
Modelling generic product
structures in STEP
Tomi Männistö*, Hannu Peltonen, Asko Martio and Reijo Sulonen

Industrial companies need powerful data modelling mechanisms,
e.g. classification, for the description of their products. The
companies that adapt their products to the needs of individual
customers in a routine manner have perhaps the most urgent needs.
They must efficiently describe large numbers of product variants.
STEP Application Protocol 214 (AP 214) for the automotive
industry also addresses the modelling of product variants, i.e.
generic product structure modelling. In addition to AP 214, the
same mechanisms are needed in other standardization efforts as
well, e.g. STEPlib of AP 221 and PLIB. STEP, however, does not
include a mechanism for using classification and inheritance for
modelling products of an individual company. These facilities are
included in EXPRESS, but EXPRESS can only be used for
describing the data schema to be standardized. The fundamental
structure of STEP, therefore, prohibits a company from modelling
its products in an object-oriented manner. This is an issue that may
seriously affect the future of STEP as a general product-modelling
methodology. The problems and possibilities of extending STEP in
this direction within its current structure are discussed and a new
mechanism is outlined as an alternative solution.q 1999 Elsevier
Science Ltd. All rights reserved

Keywords: product models, standards

INTRODUCTION

An increasing number of companies try to increase their
competitiveness by means of configurable products, which
have a large number of variants and are routinely configured
according to customer orders. This paper concentrates on
the modelling of the part-of structures of configurable
products, which we here refer to as generic product
structures. By a generic product structure we mean a data
description that represents multiple different but related
product structures.

For example, consider a product with a machinery that
has several choices for the motor. In principle, one
can create distinct product structure descriptions, each

corresponding to one choice of motor. This, however, may
become impossible when the number of choices increases.
For example, assume further that there are three types of
machinery, a few choices of clutches, four different kinds of
control mechanisms, each having further a model for normal
and high accuracy control, etc. In such a situation, it is no
longer feasible to list all the different product structures one
by one. Therefore, one needs a mechanism for representing
the valid combinations more efficiently. Such a mechanism
is called a generic product structure. Other terms, synony-
mous with generic structure, include configuration model
and generic Bill-of-Materials1–3.

One of our aims is to understand what the STEP
standard provides for modelling generic products structures.
More generally, we investigate how the products of a
company can be modelled within STEP using object-
oriented methods, e.g. classification and inheritance. Such
advanced methods are important for many kinds of complex
industrial products, of which configurable products are an
example.

Step standard

STEP is a large undertaking for the standardization of
product data modelling. The international standard ISO-
10303 was accepted in 1994. This is not the final word on
STEP; the standard is continuously being extended, and
there are a large number of drafts for new parts of STEP.

STEP has a long-range vision of product data manage-
ment. Its intention is to define a uniform representation of
product information and to provide mechanisms that enable
the exchange of product data between different computer
systems over the complete product life cycle4,5.

The idea of STEP is to be a general platform for model-
ling products. STEP product modelling is based on Inte-
grated Generic Resources. Integrated Generic Resources
are refined according to the needs of different industrial
areas in different Application Protocols (AP).

An application protocol is in principle first written
independently of STEP using the terminology of the appli-
cation area. The result is an Application Reference Model
(ARM). This model is then implemented with the STEP
concepts; i.e. using both the integrated resources and the
extensions defined in the application protocol itself. The
result is an Application Interpreted Model (AIM), which
is the actual data model of the application protocol in STEP.

The data models of STEP are defined with the EXPRESS
language, which itself is Part 11 of the standard6. It has both

Computer-Aided Design, Vol. 30, No. 14, pp. 1111–1118, 1998
Copyright q 1999 Elsevier Science Ltd

All rights reserved. Printed in Great Britain
0010-4485/99/$ – see front matterPII: S0010-4485(98)00067-0

1111

*Corresponding author. E-mail: Tomi.Mannisto@hut.fi
Helsinki University of Technology, TAI Research Centre and Laboratory of
Information Processing Science, Product Data Management Group, P.O.
Box 9555, FIN-02015 HUT, Finland
Paper Received: 6 April 1998. Revised: 17 September 1998. Accepted: 17
November 1998



a textual and graphical notation; the latter is called
EXPRESS-G.

The standard is very large, deals with highly abstract
concepts and provides hardly any real examples of the
modelled products. Therefore, the meaning of STEP con-
cepts is not always clear, and we may have interpreted some
concepts differently to what the authors of the standard had
in mind.

