1

Kumbang Configurator—A Configuration Tool for Software Product Families*

Varvana Myll arniemi and Timo Asikainen and Tomi M annisté and Timo Soininen
Helsinki University of Technology
Software Business and Engineering Institute (SoberIT)
varvana.myllarniemi@hut.fi

Abstract

This paper presents Kumbang Configurator, a pro-
totype system for deriving product individuals from
configurable software product families. Config-
urable software product families resemble config-
urable products in that they have a pre-defined
structure and can be customised according to cus-
tomer requirements in a routine manner. The con-
ceptual basis underlying the configurator is Kum-
bang, a language for modelling configurable soft-
ware product families from the feature and archi-
tectural points of view. Features represent the fam-
ily from a requirements or functional point of view,
and architecture from a technical or structural one.
The configurator has been implemented in the Java
programming language, and validated with two ex-
amples, one of which is based on an industrial case.

Introduction

Software product familiesor software product linesas they >) .
are also called, have emerged as an important paradigm fé¢chnical aspects of the product family are captured by its

software reuséClements and Northrop, 2001; Bosch, 2000 architecturethat is defined in terms afomponentsA com-
A software product family is commonly defined to consist POneént may have a number of other components =it
of a common architecturea set of reusable assetssed in
systematically producing individual products, and He¢ of
products thus producelBosch, 2000

can be callea¢onfigurable software product famili¢Bosch,

Product configurators, aonfiguratorsfor short, are tools
that support the configuration task in producing a correct
product individual. Configurators prevent configuration er-
rors and automate routine tasks. A large number of config-
urators have been developed, elJiihonenet al, 2003,
mainly for the purpose of configuring non-software products.

The question whether configurators developed for non-
software configurable products can be applied to software
product families has been studied[issikainenet al., 2003;
2004. The outcome from these studies has been that the ex-
isting tools cover important parts of the configuration models
of software product families, but lack support for architec-
tural connections. Hence, new tools are needed.

In this paper, we introduce Kumbang Configurator, a tool
supporting the configuration task for configurable software
product families. Kumbang Configurator utilises Kumbang
modelling language. Kumbang is based on modelling a con-
figurable software product family from two independent, yet
mutually related points of view.Featuresare abstractions
from the requirements set on the product family. A feature
may include a number dubfeaturesas its constituent ele-
ments, and be characterised by a numbeattfbutes The

and be characterised by a number of attributes. Further, the
possibilities for interaction of a component are specified by
its interfacesandbindingsbetween them.

The most systematic class of software product families Kumbang Configurator supports the user in the configu-

ration task by providing a graphical user interface through

2002; Raatikaineret al, 2009. A configurable software whigh t'he user can enter his spepific requirements for a prod—
product family has the property that individuals of the fam-YCt individual. Further, the configurator checks the configu-
ily can be deployed in a systematic manner; there is ndation for consistencyandcompletenesafter each step, and
need for coding within components, and not much need fof€duces the consequences of the selections made so far. The
adding glue code between them: hence, configurable sofflécessary inferences are implemented usingdelgSimons
ware product families resemble configurable, non-softwaré't al» 2003, which is a general-purpose inference tool based
products. The deployment of individuals is called twn- (€ Stable model semantics of logic programs. _
figuration task It has been noted that the configuration of 10 the best of our knowledge, a tool supporting modelling
software product families task can be burdensome and errofOncepts similar to Kumbang has not been previously imple-
prone[Clements and Northrop, 20D1Thus there is a need r_nented. Hence, Kumbang Configurator is the main contribu-
for concrete tool support. tion of this paper.
The remainder of the paper is organised as follows. Sec-

“The support of National Technology Agency of Finland is ac- tion 2 discusses Kumbang language. Section 3 presents Kum-

knowledged. bang Configurator. Further, Section 4 discusses how Kum-

. . ; Kumbang model ClientServer
bang Conﬂguratpr has been validated with example case ™ Tt reature RootFeature
Thereafter, Section 5 compares Kumbang Configurator witl root component Rootcomponent
related work. Finally, Section 6 draws conclusions and sug ¢, ... type RootFeature {

gestions for future work. attributes
Int2 numberofclients;
Boolean isExtended;

2 Kumbang Language impementation

cardinality($.client) = value(numberofclients);

