PDM system. Instead of addressing detailed implementation concerns,
this thesis concentrated on forming the conceptual basis and raising the
awareness of the phenomena related to the evolution of product
families.

Conceptual Mismatch

The problem of conceptual mismatch (although not using this term) has
also been discussed, in addition to this work, by Erens, McKay and Bloor
(Erens et al. 1994, McKay et al. 1996). In their earlier paper (Erens et al.
1994), they raise the awareness with respect to abstraction levels in the
modelling of product families. In their later paper (McKay et al. 1996),
they illustrate their idea with an intermediate conceptual layer (called
Layer 2), which resides between an EXPRESS definition of product data
modelling concepts (Layer 1) and EXPRESS instances (Layer 3). Layer 2
contains the product family description, which can be regarded as an
instance of Layer 1. Similarly, the individual description at Layer 3 is an
instance of the product family description at Layer 2. As a result, Layer 2
has a data model view and instance view within it. The exact relation
between these views, however, is somewhat vague. In addition, the use of
is-a relation for modelling product families is not discussed. The model,
nevertheless, is an important contribution towards solving the concep-
tual mismatch problem and the authors conclude with the wish that such

69

requirements would be catered for in engineering databases of the future
(McKay et al. 1996).

Semantics and Conformance

With global operations, thousands of employees and large amounts of
information, the management of product data necessitates some formal
procedures. Such control is a delicate matter, as routine processes should
be strictly controlled by systems and innovative processes need more
freedom. There are tales that CAD systems destroyed old release and
approval procedures in some companies as the manager’s approval
signature was already scanned in the drawing templates. PDM systems
remedied this situation by taking the control of the approvals.

Most PDM systems support versions but are typically less explicit in
capturing the evolution semantics of controlled objects. Product change
processes are typically managed in the form of work-flows. In an
engineering change, a set of modified entities can be grouped under the
change order and so handled as one set. The propagation of a change in
product structures is typically controlled by some means, but the selected
policy is not necessarily explicit and clearly visible.

In the literature, the work on the has-part semantics has mainly con-
centrated on what is required of the individuals (Kim et al. 1987, Kim et
al. 1989, Halper et al. 1992). For example, how many component
individuals there can be in a particular part relation, whether a compo-
nent individual may exist without being a part and whether the deletion
of a component individual implies the deletion of the composite. The
weak conformance of Study III takes a wider perspective to confor-
mance and assumes conformance only for the creation time of the
individual. In Study V, these semantics were addressed in detail, but
conformance was only required for element structures, which are coarse
descriptions of product individuals.

Object-Oriented Composition Modelling with Versions

One of the basic models for composite objects in engineering is that of
ORION (Kim et al. 1987, Kim et al. 1989). In the model, the composi-
tion, i.e., the has-part relation, is modelled between classes. A class is
considered as a collection of instances, which may either be generic
instances or version instances. A has-part relation between instances may
be from a version instance to a generic instance or version instance, i.e.,
types v-v and v-g relations discussed in this thesis. They consider the

70

evolution of schema to be covered by means of schema versioning (Kim
and Chou 1988) and thus they do not combine class versioning with the
has-part relation or discuss the propagation of changes in a class
hierarchy.

Talens et al. (1993) have proposed a model, which incorporates an
is-a hierarchy and composite objects. In their model, the has-part relation
is given between classes and between versions; has-part relations
between versions must follow the relations between classes. Their
approach provides a powerful mechanism for explicitly controlling the
versioning and version derivation of classes. The lack of generic
references with a resolution mechanism (e.g., based on effectivity) means
that the references are of type v-v. Thus, when a new version is created
for a component, the version does not come into use without the
creation of a new version for the composite or updating the has-part
reference in the composite. That is, their approach focuses more on
explicit version management, e.g., during design process, than on the
product data management, e.g., support for “form, fit and function”
principle. Moreover, they do not address the propagation of changes in
an is-a hierarchy.

Andonoff et al. (Andonoff et al. 1995, Andonoff et al. 1996) carry
on by taking into account the evolution of both the classes and individu-
als. They speak of version derivation hierarchies without explicitly
representing generic objects. Therefore, they only have v-v type has-part
and is-a relations, which they extend to contain combinations of
versionable and non-versionable objects, either classes or individuals.
With the is-a hierarchy, they maintain, however, that the versioning of
superclass does not propagate to its subclasses, which is in contrast to
what was discussed in this thesis.

Advanced Concepts in Modelling Product Families

The summary part of this thesis made a simplification by not discussing
all the concepts needed in product family modelling. Product family
modelling needs concepts for expressing conditions, such as components
requiring other components, components being incompatible and so on
(see, e.g. Peltonen et al. 1998, Soininen et al. 1998). Study II actually
included a powerful mechanism for incorporating such conditions as
properties of objects, which are inherited along is-a relations. An object’s
own conditions and the inherited ones are simply combined by logical
ANDs. This summary part of the thesis concentrated on providing the

71

conceptual basis for a system that would integrate the evolution of
product family schemas and individuals, and thus the details of model-
ling product families were intentionally kept to a minimum. The problem
of conceptual mismatch was argued to be more relevant in modelling
product families than in other kinds of products. Therefore, the
evolution of schema and individuals in the form presented in this thesis
is specifically a problem of product families.