Generic product structure modelling concepts

In addition to the basic concept of a component having other
components as parts, a generic product structure typically
supports the concept of classification. For example, the class
automobile can have subclasses car and truck. Similarly,
engine can have subclasses petrol engine and diesel engine.
The interplay between the has-part relationship and
classification is an essential question in all generic product
structures.

One of the main advantages of classification is the sharing
of information through inheritance. For example, suppose a
generic product structure specifies that an automobile has an
engine as a part. Since truck is a subclass of automobile, a
truck also has an engine. The component subtyping property
means that in all uses of a component class as a part, any of
its subclasses can be used instead. Since petrol engine and
diesel engine are subclasses of engine, either kind of engine
can be used as part of an automobile. Often the combina-
tions of different kinds of components must be restricted by
means of part refinement. For example, one could specify
that a truck must have a diesel engine instead of just any
kind of engine. Generic product structures also need
optional and alternative parts for stating the possible part-
of structures of a product. For example, sunroof could be an
optional part of car, whereas CD player and cassette player
could be alternative parts of radio equipment.

A model that describes all the potential product structures is
sometimes called an explicit product structure model3.
Figure 1 shows an example of an explicit product structure
in the EXPRESS-G notation. For simplicity, the has-part

relations are represented as reference attributes; there are
many other ways to model them but that discussion is beyond
the scope of this paper. The two subclasses of engine represent
the engine models manufactured by a company.

An explicit product structure model defines a large num-
ber of component combinations. In practice, some of these
combinations are usually invalid. A generic product struc-
ture thus includes an implicit product structure model,
which gives additional conditions that must be satisfied by
a valid product. For example, the implicit product structure
could prevent the combination of heavy body and engine
1.8. This condition can be expressed as the following
EXPRESS rule in car (assuming a function types_of_
components that returns a set of types of recursive
components of its argument):

NOT (‘heavy_body’IN types_of_components(SELF)
AND‘engine_1.8’IN types_of_ components(SELF))

A description of the actual product instance to be
delivered to a customer is created on the basis of a generic
product structure and a set of customer requirements in a
configuration process. For example, ‘nice car #127’ with its
parts ‘engine 1.8 #883’ and ‘nice body #335’ is a product
instance description.

Generic product structures and EXPRESS

Although we have omitted many details, it seems that
generic product structures could be modelled in the
EXPRESS language. EXPRESS has many constructs that
seem very suitable for this purpose, e.g. powerful
mechanisms for classification and condition rules. Never-
theless, it is fundamental to understand the role of
EXPRESS within STEP and to understand why EXPRESS
cannot be used in this way. In STEP, EXPRESS is meant for
describing the generic resources and application protocols,
i.e. for defining a standardized data schema for the
management of product data within companies and for the
exchange of product data between companies. In other
words, everything that is modelled in EXPRESS must

Modelling generic product structures in STEP: T Männistö et al.

1112

Figure 1 A generic product structure in EXPRESS



become part of the STEP standard. Within STEP it is
impossible to write the model ofFigure 1 directly in
EXPRESS, because EXPRESS would then be used for
modelling data that is specific to a single company and
accordingly cannot be standardized.

STEP must therefore define a schema that allows each
company to represent its own product data as instances of
the standardized schema. Instances of EXPRESS entity
types are used for all company-specific data, e.g. component
classes, their classification and has-part relationships,
validity conditions, etc.

The next section briefly introduces STEP AP 214, and in
particular its unit of functionality, called specification con-
trol, which addresses the description of automotive products
with a large number of variants. Thereafter, we also briefly
discuss other similar standardization efforts, e.g. PLIB and
STEPlib. Finally, as a fundamentally different solution, we
propose a way of extending STEP application protocols by
company-specific extensions.

MODELLING PRODUCT VARIANTS IN AP 214

In this section, we introduce some concepts of STEP Part
214: Application Protocol: Core Data for Automotive
Mechanical Design Process7,8, which is still an evolving
committee draft instead of an official part of the standard. The
central concepts of AP 214 for product variant modelling are
introduced with the help of an example shown inFigure 2.

In this paper, we only use the Application Reference

Model (ARM) of AP 214 and ignore the Application
Interpreted Model (AIM). The right-hand side ofFigure 2
shows the ARM terms, which are written in small caps (e.g.
product class) in this paper. The objects at the same level
as an ARM term are examples of this.

