
Kumbang Configurator–A Configuration Tool for Software Product Families∗

Varvana Myll ärniemi and Timo Asikainen and Tomi M ännistö and Timo Soininen
Helsinki University of Technology

Software Business and Engineering Institute (SoberIT)
varvana.myllarniemi@hut.fi

Abstract

This paper presents Kumbang Configurator, a pro-
totype system for deriving product individuals from
configurable software product families. Config-
urable software product families resemble config-
urable products in that they have a pre-defined
structure and can be customised according to cus-
tomer requirements in a routine manner. The con-
ceptual basis underlying the configurator is Kum-
bang, a language for modelling configurable soft-
ware product families from the feature and archi-
tectural points of view. Features represent the fam-
ily from a requirements or functional point of view,
and architecture from a technical or structural one.
The configurator has been implemented in the Java
programming language, and validated with two ex-
amples, one of which is based on an industrial case.

1 Introduction

Software product families, or software product lines, as they
are also called, have emerged as an important paradigm for
software reuse[Clements and Northrop, 2001; Bosch, 2000].
A software product family is commonly defined to consist
of a common architecture, a set of reusable assetsused in
systematically producing individual products, and theset of
products thus produced[Bosch, 2000].

The most systematic class of software product families
can be calledconfigurable software product families[Bosch,
2002; Raatikainenet al., 2005]. A configurable software
product family has the property that individuals of the fam-
ily can be deployed in a systematic manner; there is no
need for coding within components, and not much need for
adding glue code between them; hence, configurable soft-
ware product families resemble configurable, non-software
products. The deployment of individuals is called thecon-
figuration task. It has been noted that the configuration of
software product families task can be burdensome and error-
prone[Clements and Northrop, 2001]. Thus there is a need
for concrete tool support.

∗The support of National Technology Agency of Finland is ac-
knowledged.

Product configurators, orconfiguratorsfor short, are tools
that support the configuration task in producing a correct
product individual. Configurators prevent configuration er-
rors and automate routine tasks. A large number of config-
urators have been developed, e.g.[Tiihonen et al., 2003],
mainly for the purpose of configuring non-software products.

The question whether configurators developed for non-
software configurable products can be applied to software
product families has been studied in[Asikainenet al., 2003;
2004]. The outcome from these studies has been that the ex-
isting tools cover important parts of the configuration models
of software product families, but lack support for architec-
tural connections. Hence, new tools are needed.

In this paper, we introduce Kumbang Configurator, a tool
supporting the configuration task for configurable software
product families. Kumbang Configurator utilises Kumbang
modelling language. Kumbang is based on modelling a con-
figurable software product family from two independent, yet
mutually related points of view.Featuresare abstractions
from the requirements set on the product family. A feature
may include a number ofsubfeaturesas its constituent ele-
ments, and be characterised by a number ofattributes. The
technical aspects of the product family are captured by its
architecturethat is defined in terms ofcomponents. A com-
ponent may have a number of other components as itsparts,
and be characterised by a number of attributes. Further, the
possibilities for interaction of a component are specified by
its interfacesandbindingsbetween them.

Kumbang Configurator supports the user in the configu-
ration task by providing a graphical user interface through
which the user can enter his specific requirements for a prod-
uct individual. Further, the configurator checks the configu-
ration for consistencyandcompletenessafter each step, and
deduces the consequences of the selections made so far. The
necessary inferences are implemented usingsmodels[Simons
et al., 2002], which is a general-purpose inference tool based
the stable model semantics of logic programs.

To the best of our knowledge, a tool supporting modelling
concepts similar to Kumbang has not been previously imple-
mented. Hence, Kumbang Configurator is the main contribu-
tion of this paper.

The remainder of the paper is organised as follows. Sec-
tion 2 discusses Kumbang language. Section 3 presents Kum-
bang Configurator. Further, Section 4 discusses how Kum-

bang Configurator has been validated with example cases.
Thereafter, Section 5 compares Kumbang Configurator with
related work. Finally, Section 6 draws conclusions and sug-
gestions for future work.

