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Abstract

Product configuration is an information intensive task for creating
valid component combinations or descriptions from specifications.
Information included in this process consists of product models,
component models, actual partially or fully specified configurations,
plus information of the configuration process itself. A system utiliz-
ing only a snapshot of this information can be built in a straightfor-
ward manner, but keeping all the information up-to-date within a
constantly evolving environment is far from trivial. So far there has
not been much research done on how this evolution of knowledge
could be mastered. We start by describing the requirements for a
configuration management system for a world-wide industrial enter-
prise. We then present a data model for a configuration environment
where multiple partners take part in the process. From data engineer-
ing point of view the main problem is that configuration data in the
system should be accessible for long periods of time and the system
should be able to cope with information changes in all categories
described above.

1 Introduction

The management of engineering data has been actively researched. Various ideas have
been presented in product modelling, versioning, part-of semantics, configuration man-
agement, etc. (see [8]). These solutions have given guidelines for the evolution of the
engineering data modelling. However, many of the presented approaches need further
research before they can be applied for current problems of industry. We start from a con-
figuration data management problem of a lift manufacturing company, try to abstract it,
and attempt to find a solution using more general concepts.

We do not intend to solve a general configuration problem since we strongly believe
that there is no single problem. We feel that lifts are a good domain for configuration
management research since the products vary from standard to semi- and fully custom-
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ized. A model that defines the entities, operations, and processes for a lift configurator
should also be applicable to a wide variety of other products.

The complexity of the configuration problem depends much on the degree of custom-
ization of the products. If only a predefined set of standard products is available for a cus-
tomer, the configuration process reduces to the generation of a bill-of-materials, which
can be done automatically from the customer specification. Main problems that remain
are the modelling of the standard products and their options for a configuration system,
and, more importantly, the maintenance of that knowledge.

Allowing more flexibility in customer specification leads directly to the possibility of
iteration in the configuration process. Configuration process involves multiple partners
who have to reach and maintain consensus of the common goal, the configuration. For
example, if standard components are combined in a non-standard way, the product does
not cause any configuration problems in the component manufacturing organizations.
However, to reach the consensus it may be necessary to negotiate with the organizations
responsible for designing or putting together the assembly. The situation is even more
complex if the customer needs are fulfilled only with non-standard components, that have
to be designed in component factories, which then become potential sources for distur-
bance in the process. To summarize, increasing customization implies increasing number
of partners which have to be in agreement of the configuration. If anything changes, i.e.,
someone later disagrees, there has to be a mechanism for reaching consensus again.

The nature of a product’s life-cycle also has a large impact on product modelling and
configuration. The design, production, assembly, and maintenance of the product may be
strictly ordered; that is, first design the product, then manufacture and assemble one or
more pieces, and then maintain them according to the documentation created during or
after the design. In this case the design is an intensive process with frequent changes, and
concurrent engineering can be utilized at the CAD tool level. But when the production
starts there should be no more changes to the design, since those may propagate to other
products or components and might turn out very expensive.

In the other case, design, production, and maintenance take place more in parallel. This
is the situation when it is not possible to design a small set of standard products and cus-
tomize them using predefined options. Instead one designs a product model, which has
some of its properties or components fixed or restricted to certain choices and some left
unrestricted. Product models make it possible to reuse the effort that went into the pre-
liminary design and still fulfil varying customer needs. The product models themselves
are not static, but may evolve even after the manufacturing of products based on them has
started. There will be new customer requirements that could not have been predicted, new
regulations, new versions of components, etc. All these changes may have to be propa-
gated to the product models.

A substantial amount of research has been carried out for configuring lifts automati-
cally [7], [10], [16]. These approaches mainly aim at a fully automatic lift configurator
where all product configuration knowledge is predefined. On the other hand, many such
automatic configurators do not have a clear mechanism for knowledge base changes, so
that it is up to the knowledge base designers to take into account all the consequences of
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changing some rules. Some otherwise successful product configurators need a large
amount of human resources for maintenance (e.g., Digital’s XCON [1], [11]). We believe
this problem can be reduced by dividing product configuration knowledge into more inde-
pendent components, structuring it with specialization hierarchies, and making the knowl-
edge less hard-wired by using a general reference mechanism between components of a
composite object.