Software Configuration Management and PDM

In software engineering, the software configuration management (SCM)
is a close relative to PDM of mechanical products. There are certain
differences between these fields but the gap between them is narrowing
(Conradi and Westfechtel 1998, Estublier et al. 1998, Westfechtel and
Conradi 1998). One particular difference is that, in SCM, product
structure has not played such a central role as in PDM. In software, the
product structure may be seen as a flat set of components (Reichenber-
ger 1995) or it may reflect the directory hierarchy in which the source
files are stored (Estublier et al. 1998), as it may be more important to
express dependencies between objects (files, modules or syntactical
object such as classes). However, in the future, software will also be a
major player in traditionally mechanical products. Software modules will
be components in product structures and much of the product variety
will be created by means of software. It is likely that experiences in PDM
will influence some parts of software engineering, e.g., within software
configuration management, software architectures, software product
lines, software generation and software product families.

Concept of Effectivity in Products

In the proposed framework, the effectivity was rather simple. That is,
with a given time instant t, all objects would be bound to the version
effective at that time, if any. For example, for a particular product one
would get the product structure in which all versions are effective at t.

In practice, however, there are many time points, which can be con-
sidered as the start of the effectivity of a design object. At some time the
design is approved and released for use. Shortly after that, the configura-
tion models are updated and sales personnel (officially) start selling the
new product. Purchasing of critical components may have begun much
earlier and manufacturing will start using the new design gradually when
the old work in progress is finished. Then finally, the first product

72

individual made according to the new design comes out of the manu-
facturing line. That is sometimes considered the start time of the
effectivity of the new design because, from that point on, the new
product individuals reflect the new design.

This all may require that, for example, in manufacturing multiple
effectivities need to be recorded for a single design object. Separate
effectivities may also be needed for different views, such as the sales
configuration and manufacturing view of products. Between views, the
semantics of effectivity may be quite different. Moreover, one object
may need different effectivities for different market areas, if products are
not launched and withdrawn globally at the same time. These examples
show that the practical aspects of effectivity are very complicated. Since
no definitive solution exists, the problem deserves further attention
before information systems can capture all nuances of effectivity.

In this thesis, single effectivity was used. That is the effectivity con-
trolling the configuration models. The creation time of a product
individual, i.e., start of the effectivity of the first version, would be the
time it was configured. If no changes are made to the individual during
manufacturing, it will be delivered as configured. In practice, this need
not be the case, however. Since the evolution of the individual is
captured by its versions, the modifications in the manufacturing, i.e.,
even before the individual physically existed, should be recorded for the
individual similarly to the way in which the after-sales modifications will
be.

73

7 Conclusions

The results of this thesis can be summarised by the following few points.
First, there was an observation of the conceptual mismatch raising the
awareness of the problem and leading to requirements for different
conceptual modelling methods from those directly provided by tradi-
tional databases or current PDM systems. The observation was backed
up by a detailed study of product family modelling in the largest product
data modelling standard, STEP. The study revealed the problems of the
class instance paradigm when the schema is considered static, as is the
case in traditional databases and certainly in standardisation.

In the search for a conceptual platform for an advanced PDM sys-
tem, the importance of capturing the semantics of evolution was
emphasised. The semantics was captured for modelling product families
and their individuals by defining a set of invariants controlling the usage
of concepts. In addition, dynamic referencing mechanisms were
investigated in detail to allow more accurate selection of the needed
semantics, including the support for the so-called “form, fit and
function” versioning policy utilised in many companies.

The defined framework ties together the evolution of schema and
individuals that only weakly conform to the schema. A study on the
relation of schema and individuals of product families in the instantia-
tion process, also called configuration process, was conducted. The study
pointed out the unclear line between the schema and individuals as the
configuration process gradually narrows the variety expressed in the
schema to the representation of a single individual. The study also
investigated the use of the uniform object paradigm for modelling
product families, which was then taken as a basis for the conceptual
platform.

The evolution of product individuals was acknowledged as a wide
problem area and impossible to systematically control in its extreme, that
is, when full freedom in modifying individuals is exercised. Two detailed
studies, one on reconfiguration and the other on elaborate modelling of
product individuals with multiple levels of abstraction, were conducted
to address the evolution of product individuals. The approach for
modelling reconfiguration knowledge did not include the whole history
of the schema in one reconfiguration model. Instead, the approach relied
on the way some investigated companies have developed for their after-
sales support, that is, to define reconfiguration operations that can be

74

applied to product individuals under given preconditions. The other
detailed study provided a methodology for modelling product individuals
in multiple abstraction levels. The study was based on the experiences
with a company manufacturing configurable products that have a long
individual lifetime. The long lifetime and large variety of product
individuals make systematic management of individuals difficult. After-
sales is, however, a remarkable business for such companies, typically
totalling close to or more than half of all sales.

