
View to Product Configuration Knowledge

Modelling and Evolution

Tomi Männistö, Hannu Peltonen and Reijo Sulonen

Helsinki University of Technology
IIA Research Centre and Laboratory of Information Processing Science

Otakaari 1, FIN-02150 Espoo, FINLAND
{Tomi.Mannisto, Hannu.Peltonen, Reijo.Sulonen}@hut.fi

Abstract
Knowledge management has been a major problem
in the implemented configuration systems. One rea-
son for the difficulties is the complexity of the
product descriptions in these systems. The product
experts can no longer understand product the way it
is described. The problem is addressed in the object-
oriented spirit by looking for ways of making the
configuration product structure models more com-
prehensible. A data model for describing generic
product structures is defined. It forms a basis for
modelling the evolution of both product configura-
tion knowledge and delivered products.

Introduction

Many knowledge intensive systems have had problems
with knowledge maintenance. Product configuration
systems are no exception in this respect, e.g., XCON
(Barker & O’Connor 1989, McDermott 1993). There is
no universal agreement on the knowledge needed in
product configurators, let alone on the representation of
this knowledge. We therefore find it impossible to dis-
cuss configuration knowledge management without ref-
erence to what kind of knowledge is being managed.

The basic issue in configuration modelling is a
mechanism for describing structures of multiple product
variants within a single data model. Many different
methods have been used for modelling this generality in
product descriptions (Schönsleben & Oldenkott 1992,
van Veen 1991, Cunis et al. 1989, Mittal & Frayman
1989 and Heinrich & Jungst 1991). We identify two ba-
sic product structure modelling methods in these ap-
proaches, which we refer to as explicit and implicit
methods. We then define a data model which uses both
these methods in combination.

There is no single way of looking at products of a
company. Products can be classified according to various
criteria. A classification criterion suitable for one pur-
pose may turn out to be awkward in another context. We
try specifically to avoid this kind of problem by con-
structing our model explicitly for product configuration
purposes.

After definition of the model we discuss the configu-
ration knowledge management problem in the environ-
ment where the model would be used. Finally we outline
our vision for a research agenda for the evolution of con-
figuration models.

This paper reports ongoing work of the Product Data
Management Group at Helsinki University of Technol-
ogy.

Short Definitions of Basic Terms
A physical product is manufactured according to a spe-
cific product structure. A specific product structure is a
collection of component descriptions organised in a part-
of hierarchy. Each component description contains the
necessary information for making or ordering a compo-
nent. A specific product structure is sometimes called a
bill-of-materials (BOM) or a configuration.

In many companies a product can be varied according
to customer requirements and therefore actually refers to
a set of similar products. This set can be described with a
generic product structure, which corresponds to a num-
ber of different specific product structures. In a generic
product structure a generic component reference refers to
a set of alternative components.

A configuration process starts with a generic product
structure and customer requirements. Customer require-
ments are mapped to a technical specification, which
describes the customer needs in the language understood
in the configuration process. The goal of the configura-
tion process is to find a suitable (valid, complete and
possibly optimal) specific product structure that is
among the alternatives described by the generic product
structure. We do not assume any particular kind of con-
figuration process, it may be fully automatic or rely
partly or entirely on decisions made by a human.

A product can be described from many different
points of view, each potentially defining a different
product structure. In this paper, the generic product
structure, or configuration model as it is sometimes
called, describes only those aspects of the product that
are relevant during a configuration process.



�

Modelling Generic Product Structures

There are several possible ways of modelling generality
in product structures. We divide them here roughly in
explicit and implicit product structure description meth-
ods. The terms explicit and implicit indicate how directly
the generic product structure identifies the components
used. We use terms explicit or implicit model for a data
model that is based on an explicit or implicit product
structure description method, respectively. A single ge-
neric product structure can also employ both kinds of
methods.

We use the term ‘product structure’ here, although all
implicit methods do not aim at describing the organisa-
tion of the components in a part-of hierarchy. They may
connect the components in some other way than in a
part-of hierarchy or perhaps describe only the component
set and assume the structure to be well known or fixed.

In an explicit method the generic product structure is
described by stating the components, their organisation
in the part-of hierarchy and possible choices for them.
For example, a MountainBikeX has part frame which is
either MBFrameX or MBFrameY.

In an implicit method, the description consists of
knowledge about the compatibility of components, con-
nectivity of components or other constraints. For exam-
ple, in description of a display unit, the component
‘monitor’ may state that it needs a high resolution video
signal, and a particular graphics card may state that it
provides exactly that kind of signal. A T-connector may
state that it takes one video input signal and provides two
outputs of the same signal. There is no explicit descrip-
tion of the components of a working display unit. If two
monitors are needed for a certain system, one graphics
card and a T-connector with two monitors will do the
job.

