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Abstract. The increasing importance of better customisation of industrial prod-
ucts has led to development of configurable products. They allow companies to
provide product families with a large number, typically millions of variants.
Description and management of a large product variety within a single data
model is challenging and requires a solid conceptual basis. This management
differs from the schema evolution of traditional databases and the crucial dis-
tinction is the role of schema. For configurable products, the schema changes
more frequently and more radically. In this paper, the characteristics that distin-
guish configurable products from traditional data modelling and management
are investigated taking into account both the evolution of the schema and the
instances. In this respect, the existing data modelling approaches and product
data management systems are inadequate. Therefore, a new conceptual frame-
work for product data management systems of configurable products that al-
lows relatively independent evolution of schema and instances is proposed.

1 Introduction

To satisfy the demands of individual customers, companies need to provide a larger
variety of products. Products, or product families, that allow large variation in a rou-
tine manner are called configurable products. The routine adaptation necessitates that
the product family is pre-designed to cover a variety of situations. One challenge is to
find the correct concepts for modelling configurable products so that the descriptions
can be kept up to date as the product evolves. The challenge has not been adequately
answered by the research in product configuration [1, 2], product modelling standards
[3, 4] or commercial product data management (PDM) systems [see, e.g., 5].

In the following, we argue that a major reason for the inadequacy in the solutions is
the problematic role of schema of configurable products. From the product modeller’s
viewpoint, modelling of configurable products involves the following levels [3, 4]:
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− The basic concepts of the chosen data modelling method. For example, ‘class’,
‘attribute’, ‘classification’, ‘inheritance’ and so on.

− The product modelling concepts described using the basic concepts. Examples
include ‘product’, ‘has-part relation’, ‘optional part’ and ‘alternative parts’ and
conditions, such as ‘incompatibility of components’.

− Product family descriptions formed using the product modelling concepts. These
descriptions are also called configuration models.

− Finally, product individuals are instantiated according to the configuration model.
From ontological viewpoint, the two first correspond to top level ontology and domain
ontology, respectively [6], and the two latter are an application of the domain ontol-
ogy to a specific case. Data modelling, however, typically differs from the above view
by modelling the world using the levels concepts, schema and individuals.
− Concepts are principal data modelling elements for articulation about the world.
− Schema is the actual model of the world; it defines the entity types of the world.
− Individuals constitute the actual population of data that can be queried and ma-

nipulated. Individuals in a database represent the individuals of the world that the
schema describes.

Configuration modelling does not fit nicely into the data modelling view for various
reasons. Firstly, configuration models need new concepts, such as ‘has-part relation
with alternative parts’, not available as traditional data modelling concepts.

Secondly, as companies develop their products, product family descriptions are
constantly changed. Product family descriptions, however, conceptually correspond to
a traditional schema. In traditional database schema evolution, the existing data is
typically converted to reflect the changes in the schema. In product development, this
is not the case—old product individuals are not typically converted as product is de-
veloped. The evolution of a schema in product modelling, therefore, significantly
differs from traditional schema evolution.

Thirdly, individuals of configurable products have long lifetimes and histories of
their own. More importantly, they do evolve independently of the schema since cus-
tomers may change their product individuals as they please. This is a crucial differ-
ence to traditional databases since the evolution of individuals is not reflected in the
schema and consequently, the individuals do not necessarily conform to the schema.
Modelling such individuals necessitates flexibility, for example, relaxing the strict
conformance of individuals to the schema.

Therefore, in this paper we search for a suitable mechanism for modelling the
evolution of configurable products. The mechanism should capture both the evolution
of the schema and the individuals for an environment in which the conformance of
individuals to the schema is not constantly maintained.

2 Previous Work

The basic goal in product configuration modelling is to provide means for describing
a large set of product variants by a single data model. Methods of artificial intelli-
gence have been extensively used for modelling the conditions that define the valid



combinations of components and for finding a solution for particular requirements [1,
2]. There are also approaches for representing product variety based on the product
structure, such as generic Bills-of-Materials or generic product structures [see, e.g.,
7], and approaches that emphasise product structure and classification in configura-
tion modelling [8, 9]. Although the difficulties in managing configuration models are
widely recognised, the vast majority of the models ignore all aspects related to the
evolution of configuration models and configurations. In this paper, we aim at pro-
viding the concepts for capturing such evolution.

