
1

Configurable Software Product Families
Tomi Männistö1, Timo Soininen1 and Reijo Sulonen1

1 Helsinki University of Technology, TAI Research Centre and Laboratory

of Information Processing Science, P.O. Box 9555, FIN-02015 HUT, Fin-
land. Email: {Tomi.Mannisto, Timo.Soininen, Reijo.Sulonen}@hut.fi

Abstract. Product configuration is a specific area of research and
business for mechanical (and electrical) products. However, config-
urable software products have not attracted as much interest. This
paper outlines the concept of configurable software product families
covering millions of variants from which product individuals are
configured to meet particular customer needs. Solutions to manag-
ing such software products are sought from experiences with me-
chanical products and expressed here in the form of a research
agenda.

1 INTRODUCTION
This paper investigates software as a configurable product family
that may include millions of variants. Thus, we aim at providing
methods and tools for a software engineering paradigm in which
instances of software are created in a routine manner. This creation
would be based on a predefined model (or architecture) that de-
scribes all variants and the required knowledge for selecting func-
tional combinations of components. Such paradigm becomes
important, for example, when software is embedded in a product
that is configurable and the software must adapt to the hardware
configuration. If the available memory is limited, the loaded soft-
ware cannot simply include all possible variability and dynamically
adapt to the hardware. Examples of such products are tomorrow’s
mobile terminals. Similar strategies are also currently sought for
enterprise resource planning (ERP) systems, which are large con-
figurable information system packages [1].

In this paper, we chart a research agenda starting from the expe-
riences in product configuration of mechanical and electrical prod-
ucts, which are called traditional products in the following. We
begin with a brief introduction to product configuration and soft-
ware engineering, especially software architectures. However, we
assume that the reader is familiar with product configuration and
thus the introduction to it is minimal.

Our goal for the research work is to find description methods for
software product families. The methods should be understandable to
software engineers with no special skills in formal methods or logic.
In addition, the description of a software product family of an in-
dustrial company should be manageable both in complexity and in
size. This restricts the modeling essentially to the design level, as
very deep models tend to be extremely large. Furthermore, the used
description language should allow the models to be processed by
computers, which requires strict tradeoffs between the expressivity
and complexity of the underlying concepts, as the more powerful
logical formalisms may in practice be infeasible.

With respect to previous work in software engineering, a natural
counterpart to which this research should be contrasted is modeling
and applying software architectures. We aim at rather limited mod-
els if compared to the most general approaches in software engi-
neering but, on the other hand, we aim at general concepts that are
not specific to any particular software domain.

2 PRODUCT CONFIGURATION
A configurable product is adapted to the needs of a particular cus-
tomer in a configuration process using predesigned components and
a predefined configuration model. A configuration task is thus to
find a suitable variant from the search space defined by the configu-
ration model. The output of a configuration process is a configura-
tion, which is an adequate description of the product individual so
that it can be manufactured (see Figure 1) [2,3,4,5,6,7].

3 SOFTWARE ENGINEERING
In this section, a brief look is taken at the basic concepts in software
engineering, in particular those of software architectures. We begin
briefly with component based software, move on to software archi-
tectures and concentrate there on software architecture description
languages and domain specific software architectures, which pro-
vide the central point of reference for this paper.

Within component-based software engineering (CBSE), defini-
tions of a software component include [8]:

• nearly independent and replaceable part of a system with a
clear function in the context of a well-defined architecture

• dynamically bindable package that is accessed through
documented interfaces

• unit of composition with contractually specified interfaces
• business component representing an autonomous business

concept or process.
In many cases, components are seen as rather independent units and
it is required that truly composable systems allow connecting sys-
tem components into a whole in ways not foreseen by the original
developers of the components [9].