2 Kumbang Language
In this section, we discuss the Kumbang language and its
background. First, we will iterate onfeature modellingand
Forfamel, the feature modelling method in Kumbang. Sec-
ond, we will give similar treatment to architecture descrip-
tion and Koalish. Finally, we will discuss how Forfamel and
Kumbang are integrated in Kumbang.

Feature modelling has become a popular method for mod-
elling requirements of software product families[Kanget al.,
1990; Czarnecki and Eisenecker, 2000]. A feature has been
defined as a characteristic of a system that is visible to the
end-user[Kang et al., 1990], and as a logical unit of be-
haviour that is specified by a set of functional and quality
requirements[Bosch, 2000]. Feature modelling methods are
based on organising features intofeature modelsthat typically
take the form of a tree. Such a tree captures the variability of
the software product family modelled in terms of its features.

Forfamel[Asikainen, 2004] is a feature modelling method
that synthesises existing feature modelling methods with con-
figuration modelling concepts stemming from the product
configuration domain, more specifically from[Soininenet al.,
1998]. The fundamental modelling element of Forfamel is
feature type; each feature type intentionally defines the prop-
erties of its instances, i.e.,features. A feature type may in-
clude asubfeaturedefinition that specifies the number and
types of possible feature instances, thus defining the compo-
sitional structure of features. Further, a feature type may de-
fineattributesthat characterise its instances. The value range
for an attribute instance is attained by definingattribute value
types. Moreover, a feature type may be defined one or more
supertypes; a feature type inherits the property definitions of
its supertypes. Finally,constraintsbetween different combi-
nations of features may be stated, thus restricting the valid
combinations of features.

Example. In order to clarify the concepts presented in
this paper, we provide a running example. The configura-
tion model in Figure 1 depicts a small client-server system
with varying number of clients. The model contains only one
feature typeRootFeature. However, feature typeRootFeature
contains two attribute definitions. AttributenumberOfClients
is of typeInt2, which means that its value can be either one
or two. AttributeisExtendedis of typeBooleanand thus its
value can be eitheryesor no. 2

However, features as are such not sufficient for describing
all the relevant aspects of software product families. In more
detail, means for describing the technical aspects of the prod-
uct family are needed. Towards this end, Koalish[Asikainen
et al., 2003; Asikainen, 2004] is a method for modellingsoft-
ware product family architectures. In other words, Koalish
can be used to describe the overall structure of the software
product family in terms of its architectural elements. Koal-
ish is based on Koala[van Ommeringet al., 2000], a com-
ponent model and an architecture description language de-

Figure 1: A sample Kumbang model that describes a small
client-server system.

veloped and used at Philips Consumer Electronics. Koalish
shares its conceptual basis with Koala, but adds several vari-
ability mechanisms familiar from the product configuration
domain, see e.g.[Soininenet al., 1998]. In more detail, a
Koalish model can containcomponenttypes that are instan-
tiated as component instances. A component type can define
the number and types of components as parts under the cor-
responding component instance. Further, a component type
can define the type and direction ofinterfaceinstances con-
tained in the component instance. Arequired interface sig-
nals that the functions enlisted in its interface type must be
implemented by aprovidedinterface with such functions. In
order to satisfy required interfaces, interface instances can
be boundwith each other. Also, similarly as in Forfamel,
constraints concerning the combinations of architectural ele-
ments may be stated. Finally, in a manner similar to Forfamel
attribute mechanism, attributes can be used for characterising
properties of component instances.