. . . . value(isextended) = yes <=>
In this section, we discuss the Kumbang Ianguage and it for_all(X : $.client) instance_of(X, ExtendedClient);

background. First, we will iterate ofieature modellingand

Forfamel, the feature modelling method in Kumbang. Sec component type Rootcomponent {

ond, we will give similar treatment to architecture descrip- contains]]

tion and Koalish. Finally, we will discuss how Forfamel and ~ {Slient; Fxtendedclient) clientli-21;
Kumbang are integrated in Kumbang. }

Feature modelling has become a popular method for MocC omponent type client §

elling requirements of software product familié&anget al,, requires RemoteProtocol caller;

1990; Czarnecki and Eisenecker, 2008 feature has been

defined as a characteristic of a system that is visible to thcomponent type Extendedclient {
end-userfKang et al, 1994, and as a logical unit of be- , reauires Remoteprotocol caller;

haviour that is specified by a set of functional and quality

requirementqus.ch, 2000 Feature modelling methods are C°';$g[j$3§Stig;oigg‘;ggoém callee { grounded }:
based on organising features iféature modelthat typically 3

take the form of a tree. S_uch a tree captures the_variability Ointerface type Remoteprotocol {
the software product family modelled in terms of its features. sendpata; checkstatus;

Forfamel[Asikainen, 200%is a feature modelling method *
that synthesises existing feature modelling methods with corattribute type Boolean
figuration modelling concepts stemming from the productattribute type Int2
configuration domain, more specifically frd@oinineret al.,

1994. The fundamental modelling element of Forfamel is Figure 1: A sample Kumbang model that describes a small
feature typeeach feature type intentionally defines the prop-client-server system.

erties of its instances, i.efeatures A feature type may in-

clude asubfeaturedefinition that specifies the number and

types of possible feature instances, thus defining the compaeloped and used at Philips Consumer Electronics. Koalish
sitional structure of features. Further, a feature type may deshares its conceptual basis with Koala, but adds several vari-
fine attributesthat characterise its instances. The value rangeability mechanisms familiar from the product configuration
for an attribute instance is attained by definatgibute value domain, see e.g[Soininenet al, 1999. In more detail, a
types Moreover, a feature type may be defined one or mor&oalish model can containomponentypes that are instan-
supertypesa feature type inherits the property definitions of tiated as component instances. A component type can define
its supertypes. Finallyconstraintsbetween different combi- the number and types of components as parts under the cor-
nations of features may be stated, thus restricting the validesponding component instance. Further, a component type
combinations of features. can define the type and direction ioterfaceinstances con-

Example. In order to clarify the concepts presented in tained in the component instance. réquired interface sig-
this paper, we provide a running example. The configuranals that the functions enlisted in its interface type must be
tion model in Figure 1 depicts a small client-server systemmplemented by grovidedinterface with such functions. In
with varying number of clients. The model contains only oneorder to satisfy required interfaces, interface instances can
feature typeRootFeature However, feature typRootFeature be boundwith each other. Also, similarly as in Forfamel,
contains two attribute definitions. AttribureimberOfClients constraints concerning the combinations of architectural ele-
is of typelInt2, which means that its value can be either onements may be stated. Finally, in a manner similar to Forfamel
or two. AttributeisExtendeds of typeBooleanand thus its attribute mechanism, attributes can be used for characterising
value can be eithgresor no. O properties of component instances.

However, features as are such not sufficient for describing Example. The running example defines a two-level com-
all the relevant aspects of software product families. In morgoositional structure for component instances. Namely, the
detail, means for describing the technical aspects of the prodeot component typRootComponerdefines partserverand
uct family are needed. Towards this end, Koalislikainen client Part definitiorserverstates that &ootComponerih-
et al, 2003; Asikainen, 20d4s a method for modellingoft- stance must contain one component of teever while part
ware product family architecturesin other words, Koalish definition client states that &ootComponeninstance must
can be used to describe the overall structure of the softwareontain one or twaClient or ExtendedClienttomponents.
product family in terms of its architectural elements. Koal- Further, due to the interface definitiaaller, a component
ish is based on Koallvan Ommeringet al, 2004, a com- of type Client or ExtendedClientontains one required inter-
ponent model and an architecture description language déace of typeRemoteProtocol In a similar manner, &erver