On the whole, the results of this thesis provide a conceptual basis
for capturing the evolution of product families and their individuals in
the scope set for an advanced PDM systems in Figure 1. The idea is that
an advanced PDM system would have the capability of understanding
the semantics so that the product data management policies of the
company could be encoded in the system, which would then control the
selected policies.

75

8 Kiitokset / Acknowledgements

Tämä väitöskirjatyö on tehty Teknillisen korkeakoulun TAI-
tutkimuslaitoksen tuotetiedonhallinnan tutkimusryhmässä (PDMG).
Haluan kiittää työn onnistumisesta kaikkia PDMG:n nykyisiä ja entisiä
jäseniä, jotka ovat omalla panoksellaan luoneet tutkimustyölle sopivan,
vireän ja miellyttävän työyhteisön.

Suurin kiitos näiden työskentelymahdollisuuksien luomisesta kuuluu
professori Shosta Suloselle, joka on pitkäjänteisesti ja määrätietoisesti
rakentanut ryhmämme identiteettiä useiden vuosien ja projektien yli.
Haluan erityisesti kiittää Sinua siitä henkilökohtaisesta tavasta, jolla olet
minuun ja työhöni suhtautunut. Hyvin tärkeitä ovat olleet myös ne
työhön kuulumattomat asiat, jotka olen Sinulta oppinut ja joita olemme
yhdessä kokeneet.

TkT Hannu Peltosta haluan kiittää koko tutkijaurani jatkuneesta hy-
västä yhteistyöstä. Olen saanut nauttia laajasta asiantuntemuksestasi sekä
lahjomattoman terävästä ja kriittisestä otteestasi niin käsitteisiin kuin
termeihin, joita olemme vuosien varrella yhdessä pyöritelleet.

TkL Juha Tiihonen on tehnyt ryhmässä merkittävää työtä tuotteiden
konfiguroinnin alueella ja samalla kartoittanut pohjaa sille käytännön
ilmiölle, jonka päällä tämä väitöskirjatyö seisoo. Sinulle kuuluu myös
erityiskiitos työn ulkopuolisista hetkistä valokuvauksen parissa.

TkL Timo Soininen on ansiokkaasti opastanut ryhmäämme formaali-
en menetelmien käytössä, mutta myös kiitettävästi soveltanut epäfor-
maaleja menetelmiä ryhmän hengen luomiseen. Haluan kiittää Sinua
asiantuntemuksestasi tietämyksen ja logiikan alalta, jota olet tämän työn
kuluessa avukseni tarjonnut; kuten myös niistä filosofisista pohdinnoista,
jotka ovat toisinaan johtaneet…, no ties minne, mutta silti aina mielen-
kiintoisille alueille.

Tutkimusjohtaja Asko Martio on tuonut ryhmäämme teollista koke-
musta aiemmalta työuraltaan. Haluan kiittää Sinua kokemuksesta tulleista
kommenteistasi, jotka ovat tehokkaasti maadoittaneet tämänkin väitös-
kirjatyön ympärillä keveimmin leijuneita ajatuksia. Mukavia ovat olleet
myös pitkät automatkat kanssasi läntisen Suomen yhteistyöyrityksiin.

Kiitän myös TkL Kari Alhoa tutkijaurani alkuaikojen yhteistyöstä,
joka heijastuu yhdessä tämän väitöskirjan osatyössä.

Työtä ovat rahoittaneet Tekes, Suomen Akatemia ja Teknillisen kor-
keakoulun tukisäätiö. Olen myös ollut opiskelijana HeCSE (Helsinki
Graduate School of Computer Science and Engineering) -tutkijakou-

76

lussa, jonka kautta olen saanut rahallista ja henkistä tukea tohtoriopin-
noilleni. Haluankin kiittää professori Martti Mäntylää myönteisestä ja
kannustavasta asenteesta, jolla hän on HeCSEn johtajana seurannut
väitöskirjatyöni etenemistä.

Työni esitarkastajia professori Pasi Tyrväistä ja TkT Jouko Vuoskoskea
kiitän arvokkaista kommenteista, joiden toteuttaminen konkretisoi ja
selkeytti työtä.

I express my kind thanks to Ms. Ruth Vilmi for reviewing the English lan-
guage of this thesis.

Lopuksi kuuluvat kiitokset puolisolleni ETT Satu Männistölle. Esi-
merkilläsi avasit latua väitöskirjan tekemiseen, mutta ennen muuta tarjosit
sen henkisen nojan, jota tällaisen prosessin aikana tarvitsee. Varsinainen
kiitos Sinulle, Satu, kuitenkin kuuluu pitkäaikaisesta läheisyydestä ja
ystävyydestä, jossa olen saanut kanssasi kasvaa.

Helsingissä 8.6.2000

Tomi Männistö

77

References

Abiteboul S, Hull R. IFO: A formal semantic database model. ACM Transac-
tions on Database Systems 1987;12(4):525–65.

Ahmed R, Navathe SB. Version management of composite objects in CAD
databases. Proc. of the International Conference on Management of Data
(SIGMOD); ACM; 1991. p. 218–27.

Allen JF. Maintaining knowledge about temporal intervals. Communications of
the ACM 1983;26(11):832–43.