Example. The running example defines a two-level com-
positional structure for component instances. Namely, the
root component typeRootComponentdefines partsserverand
client. Part definitionserverstates that aRootComponentin-
stance must contain one component of typeServer, while part
definition client states that aRootComponentinstance must
contain one or twoClient or ExtendedClientcomponents.
Further, due to the interface definitioncaller, a component
of typeClient or ExtendedClientcontains one required inter-
face of typeRemoteProtocol. In a similar manner, aServer

Figure 2: A screenshot from Kumbang Configurator user interface. This screenshot illustrates how the configuration model
presented in our running example can be configured.

component contains a provided interface of typeRemotePro-
tocol. Interface typeRemoteProtocolconsists of two func-
tions,sendDataandcheckStatus. 2

The Kumbang language combines Forfamel and Koalish
into a single modelling language for configurable software
product families. Hence, Kumbang enables modelling a soft-
ware product family simultaneously from a feature and archi-
tectural point of view. However, these two views are often
related to each other, just like system requirements and archi-
tecture are related. Therefore, Kumbang enables specifying
how features areimplementedby architectural entities. In
more detail, feature types may includeimplementation con-
straints that must hold for the architecture in order for the
product individual to provide the specific feature. A model
of a configurable software product family presented in Kum-
bang is aconfiguration model, in the sense of[Soininenet al.,
1998], of the product family.

Example. The configuration model in our running exam-
ple is a Kumbang model, and it exemplifies how features and
components can be related to each other. The implementa-
tion constraints defined in feature typeRootFeaturerelate se-
lected attribute values to component configuration. The value
of attributenumberOfClientsis related to the number of client
components as parts underRootComponent, while valueyes
for attributeisExtendedis equivalent to all client components
being of typeExtendedClient. 2

3 Kumbang Configurator
This section provides an overview of Kumbang Configurator.
Subsection 3.1 presents a brief overview of the functionality
provided by the system, while Subsection 3.2 discusses the
system architecture. Finally Subsection 3.3 discusses how
configuration reasoning has been implemented.

3.1 Provided Functionality

As discussed earlier, Kumbang Configurator is based on
Kumbang language; thus it can be used for deriving configu-
rations that contain both features and components. However,
the tool also supports Forfamel and Koalish models (see Sec-
tion 2) as special cases. This means that the tool can be used
for deriving configurations with features only, or configura-
tions with components only.

Kumbang Configurator takes a configuration model of a
software product family represented in Kumbang as input.
The configuration model is used as the basis of the configu-
ration task. The configurator offers a graphical user interface
(see Figure 2) through which the user can makeselections
that modify the configuration. In more detail, selections can
add or remove features, components, interfaces or bindings
and set attribute values.

The graphical user interface provided by Kumbang Con-
figurator visualises the configuration in a way that resembles
existing notations known in the software product family com-
munity. For example, the visualisation of the component con-

figuration (right side of Figure 2) resembles the graphical no-
tation of Koala[van Ommeringet al., 2000]. The user in-
terface has been designed to show all available selections ex-
plicitly. Thus the tool can be used without additional in-depth
knowledge of the configuration model.

Kumbang Configurator checks whether the configuration
is consistentandcomplete. A consistent configuration is such
that no rules of the configuration model have been violated.
In contrast, a complete configuration is such that all neces-
sary selections have been made. Further, Kumbang Config-
urator deduces the direct consequences of the configuration
selections made so far. This means that the tool can automat-
ically add selections implied by previous selections, identify
selections conflicting with previous selections, and illustrate
these selections in the user interface. Especially, selections in
the feature hierarchy may have implications on the architec-
ture, as specified by the implementation constraints in feature
types. Consequently, the configuration model may be such
that the architecture of the individual is completely deduced
from the selections made in the feature hierarchy. This situa-
tion corresponds to the typical assumption that requirements
are used as a basis for specifying software architecture. On
the other hand, the constraints may take the form of equiva-
lence constraints, implying that selections about the architec-
ture may have implications in the feature hierarchy.

Finally, when the configuration is complete, the user of the
tool can request a description of the product individual. This
description can be used as a basis for building the product
from existing software assets. However, Kumbang Configu-
rator does not itself build the product; a separate builder is
needed for this purpose.

Example. Figure 2 shows a screenshot from Kumbang
Configurator applied to the running example. The current
feature configuration is shown on the left as a tree, while a di-
agram of the architectural configuration is shown on the right.
The user of the tool has set attributeisExtendedto valueyes
and attributenumberOfClientsto 2. Based on these two selec-
tions, Kumbang Configurator has automatically deduced the
entire component configuration. In the component configu-
ration, root componentRootComponentis composed of two
components of typeExtendedClientand one of typeServer.
The interfaces of these components have been bound accord-
ingly. 2

3.2 System Architecture

Kumbang Configurator follows the distributed client-server
architectural style (see Figure 3). The communication be-
tween the client and the server happens through Java Remote
Method Invocation (RMI). In particular, the server provides a
RMI interface for clients. A server may serve multiple clients
simultaneously.