The goal of AP 214 is to represent all the data related to
the mechanical design of automotive products. The descrip-
tion of product variants constitutes only a very small part of
the whole application protocol.

Product class

product class objects are used for the classification of
products offered by a company to the market. For example,
car may have subclasses compact car and economy car.

The example inFigure 2considers an imaginary product
nice car, which is represented by aproduct class object
with the same name.

Specification and specification category

product classes can havespecifications attached to
them. Aspecification is a characteristic or functionality of
a product seen by the customers. InFigure 2, engine 1.8 and
normal antenna are examples ofspecification objects.

specifications are grouped into specification
categories. Figure 2shows two examples: radio equipment
and engine. Engine is a ‘mutually exclusive’ category, which
means that only one of thespecifications belonging to this
category can be used in one product. Radio equipment

Modelling generic product structures in STEP: T Männistö et al.

1113

Figure 2 Example of AP 214 concepts



is a ‘non mutually exclusive’ category since multiple
specifications can be selected from that category.

product classes and specification categories are
related by means ofclass category associations. Each
association states whether a particularspecification
category is mandatory or optional for a particular
product class. For example, engine is a mandatory
specification category for the product class nice car,
at least onespecification from it must be selected.
(Actually, exactly one engine will be selected because
engine is a ‘mutually exclusive’ category.) Radio equipment,
on the other hand, is optional as it is not compulsory to
include it in a nice car.

If a product class is associated with aspecification
category, the product class is also directly associated
with all or some of the individualspecifications within
the specification category. Each such association is
characterized by an association type.Figure 2shows exam-
ples of three association types. For simplicity, most of the
associations have been omitted from the figure.

(1) The association between nice car and nice body is of the
type ‘non replaceable standard’. A nice body must be
included in all nice cars. Thespecification category
of nice body is not shown in the figure.

(2) The association between nice car and engine 1.8 is of
the type ‘replaceable standard’. Engine 1.8 is the default
selection from thespecification category engine for
a nice car, but may be replaced by another selection
from the same category.

(3) The association between nice car and engine 2.0 is of
the type ‘option’. A nice car can optionally include
engine 2.0, which then replaces the replaceable
standard, i.e. engine 1.8.

Specification expression

A specification expression is a logical expression, which
must be satisfied in a valid product instance. An expression
consists of a set of operands related by an operator. An
operand is either aspecification or anotherspecification
expression. The operator is either ‘and’, ‘or’, ‘oneof’ or
‘not’.

For example,specifications sunroof and antenna can be
related through a condition stating that roof antenna cannot
be used together with a sunroof. This condition can be mod-
elled as aspecification expression: NOT (‘sunroof’ AND
‘roof antenna’). A class condition association then
relates the condition with theproduct class nice car.

Specification inclusion

specification inclusion is a mechanism for including
other specifications into a product when a particular
specification is included.

specification inclusion is only intended to automati-
cally complete a set ofspecifications after an initial selec-
tion of specifications. a specification inclusion is
defined by two entities: an ‘if condition’ and ‘included spe-
cification’. They both can be either aspecification or a
specification expression.

Figure 2 shows a specification inclusion, which
defines a set of options called sports package. Selection of
a sports package means that sunroof, special steering wheel
and sports seats are also automatically included. Therefore,

the ‘if condition’ is the sports package and the ‘included
specification’ is (‘sunroof’ AND ‘special steering wheel’
AND ‘sports seats’). Thespecification inclusion is
associated withproduct class nice car by a class
inclusion association.

Comparison with EXPRESS approach

Figures 1 and 2are similar in the sense that they both
represent variants of nice car. InFigure 1, engine and its
specializations are represented as EXPRESS entities, while
AP 214 uses specific conceptsspecification category and
specification for the same purpose.

The classification mechanisms provided by AP 214 for
modelling products include a limited form of inheritance. AP
214 defines that instances ofclass condition association
and class inclusion association are inherited by sub-
classes represented as instances ofproduct class. Other
properties of aproduct class are not inherited. For exam-
ple, if automobile, car and truck were modelled asproduct
classes in AP 214, thespecifications related to automobile
would not automatically be properties of truck. In the
EXPRESS approach, i.e. inFigure 1, the properties of
automobile would be inherited by its subtypes. Whether
the part-of relations are inherited or can be refined in sub-
types depends on how they are actually implemented. The
details are not important here; it is enough to say that there
are ways of modelling both the part inheritance and the part
refinement in EXPRESS.