Almarode J. Rule-based delegation for prototypes. Conference on Object-
Oriented Programming Systems and Languages (OOPSLA); 1989. p. 363–70.

Andonoff E, Hubert G, Le Parc A, Zurfluh G. Modelling inheritance,
composition and relationship links between object versions and class versions.
Advances Information Systems Engineering. Proceedings of the 7th Interna-
tional Conference (CAiSE’95); 1995. p. 96–111.

Andonoff E, Hubert G, Le Parc A, Zurfluh G. Integrating versions in the
OMT models. Proc. of the 15th International Conference on Conceptual
Modeling (ER’96); Springer-Verlag; 1996. p. 427–87.

Artale A, Franconi E, Guarino N, Pazzi L. Part-whole relations in object-
centered systems: An overview. Data & Knowledge Engineering
1996;3(20):347–83.

Banerjee J, Chou H-T, Garza JF, Kim W, Woelk D, Ballou N, Kim H-J. Data
model issues for object-oriented applications. ACM Transactions on Office
Information Systems 1987;5(1):3–26.

Banerjee J, Kim W, Kim H-J, Korth HF. Semantics and implementation of
schema evolution in object-oriented databases. Proc. of the international
conference on management of data (SIGMOD); 1987. p. 311–22.

Barker VE, O’Connor DE. Expert systems for configuration at Digital: XCON
and beyond. Communications of the ACM 1989;32(3):298–318.

Batini C, Ceri S, Navathe SB. Conceptual database design. The Benja-
min/Cummings; 1992.

Batory DS, Kim W. Modeling concepts for VLSI CAD objects. ACM Transac-
tions on Database Systems 1985;10(3):322–46.

Bettini C, Dyreson CE, vans WS, Snodgrass RT, Wang XS. Glossary of time
granularity concepts. In: Etzion O, Jajodia S, Spirada S, editors. Temporal
Databases — Research and Practice. Springer-Verlag; 1998. p. 406–13.

78

Biliris A. Database support for evolving design objects. Proc. of the 26th
ACM/IEEE design automation conference; 1989. p. 258–63.

Björnerstedt A, Hultén C. Version control in an object-oriented architecture. In:
Kim W, Lochovsky FH, editors. Object-oriented concepts, databases, and
applications. Addison-Wesley; 1989. p. 451–85.

Casais E. Managing class evolution in object-oriented systems. In: Tsichritzis D,
editor. Object management. Centre Universitaire d’Informatique, University of
Geneve; 1990. p. 133–95.

Chou HT, Kim W. A unifying framework for version control in a CAD
environment. Proc. of the 12th international conference on very large
databases (VLDB); 1986. p. 336–44.

Clamen SM. Type evolution and instance adaptation. Technical report. School
of Computer Science, Carnegie Mellon University; 1992. Report No.: CMU-
CS-92–133.

Conradi R, Westfechtel B. Version models for software configuration manage-
ment. ACM Computing Surveys 1998;30(2):232–82.

Cunis R, Günter A, Syska I, Peters H, Bode H. PLAKON — An approach to
domain-independent construction. The second international conference on
industrial & engineering applications of artificial intelligence & expert systems
IEA/AIE-89; 1989. p. 866–74.

Darr T, McGuinness D, Klein M, editors. Special Issue on Configuration
Design. AI EDAM 1998;12(4).

De Castro C, Grandi F, Scalas MR. Schema versioning for multitemporal
relational databases. Information Systems 1997;22(5):249–90.

Demaid A, Zucker J. Prototype-oriented representation of engineering design
knowledge. Artificial Intelligence in Engineering 1992;7(1):47–61.

Dittrich KR, Lorie RA. Version support for engineering database systems.
IEEE Transactions on Software Engineering 1988;14(4):429–36.

Eastman CM, Fereshetian N. Information models for use in product design: A
comparison. Computer-Aided Design 1994;26(7):551–72.

Erens F. The synthesis of variety—Developing product families [PhD thesis].
Eindhoven University of Technology; 1996.

Erens F, McKay A, Bloor S. Product modelling using multiple levels of
abstraction. Instances as types. Computers in Industry 1994;24(1):17–28.

Estublier J, Casallas R. Three dimensional versioning. In: Estublier J, editor.
Software Configuration Management: ICSE SCM-4 and SCM-5 Workshops:
Selected papers. Lecture Notes in Computer Science, vol. 1005; Springer-
Verlag; 1995. p. 118–35.

79

Estublier J, Favre J-M, Morat P. Towards SCM/PDM integration? In: Magnus-
son B, editor. Proc. of European Conference in Object-Oriented Programming
(ECOOP 98), Software Configuration Management SCM-8, LNCS 1439;
Springer-Verlag; 1998. p. 75–94.

Faltings B, Freuder EC, editors. Configuration—Papers from the 1996 AAAI
fall symposium. (AAAI Technical report FS-96–03) AAAI Press; 1996.

Faltings B, Freuder EC, editors. Special Issue on Configuration. IEEE
intelligent systems & their applications 1998;13(4):29–85.