It is also possible to use both explicit and implicit
methods in a single model. For example, on the explicit
side one may state that a product P has components a
and b, where a is either A1 or A2 and b is either B1 or
B2. Implicit knowledge in B2 may then say that it is in-
compatible with A1 and they should, therefore, not be
used in the same product.

In explicit models it is typically straightforward to
enumerate all possible specific product structures. Find-
ing the desired structure may still take too much time if
all the possibilities need to be investigated.

In a purely explicit model a selection between alterna-
tive components can be made without considering other
component selections. In practice, however, the alterna-
tives in some components depend on each other. Some-
times these dependencies can be solved with a global
context, which is established at the beginning of the con-
figuration process.

For example, suppose a product has component
‘motor’ with alternatives ‘220V’ and ‘110V’, and com-
ponent ‘power switch’ with analogous alternatives. The
global context for this product could include attribute

‘operating voltage’. After the context has been estab-
lished, the motor and the switch can be chosen with ex-
plicit rules. Alternatively one could use implicit rules
such as: if the product has a 110V (220V) motor, it must
have a 110V (220V) switch, or alternatively a 110V
(220V) motor cannot be combined with a 220V (110V)
switch.

Explicit model thus more directly tells what compo-
nents must be chosen for a valid configuration whereas
implicit model defines conditions that must be satisfied
by valid configurations.

We believe that explicit product structures are in many
cases easier to construct and understand than implicit
ones. Nevertheless, many products include validity con-
ditions that require implicit methods. The data model
that is outlined later in the paper therefore has an explicit
basis that is extended with implicit constraints.

In the following we give some examples of both ex-
plicit and implicit product structure description methods.

Sample Explicit Methods

Set of BOMs. This is a trivial case and not actually a real
generic product structure model. The method is, how-
ever, widely used in the industry for modelling even
large numbers of variants.

Generic, Variant and Parametric BOMs. These define
alternatives for certain components of a BOM and possi-
bly global variables for determining the choice.
(Schönsleben & Oldenkott 1992, van Veen 1991)

AND-OR Graphs. At each level of an AND-OR graph a
node breaks down to either its components (AND) or to
one selection between choices (OR). The AND and OR
levels alternate, so that an AND level is followed by an
OR level and vice versa.

Combined Classification and Component Hierarchies.
This is a sophisticated version of an AND-OR graph as a
combination of component and classification hierarchies.
There each non-leave node can be either divided into its
components (just like AND) or it can be specialised to its
subclass (a kind of an OR). This approach is used in SAP
Configurator (SAP 1994) and is a close relative of the
PLAKON model (Cunis et al. 1989).

Composite Instance Variable. Composite instance vari-
ables are used in object-oriented models for representing
components (Kim, Bertino, & Garza 1989). Such a vari-
able represents actually a set of components if its domain
is a class that has subclasses; any of its subclass being an
eligible component.

Sample Implicit Methods

If-then Rules. In many expert systems if-then rules can
be used for implicitly describing product structure. For
example, IF component A OR B is in configuration
THEN component X must be included, too.



�

Incompatibility and Compatibility Constraints. One
way of stating the possible uses of components is to state
which components can or cannot be with other compo-
nents in a configuration. These facts can be recorded as
n-ary tuples.

Interfaces, Ports and Connectors. These provide
deeper modelling for compatibility of components. The
basic idea is that in a configuration certain components
need, can or cannot be connected. This is modelled, for
example, by ports and connectors that must fit together
in a valid configuration (Mittal & Frayman 1989).

Resource-based Modelling. In resource based generic
product structure modelling the idea is that some compo-
nents consume something, such as, power, fuel, ventila-
tion, etc., while certain components supply these re-
sources. In a valid specific product structure all resources
need to be in balance. For example, the total produced
net power must be more than maximum consumption.
(Heinrich & Jungst 1991)

 Generic Product Structure Model

This section gives an overview description of the prop-
erties of a data model. It is based on our earlier work
(Peltonen et al. 1994). The model includes both implicit
and explicit product structure description methods. The
explicit description defines a superset of all valid specific
product structures and implicit methods are used to prune

out the invalid cases. In the following we first give an
example of a generic product structure using the model
and then explain the concepts in detail.

An Example of a Generic Product Structure in
the Model
Generic product structure description of P in Figure 1
declares that P has two components m and n. Component
m should be an S, while n should be either Y or Z. This
is an explicit product structure description. These defini-
tions are refined in subclasses P1 and P2. Component S
is a generic product structure of its own; it has one com-
ponent l. Finally, Y and subclasses of A and Z have no
components. In the figure, solid line represents is-a rela-
tionship; component relationships are not represented
graphically.