The important point is that AP 214 cannot propose ‘real’
classes, i.e. EXPRESS entity types, for modelling product
classes of a company. Discussion of this is the topic of the
next section.

DISCUSSION

Use of product classification within STEP

Classification is a powerful data-modelling mechanism that
can be naturally applied to industrial products. Classifica-
tion suits many purposes, even in product modelling. In the
previous section, we explained how AP 214 proposes
classification to be used for modelling product variants.
Other important application areas are classification within
component libraries and abstract dictionaries for describing
product individuals.

Component data, in particular standard components that
are purchased, must be organized for many reasons, e.g.
efficient searching of components for new designs and
various groupings for statistical analyses of component
purchases, stock value, wear-out in use, etc. Classification
of component types is a good tool for these purposes. PLIB
standardization effort addresses classification of component
libraries, especially taking into consideration parametric
components9,10.

For industries in which after-sales is of great importance,
it is beneficial to refer to the parts of delivered products with
a standard terminology. With such a dictionary on top of a
database, one can, e.g. find all delivered products that use a
particular kind of component. The required type of informa-
tion of subsystems and components can be organized into a
classification hierarchy or hierarchies. Classification of
component types allows, e.g. the specification of the
component type more precisely in the previous example.
Within STEP, this kind of work has been carried out in

Modelling generic product structures in STEP: T Männistö et al.

1114



the development of AP 221 for process industries under the
name STEPlib11,12.

These approaches have slightly different goals, but what
is common to them and important to this paper, is that they
all propose a conceptually similar model. They all define an
EXPRESS entity type (or entities types) that represents a
class; e.g. theproduct class of AP 214. Consequently, the
product classes, e.g. car, nice car, engine 1.8, are EXPRESS
instances, and the relationships, including classification,
between them are relations between instances. In other
words, all these approaches represent both (product) classes
and the descriptions of particular products as EXPRESS
instance data. This is exemplified inFigure 3, which
displays the same data asFigure 1.

There are natural consequences of representing classes as
data. First, there is no inheritance. That is, nice car in
Figure 3 does not inherit anything from car. Second, there
is no separation between classes and instances—they all are
instances. That is, ‘nice car#127’ is not an instance of nice
car, they are both EXPRESS instances.

However, in order to model classification with inheri-
tance as data, the semantics must be described verbally.
For example, it is necessary to describe which ‘classes’
inherit something, what they inherit and via which relation-
ships. This inheritance must then be implemented by all
applications manipulating the data. In addition, the applica-
tions should also understand the relation between ‘classes’
and their ‘instances’.

From the STEP point of view, this seems slightly strange
as EXPRESS has all the needed concepts for classification,
and the tools that understand EXPRESS support inheritance
between EXPRESS entity types. Now this must all also be

implemented between instances of special entity types.
Nevertheless, as explained earlier, there is no alternative
because EXPRESS can only be used for the definition of
standardized schemas.

This problem exists in all the cases described above.
STEPlib needs only inheritance of simple attributes and
possibly a few specific relations. It may, therefore, survive
with a simple form of inheritance. PLIB has defined a
powerful mechanism for describing component libraries.
The mechanism includes classification with inheritance
and description of class extensions by means of constraints.
In the case of generic product structures, there is a need for
an even more elaborate classification and inheritance
mechanism. Extending the PLIB approach to these needs
would implement much of EXPRESS by means of
EXPRESS. That is achievable, but the meaningfulness of
such an approach can be questioned.

As an alternative, we next outline an extension to STEP
that would make it possible to use EXPRESS for modelling
the products of a specific company.

Extending STEP

One possibility for representing generic product structures is
to allow companies to specialize application protocols for
their own needs. An application protocol would only define
abstract, generic concepts. A company would then define an
extension schema with subtypes of the concepts of the
application protocol, e.g. the company-specific product
classes nice car and nice body.

In Figure 4, the example of nice car is shown according to
our proposal. All individual, physical products of a company

Modelling generic product structures in STEP: T Männistö et al.

1115

Figure 3 Example of product classes as data



are represented as instances of product_definition of
Part 4113. Therefore, we have defined all product classes as
subtypes of entity type product_definition_for_classification,
which is a subtype of product_definition. We have also
separated certain product classes, e.g. car and body, since
it could be possible to define such product classes specific to
an application area in an AP. The classes of a particular
company are then specialized from them.