The product configuration process takes place in various steps during a products life-
time. Since the process may span different parties in different organizations, we need to
apply process modelling concepts to be able to better understand, coordinate and automate
these processes (see [4]).

This research is being done in cooperation with KONE Elevators, a Finnish company,
which is the third largest lift manufacturer in the world with annual turnover more than
US$2B (1992) and 15 000 new installations annually.

This paper is organized as follows. In section 2 we describe the configuration process
and requirements for a configuration system. Section 3 gives an outline of configuration
data as a specialization hierarchy and introduces our prototype model and tree transfor-
mation operations as a basis for a configuration system. Section 4 discusses briefly the
future work of integrating the configurator with other systems.

2 Product Configuration Environment

2.1 Configuration Process Partners

The lift configuration process takes place in a setting illustrated in Figure 1. In the figure,
letter S stands for “Sales”, L for “Logistics centre”, and C for “Component factory”. The
customer order arrives at the sales organization, which tries to translate the customer
needs into a product specification. This specification is then forwarded to the logistics
centre, which configures the product according to the specification, generating a number
of component orders. Component factories manufacture the components, which are then
delivered back to the logistics centre for shipping to the installation site.

If the customer orders a standard product, the configuration can be created entirely in
the sales organization. The logistics centre only has to generate the component orders
automatically.

When a customer wants something that is not a standard product, but can be manufac-
tured using standard components, the main responsibility for the configuration process
moves to the logistics centre. Moreover, if there is a need for a non-standard component
that has to be designed in a component factory, the configuration decisions are no longer
made only in sales and logistics centre, but the component factories are also involved in
the process as active partners. The depth of the configuration process thus depends on the
degree of the customization needed.

We can expect changes or disturbances in the configuration process from all active
partners. A standard product configuration is likely to receive changes only from cus-
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tomer or error fixes from the sales organization, whereas configurations with non-standard
components are also subject to changes coming from the component factories.

Any change to the configuration possibly violates the consensus among the partners,
which cannot proceed their tasks without reacting to the change. We are working on a
workflow model that would include a protocol for reaching a consensus after a disagree-
ment.

These problems go beyond organizational boundaries, which suggests that finding a
consensus is a non-trivial task in practice. Since the partners in the configuration process
are quite independent, there is no authority responsible for telling everyone what to do—
instead, the partners have to find the consensus all by themselves.

2.2 Product Models

Some product models allow a configuration to be created automatically from the customer
specification. These product models are totally pre-engineered and give restrictions to
certain component combinations and attribute values.

Sometimes, however, the customer specification cannot be satisfied by any of these
models. There are several ways of creating such non-standard configurations: Starting
from a clean table and selecting the components on the basis of designer’s experience, tak-
ing an old product as a starting point and making the needed component changes, or start-
ing from an existing product model and then at a certain point of time departing the design
from the restrictions of that product model.

In the first case, the configuration must still obey some general rules of the application
domain; the configuration process thus never starts from a completely clean table. In the
second and the third case, the constraints of the starting point (whether an old product or
an existing product model) should be copied to the new design. Then the designer must

Figure 1: Configuration process
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only make those modifications to the constraints that are absolutely necessary, reusing
most of the existing knowledge.

2.3 Validity of a Configuration

The configurator should ultimately only produce configurations which satisfy certain con-
ditions. These conditions are expressed as constraints. We define that a configuration is
valid if none of its constraints are violated.

Constraints in a product model are declarative, i.e., they do not specify how they can
be made valid. This information is given by procedures. The procedures can be classified
into two categories: Generation and fixing procedures. Generation procedures are used
for determining new values for unspecified components or attributes. Fixing procedures,
on the other hand, try to bring an invalid configuration “closer” to a valid state. In many
cases these procedures are attached to a single constraint for making it valid. The idea of
fixes is presented in [10].