As an example of implicit constraints we use here re-
sources. In Figure 1 there is an example resource ResX.
It is a resource that is supplied by A1 and A2 and con-
sumed by Y, Z1 and Z2. Suppliers and consumers are
linked to the resource by dashed lines. These classes may
assign a value to ResX; a negative value meaning con-
sumption. A balance constraint for the resource is de-
fined in product P; it states that the components of P
cannot consume resource ResX more than they supply.

The explicit product structure limits the possible com-
ponent combinations, no other components but the de-
clared ones are allowed. Therefore, one can enumerate

P

P1 P2

S

S1 S2 A

A1 A2

main product 
data basec-classification

Configuration- 
related 

component 
data

ResX: int

comp m ≤ {S} 
comp n ≤ {Y, Z} 
ResSum(ResX) ≥ 0

A3

m ≤ {S1} 
n ≤ {Y, Z1}

l ≤ {A2}

comp l ≤ {A}

ResX := 200 ResX:= 150

Y
Z

Z1 Z2

ResX:= -120

ResX:= -160

ResX:= -180

n ≤ {Y, Z2}

component descriptions

mediator

Figure 1. Example generic product structure in the model.



�

all the possible components for the tuple (m, n, l) in P2
according to the explicit product structure:

(S1, Y, A1), (S1, Y, A2), (S1, Y, A3),
(S1, Z2, A1), (S1, Z2, A2), (S1, Z2, A3),
(S2, Y, A2),
(S2, Z2, A2).

The implicit resource constraint then prunes out the ones
where ResX consumption is greater than production. We
assume that ResSum in P returns zero if ResX is not
found in a component. The only valid combinations in
P2 for the component 3-tuple (m, n, l) are:

(S1, Y, A1),
(S1, Z2, A1), (S1, Z2, A2),
(S2, Z2, A2).

After enumeration, each possible specific product struc-
ture of a configuration model can be checked against
applicable constraints, including technical specification.
This provides a trivial method for finding a solution for
particular customer requirements. The existence of the
trivial method only shows that a solution, if one exists,
can be found; the method is hardly useful for a real con-
figuration process. More efficient heuristics is needed in
a practical application.

Main Concepts of Data Model
Classification Hierarchy. Our model is based on
classes. They are organised into a classification hierar-
chy. The properties of a class are inherited along the
classification hierarchy.

A large set of components cannot be managed without
organising it somehow. Classification is a useful tool in
product modelling; it provides means for organising, but
one must decide on the classification criteria. Compo-
nents can be classified, for example, according to the
functions they perform or the types of the manufacturing
processes producing them.

We therefore require that a classification of compo-
nent descriptions is created specifically for configuration
modelling. We call this classification hierarchy c-
classification.

Although, we here discuss only one c-classification, a
company may require different c-classifications for dif-
ferent product families. This means that same compo-
nents may have different classification and even different
properties in different product families. These compo-
nents should perhaps be somehow related or shared be-
tween the classifications. This is, however, an issue we
will not address in this paper.

The c-classification has one particular property that we
call component subtyping. Component subtyping states
that subclasses of a class C may always be used in place
of C in component descriptions of a generic product
structure. For example, if class MBFrame has subclasses
MBFrameX and MBFrameY, a generic component refer-
ence ‘MountainBikeX has part MBFrame’ means that a
MountainBikeX may have either MBFrameX or
MBFrameY as its frame.

Generic Component References. In basic object-
oriented product models components are represented by
instance variables, which are used for referring to the
components. The domain of an instance variable is a
class. If the class has subclasses, the instance variable
may also take as its value an instance of any of the sub-
classes (Banerjee et al. 1987). This is a property known
as subtyping.

Subtyping is a generic concept and, as such, has
nothing to do with components. For example, if A1 and
A2 are subtypes of A, this alone does not imply that they
are valid as component representations in place of A.
Therefore we have a more specific subtyping concept for
a classification where classes represent components. That
is what we call component subtyping. Component sub-
typing is not a property of any classification by accident.
A classification hierarchy, the c-classification in this
case, must be specifically constructed, with the help of
product experts, so that it is valid with respect to compo-
nent subtyping.

Component subtyping defines a one form of generality
for component descriptions—a component is not neces-
sarily from the domain class, since also the subclasses
provide valid choices. Generic product structure descrip-
tions, however, also need a more general mechanism for
defining component alternatives. For example, assume a
class A that has three subclasses A1, A2 and A3. For one
product A1 and A2 are valid component alternatives,
while for another A2 and A3 are the ones. There are no
classes that could directly be used as component domains
for these products, nor is there a simple way of defining
them.