In this approach, a company would use EXPRESS to
define its product classification. The full power of
EXPRESS may be too much, and therefore, there should
perhaps be a mechanism for restricting the allowed refine-
ments. For example, definition of subtypes could be allowed
only for product_definition_for_classification. In addition,
the extension must be a proper refinement to the application
protocol and not contradict it. However, we do not elaborate
further on such details of the mechanism here.

The result would be an EXPRESS schema that consists of
the necessary integrated resources, application protocol(s)
and the company-specific extension. Descriptions of indi-
vidual products of the company would then be instances of
that schema. The company-specific part of the schema must
naturally be communicated in the exchange of product data.

The extension schemas bring up some change manage-
ment problems as they are bound to change more frequently
than application protocols. One needs at least a mechanism
for labelling the extension revisions. A more advanced
model would also incorporate mechanisms for data conver-
sion between revisions of schema extensions and perhaps a
notation for the compatibility of schema revisions with
respect to certain product classes.

This approach would also change the nature of schema
from static to more dynamic and make it necessary to
rethink many other fundamental aspects of the standard.
The problems of representing generic product structures in
a strict class-instance paradigm, e.g. STEP, have also been
addressed by McKay et al.14 in a three-layer model. The top
layer contains a general data model for describing generic
product structures in terms of parameters. The bottom layer
contains a description of individual product instances. The
middle layer contains a description of a generic product
structure (i.e. a description of a product family) as a combi-
nation of instances and classes. A description of a generic
product structure on the middle layer can be regarded at the
same time as an instance of the schema on the top layer and
a schema for the instances on the bottom layer. The middle
layer can thus be interpreted as a layer between an applica-
tion protocol and descriptions of individual product
instances. It, therefore, corresponds to the extension
schema proposed in this paper. However, the relation
between the schema and instance views in the middle
layer is rather vague and does not explicitly consider the
classification of products.

Similarly to classification, logical expressions for the
validity of product configurations can also be defined in
an extension schema. Conditions stating the valid com-
binations of specifications (including the subclasses of
specification, e.g. sunroof) could be modelled as EXPRESS
constraints defined inproduct classes (including subclasses
of product class, e.g. car). For example,product class
nice car would define a constraint that a set ofspecifications
related to an instance of nice car should not contain an

Modelling generic product structures in STEP: T Männistö et al.

1116

Figure 4 A generic product structure as a schema extension



instance of sunroof and an instance of roof antenna. Such
use of EXPRESS constraints, however, contradicts the
fundamental idea of STEP that a schema describes only
valid instances, an issue also raised by Eastman and
Fereshetian15. Therefore, it is necessary to allow invalid
instances, perhaps in some limited sense, and to have a
mechanism for checking the validity of a particular
(sub)set of instances.

CONCLUSIONS

STEP is a product modelling approach that takes into
account all the aspects of a product, including geometry and
organizational data. This paper looked at one particular
aspect of product modelling within STEP, i.e. the modelling
of product structures and in particular generic product
structures. Application protocol 214 for the automotive
industry is probably the most advanced part of STEP in this
area. AP 214 as well as PLIB and STEPlib provide a
classification mechanism for product modelling.

The fundamental problem is that STEP is designed for
modelling single products by means of a fixed standard data
schema, in which products of a company are represented as
instances of that schema. If an AP wants to provide a clas-
sification mechanism for products, the product classes of a
company must also be represented as data. There are draw-
backs in modelling classification and constraints as data; all
concepts must be described as EXPRESS instances,
eventually leading to the redefinition of much of EXPRESS.

We outlined an alternative, in which part of the schema,
i.e. the company-specific specialization of the concepts of
an application protocol, would be treated as data exchanged
between systems. Although this approach would necessitate
major changes in the principles of STEP, the changes are
necessary if STEP is to be used for modelling generic
product structures.

Much of what is said in this paper about modelling gen-
eric product structures is also applicable to other application
areas of STEP. For example, classification and constraint
mechanisms are by no means restricted to generic product
structure modelling. The structure of STEP means that these
mechanism must be described as data. STEP is funda-
mentally based on a fixed standardized product schema
that cannot be extended for the purposes of a company. In
our view, this seriously limits the potential of STEP when
companies start utilizing more advanced product modelling
concepts. This is going to happen when companies, instead
of modelling their products one by one, extract common
pieces of their product definitions so that they can be used
in multiple variants or in different product families. There-
fore, the strict static structure of STEP may even compro-
mise future credibility of STEP, unless the basic structure of
the standard is refined.