Version is a concept for describing the evolution of products [10, 11]. Versions
typically represent the evolution of a generic object that, in turn, has a set of versions.
A generic object is sometimes also called a generic version or generic instance [12,
13, 14, 15]. There can be two kinds of component references to versions: statically
bound and dynamically bound [13]. A statically bound reference specifies explicitly a
component and one of its versions. A dynamic component reference, i.e., a compo-
nent reference to a generic object, can be bound to a specific version at various points
in time. The idea is that in a given context, one of the versions from the set is a repre-
sentative for the generic object, that is, the one to which dynamic references are
bound. In the following, we utilise the version set approach, but for both the schema
and the individuals in parallel.

Schema evolution is a relevant issue for databases. The approaches to schema
evolution can be classified to filtering, persistent screening and conversion [16]. In
filtering, a database manager needs to provide filters so that an operation defined on a
particular type version can be applied to any instance of any version of the type [17].
Persistent screening defines how the instances should be modified to accommodate a
schema modification, but the actual conversion takes place only when an instance is
accessed for the first time [18]. Conversion, on the other hand, modifies all instances
right after the schema modification [16].

A principal assumption in database schema evolution is that instances can be con-
verted. In product configuration, however, this is not always possible. For example,
product development may have obsoleted some components and thus removed them
from a new configuration model. Therefore, the old product instances that were con-
figured and manufactured according to an old configuration model are not represented
by the new model. Thus, automatic conversion of old product individuals to the new
schema is not meaningful. Because individuals cannot be converted, it is natural to
have individuals from different versions of schema.

3 Evolution of Schema and Individuals

In this section, we position this work by identifying four basic cases according to
whether the evolution of the schema and/or the individuals is supported. By support-
ing evolution, we mean here that the history or consequences of a change are sup-
ported in a more advanced form than just by allowing modifications without leaving
any traces in which order they were done.



3.1 Category 1: No Support for Evolution

No support for evolution means that there is no memory or history of the schema or
the individuals. Typically, the schema is assumed static and the individuals are mu-
tated “in place”. These mutations are typically required to be such that the individuals
are always (outside transactions) consistent with respect to the schema.

As an example, assume ‘X-Bike’ with two models ‘Standard X’ and ‘Deluxe X’. In
the schema, ‘Standard X’ and ‘Deluxe X’ would be subtypes of ‘X-Bike’. Typically,
individuals would be created only as instances of ‘Standard X’ and ‘Deluxe X’, for
example, ‘Deluxe X, serial #1183’.

3.2 Category 2: No Schema Evolution, but Individuals Evolve

Although most databases do not have any concept of history, some databases store the
history of individuals. With history stored, one can go back in time and see how
things were at some point. For example, one can find the description of a product
individual at the time it was delivered. With more advanced temporal querying capa-
bilities information can be retrieved using temporal relations. Nevertheless, in this
category the schema is assumed stable although the evolution of individuals is sup-
ported.

With respect to the ‘X-Bike’, individuals such as ‘Deluxe X, serial #1183’ would
have multiple data representations. For example, ‘as-manufactured version’ of ‘De-
luxe X, serial #1183’ would record the serial number of its critical parts, e.g., the
frame, and customer specific options installed. Thereafter, all service operation are
carefully recorded (this is a deluxe bike!). For example, as part of the regular service
on March 15, 1999, the handlebar was changed to a new model ‘Sporty W’.

3.3 Category 3: Schema Evolves, Individuals Do Not

Evolution of schema, when supported in a database system, typically propagates the
modifications of the schema to instances as was discussed earlier.

For example in 1999, a new mountain bike model ‘Bike XM’ is introduced for
‘Bike X’. The old models are still manufactured, although some components are re-
placed due to problems in durability and some due to the change of a subcontractor,
both leading to new versions of ‘Bike XM’. With some extra work, as-manufactured
information can perhaps be found, but no explicit records of the individuals are kept.

3.4 Category 4: Both Schema and Individuals Evolve

This is the category most relevant to configuration modelling. This is actually what
happens in the real world. The schema, i.e., the description of a product family,
evolves as products are being developed. The developments in products cannot be
propagated to the individuals automatically, as was discussed above. The schema
evolves in this respect independently of the individuals. Customers, on the other hand,



can modify their product individuals practically as they please, that is, very much
independently of the schema. Although, total freedom cannot be systematically sup-
ported, the relation of the schema and individuals should be maintained as far as pos-
sible.

For ‘Bike X’ this means that product families are modified and created, partly util-
ising the same components. The individual bikes are manufactured according to the
product family descriptions, and the modifications to the individuals are recorded.