Software architecture is a term understood in many different
ways, typically meaning the structure of components of a software
system, including the relationships and guidelines for design and
management of evolution [10]. According to Moriconi et al. [11], a
software architecture is represented by the following concepts:

• component
• interface that denotes a logical point of interaction between a

component and its environment
• connector, relating interface points, components or both
• configuration, which is a collection of constraints that wire

objects into a specific architecture
• mapping from the language of an abstract architecture to the

language of concrete architecture
• architectural style

Architectural style is defined by a collection of conventions for a
class of software architectures. Style is thus more a general theory
for a subfield of software engineering. Common architectural styles

2

include pipe-filter, batch-sequential, blackboard, implicit invocation
(event-based) and client-server [11]. Formal methods allow ana-
lyzing properties of styles and result to a set of general theorems
about all systems in the family [12].

Software architecture description languages (ADL) are used to
support architecture-based system development. A system architec-
ture or architectural model is specified by a set of components,
connectors, a configuration and a set of constraints and is written in
an architecture description language [13]. An architectural model
may apply to a single system or to a family of systems in a domain;
the latter is referred to as a generic architecture or domain specific
software architecture (DSSA) [14], which comprises of [15]:

• reference architecture describing a computational frame-
work for a domain of applications

• component library of reusable chunks of domain expertise
• application configuration method for configuring compo-

nents to meet particular application requirements
The focus of this paper is on software product families that include
large variation. Variety in software product families can be imple-
mented by an approach called customization, in which a ‘universal’
software product is adapted to behave as any specific variant [16].
However, the size of the software product increases because it con-
tains all the variability of the product.

An alternative approach is to use preprocessor directives to op-
tionally include pieces of source code. In this approach, however,
the big picture is easily lost, as the representation of variation is not
explicit but is embedded in the source code. Variability may also be
achieved by modularization, in which the variants are produced by
selecting appropriate components to the family architecture [15,16].

When large software products are adapted to different customers,
a typical approach is “copy and paste”, also called cloning. That is,
an existing variant of the software product is taken as a basis and
then modified accordingly. This approach has its drawbacks since in
duplication and ad doc modification of architectural components the
original ideas behind the architecture are easily lost, which in con-
sequence deteriorates the overall product architecture [17].

4 CONFIGURING SOFTWARE

4.1 Feasibility of Configuring Software

Some issues specific to software might make configurable software
products infeasible. For example, including extraneous components
does not typically increase the cost of a product individual. This
enables in many cases the selling of software product individuals
that contain all possible features. Sometimes, however, the available
memory is a limiting resource. In such case, it may be necessary to
carefully select the components in a particular configuration simply
because otherwise the product individuals would not fit into the
memory.

In mobile communication, there are also limitations in band-
width, which may become an important factor if the software prod-
uct individual is transferred via a wireless communication channel.
Therefore, it may be important to load the exact software variant for
the hardware in question and take into account the hardware and
other software options already installed into the product individual
to avoid unnecessary usage of bandwidth.

The current generation of ERP systems relies on a monolithic
software architecture in which customer requirements are met by a
large number of parameters, options and configurable functionality.

However, a minimalist strategy based on components is an alternate
way to meet situation-specific requirements [1].

The common point in all these cases is that customer specific
variation of software is needed but it should be implemented by
other means than single monolithic software product.

4.2 Comparison to Mechanical Products

There are three major product processes: development, order-
delivery and after-sales. The processes and their results are illus-
trated in Figure 1. For configurable products the order delivery
process is required to be smooth and not to include any design
work, which is carried out in the development process. Many com-
panies manufacturing project-like traditional products have recently
sought ways towards this kind of operation, i.e., product configura-
tion. Similarly, software engineering can find ways towards order-
delivery process that would provide customer specific solutions
without programming.

The generic software architectures, especially DSSAs, are close
relatives to product configuration of traditional products. In both
fields the term component means very much the same and also
concepts ‘port’ and ‘connector’ are used, for example. In compo-
nent based software, the components are very often seen as inde-
pendent entities used in manner not thought at the time they were
designed. In traditional products there are also such components,
e.g., screws, bolts, capacitors and resistors. These, however, are
typically not relevant to product configuration, in which compo-
nents are larger chunks, also called modules, designed with the
particular product family in mind. Of approaches to software vari-
ety, the closest to product configuration is modularization.