{ yes, no }
{1, 2}

I Kumbang Configuration Client _|E||1|
File ‘View Configuration

Features r [® Compaonents \ Features r [® Components \
9 %ﬂ Feature configuration | @@ @@ @@
? root RootFeature tootRootCamponent

<H> numberQfClients = 2

&> isBxenien = yos lienti0]ExtendedClient

semer.Serer

callee:RematePyotocal

Propeties
Configuration name Confia_ ClisniSens| |2
Model name ClientServer || B Componentinfo

)] Marre client Subromponets Iterfaces

Configuration is complete. 1 _
(#] Enon : Type ExtendedClient 2] callerRemoteProtocal | []
| EXpO .
= | o [o]
)]

JE D

Figure 2: A screenshot from Kumbang Configurator user interface. This screenshot illustrates how the configuration model
presented in our running example can be configured.

component contains a provided interface of tgemotePro- 3 Kumbang Configurator
tocol. Interface typeRemoteProtocotonsists of two func-

tions, sendDataandcheckStatus™ This section provides an overview of Kumbang Configurator.

Subsection 3.1 presents a brief overview of the functionality

The Kumbang language combines Forfamel and Koalisfgrowded by the system, while Subsection 3.2 discusses the

into a single modelling language for configurable software ystem arphltecture._ Finally Sub;ecnon 3.3 discusses how
- , configuration reasoning has been implemented.
product families. Hence, Kumbang enables modelling a soft-
ware produpt fam|!y simultaneously from afea_ture and arch|—3.1 Provided Functionality
tectural point of view. However, these two views are often
related to each other, just like system requirements and archis discussed earlier, Kumbang Configurator is based on
tecture are related. Therefore, Kumbang enables specifyingumbang language; thus it can be used for deriving configu-
how features arémplementedoy architectural entities. In rations that contain both features and components. However,
more detail, feature types may incluthaplementation con- the tool also supports Forfamel and Koalish models (see Sec-
straints that must hold for the architecture in order for the tion 2) as special cases. This means that the tool can be used
product individual to provide the specific feature. A modelfor deriving configurations with features only, or configura-
of a configurable software product family presented in Kum-tions with components only.
bang is aconfiguration modeln the sense dfSoininenret al,, Kumbang Configurator takes a configuration model of a
1994, of the product family. software product family represented in Kumbang as input.
The configuration model is used as the basis of the configu-
Example. The configuration model in our running exam- ration task. The configurator offers a graphical user interface
ple is a Kumbang model, and it exemplifies how features andsee Figure 2) through which the user can magkections
components can be related to each other. The implement#at modify the configuration. In more detail, selections can
tion constraints defined in feature tyReotFeaturaelate se- add or remove features, components, interfaces or bindings
lected attribute values to component configuration. The valuand set attribute values.
of attributenumberOfClientss related to the number of client ~ The graphical user interface provided by Kumbang Con-
components as parts undeootComponentvhile valueyes figurator visualises the configuration in a way that resembles
for attributeisExtendeds equivalent to all client components existing notations known in the software product family com-
being of typeExtendedClientd munity. For example, the visualisation of the component con-

figuration (right side of Figure 2) resembles the graphical no-

tation of Koala[van Ommeringet al, 2004. The user in- configuratar

terface has been designed to show all available selections ex- client

plicitly. Thus the tool can be used without additional in-depth py—
knowledge of the configuration model.

Kumbang Configurator checks whether the configuration |:|_°°mp°”e”t
is consistenandcomplete A consistent configuration is such comfiguratar () interface
that no rules of the configuration model have been violated. server —wcals
In contrast, a complete configuration is such that all neces-
sary selections have been made. Further, Kumbang Config-
urator deduces the direct consequences of the configuration
selections made so far. This means that the tool can automat-