Many models lack the support for the evolution of the schema and individuals be-
cause of conceptual or practical simplifications rather than because it would not be
needed. Especially in product data management, traceability and after-sales services
need a history of the schema and individuals. If the evolution is not supported by the
database management systems, the mechanism must be implemented on top of the
existing system. The goal of this paper is to find solutions that could be implemented
in PDM systems of configurable products. The important questions are “what does
versioning of schema and individuals mean?” and “how do they relate?”
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Fig. 1. Different approaches with respect to support for evolution of schema and individuals

In Fig. 1, the support for evolution of schema is shown on the horizontal axis,
whereas the vertical axis shows the support for individuals. These axes generate a grid
for categories 1–4, into which different approaches are placed.

4 Conceptual Model

It is impossible to discuss the evolution of schema and individuals unless there is
some kind of agreement on their contents. Thus, we need to define some concepts.
However, in order to keep a clear focus, there should be as few concepts as possible,
and yet the concepts should capture the essential characteristics of configurable prod-
ucts. The objective of this paper is not to formally define the semantics of the con-
cepts; the aim is more at providing an informal intuition of them. We build on our



previous work on product configuration [8, 9, 19] and, in this paper, add to that the
evolutionary aspects.

We model both the schema and the individuals with the same concepts. The basic
concepts are object and relation between objects. They provide a general and rather
natural conceptual basis, which is also exemplified by their central role in many mod-
elling formalisms, such as predicate logic, set and relation theory and so forth.

An object is either a generic object or a version. A generic object has a set of ver-
sions, and each version belongs to exactly one generic object. We use the term type to
refer to an object in schema. A type is then either a generic type or a type version.
Objects representing individuals, which we simply call individuals, are either generic
individuals or individual versions. Note that the term ‘object’ refers to both the ‘type’
and the ‘individual’ and that we model the evolution of individuals by means of ver-
sioning. This means that all changes are implemented by creating new versions; ver-
sions themselves are not modified!

All relations can basically be reduced to relations between versions. For example,
if A and B are generic objects, a relation between them is interpreted so that “each
version of A is related to some version of B”. This is the general idea, which we will
elaborate further when discussing specific relations. Sometimes for simplicity, for a
relation from A to B we say that A refers to B.

We use effectivity to organise the set of versions. Effectivity is the period the ver-
sion was or is effective as a representative for the generic object. For modelling effec-
tivity, we assume discrete time and relate each version with an effectivity interval. An
effectivity interval consists of two time points, start time and end time. The end time
is optional; an undefined end time meaning that the version is currently effective. The
effectivity of a generic object is the union of effectivities of its versions. For simplic-
ity, we also assume that at a particular time at most one version is effective for a ge-
neric object and that the effectivity intervals of consecutive versions meet. For re-
solving generic references, we search something more than simply using global time
with effectivities. For example, we do not assume that an individual version effective
at t is necessarily defined by a type version effective at t. Such situation results when
product descriptions are modified because of product development but the product
individuals are not converted. That is, the correct description, i.e., product type ver-
sion, for an old product individual is not the new, effective one.

The association between individuals and types is modelled by two relations: is-
instance-of and conforms-to. An individual is related to a type by is-instance-of rela-
tion. The “validity” of an individual with respect to a type is modelled by means of
conformance, which is a condition stating whether the individual conforms-to the type
it is related to by is-instance-of. With explicit is-instance-of, we want to stress that the
type of an individual has been explicitly decided. Due to evolution, however, an indi-
vidual may not be a valid representative of its type; this is modelled by conformance.
These concepts are complex and powerful as such and the situation becomes even
more complicated when generic objects and versions are introduced. Therefore, we
try to give an intuition what we want to achieve with the concepts without unneces-
sarily going into too many details.



The concepts are roughly illustrated in Fig. 2, in which generic objects are repre-
sented by ovals. Inside an oval are the versions of the generic object as small circles,
each with an effectivity interval next to it. Solid-line arrows represent is-instance-of
relations and dotted-line arrows relations in schema and between individuals.

The concepts provide the basics for recording the history of objects. The concepts
can be used in various ways, and therefore, the modelling of evolution is far from
solved by just providing the basic concepts. Next, we enhance the model to support a
meaningful evolution of schema and individuals together by defining informal invari-
ants. The role of invariants is to constrain the underlying (imaginary) language and so
approximate the intended situations [6]. A PDM system can then implement a selec-
tion of invariants to provide the wanted semantics.