The client is implemented in the Java programming lan-
guage. It provides a graphical user interface and interacts
with the user of the tool during the configuration task.

The server is likewise implemented in the Java program-
ming language. It takes care of the configuration reasoning
(see Subection 3.3). Since this reasoning utilisessmodels
module, and sincesmodelshas been implemented in C++, the

Figure 3: Kumbang Configurator follows the distributed
client-server architectural style.

server has to connect tosmodelsmodule through Java Native
Interface (JNI).

There are several reasons for following the client-server
style. Firstly, as configuration reasoning can be computation-
ally expensive, the server can run on a dedicated machine.
Secondly, the server provides centralised model management.
The server stores configuration models in a repository that is
accessed by clients. Centralised model management enables
separation between domain engineering and application engi-
neering activities: those who perform the configuration task
(for example, sales personnel) can use configuration models
directly from the repository.

3.3 Configuration Reasoning
The termconfiguration reasoningrefers to the inferences re-
quired to implement the configurator. In more detail, this in-
cludes checking configurations for consistency and complete-
ness with respect to a configuration model and deducing the
consequences of the selections made.

To implement the reasoning, the Kumbang model is trans-
lated to a form of logic programs; the translation is illustrated
in the upper part of Figure 4. In more detail, the Kum-
bang model is first translated into Weight Constraint Rule

Figure 4: How Kumbang Configurator usessmodelsfor con-
figuration reasoning.

Language (WCRL)[Simonset al., 2002], a general-purpose
knowledge representation language; details of this translation
can be found in[Asikainen, 2004]. The resulting WCRL
program is further translated into a more restricted form of
weight constraint rules, namely Basic Constraint Rule Lan-
guage (BCRL). This latter translation is carried out by the
lparsemodule of thesmodelssystem[Simonset al., 2002].
It should be noted that the translation from WCRL to BCRL
can be time-consuming, but it only needs to be done after a
configuration model is created or changed.

Example. Before the configuration task begins, Kumbang
Configurator translates the running example to WCRL. The
resulting WCRL model contains 110 weight constraint rules
that specify the configuration model. For example, a rule

1 { hasattr(X, isExtended, V) : attrBoolean(V) } 1
:- in(X), instance(X, featRootFeature).

states that if an instanceX of type RootFeatureis currently
in the configuration, it must have exactly one attribute named
isExtended, and this attribute must have a valueV from the
range specified by attribute value typeBoolean. 2

The inference steps during the configuration task are illus-
trated in the lower part of Figure 4. In short, the selections
made by the user are translated intocompute statementsthat
can be combined with the BCRL representation of the config-
uration model. Using this combination, thesmodels[Simons
et al., 2002] system can be used to compute the consequences,
which are in turn fed back in the client and represented in the
user interface.

For further information on this topic, please refer to
[Myll ärniemi, 2005; Asikainen, 2004].

4 Validation
Kumbang Configurator has been validated using two sam-
ple cases. The first case represents a significant portion of
real life case, and the second is an invented toy example that
demonstrates additional aspects of the tool.

The first case originates from Robert Bosch GmbH[Mac-
Gregor, 2004]. Robert Bosch GmbH is a company developing
various automotive systems containing embedded software.
A distinguishing characteristic of automotive industry is the
large number of variants. The case used for validation is a
part of a model for a car periphery system (CPS), and it has
been obtained from a presentation by John MacGregor[Mac-
Gregor, 2004]. The original presentation included a demon-
stration that showed how this particular system has been con-
figured. The configurator tool used in the demonstration has
been presented in[Hotzet al., 2004].