: . - srnodels
ically add selections implied by previous selections, identify

selections conflicting with previous selections, and illustrate
these selections in the user interface. Especially, selections in
the feature hierarchy may have implications on the architecFigure 3: Kumbang Configurator follows the distributed
ture, as specified by the implementation constraints in featurelient-server architectural style.
types. Consequently, the configuration model may be such
that the architecture of the individual is completely deduced
from the selections made in the feature hierarchy. This situaserver has to connect smodelsnodule through Java Native
tion corresponds to the typical assumption that requirementiterface (JNI).
are used as a basis for specifying software architecture. On There are several reasons for following the client-server
the other hand, the constraints may take the form of equivastyle. Firstly, as configuration reasoning can be computation-
lence constraints, implying that selections about the architeally expensive, the server can run on a dedicated machine.
ture may have implications in the feature hierarchy. Secondly, the server provides centralised model management.
Finally, when the configuration is complete, the user of thelhe server stores configuration models in a repository that is
tool can request a description of the product individual. Thisaccessed by clients. Centralised model management enables
description can be used as a basis for building the produgeparation between domain engineering and application engi-
from existing software assets. However, Kumbang Configuheering activities: those who perform the configuration task
rator does not itself build the product; a separate builder i¢for example, sales personnel) can use configuration models
needed for this purpose. directly from the repository.
Example. Figure 2 shows a screenshot from Kumban . . .
Configur%tor agplied to the running example. The currelgwgts'3 Conﬂg_urano_n Reason_mg _
feature configuration is shown on the left as a tree, while a diThe termconfiguration reasoningefers to the inferences re-
agram of the architectural configuration is shown on the rightduired to implement the configurator. In more detail, this in-
The user of the tool has set attribis&xtendedo valueyes cludes checking configurations for consistency and complete-
and attributenumberOfClientso 2. Based on these two selec- Ness with respect to a configuration model and deducing the
tions, Kumbang Configurator has automatically deduced th€onsequences of the selections made. _
entire component configuration. In the component configu- T0 implement the reasoning, the Kumbang model is trans-
ration, root componerfRootComponeris composed of two lated to a form of logic programs; the translation is illustrated
components of typ&xtendedClienand one of typeServer in the upper part of Figure 4. In more detail, the Kum-
The interfaces of these components have been bound accof@@ng model is first translated into Weight Constraint Rule

ingly. O

) configuration e configuration translation configuration
3.2 System Architecture - model L ol to BCRL model
in Kumbang in WCRL using farse in BCRL
Kumbang Configurator follows the distributed client-server
architectural style (see Figure 3). The communication be - 3
tween the client and the server happens through Java Remc C configuration as ’ctalgrlatiogr; Dl?‘
. . . — L
Method Invocation (RMI). In particular, the server provides a ~ solodions WCRL compLe g
. . . . statement N9
RMIl interface for clients. A server may serve multiple clients
simultaneously. Ciegeng T ey
The client is implemented in the Java programming lan- | activty tha s performed orce [] e
guage. It provides a graphical user interface and interact - sy ki prormed epstcy v dato flow

with the user of the tool during the configuration task.
The server is likewise implemented in the Java program-

ming language. It takes care of the configuration reasoningigure 4: How Kumbang Configurator usemodelgor con-

(see Subection 3.3). Since this reasoning utilisemdels figuration reasoning.

module, and sincemodelsias been implemented in C++, the

Language (WCRL]Simonset al, 2004, a general-purpose tion model with dozens of feature, component, and attribute
knowledge representation language; details of this translatiotypes, while the second configuration model was somewhat
can be found inAsikainen, 200 The resulting WCRL smaller. The configuration task included deriving various dif-
program is further translated into a more restricted form offerent configurations using Kumbang Configurator. Although
weight constraint rules, namely Basic Constraint Rule Lansystematic performance tests have not yet been run, these
guage (BCRL). This latter translation is carried out by thecases indicate that the system performance is adequate. (For
Iparse module of thesmodelssystem[Simonset al, 2004. example, checking the configuration state for the weather
It should be noted that the translation from WCRL to BCRL station configuration model takes approximately 60ms on a
can be time-consuming, but it only needs to be done after @50MHz Pentium PC.) However, it is yet unknown how Kum-
configuration model is created or changed. bang Configurator can handle very large configurations.
Example. Before the configuration task begins, Kumbang
Configurator translates the running example to WCRL. The
resulting WCRL model contains 110 weight constraint rules5 Related Work
that specify the configuration model. For example, a rule