In our model a generic component reference is de-
scribed as an instance variable and its domain as a non-
empty set of classes. This means that the value of the
variable must be a reference to one of the listed classes
or their descendants. If an ancestor of a class is also in
the domain, the class itself is redundant and can therefore
be removed. For these domains we use a special nota-
tion: c d {A, B}. This is a short for a constraint {c d A � c
d B}, where c d A means that c is a component instance
from class A or its decsendant.

One particular property we want to have for generic
component references is refinement. A subclass can re-
fine a component attribute by making its domain more
specific than in the superclass. More precisely, there are
two operations: 1) domain set may be replaced by its
proper subset and 2) in place of a class one can write its
subclasses. Both operations may be applied multiple
times. This allows definition of an abstract component
reference which may be refined in subclasses into more
concrete descriptions.

For example, component c in class C may have set {A,
B} as its component domain. This means that c must be
either an A or a B. If A has subclasses A1, A2 and A3,
the possible refinements for the domain of c in the sub-
classes of C include {A} and {A1, A2, B}. Refinement
of generic component references is present in only some



�

generic product structure models, e.g., in PLAKON
(Cunis et al. 1989).

Other Component Data
The c-classification is not be suitable for modelling all
the properties needed in configuration. Two classes that
share common properties may be placed far apart from
each other and cannot therefore inherit the common
properties along the c-classification. This is a conse-
quence of strictly enforcing component subtyping in the
construction of the c-classification. There is also another,
perhaps even more important, reason why all component
data cannot be defined in the c-classification. Component
data is used widely in a company, and in this picture con-
figuration is only one player. One cannot assume that all
component data needed in a configuration process would
also be primarily modelled and maintained in the c-
classification.

For these reasons we include in the model two other
sources for component data: main product data base and
additional configuration related data.

A main product data base represents here all the com-
ponent data that is maintained elsewhere in a company. It
need not be a single data base and its detailed structure is
not of great importance here. The main issue is that cer-
tain data items can be imported from the main product
data base to the c-classification. In Figure 1 importing of
properties from the main product data base is illustrated
by dotted lines.

For coupling the main product data base and the c-
classification a mediator is introduced between the two.
This mediator provides properties for the classes in the c-
classification; a class may refer to a property that is visi-
ble in the mediator. Such reference is effectively the
same as if the property was declared in the class. As a
difference, however, the relation to the origin of the
property in the main product data base is maintained.

Additional configuration related data defines proper-
ties that are tightly connected with the c-classification,
but do not have a single place there. As an example a
resource is an implicit product structure modelling
method that cannot always be easily expressed as a prop-
erty of a single class in the c-classification. This is be-
cause suppliers and consumers of a resource are not typi-
cally subclasses of the same parent class in the c-
classification; for instance, components that either supply
or consume electric current may be quite different.

Resources serve here only as an example of additional
configuration related data that cannot be nicely inherited
in the c-classification, they should not be taken as a key
characteristic of the model. Resources may be modelled
on top of the explicit product structure as additional data
items that can be imported in the c-classification. This
way a resource can be defined in single place and then
related to arbitrary component descriptions in the c-
classification. In Figure 1 this is shown by dashed lines.

In the balance constraint sum of resources in the com-
ponents of a particular specific product structure is used.
The sum is calculated by a special function ResSum,
which goes through all the components starting from the
one for which the balance constraint is defined. For each
component it checks whether the resource is visible in
the component and a value is assigned to it. If so, it adds
the assigned value to the sum and otherwise nothing.

Evaluation of a balance constraint involves recursive
transversal of all components of a specific product
structure. Evaluation as such is easy for a known specific
product structure. Computational problems may, how-
ever, arise for a mechanism that tries to find an appropri-
ate structure with a given initial constraints, i.e., a tech-
nical specification. We do not address here the problem
of satisfying a balance constraint or fixing it were it
false. In fact we assume the same as for the whole
model; the model only describes a set of valid specific
product structures, not how to find a particular one in a
configuration process.

Evolution in Generic Product Structures—
A Research Agenda

This section gives some guidelines for our future work
on configuration knowledge management.

Our special interest is to understand concepts needed
to describe the evolution of products and related com-
puter representations. In principle, we can distinguish
between two different kinds of change process. On one
hand, during their life-time the physical products as real
world objects are modified for a number of reasons: they
are being serviced, their functionality may be upgraded,
faulty components are being replaced by correct ones,
etc.