In addition to creating a valid configuration, the procedures often also try to optimize
the result according to some criteria, such as cost. These procedures may, for example,
find the least expensive engine by trying different engines in increasing order until the
configuration becomes valid. To find the global optimum, several fixing procedures must
be taken into account simultaneously [10].

At any moment during the configuration process only a subset of the available proce-
dures are eligible for execution. The next procedure to be executed is selected using a
selection algorithm. Procedures can have some priority information attached to them so
that the procedure selection algorithm is able to sort the procedures according to the pre-
ferred execution order. At this point the algorithm can either automatically execute the
best procedure—provided that an unambiguously best procedure exists—or ask the user
to make the final selection. We do not want to specify any single selection algorithm,
especially since in many cases user interaction may be the only way to make the decision,
sorting being only an aid to the user.

At any time during the configuration process, the user should also have a mechanism
for manually starting a task, for example for specifying a single component and its sub-
components. In such a case, the procedure list should only include procedures relevant
for that task and ignore others.

2.4 Configuration Information Management

There are two orthogonal directions for changes in product modelling. The first one is the
life cycle of a product. It consists, for example, of the following phases: Tendering, cus-
tomer specification or order, configuration of the product, manufacturing, assembly, deliv-
ery, maintenance, modernization and finally demolishing. The second direction is the life
of the product models.

The selling of the product starts with the product models available and active at that
time. Then, basically, the product model, i.e., the laws the product will obey, is selected
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and more or less fixed for the rest of the products life. Order specification, configuration,
and so on, up to the demolishing, will be performed according to an instance of a product
model at that time.

The product data related to that product has to be self-supporting. It has to carry all the
needed information through all these stages. All the changes to the product should be
reflected in that data, which suggest that the data should be in a general, standardized for-
mat. Would it become necessary to reconfigure the product, the configurator should be
able to reconstruct the environment as it was when the product departed from the config-
urator. If the product models have evolved, the user has the choice of keeping the product
independent of those changes or propagating the modification into the product. The latter
means selecting a newer version of a product model to be the new model for the product.
Usually the product must be changed to make it valid according to the newer configuration
rules.

3 Configuration Data Model

3.1 Product Models and Configurations

We generalize the concept of a product model so that each configuration is based on some
product model. Even a configuration which has been created “from scratch” is based on
a product model with the general application domain rules as mentioned in Section 2.2.
The product model provides a “skeleton”, which is gradually refined during the configu-
ration process. For example, configurations C1 and C2 in Figure 2 are based on the prod-
uct model M5 (the meaning of the other lines in the figure will be explained shortly).

Configuration process begins with a customer specification. This specification is
matched against the existing product models, and the most suitable one is selected. The

Figure 2: Product models and configurations
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selected model provides constraints that restrict the set of possible component combina-
tions, and procedures that help the designer to create good configurations. 

The amount of interaction between the designer and the configurator system during the
configuration process depends on the product model. Some product models contain pro-
cedures which create a configuration automatically from a specification. These models
are called standard product models, and the corresponding configurations are standard
products.

Typically a standard product model specifies most—if not all—components of the con-
figuration. The model must only include rules for computing appropriate attribute values
for the pre-selected components according to the specification. Often some attribute val-
ues have been pre-computed for the cases covered by the standard product model.

Many product models share common properties. The models are therefore organized
in a specialization (or inheritance) hierarchy. In Figure 2, product model M1 is the root
of the model hierarchy and includes the common properties of all lifts. Model M1 could,
for example, include a constraint which says that all lifts must have a car as a component.

Model M3 is a specialization of M1, which means that M3 has all properties (attributes,
constraints, procedures, etc.) of M1, and some additional properties of its own. When a
product model is considered to correspond to a set of possible configurations (i.e., not
only the configurations which actually exist at a particular moment), the configurations of
model M3 are a subset of the configurations of model M1.

A configuration need not be based on a leaf node in the model hierarchy. For example,
configuration C3 is based on model M3, which also used a basis for two more specialized
models, M5 and M6.