Individuals

Schema

Fig. 2. Example of basic concepts in schema and individuals and relations between them

4.1 Is-instance-of Relation and Conformance

Is-instance-of is a relation between individuals (generic or versions) and types (ge-
neric or versions). For an individual, it denotes the type of the individual (if any). The
validity of an individual with respect to its type is controlled by means of confor-
mance as was discussed above. In particular, we are interested in is-instance-of rela-
tion with generic individual or type.

The basic intention is that each individual has a type and conforms to that type.
More precisely, we mean conformance of an individual version to a particular type
version although the is-instance-of relation can be between generic objects. We define
two invariants, a strong and a weak, to articulate the semantics we want for configur-
able products. With the invariants, we also state to which type version the individual
should conform in case of generic references.

Strong conformance invariant: An individual is constantly kept in confor-
mance to the type it is-instance-of.

(1)



The invariant 1 requires that at any given t an effective individual version is-instance-
of an effective type version to which it also conforms. With respect to schema modifi-
cations, the invariant 1 covers the schema evolution of databases when individuals are
converted immediately after a schema modification. Semantics for delayed conver-
sion would be achieved if the conformance were required only for the creation time of
each individual version. That would allow a generic individual to remain untouched
regardless of schema changes. However, as soon as the generic individual is accessed,
a new version that conforms to the effective type version is created. The semantics for
filtering approaches, in which individual versions live according to their original type
version, would be slightly different. For them, the is-instance-of is allowed only from
a generic individual to the type version effective at the time the generic individual
was created and each individual version is required to conform to that type version.

In all these approaches, each individual version conforms to some type version. For
configuration modelling, however, this is too strict. For example, when a product
individual is modified by changing components in it, the result is typically a mixture
of original components and some new ones. Consequently, the modified product
individual (version) does not necessarily conform to any configuration model. There-
fore, we also define a weak conformance invariant.

Weak conformance invariant: The first version of a generic individual con-
forms-to the type version it is-instance-of at the time of its creation.

(1')

A generic individual, i.e., its first version, is now created as an instance of a type, but
may thereafter evolve independently of it. A conversion of a generic individual to a
new type version is represented by creating a new, converted version and relating it
by is-instance-of to the correct type version. (Note that the invariant 1 implies 1'.)

When a generic individual is-instance-of a generic type, it means that all versions
of the generic individual are instances of some version of the type. If an individual
version is-instance-of a type, this does not say anything about the consecutive ver-
sions of the generic individual. So, a generic individual can be used in is-instance-of
relation to control the type of its future versions. This requires the creation of a new
individual if the relation needs to be changed, for example, to a new type version.

4.2 Is-a Relation and Inheritance

Is-a is a relation in schema that serves mainly two purposes. First, it organises the
types into a classification taxonomy, in which the “lower” objects are specialisations,
also called subtypes, of the “higher” ones, also called supertypes of the former. This
ordering bears the idea that the subtypes can be used in place of their supertypes.
Second, is-a relation provides a mechanism for sharing common properties by means
of inheritance from supertypes. We define invariants for controlling the effects that
changes have via inheritance.

Strong effectivity invariant for is-a:  Effectivity of each (sub)type version
must be contained in the effectivity of single version of its supertype

(2)



Consequently, a generic type may version without a need to update its supertypes, but
for its subtypes, new versions need to be created. The invariant 2, therefore, guaran-
tees that the inherited properties of a type version remain unchanged. This invariant
provides a strict modelling basis in which the properties of a type version never
change during its effectivity.

Existence of supertype invariant: Effectivity of type must be contained in the
effectivity of a (super)type it is-a (subtype of).

(2')

The invariant 2' is a weaker form of the invariant 2. The main difference between
them is that the invariant 2' requires only that an effective version for the supertype
exists, not that the changes in it are propagated downwards. Consequently, the inher-
ited properties of a type version may change during its effectivity.

4.3 Has-part Relation

Has-part relation differs from is-a by occurring in schema and between individuals
(but not between an object in schema and an individual). The detailed semantics of
has-part [8] is not important here since we are interested in the evolutionary aspects.
We define similar invariants as for is-a.

Strong effectivity invariant for has-part:  Effectivity of a version must be
contained in the effectivity of a version it has as part.

(3)

Existence of part invariant: Effectivity of an object must be contained in the
effectivity of an object it has as part.

(3')

The invariants are written so that they can be applied to has-part between schema as
well as between individuals. For has-part between types, the former corresponds to
the versioning semantics in which a modification to a component is propagated to all
wholes using it as part. The latter corresponds to the semantics in which components
may version independently, typically as long as the changes are internal to the com-
ponent.