1 { hasatt(X, isExtendedV) : attrBoolear{V) } 1 There exists a number of configurator tools that have been de-
:- in(X), instancé X, featRootFeaturg. signed to support configuration task. However, only few have

states that if an instancé of type RootFeatureis currently ~ Peen designed for the software domain. To some extent, it
in the configuration, it must have exactly one attribute nameds POSsible to use a configurator designed for traditional me-
isExtendegand this attribute must have a valMefrom the ~ chanical products for configuring softwalsikainenet al,
range specified by attribute value typeolean O 2004. However, to our knowledge, none of the existing con-
The inference steps during the configuration task are illusfigurators currently provides the same set of functionality as
trated in the lower part of Figure 4. In short, the selectionsumbang Configurator.
made by the user are translated intmpute statementkat WeCoTin[Tiihonenet al, 2009 is a configurator designed
can be combined with the BCRL representation of the configmainly for traditional, mechanical products. It employs many
uration model. Using this combination, tamodeldSimons techniques that are also used in Kumbang Configurator, e.g.,
etal,, 2004 system can be used to compute the consequenceis,usessmodelgo implement the necessary reasoning. How-
which are in turn fed back in the client and represented in thever, there are several differences between WeCoTin and

user interface. Kumbang Configurator. First and foremost, WeCoTin doesn’t
For further information on this topic, please refer to recognise connectors or interfaces, which are an essential part

[Myll arniemi, 2005; Asikainen, 2004 of Kumbang Configurator. Secondly, WeCoTin lacks the sep-
aration between features and architectural elements. It can be

4 Validation used for modelling both of them, but not in parallel in a same

Kumbang Configurator has been validated using two sam(_:onﬂguranon model.

ple cases. The first case represents a significant portion of There are a few configurator tools that have been designed
real life case, and the second is an invented toy example th&" software domain. One of them is presentedtiotz et
demonstrates additional aspects of the tool. al., 2004; it is built on top of existing product configura-
The first case originates from Robert Bosch Gnib#ac- tors. When comparing the approachliotz et al, 2004
Gregor, 2004 Robert Bosch GmbH is a company developingW'th Kumbang Configurator, one can flnd several similarities.
various automotive systems containing embedded softwar@0th approaches support the separation between features and
A distinguishing characteristic of automotive industry is thecomponents, and both provide many similar variability mech-
large number of variants. The case used for validation is &nisms. However, there are also several differences. For ex-
part of a model for a car periphery system (CPS), and it hag@mple, Kumbang Configurator supports connectors and inter-
been obtained from a presentation by John MacGriigac- faces, whereaiHotz et al, 2004 does not.
Gregor, 200 The original presentation included a demon- Further, there are software configuration tools that do not
stration that showed how this particular system has been comriginate from the field of configurable product research. Mae
figured. The configurator tool used in the demonstration hagRoshandekt al, 2004 is a system that combines archi-
been presented iiHotz et al,, 2004. tectural description languages (ADL) with software config-
However, the first case does not utilise interfaces or binduration management (SCM) principles. Due to the fact that
ings. Since these are major contributions of Kumbang Conboth Mae and Kumbang Configurator bring variability mech-
figurator, another case was constructed for this purpose. Alanisms to ADLSs, the architecture-related modelling concepts
though the details of the case were invented for evaluatioin these two approaches bear many similarities. However,
purposes, the case was motivated by a real-life system. Thdae provides several capabilities, sucheaslutionandany-
case describes a distributed weather station network that teme variability, which are lacking from Kumbang Configu-
used for measuring various weather-related quantities at mutator. In contrast, Mae does not include features. Further, the
tiple physical locations. configuration reasoning mechanisms in Mae are rather lim-
The authors modelled and configured both cases. Modited compared to Kumbang Configurator; for example, va-
elling included writing the cases into a Kumbang configura-lidity checking is performed only after the configuration has
tion model. As a result, the first case yielded a configurabeen constructed.

6 Conclusions and Future Work

This paper presented Kumbang Configurator, which is a pro-

totype tool for configuring product individuals from con-
figurable software product families. Kumbang Configura-
tor is based on modelling language Kumbang, which com-

bines feature-based and architecture-based modelling meth-

[Hotzet al, 2004 Lothar Hotz, Thorsten Krebs, and Katha-

rina Wolter. Combining software product lines and
structure-based configuration—methods and experiences.
In Proceedings of the Workshop on Software Variability
Management for Product Derivation, at Software Product
Line Conference (SPLC32004.

ods. Thus Kumbang language has been designed for sofiKanget al, 1994 K.C. Kang, S.G. Cohen, J.A. Hess, W.E.

ware product family domain. Further, Kumbang Configurator
utilises existing inference engiremodelsfor configuration
reasoning.