Faltings B, Freuder EC, Friedrich GE, Felfernig A, editors. Configuration—
Papers from the 1999 AAAI workshop. (AAAI Technical report FS-99–05.)
AAAI Press; 1999.

Feiler PH. Configuration management models in commercial environments.
Software Engineering Institute, Carnegie-Mellon University; 1991. Report No.:
CMU/SEI-91-TR-7.

Fleishandler G, Friedrich GE, Haselböck A, Schreiner H, Stumptner M.
Configuring large systems using generative constraint satisfaction. IEEE
intelligent systems & their applications 1998;13(4):59–68.

Fowler M. UML distilled: Applying the standard object modeling language.
Addison-Wesley; 1997.

Gerstl P, Pribbenow S. Midwinters, end games and body parts—A classification
of part-whole relations. International Journal of Human-Computer Studies
1995;43(5/6):865–89.

Gibbs S, Tsichritzis D, Casais E, Nierstrasz O, Pintado X. Class management
for software communities. Communications of the ACM 1990;33(9):90–103.

Goralwalla I, Özsu MT, Szafron D. An object-oriented framework for temporal
data models. In: Etzion O, Jajodia S, Sripada S, editors. Temporal Databases—
Research and Practice. Springer-Verlag; 1998. p. 1–35.

Goyal P, Qu Y-Z, Sadri F. The temporal object model. In: Srinivasan B,
Zeleznikow J, editors. Proc. of the 3rd Australian Database Conference; 1992.
p. 36–50.

Hakim M. Modeling evolving information about engineering design products
[PhD thesis]. Department of Civil Engineering, Carnegie Mellon University;
1993.

Hakim MM, Garrett JH. An object-centered approach for modelling engineer-
ing design products: Combining description logic and object-oriented
modelling. AI EDAM 1997;11(3):187–98.

Halper M, Geller J, Perl Y. An OODB “Part” relationship model. Proc. of the
information and knowledge management (CIKM-92); 1992. p. 602–11.

80

Hayes-Roth F. Rule-based systems. Communications of the ACM
1985;28(9):921–32.

Heinrich M, Jüngst W. A resource-based paradigm for the configuring of
technical systems from modular components. Proc. of the seventh IEEE
conference on artificial intelligence applications; IEEE; 1991. p. 257–64.

Heinrich M, Jüngst W. The resource-based paradigm: Configuring technical
systems from modular components. In: Faltings B, Freuder EC, editors.
Configuration—papers from the 1996 AAAI Fall Symposium. AAAI Press;
1996. p. 19–27.

Ho T-H, Tang CS, editors. Product variety management: Research advances.
Kluwer Academic Publishers; 1998.

ISO. ISO Standard 10303–1: Industrial automation systems and integration —
Product data representation and exchange — Part 1: Overview and fundamen-
tal principles. 1994a.

ISO. ISO Standard 10303–11: Industrial automation systems and integration —
Product data representation and exchange — Part 11: Description methods:
The EXPRESS language reference manual. 1994b.

ISO. ISO Standard 10303–203: Industrial automation systems and integration
— Product data representation and exchange — Part 203: Application
protocol: Configuration controlled design. 1994c.

ISO. ISO Standard 10303–41: Industrial automation systems and integration —
Product data representation and exchange — Part 41: Integrated generic
resources: Fundamentals of product description and support. 1994d.

ISO. ISO Standard 10303–44: Industrial automation systems and integration —
Product data representation and exchange — Part 44: Integrated generic
resources: Product structure configuration. 1994e.

ISO. ISO Committee Draft 10303–214: Industrial automation systems and
integration — Product data representation and exchange — Part 214:
Application protocol: Core data for automotive mechanical design process.
1995a.

ISO. ISO Draft International Standard 13584–10: Industrial automation
systems and integration — Parts Library — Part 10: Conceptual model of parts
library. 1995b.

ISO. ISO Draft International Standard 13584–42: Industrial automation
systems and integration — Parts Library — Part 42: Methodology for
structuring part families. 1996.

ISO. Guide on STEPlib, ISO TC184/SC4/WG3 N424. 1997a.

81

ISO. ISO Committee Draft 10303–221: Industrial automation systems and
integration — Product data representation and exchange — Part 221:
Application Protocol: Functional data and their schematic representation for
process plant. 1997b.

ISO. ISO Draft International Standard 13584–1: Industrial automation systems
and integration — Parts Library — Part 1: Overview and fundamental
principles. 1997c.

ISO. ISO Second Committee Draft 10303–214: Industrial automation systems
and integration — Product data representation and exchange — Part 214:
Application protocol: Core data for automotive mechanical design process.
1997d.

ISO. ISO Working draft: Product Data Representation and Exchange, ISO
TC184/SC4/WG11 N088. 1999.

Jensen CS, Snodgrass RT. Semantics of time-varying information. Information
Systems 1996;21(4):311–52.