However, the first case does not utilise interfaces or bind-
ings. Since these are major contributions of Kumbang Con-
figurator, another case was constructed for this purpose. Al-
though the details of the case were invented for evaluation
purposes, the case was motivated by a real-life system. The
case describes a distributed weather station network that is
used for measuring various weather-related quantities at mul-
tiple physical locations.

The authors modelled and configured both cases. Mod-
elling included writing the cases into a Kumbang configura-
tion model. As a result, the first case yielded a configura-

tion model with dozens of feature, component, and attribute
types, while the second configuration model was somewhat
smaller. The configuration task included deriving various dif-
ferent configurations using Kumbang Configurator. Although
systematic performance tests have not yet been run, these
cases indicate that the system performance is adequate. (For
example, checking the configuration state for the weather
station configuration model takes approximately 60ms on a
750MHz Pentium PC.) However, it is yet unknown how Kum-
bang Configurator can handle very large configurations.

5 Related Work

There exists a number of configurator tools that have been de-
signed to support configuration task. However, only few have
been designed for the software domain. To some extent, it
is possible to use a configurator designed for traditional me-
chanical products for configuring software[Asikainenet al.,
2004]. However, to our knowledge, none of the existing con-
figurators currently provides the same set of functionality as
Kumbang Configurator.

WeCoTin[Tiihonenet al., 2003] is a configurator designed
mainly for traditional, mechanical products. It employs many
techniques that are also used in Kumbang Configurator, e.g.,
it usessmodelsto implement the necessary reasoning. How-
ever, there are several differences between WeCoTin and
Kumbang Configurator. First and foremost, WeCoTin doesn’t
recognise connectors or interfaces, which are an essential part
of Kumbang Configurator. Secondly, WeCoTin lacks the sep-
aration between features and architectural elements. It can be
used for modelling both of them, but not in parallel in a same
configuration model.

There are a few configurator tools that have been designed
for software domain. One of them is presented in[Hotz et
al., 2004]; it is built on top of existing product configura-
tors. When comparing the approach in[Hotz et al., 2004]
with Kumbang Configurator, one can find several similarities.
Both approaches support the separation between features and
components, and both provide many similar variability mech-
anisms. However, there are also several differences. For ex-
ample, Kumbang Configurator supports connectors and inter-
faces, whereas[Hotzet al., 2004] does not.

Further, there are software configuration tools that do not
originate from the field of configurable product research. Mae
[Roshandelet al., 2004] is a system that combines archi-
tectural description languages (ADL) with software config-
uration management (SCM) principles. Due to the fact that
both Mae and Kumbang Configurator bring variability mech-
anisms to ADLs, the architecture-related modelling concepts
in these two approaches bear many similarities. However,
Mae provides several capabilities, such asevolutionandany-
time variability, which are lacking from Kumbang Configu-
rator. In contrast, Mae does not include features. Further, the
configuration reasoning mechanisms in Mae are rather lim-
ited compared to Kumbang Configurator; for example, va-
lidity checking is performed only after the configuration has
been constructed.

6 Conclusions and Future Work
This paper presented Kumbang Configurator, which is a pro-
totype tool for configuring product individuals from con-
figurable software product families. Kumbang Configura-
tor is based on modelling language Kumbang, which com-
bines feature-based and architecture-based modelling meth-
ods. Thus Kumbang language has been designed for soft-
ware product family domain. Further, Kumbang Configurator
utilises existing inference enginesmodelsfor configuration
reasoning.

However, we have identified areas that require further re-
search.

In order to ease the modelling task, we need to provide a
graphical modelling tool that enables easy creation of Kum-
bang configuration models. We are currently working on such
modelling tool. Further, Kumbang Configurator does not cur-
rently support activities after the configuration task, that is,
building the source code into an executable artifact. We are
investigating on how to relate architecture to actual imple-
mentation entities, and how to provide tool support for the
build task.

Finally, further empirical knowledge is needed on the per-
formance of Kumbang Configurator. For this purpose, sys-
tematic empirical tests are needed. It would be especially
interesting to study how connectors affect the performance of
the system.