However, we have identified areas that require further re-
[MacGregor, 2004 John

search.

Novak, and A.S. Peterson. Feature-oriented domain analy-
sis (FODA) feasibility study. Technical Report CMU/SEI-
90-TR-21, ADA 235785, Software Engineering Institute,
1990.

MacGregor. CONIPF—

In order to ease the modelling task, we need to provide a ¢ qnfiguration in industrial product families. Presentation

graphical modelling tool that enables easy creation of Kum-
bang configuration models. We are currently working on such
modelling tool. Further, Kumbang Configurator does not cur-
rently support activities after the configuration task, that is

building the source code into an executable artifact. We aréMyll ariemi, 2005 Varvana MylBrniemi.

investigating on how to relate architecture to actual imple-
mentation entities, and how to provide tool support for the
build task.

Finally, further empirical knowledge is needed on the per-

in Workshop on Software Variability Management for
Product Derivation, at Software Product Line Conference
(SPLC3), 2004.

Kumbang
Configurator—a tool for configuring software product
families. Master’s thesis, Helsinki University of Technol-
ogy, Department of Computer Science and Engineering,
2005.

formance of Kumbang Configurator. For this purpose, sys{Raatikaineret al, 2009 Mikko Raatikainen, Timo Soini-
tematic empirical tests are needed. It would be especially nen, Tomi Mannisb, and Antti Mattila. Characterizing
interesting to study how connectors affect the performance of configurable software product families and their deriva-

the system.

References

[Asikainenet al, 2003 T. Asikainen, T. Soininen, and
T. Mannist. A Koala-based ontology for configurable
software product families. 1hICAI 2003 Configuration
workshop 2003.

[Asikainenet al,, 2004 Timo Asikainen, Tomi Mannisbt,

[Roshandeét al, 2004 Roshanak

tion. Software Process: Improvement and Practit@(1),
2005.

Roshandel, Andre
van der Hoek, Marija Mikic-Rakic, and Nenad Med-
vidovic. Mae—a system model and environment for
managing architectural evolutiorACM Transactions on
Software Engineering and MethodolodyB(2):240-276,
2004.

and Timo Soininen. Using a configurator for modelling [Simonset al, 2003 Patrik Simons, llkka Niemél, and
and configuring software product lines based on feature Timo Soininen. Extending and implementing the stable

models. InProceedings of the Workshop on Software Vari-
ability Management for Product Derivation, at Software
Product Line Conference (SPLG2004.

[Asikainen, 200 Timo Asikainen. Modelling Methods for
Managing Variability of Configurable Software Product
Families Licentiate thesis, Helsinki University of Tech-
nology, 2004.

[Bosch, 200D Jan Bosch.Design and Use of Software Ar-
chitectures: Adapting and Evolving a Product-Line Ap-
proach Addison-Wesley, Boston, 2000.

[Bosch, 2002 Jan Bosch. Maturity and evolution in software

model semantics. Artificial Intelligence 138:181-234,
2002.

[Soininenet al,, 1999 T. Soininen, J. Tiihonen, T. Bhnisb,

and R. Sulonen. Towards a general ontology of configura-
tion. Al EDAM (Artificial Intelligence for Engineering De-
sign, Analysis and Manufacturing}2(4):357-372, 1998.

[Tiihonenet al,, 2003 Juha Tiihonen, Timo Soininen, llkka

Niemeh, and Reijo Sulonen. A practical tool for mass-
customising configurable products. Proceedings of
the 14th International Conference on Engineering Design
(ICED’03), 2003.

product lines: Approaches, artefacts and organization. Ivan Ommeringtal, 2004 R. van Ommering, F. van der

Gary J. Chastek, editoProceedings of the Second Soft-
ware Product Line Conference (SPLCPRges 257-271,
2002.

[Clements and Northrop, 20DPaul Clements and Linda
Northrop. Software Product Lines—Practices and Pat-
terns Addison-Wesley, Boston, 2001.

[Czarnecki and Eisenecker, 2QOR. Czarnecki and U.W.
Eisenecker.Generative ProgrammingAddison-Wesley,
Boston, 2000.

Linden, J. Kramer, and J. Magee. The Koala component
model for consumer electronics softwalleEE Computer
33(3):78-85, 2000.