Jensen CS, Dyreson CE, Böhlen M, Clifford J, Elmasri R, Gadia SK, Grandi F,
Hayes P, Jajodia S, Käfer W, Kline N, Lorenzos N, Mitsopoulos Y, Montanari A,
Nonen D, Peressi E, Pernici B, Roddick JF, Sarda NL, Scalas MR, Segev A,
Snodgrass RT, Soo MD, Tansel A, Tiberio P, Wiederhold G. The concensus
glossary of termporal database concepts — February 1998 version. In: Etzion
O, Jajodia S, Spirada S, editors. Temporal Databases — Research and Practice.
Springer-Verlag; 1998. p. 367–405.

Jørgensen KA. Object-oriented information modelling. In: Modern manufac-
turing—Information control and technology. Springer-Verlag; 1994. p. 47–84.

Jørgensen KA, Raunsbaek T. Design of product configuration management
systems. Proceedings of 2nd International Conference on Engineering Design
and Automation. Integrated Technology Systems, Inc.; 1998.

Joseph J, Shadowens M, Chen J, Thompson G. Strawman reference model for
change management of objects. Computer Standards & Interfaces 1991:249–
69.

Jüngst W, Heinrich M. Using resource balancing to configure modular systems.
IEEE intelligent systems & their applications 1998;13(4):50–8.

Katz RH. Toward a unified framework for version modeling in engineering
databases. ACM Computing Surveys 1990;22(4):375–408.

Katz RH, Chang E. Managing change in a computer-aided design database.
Proc. of the 13th international conference on very large databases (VLDB);
1987. p. 455–62.

82

Katz RH, Chang E, Bhateja R. Version modeling concepts for computer-aided
design databases. Proc. of the international conference on management of data
(SIGMOD); 1986. p. 379–86.

Kemper A, Moerkotte G. Object-oriented database management. Applications
in engineering and computer science. Prentice Hall; 1994.

Kim W, Banerjee J, Chou HT. Composite object support in an object-oriented
database system. Proc. of conference on object-oriented programming systems
and languages (OOPSLA); 1987. p. 118–25.

Kim W, Bertino E, Garza JF. Composite objects revisited. Proc. of the
international conference on management of data (SIGMOD); 1989. p. 337–47.

Kim W, Chou HT. Versions of schema for object-oriented databases. Proc. of
the 14th international conference on very large databases (VLDB); 1988. p.
148–59.

Lieberman H. Using prototype objects to implement shared behavior in object
oriented systems. Conference on object-oriented programming systems and
languages (OOPSLA); 1986. p. 214–23.

Männistö T. Towards management of evolution in product configuration data
models [Licentiate thesis]. Laboratory of Information Processing Science,
Department of Computer Science, Helsinki University of Technology; 1998.

Männistö T, Peltonen H, Alho K, Sulonen R. A framework for long term
information management of product configurations. Laboratory of Informa-
tion Processing Science, Helsinki University of Technology; 1993. Report No.:
TKO-B105.

Männistö T, Peltonen H, Sulonen R. Open data modelling issues in product
configuration. Laboratory of Information Processing Science, Helsinki
University of Technology; 1995. Report No.: TKO-B127.

Männistö T, Peltonen H, Sulonen R. View to product configuration knowledge
modelling and evolution. In: Faltings B, Freuder EC, editors. Configuration—
papers from the 1996 AAAI Fall Symposium (AAAI technical report FS-96–
03). AAAI Press; 1996. p. 111–8.

McGuinness D, Wright JR. An industrial-strength description-logics-based
configurator platform. IEEE intelligent systems & their applications
1998a;13(4):69–77.

McGuinness D, Wright JR. Conceptual modelling for configuration: A
description logic-based approach. AI EDAM 1998b;12(4):333–44.

McKay A, Erens F, Bloor MS. Relating Product Definition and Product Variety.
Research in Engineering Design 1996;8(2):63–80.

83

Miller E, MacKrell J, Mendel A. PDM buyer´s guide. (6th edition) CIMdata
Corporation; 1997.

Mittal S, Araya A. A knowledge-based framework for design. Artificial
intelligence in engineering design. Academic Press Inc.; 1992. p. 273–93.

Mittal S, Frayman F. Towards a generic model of configuration tasks. Proc. of
the 11th International Joint Conference on Artificial Intelligence (IJCAI); 1989.
p. 1395–401.

Monk S, Sommerville I. Schema evolution in OODBs using class versioning.
SIGMOD Record 1993;22(3):16–22.

Mülle JA, Dittrich KR, Kolz AM. Design management support by advanced
database facilities. In: Rammig FJ, editor. IFIP Workshop on Tool Integration
and Design Environment; Elesevier Science Publishers B.V. (North-Holland);
1988. p. 23–49.

Mylopoulos J. Information modeling in the time of revolution. Information
Systems 1998;23(3/4):127–55.

Nguyen GT, Rieu D. Schema change propagation in object-oriented databases.
Information Processing 89. Proceedings of the IFIP 11th World Computer
Gongress.; North-Holland; 1989a. p. 815–20.

Nguyen GT, Rieu D. Schema evolution in object-oriented database systems.
Data & Knowledge Engineering 1989b;4(1):43–67.

Nierstrasz O. A survey of object-oriented concepts. In: Kim W, Lochovsky FH,
editors. Object-Oriented Concepts, Databases and Issues. Addison-Wesley;
1989. p. 3–21.