References
[Asikainenet al., 2003] T. Asikainen, T. Soininen, and

T. Männisẗo. A Koala-based ontology for configurable
software product families. InIJCAI 2003 Configuration
workshop, 2003.

[Asikainenet al., 2004] Timo Asikainen, Tomi M̈annisẗo,
and Timo Soininen. Using a configurator for modelling
and configuring software product lines based on feature
models. InProceedings of the Workshop on Software Vari-
ability Management for Product Derivation, at Software
Product Line Conference (SPLC3), 2004.

[Asikainen, 2004] Timo Asikainen. Modelling Methods for
Managing Variability of Configurable Software Product
Families. Licentiate thesis, Helsinki University of Tech-
nology, 2004.

[Bosch, 2000] Jan Bosch.Design and Use of Software Ar-
chitectures: Adapting and Evolving a Product-Line Ap-
proach. Addison-Wesley, Boston, 2000.

[Bosch, 2002] Jan Bosch. Maturity and evolution in software
product lines: Approaches, artefacts and organization. In
Gary J. Chastek, editor,Proceedings of the Second Soft-
ware Product Line Conference (SPLC2), pages 257–271,
2002.

[Clements and Northrop, 2001] Paul Clements and Linda
Northrop. Software Product Lines—Practices and Pat-
terns. Addison-Wesley, Boston, 2001.

[Czarnecki and Eisenecker, 2000] K. Czarnecki and U.W.
Eisenecker.Generative Programming. Addison-Wesley,
Boston, 2000.

[Hotzet al., 2004] Lothar Hotz, Thorsten Krebs, and Katha-
rina Wolter. Combining software product lines and
structure-based configuration—methods and experiences.
In Proceedings of the Workshop on Software Variability
Management for Product Derivation, at Software Product
Line Conference (SPLC3), 2004.

[Kanget al., 1990] K.C. Kang, S.G. Cohen, J.A. Hess, W.E.
Novak, and A.S. Peterson. Feature-oriented domain analy-
sis (FODA) feasibility study. Technical Report CMU/SEI-
90-TR-21, ADA 235785, Software Engineering Institute,
1990.

[MacGregor, 2004] John MacGregor. CONIPF—
configuration in industrial product families. Presentation
in Workshop on Software Variability Management for
Product Derivation, at Software Product Line Conference
(SPLC3), 2004.

[Myll ärniemi, 2005] Varvana Myll̈arniemi. Kumbang
Configurator—a tool for configuring software product
families. Master’s thesis, Helsinki University of Technol-
ogy, Department of Computer Science and Engineering,
2005.

[Raatikainenet al., 2005] Mikko Raatikainen, Timo Soini-
nen, Tomi M̈annisẗo, and Antti Mattila. Characterizing
configurable software product families and their deriva-
tion. Software Process: Improvement and Practice, 10(1),
2005.

[Roshandelet al., 2004] Roshanak Roshandel, Andre
van der Hoek, Marija Mikic-Rakic, and Nenad Med-
vidovic. Mae—a system model and environment for
managing architectural evolution.ACM Transactions on
Software Engineering and Methodology, 18(2):240–276,
2004.

[Simonset al., 2002] Patrik Simons, Ilkka Niemelä, and
Timo Soininen. Extending and implementing the stable
model semantics. Artificial Intelligence, 138:181–234,
2002.

[Soininenet al., 1998] T. Soininen, J. Tiihonen, T. M̈annisẗo,
and R. Sulonen. Towards a general ontology of configura-
tion. AI EDAM (Artificial Intelligence for Engineering De-
sign, Analysis and Manufacturing), 12(4):357–372, 1998.

[Tiihonenet al., 2003] Juha Tiihonen, Timo Soininen, Ilkka
Niemel̈a, and Reijo Sulonen. A practical tool for mass-
customising configurable products. InProceedings of
the 14th International Conference on Engineering Design
(ICED’03), 2003.

[van Ommeringet al., 2000] R. van Ommering, F. van der
Linden, J. Kramer, and J. Magee. The Koala component
model for consumer electronics software.IEEE Computer,
33(3):78–85, 2000.