Specialization can also arise among configurations. Continuing on Figure 2, configu-
ration C4 is based on a non-standard product model M6. Two alternative designs of this
configuration are being investigated. The designs are represented as configurations C5
and C6, both of which are specializations of C4. Note that from the point of view of C5
and C6, C4 can be regarded as another product model. It specifies certain properties,
which are further refined in C5 and C6. Configuration C4 can, for example, introduce new
attributes, whose values must be determined in C5 and C6.

These observations lead to one of the key ideas of our system: Product models and
configurations are similar objects, which are manipulated with the same operations. All
relationships between the objects in Figure 2 are similar specialization relationships.

Many object-oriented systems make a fundamental distinction between object classes
(or types) and instances of the classes. In these terms product models could be regarded
as classes, and configurations as their instances. However, this distinction seems unnec-
essary in our domain. In the same way that a particular product model is a specialization
of a more general lift model, a particular lift configuration is a specialization of a product
model.
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3.2 Prototype Object Model

As the previous section shows, we represent product models and configurations with a
prototype-based object model [9], [15]. Prototype model has some interesting properties,
especially for engineering data modeling (see [2], [3], [5]). We do not know any study
trying to elaborate the prototype model to support the creation and long term maintenance
of complex product models discussed in this paper. Some properties of our object model
are presented below, more details can be found in [14]. At this point we are convinced
that the benefits of dropping the class-instance model are greater than the losses resulting
from it.

3.2.1 Object Inheritance

All models and configurations in Figure 2 are objects. Each object is a collection of object
elements, which comprise attribute declarations, attribute assignments, constraints for
checking object validity, and procedures for creating valid objects.

Each object is a specialization of its parent object. The parent object must be specified
when a new object is created; an important property of our model are tree transformations
which change an object to have a new parent.

The relationships child, ancestor and descendant are defined in the normal way from
the parent relationship. An object inherits all elements (declarations, assignments and
constraints) of its ancestors. Moreover, an object is said to possess all elements that it
either contains or inherits.

3.2.2 Attributes

An object can contain a number of attribute declarations. Each declaration specifies the
name and type of an attribute.

If an object possesses the declaration of an attribute, an attribute assignment to the
attribute can be added to the object. The assignment specifies the name of an attribute and
a value, which must conform to the attribute type in the declaration.

The value of a particular attribute in a particular object is read from the first assignment
to the attribute on the path of objects from the given object towards the root object along
the parent links. The value assigned to an attribute in an object can thus be regarded as a
default value for the attribute in the descendant objects because the assignment is inher-
ited, but any descendant can add an assignment to the same attribute. For example, a prod-
uct model can specify default attribute values, which are inherited by configurations.

3.2.3 Specialization Tree Transformations

The model gains much of its flexibility from the possibility of changing an object to have
a new parent as long as one does not attempt to create a cycle in the object hierarchy. The
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effects of a parent change depend on the relationship between the original and the new
parent.

When the new parent of an object is a descendant of the old parent, the object is spe-
cialized. It inherits more attributes and constraints than before and represents a smaller
set of possible objects.

In Figure 3, a lift configuration is represented with the object order-123. Originally
the configuration is only specified to be some kind of a hydraulic lift. A general product
model for hydraulic lifts is therefore selected as the parent for order-123 when the object
is created.

Later the designer selects one of the standard product models, HLX, as a basis for the
configuration. This standard model includes an automatic ventilation system and accord-
ingly object HLX contains a declaration for attribute fan_power. After order-123 is
changed to have HLX as the parent, an assignment to fan_power can be added to
order-123.

An object can also be changed to have a new parent which is an ancestor of the original
parent. As a result of this generalization, the object will inherit fewer attributes and other
elements than before.

To preserve some of the semantics of the object, we copy the intervening elements to
the object. The generalization of an object does not change any attribute values or validity
constraints. However, some attributes and constraints become “local properties” that can
be modified without affecting other objects (except of course the descendants of the mod-
ified object).