Owen J. STEP—An introduction. (2nd edition) Information Geometers; 1997.

Parsons J, Wand Y. Choosing classes in conceptual modeling. Communications
of the ACM 1997;40(6):63–9.

Peltonen H. Concepts and an Implementation for Product Data Management
[PhD thesis]. Helsinki University of Technology, Department of Computer
Science and Engineering; 2000.

Peltonen H, Männistö T, Soininen T, Tiihonen J, Martio A, Sulonen R.
Concepts for modelling configurable products. Proc. of the Product Data
Technology Days; Quality Marketing Services; 1998. p. 189–96.

Penney J, Stein J. Class modification in the GemStone object-oriented DBMS.
Conference on object-oriented programming systems and languages (OOP-
SLA); 1987. p. 111–7.

Peters RJ. TIGUKAT: A uniform behavioral objectbase management system
[PhD thesis]. Department of Computing Science, The University of Alberta;
1994.

84

Peters RJ, Özsu MT. Reflections in uniform behavioral object model. Proc. of
the 12th international comference on entity-relationship approach (ERA’93);
1993. p. 37–49.

Peters RJ, Özsu MT. An axiomatization model of dynamic schema evolution in
objectbase systems. ACM Transactions on Database Systems 1997;22(1):75–
114.

Ramakrishnan R, Ram DJ. Modeling design versions. In: Vijayaraman TM,
Buchmann AP, Mohan C, Sarda NL, editors. Proc. of the 22nd international
conference on very large databases (VLDB); 1996.

Reichenberger C. Orthogonal version management. International workshop on
software configuration management. Software engineering notes; ACM; 1989.
p. 137–40.

Reichenberger C. VOODOO A Tool for orthogonal version management. In:
Estublier J, editor. Software Configuration Management: ICSE SCM-4 and
SCM-5 Workshops: Selected papers. Lecture Notes in Computer Science, vol.
1005; Springer-Verlag; 1995. p. 61–79.

Roddick JF. Schema evolution in database systems—An annotated bibliography.
SIGMOD Record 1992;21(4):35–40.

Roddick JF. A survey of schema versioning issues for database systems.
Information and Software Technology 1995;37(7):383–93.

Roddick JF. A model for schema versioning in temporal database systems.
Australian Computer Science Communications 1996;18(1):446–52.

Rumbaugh JE, Blaha MR, Premerlani WJ, Eddy F, Lorensen W. Object-oriented
modeling and design. Prentice-Hall; 1991.

Sabin D, Freuder EC. Configuration as composite constraint satisfaction. In:
Faltings B, Freuder EC, editors. Configuration—papers from the 1996 AAAI
Fall Symposium. AAAI Press; 1996. p. 28–36.

Sanderson SW, Uzumeri M. The innovation imperative: Strategies for managing
product models and families. Irwin Professional Publishing; 1997.

SAP. Der SAP Konfigurator (reference manual). 1994.

Schönsleben P, Oldenkott H. Enlarging CAD and interfaces between PPC and
CAD to respond to product configuration requirements. In: Pels HJ, Wortmann
JC, editors. Integration in production management systems. Elsevier Science
Publishers B.V.; 1992. p. 53–69.

Searls DB, Norton LM. Logic-based configuration with a semantic network.
Journal of Logic Programming 1990:53–73.

Simon HA. The sciences of the artificial. (3rd edition) MIT Press; 1996.

85

Simons P. Parts — A study in ontology. Clarendon Press; 1987.

Skarra AH, Zdonik SB. The management of changing types in an object-
oriented database. Conference on object-oriented programming systems and
languages (OOPSLA); 1986. p. 483–91.

Skarra AH, Zdonik SB. Type evolution in an object-oriented database. In:
Shiver B, Wegner P, editors. Directions in object-oriented programming. MIT
Press; 1988. p. 393–415.

Snodgrass RT. Developing time-oriented database applications in SQL. Morgan
Kaufmann; 2000.

Soininen T. Product configuration knowledge: Case study and general model
[Master’s thesis]. Helsinki University of Technology; 1996.

Soininen T. An approach to configuration knowledge representation and
reasoning [Licentiate thesis]. Laboratory of Information Processing Science,
Department of Computer Science, Helsinki University of Technology; 1998.

Soininen T, Gelle E. Dynamic constraint satisfaction in configuration. In:
Faltings B, Freuder EC, Friedrich GE, Felfernig A, editors. Configuration—
Papers from the AAAI Workshop; AAAI; 1999. p. 95–106.

Soininen T, Tiihonen J, Männistö T, Sulonen R. Towards a general óntology of
configuration. AI EDAM 1998;12(4):357–72.

Stefik MJ, Bobrow DG. Object-oriented programming: Themes and variations.
AI Magazine 1986;6(4):40–62.

Stein LA. Delegation is inheritance. Conference on object-oriented program-
ming systems and languages (OOPSLA); 1987. p. 138–46.

Stumptner M, Wotawa F. Model-based reconfiguration. Proceedings of the 5th
conference on Artificial Intelligence in Design ‘98; 1998.