Furthermore, in DSSAs, the reference architecture with compo-
nent library corresponds to configuration model and application
configuration method to configuration algorithm of traditional
products. Configuration models of traditional products are ex-
pressed by special languages designed for configuration purposes,
which have the similar basis as ADLs of software architectures.
Configuration languages, however, are typically applicable to all
configurable products; they are not targeted to specific type of con-
figurable products. It is not clear what are the right concepts for
modeling software product families in general. Are components and
first-class components the right concepts [18]; or should the con-
figuration model capture the dynamic behavior of the system [19];
or should the configuration model be based on business processes
[20]?

It would be in principle possible to model the physics behind the
design of a traditional product. For example, one could include
kinematics and fluid or energy flow equations and constraints in the

Development

Order-Delivery

After-sales

Product family description
=configuration model

Product individual

Customer

reconfiguration model

Product
family

management

Version
management

Reconfiguration

Service

Configuration

Figure 1. Basic product processes.

3

configuration model. This, however, is hardly ever done, as most
companies do not have resources to build configuration models
from physical principles Consequently, the configuration knowl-
edge is typically at surface, design level. Thus, the fact that a con-
figuration model describes only correct product individuals cannot
be derived from the model—it is based on the designers’ capabili-
ties of designing functioning product families. The development of
some software architecture styles in the form of general theory of
software engineering resembles the approaches to develop a general
theory of design.

5 PROPOSAL FOR A RESEARCH AGENDA
Our proposal is based on lesson learned in research with traditional
products. The modeling and management of configuration knowl-
edge of traditional products is difficult even with a static informa-
tion. That is, for example, without analyzing whether a product
individual fulfils some kinematic conditions. For configuring soft-
ware, capturing the behavior of software has been proposed [19].
That is an important line of research, but unlike it, we begin here
with a static situation. Regarding configuration of software product
families, this means that we do not suggest starting from the general
theory of software architectures. We thus intend to investigate a
small part of the software architectures, which includes research on
architecture description languages and domain specific software
architectures in a context where large variety is central. Our work
belongs to an emerging research area of software product lines in
which the first international conferences are currently being organ-
ized (see http://www.sei.cmu.edu/plp/conf/SPLC.html). Our idea is
to approach software configuration with the methods and tools
developed for mechanical products. We aim to analyze how soft-
ware products can be treated with them.

Our approach to managing software product families assumes
• a need for customer specific adaptation in a relatively rou-

tine configuration process. For example, because of restric-
tions in the size of the available memory.

• the software product to consist of components (or modules)
that have clear interfaces

• existence of domain specific software architecture, or in
other words, a configuration model, that describes the vari-
ants of the software product family

• a language for modeling the above mentioned components
and the architecture, i.e., a configuration modeling language.

The management of a software product family would be done inde-
pendently of the details of the process producing the software. This
process may include selection of correct software modules, setting
values for pre-processor directives, textual means (e.g., macros) for
modifying the source code, selecting module versions from version
management tools, creation of scripts for compiling and linking the
executable, etc. The point is that the management is based on a
configuration model at the architectural level. That model serves as
a tool for the development and management of product family and
for the actual configuration of software product individuals. The
research tries to provide answers to, e.g., the following questions:

• How should the architectures and components of software
product families and their evolution be modeled?

• What kind of intelligent support for re-using architectures
and components and configuring software can be offered?

• How does the (dynamic) reconfiguration affect the situation?
What does it enable?

ACKNOWLEDGEMENTS
We gratefully acknowledge the financial support from Technology
Development Centre of Finland (Tekes) and Helsinki Graduate
School of Computer Science and Engineering (HeCSE).