Discussion on the use of generic individuals in has-part is similar to that of is-
instance-of. A has-part relation from a generic individual states that all its future ver-
sions have the part, which may be too strong. For types, however, one may want to
make such a statement thus requiring a creation of a new generic type, not only a new
type version, in case the part needs to be changed. A has-part to a generic individual
allows modification, e.g., servicing, of an individual component without the need to
change the whole (in case the existence invariant 3' is used).

4.4 Combination of Is-instance-of, Is-a and Has-part.

We have now defined three kinds of invariants: strong, existence and weak. The weak
invariant was defined only for conformance since we wanted to support the evolution
of individual rather independently of the types. We could also have defined a weak



invariant for is-a as well. That would be an invariant that requires only the creation
time of a type to be contained in the effectivity of its supertype. Such invariant would
allow evolution of type independently of its supertypes. We wanted such independ-
ence between individuals and types, but not for the type hierarchy, for which we want
to control the evolution more strictly.

For a data management system, the important question is what forms of the invari-
ants should be selected. For a traditional database, the strong ones are typically the
most appropriate as has already been discussed. Our intention in this paper is to find a
suitable selection for a PDM system of configurable products. A reasonably good
choice of semantics for such system could use:
− weak conformance invariant for is-instance-of (i.e., 1'),
− strong effectivity invariant for is-a (i.e., 2) and
− existence of part invariant for has-part (i.e., 3').
This selection of semantics requires strict control on the changes to the classification
hierarchy. That is, a change in a type necessitates its propagation to the subtypes and
the properties of type version cannot change during its effectivity.

Has-part, however, reflects the evolution of components in a company. It is typical
to allow certain modifications to a component, i.e., creation of new versions, without
propagating them in the product structures. The allowed modifications are sometimes
defined as those that maintain the “form, fit and function” of the component. Such
semantics is achieved with existence invariant. For individuals, this also allows modi-
fication of a component individual without versioning the whole product individual.

For the relation of individuals to their types, we have already argued that changes
to product definitions are not automatically propagated to the individuals and the
individuals may be modified independently of their types. However, product indi-
viduals should be created according to a product type. This is captured by the weak
conformance invariant, which requires the creation time conformance of the generic
individual but allows independent evolution thereafter. This means that only the first
version of a generic individual must conform to its type. If the generic individual is
later converted to another type (version), this can be recorded by creating a new, con-
verted individual version as is-instance-of the type. This, however, requires that one
has defined is-instance-of relation for the first version of the generic individual, not
for the generic individual itself.

5 Conclusions

Problems addressed in this paper are those of configurable products. The concepts
presented, however, do not directly reflect the concepts of configurable products. The
explanation is that the need for dealing with both the evolution of product types and
the product individuals is characteristic of configurable products. In mass-products,
the evolution of single product individual is not recorded. In very complex project
products, there is no model from which the individuals could be instantiated. Config-
urable products are somewhere in the middle combining the routine aspects of mass-
products, e.g., the pre-defined product types, and uniqueness of product individuals of



complex products, for which the evolution of individuals is more interesting. Config-
urable products thus provide a problem of their own for the evolution in data model-
ling systems. We provided a conceptual framework for managing such evolution.

There are other data modelling approaches that might support the needed evolu-
tion. One special approach is to abandon the distinction between classes and instances
altogether [19]. This provides some degree of freedom for describing configurable
products but cannot escape the problems of evolution [20]. Even with no classes and
instances, there will be class-like objects and objects that represent individuals.

Schema evolution of databases, on the other hand, is based on the principle that
schema constantly represents the same (or at least almost the same) real world enti-
ties. Consequently, the conversion of old instances is meaningful. For configurable
products, this does not hold and therefore, we had to discard the strict conformance
between the schema and individuals.

As most versioning approaches concentrate on modelling design objects, the meth-
ods have not been applied to configuration models. Typically versioning of design
objects is represented at instance level and the evolution of schema, if present, is
similar to the schema evolution of databases [15, 21, 22].

In product modelling, the largest initiative is the STEP standardisation effort [23].
STEP addressed the modelling of products for their whole lifetime. Modelling the
evolution of product individual is well catered for, but there are problems in repre-
senting product families, not to mention their evolution [4].

It is hard to provide semantics that would suit for all PDM system of configurable
products. Nevertheless, we provided a selection of invariants that covers the most
typical of cases. The conceptual framework is derived from the experiences we have
with two dozen companies that are manufacturing configurable products. Therefore,
we dare to claim that although the feasibility of the approach presented has not been
validated, it is not hypothetical.
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