Su SYW, Hyun SJ, Chen H-HM. Temporal association algebra: A mathematical
foundation for processing object-oriented temportal databases. IEEE
Transactions on Knowledge and Data Engineering 1998;10(3):389–407.

Taivalsaari A. Classes versus prototypes: Some philosophical and historical
observations. Journal of Object-Oriented Programming 1997;(November /
December):44–50.

Talens G, Oussalah C, Colinas MF. Versions of simple and composite objects.
Proc. of the 19th VLDB Conference; Morgan Kaufman; 1993. p. 62–72.

Tan L, Katayama T. Meta operations for type management in object-oriented
databases. In: Kim W, Nicolas JM, Nishio S, editors. Deductive and object-
oriented databases (DOOD89); Elsevier Science Publishers B.V.; 1989. p. 241–
58.

86

Tanaka K, Yosikawa, Ishihara. Schema design, views and incomplete informa-
tion in object-oriented databases. Journal of Information Processing
1989;12(3):239–50.

Theodoulidis CI, Loucopoulos P. The time dimension in conceptual modelling.
Information Systems 1991;16(3):273–300.

Tiihonen J. Computer-assisted elevator configuration [Master’s thesis]. Helsinki
University of Technology; 1994.

Tiihonen J. National product configuration survey — Customer specific
adaptation in the Finnish industry (in Finnish) [Licentiate thesis]. Laboratory of
Information Processing Science, Department of Computer Science, Helsinki
University of Technology; 1999.

Tiihonen J, Männistö T, Peltonen H, Sulonen R. Selection tables in engineering
design. KARPS-95 Second International Symposium on Knowledge Acquisi-
tion, Representation and Processing; 1995. p. 118–20.

Tiihonen J, Soininen T, Männistö T, Sulonen R. State-of-the-practice in product
configuration—A survey of 10 cases in the Finnish industry. In: Tomiyama T,
Mäntylä M, Finger S, editors. Knowledge intensive CAD. London: Chapman &
Hall; 1996. p. 95–114.

Tiihonen J, Soininen T, Männistö T, Sulonen R. Configurable products —
Lessons learned from the Finnish Industry. Proceedings of 2nd International
Conference on Engineering Design and Automation. Integrated Technology Systems,
Inc.; 1998.

Törmä S. A model for the dynamic planning of industrial projects [PhD thesis].
Helsinki University of Technology, Department of Computer Science and
Engineering; 1997.

Ullman J. Principles of database and knowledgebase systems. Volume I.
Computer Science Press, Inc.; 1988.

van den Hamer P, Lepoeter K. Managing design data: The five dimensions of
CAD frameworks, configuration management, and product data management.
Proceedings of the IEEE 1996;84(1):42–56.

van Veen EA. Modelling product structures by generic Bills-of-Material [PhD
thesis]. Eindhoven University of Technology; 1991.

Wagner FR, Lima AHV. Design version management in the GARDEN
framework. Proc. of the 28th ACM/IEEE design automation conference;
1991. p. 704–10.

Wedekind H. Are terms “version” and “variant” orthogonal to one another? A
critical assessment of the STEP standardization. SIGMOD Record
1994;23(4):3–7.

87

Wegner P. Concepts and paradigms of object-oriented programming. OOPS
Messenger 1990;1(1):7–87.

Weida R. Closed terminologies in description logics. In: Faltings B, Freuder EC,
editors. Configuration—Papers from the 1996 AAAI Fall Symposium. AAAI
Press; 1996. p. 11–8.

Weigel R, Faltings B. Abstraction techniques for configuration systems. In:
Faltings B, Freuder EC, editors. Configuration—Papers from the 1996 AAAI
Fall Symposium. AAAI Press; 1996. p. 55–60.

Westfechtel B, Conradi R. Software configuration management and engineering
data management: Differences and similarities. In: Magnusson B, editor. Proc.
of European Conference in Object-Oriented Programming (ECOOP 98),
Software Configuration Management SCM-8, LNCS 1439; Springer-Verlag;
1998. p. 95–106.

Winston ME, Chaffin R, Herrman D. A taxonomy of part-whole relations.
Cognitive Science 1987;11(4):417–44.

Zdonik SB, Maier D. Fundamentals of object-oriented databases. Readings in
object-oriented databases. Morgan Kaufmann; 1990. p. 1–32.

Zicari R. A framework for schema updates in an object-oriented database
system. Proc. seventh international conference on data engineering; 1991. p. 2–
13.

Zicari R. A framework for schema updates in an object-oriented database
system. In: Bancilhon F, Delobel C, Kanellakis P, editors. Building an object-
oriented database system. The story of O2. Morgan Kaufmann Publishers, Inc.;
1992. p. 256–77.

Zucker J, Demaid A. Modelling heterogenous engineering knowledge as
transactions between delegating objects. Proc. 2nd international conference on
artificial intelligence in design; 1992a.

Zucker J, Demaid A. The rôle of evolutionary inheritance in developing
knowledge bases for conceptual design of engineering products. European
Journal of Engineering Education 1992b;17(2):173–80.