REFERENCES
 [1] K. Kumar and J. van Hillegersberg, ‘Enterprise resource planning—

experiences and evolution’, Communications of the ACM, 43, 22–26,
(2000).

[2] S. Mittal and F. Frayman, ‘Towards a generic model of configuration
tasks’, in: Proc. of the 11th International Joint Conference on Artificial
Intelligence (IJCAI), 1395–1401, 1989.

[3] T. Männistö, H. Peltonen, and R. Sulonen, ‘View to product configu-
ration knowledge modelling and evolution’, in: Configuration—papers
from the 1996 AAAI Fall Symposium (AAAI technical report FS-96–
03), B. Faltings and E.C. Freuder, eds. AAAI Press, 111–118, 1996.

[4] T. Darr, D. McGuinness, and M. Klein, Special Issue on Configuration
Design. AI EDAM 12, (1998).

[5] B. Faltings and E.C. Freuder, Special Issue on Configuration. IEEE
intelligent systems & their applications 13, (1998).

[6] H. Peltonen, T. Männistö, T. Soininen, et al, ‘Concepts for modelling
configurable products’, in: Proc. of the Product Data Technology
Days, Quality Marketing Services, 189–196, 1998.

[7] T. Soininen, J. Tiihonen, T. Männistö, and R. Sulonen, ‘Towards a
General Ontology of Configuration’, AI EDAM, 12, 357–372, (1998).

[8] A.W. Brown and K.C. Wallnau, ‘The current state of CBSE’, IEEE
Software, 15, 37–46, (1998).

[9] M. Shaw, R. DeLine, D.V. Klein, et al, ‘Abstractions for software
architecture and tools to support them’, IEEE Transactions on software
engineering, 21, 314–335, (1995).

[10] D. Garlan and D.E. Perry, ‘Introduction to the special issue on software
architecture’, IEEE Transactions on software engineering, 21, 269–
274, (1995).

[11] M. Moriconi, X. Qian, and R.A. Riemenschneider, ‘Correct architec-
ture refinement’, IEEE Transactions on software engineering, 21, 356–
372, (1995).

[12] G.D. Abowd, R. Allen, and D. Garlan, ‘Formalizing style to understand
descriptions of software architecture’, ACM Transactions on software
engineering and methodology, 4, 319–364, (1995).

[13] J.J.P. Tsai, A. Liu, E. Juan, and S. Avinash, ‘Knowledge-based soft-
ware architectures: acquisition, specification, and verification’, IEEE
Transactions on knowledge and data engineering, 11, 187–201,
(1999).

[14] P. Kogut and P. Clements, ‘Features of architecture description lan-
guages’, in: Proceedings of Software Technology Conference, 1995.

[15] B. Hayes-Roth, K. Pfelger, P. Lalanda, P. Morignot, and M. Blabano-
vic, ‘A domain-specific software architecture for adaptive intelligent
systems’, IEEE Transactions on software engineering, 21, 288–301,
(1995).

[16] A. Karhinen, A. Ran, and T. Tallgren, ‘Configuring design for reuse’,
in: Proceedings of International Conference on Software Engineering,
ICSE’97, 701–710, 1997.

[17] D. Dikel, D. Kane, S. Ornburn, W. Loftus, and J. Wilson, ‘Applying
software product-line architecture’, Computer, 30, 49–61, (1997).

[18] J. Bosch, ‘Evolution and composition of resusable assets in product-
line architectures: a case study’, in: Software architecture, P. Donohoe,
ed. Kluwer Academic Publishers, 321–339, 1999.

[19] C. Kühn, ‘Requirements for configuring complex software-based
systems’, in: Configuration—Papers from the 1999 AAAI workshop, B.
Faltings, E.C. Freuder, G.E. Friedrich and A. Felfernig, eds. AAAI
Press, 11–16, 1999.

[20] A.-W. Scheer and F. Habermann, ‘Making ERP a Success’, Communi-
cations of the ACM, 43, 57–61, (2000).