Figure 4 shows the same objects as Figure 3. Lift has a new attribute max_load, which
is constrained in the standard model HLX to have a value between 100 and 500. However,
the maximum load of order-123 has been assigned value 600. Since this violates the
inherited constraint, the configuration no longer belongs to the set of valid lifts as speci-
fied by the standard model HLX.

The designer therefore generalizes the configuration into a hydraulic lift. The config-
uration is still invalid but the violated constraint is now local and can be relaxed or deleted
in the configuration. The declaration of fan_power is automatically copied from HLX to
order-123, allowing the configuration to preserve the value assigned to the attribute.

Figure 3: Object specialization
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In this example, lift  and hydraulic-lift are regarded as product models while order-123
is a configuration. Nevertheless, this distinction only reflects the intended use of the
objects. Any “configuration object” can be used as a parent for a new object, thus pro-
moting the configuration to a “product model”.

We have described the evolution of a configuration. Note that the same mechanism can
be used for making new product models. The generalization step in Figure 4 could create
a new product model on the basis of the existing model HLX. 

We also model versions of an object as its specializations. The same mechanism can
be used for versions of both configurations and product models. For example, two ver-
sions of the model HLX can be represented an its children. Anything these versions have
in common is placed in HLX and the differences are modeled in the versions. Generic
references to these versions are simply references to HLX. Similar ideas have also been
proposed by Batory and Kim [2] and by Chang and Katz [3].

3.2.4 Components

The model defines two kinds of relationships between objects: An object can be the par-
ent of another object as described above, or a an object can be a component of another
object. The latter relationship is represented by means of attributes that have references
to other objects as their values and behave in a special way during object specialization
and generalization. There are also special constraints for describing the allowed compo-
nent structure of valid configurations [14].

4 Future Work

In an earlier research project we developed a prototype Engineering Document Manage-
ment System (EDMS), that functions as a repository for all kinds of engineering docu-
ments [13]. The configurator system should connect the final product descriptions to cor-
responding drawings, technical specifications etc. stored in the EDMS.

Figure 4: Object generalization
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The final result of a configuration process is a detailed description of the product to be
manufactured. The process where the product information is extracted from the configu-
rator is called instantiation. This instantiation generates self-supporting product data
which includes all constraints and procedures that were associated with the product in the
configurator.

We make the instantiated product self-supporting in order to allow fully functional
processing later. The instantiated product should have enough information so that the
configuration process can be restarted at any time in our configurator. The product can
also be taken to another system for reprocessing. In fact, we allow instantiation of any
information in our configurator, so that also product models can be transferred outside the
system.

We would like to emphasize that we start this modelling from a real world problem.
We try to build a concise data model for this domain using the prototype approach as a
basis. We are not too worried about the implementation details at this stage. After we
have clarified the needs of KONE Elevators and developed a framework for modelling the
needed aspects, we believe we can implement a system having the needed functionality.
One possible solutions is to build it as a separate toolkit on top of an existing configuration
generation system, e.g., the D++ of the Design Power, Inc. [6], [12].

We are also investigating the possibilities for representing the knowledge in a general
format which allows any system supporting the transfer format to manipulate instantiated
products. This approach would allow our system to serve as a maintenance tool for prod-
uct models and knowledge. The configurations would be generated with existing expert
systems using data retrieved from our system.

5 Conclusions

We have presented our research directions for solving a problem of configuration infor-
mation management. Management of such information includes the management of var-
ious kinds of changes on both the data and the data model.

We identified the management of a distributed configuration process and long term
management of configuration information as the main problems to be solved. These are
inherently independent of each other.

The former problem involves a configuration process where multiple partners make
decisions concerning the outcome of the process. They have to have a mechanism of
reaching a consensus and retaining it after a change.

The latter problem is not well covered in existing configuration systems, and the failure
to manage the configuration information when product models, components, design prin-
ciples etc. change, makes many configurators useless when time passes. The effort to
make the configurator functional again can be comparable to starting a new configuration
management project.
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