ACKNOWLEDGEMENTS

All authors belong to the Product Data Management
Group of TAI Research Centre of Helsinki University of
Technology; this work has benefited from the many dis-
cussions with the other members of the group. This research
has been funded by the Finnish Technology Development
Centre (TEKES) and Helsinki Graduate School of
Computer and Engineering (HeCSE).

REFERENCES

1. van Veen, E.A., Modelling product structures by generic bills-of-
material. PhD Thesis, Technische Universiteit Eindhoven, 1991.

2. Erens, F., McKay, A. and Bloor, S., Product modelling using multiple
levels of abstraction—instances as types. Computers in Industry,
1994,24(1), 17–28.

3. Männistö, T., Peltonen, H., Sulonen, R., View to product configura-
tion knowledge modelling and evolution. In: Faltings B, Freuder E,
editors. Configuration—Papers from the 1996 AAAI Fall Sympo-
sium, Technical Report FS-96-03. The American Association for
Artificial Intelligence, AAAI Press, 1996:111–118.

4. ISO International Standard 10303-1: Industrial automation systems
and integration—Product data representation and exchange—Part
1: Overview and fundamental principles. 1994.

5. Owens, J.,STEP An Introduction. 2nd edn. Information Geometers,
UK, 1997.

6. ISO International Standard 10303-11: Industrial automation systems
and integration—Product data representation and exchange—Part 11:
Description methods: The EXPRESS language reference manual.
1994.

7. ISO Committee Draft 10303-214: Industrial automation systems and
integration—Product data representation and exchange—Part 214:
Application protocol: Core data for automotive mechanical design
process. ISO TC184/SC4 N319, 1995.

8. ISO Second Committee Draft 10303-214: Industrial automation sys-
tems and integration—Product data representation and exchange—
Part 214: Application protocol: Core data for automotive mechanical
design process. ISO TC184/SC4 N577, 1997.

9. ISO Draft International Standard 13584-10: Industrial automation
systems and integration—Parts library—Part 10: Conceptual model
of parts library, 1995.

10. ISO Draft International Standard 13584-42: Industrial automation
systems and integration—Parts library—Part 42: Methodology for
structuring part families, 1996.

11. ISO Committee Draft 10303-221: Industrial automation systems and
integration—Product data representation and exchange—Part 221:
Application protocol: Functional data and their schematic representa-
tion for process plant, 1997.

12. Guide on STEPlib. ISO TC184/SC4/WG3/N424, 1997.
13. ISO International Standard 10303-41: Industrial automation systems

and integration—Product data representation and exchange—Part 41:
Integrated generic resources: Fundamentals of product description and
support, 1994.

14. McKay, A., Erens, F. and Bloor, S., Relating product definition and
product variety. Research in Engineering Design, 1996,8(2), 63–80.

15. Eastman, C.M. and Fereshetian, N., Information models for use in
product design: a comparison. Computer-Aided Design, 1994,26(7),
551–572.

Tomi Männistö works as a Research
Scientist at the TAI Research Centre
of the Helsinki University of
Technology. His main interests lie in
product configuration data modelling.
In particular, he is investigating the
evolution of configuration models
and their interplay with the evolution
of product instances, on which subject
he is preparing his PhD thesis at the
Helsinki Graduate School of
Computer Science and Engineering.

Hannu Peltonen works as a Senior
Assistant at the Laboratory of
Information Processing Science at
the Helsinki University of Tech-
nology. He is preparing his PhD
thesis on Product Data Management.
Hannu Peltonen has been designing
and implementing document and soft-
ware management systems in joint
projects with industry.

Modelling generic product structures in STEP: T Männistö et al.

1117



Asko Martio works as a Research
Director at the TAI Research Centre
of the Helsinki University of Tech-
nology. Since completing his MSc
degree in 1969, he has held different
management positions at Sto¨mberg
Ltd (currently part of ABB Concern)
and KONE Corporation. His research
activities include product data
management practices within the
manufacturing industry.

Reijo Sulonen is Professor of
Computer Science at the Helsinki
University of Technology. His
research interests include database
systems, product data management,
process modelling, software
engineering and electronic media.

Modelling generic product structures in STEP: T Männistö et al.

1118