Modifications are in many cases made not by the or-
ganisation that made the products but by the customer
itself or by some more or less independent service or
maintenance company. Due to the increasing importance
of after sales activities and long life-cycles of products it
has become increasingly more important to maintain
consistent representation of product somewhere.

On the other hand, the generic product structures have
life of their own. The owner company introduces new
products, enhances existing models, replaces compo-
nents with newer ones due to the number of different
reasons. On some industries, such as electronics and in-
formation technology, these renewal processes are quite
hectic.

Both these change processes are difficult as such. We
have seen only few examples of systems capable of
maintaining accurate representations of delivered one-of-
a-kind products. The maintenance of the generic product
structures without exploding their complexity needs
powerful tools and policies which guarantee that they
remain manageable during their life-cycle. Unfortunately
these two processes are not, at least in theory, always



�

independent. A product designed and manufactured long
time ago under the presumptions of the generic product
structure effective at that time may be brought back to
the factory years later for functional upgrade. How to
relate the old product structures, i.e., physical and ge-
neric, to the currently used generic product structure?
We would like to look for conceptual framework which
might cope with problems of this nature at least in cer-
tain conditions.

Evolution of Physical Products
By physical products we mean the products that have
been manufactured and delivered to the customers. In the
following we discuss different kinds of modification
operations on physical products.

Figure 2 shows generic product structure, i.e., a c-
classification, at times T and T’. At the bottom of the
figure there is a rounded box for descriptions of physical
products. There a dot in a roughly shaped circle repre-
sents a physical product delivered to a customer. Each
“circle” encloses descriptions of physical products re-
lated to one specific product structure. Modifications that
change the structure of a physical product are illustrated
by arrows which move a description away from its origi-
nal specific product structure. Some modified descrip-
tions are still close to a “circle”. This suggests similarity,

e.g., functional equivalence, to the products of the re-
lated specific product structure.

Independent Maintenance. These include typical on-
field operations. One modifies the product according to
the need without considering the relation to generic
product structure or other information. It is very difficult
for a product management system to support this kind of
operations in any other way than by recording modifica-
tions and current state of physical products. At any rate,
the description of a physical product should be updated
to reflect the modified physical product.

Disciplined Maintenance. A company may define
service kits that do not modify the functionality of the
products but replace, for example, certain parts that may
suffer from ageing. If individual components are
changed, a company may, for example, have the policy
that each new component version must be compatible
with older ones, i.e., any old component version can be
replaced by a newer version. The resulting new specific
product structure is close to the original with a known
difference.

FODVV $ DW 7 FODVV % DW 7

F�FODVVLILFDWLRQ
DW 7

F�FODVVLILFDWLRQ
DW 7


SURGXFW
VWUXFWXUH �

SURGXFW
VWUXFWXUH Q

GHVFULSWLRQV RI
SK\VLFDO
SURGXFWV

LQGHSHQGHQW PDLQWHQDQFH

SURGXFW
VWUXFWXUH �


SURGXFW
VWUXFWXUH P


PRGHUQLVDWLRQ

UHFRQILJXUDWLRQ RSHUDWLRQ
V

FODVV $ DW 7
 FODVV % DW 7


PRGLILFDWLRQV
WR *36

XSJUDGH
DGYDQFHG
UHFRQILJXUDWLRQ

SURGXFW
VWUXFWXUH �

SURGXFW
VWUXFWXUH �


GLVFLSOLQHG
PDLQWHQDQFH

Figure 2. Evolution of Generic Product Structure and Physical Products.



�

Upgrade or Modernisation. These are true reconfigura-
tion operations, where the functionality of the product is
changed. An upgrade enhances the functionality of a
product, for example, by increasing certain maximum
capacity. A modernisation brings an old physical product
to the level of functionality of a newer product genera-
tion. One problem is that upgraded and modernised
products are different from the new configured ones,
even if they have the same functionality. That is because
the modified products consist of a mixture of old and
new components, while new products are made from
new components only. An upgraded product becomes
typically close to another product that offers higher ca-
pacity and a modernised product has the functionality of
a product of a later generation, typically the current gen-
eration at the time of the modernisation.

Advanced Reconfiguration. A configuration process
creates a specific product structure for a customer speci-
fication. Similarly, an advanced reconfiguration process
can produce a new specific product structure starting
from an old physical product. In general, advanced re-
configuration can produce an entirely different product
from any previously designed one.

Evolution of Generic Product Structures
We distinguish between three maturity levels for con-
figuration management environments on the road to-
wards a dream environment. A first level environment
has the capability of describing configuration knowledge
in a way that it can be maintained. A second level envi-
ronment stores, in addition, the full history of both ge-
neric product structures and descriptions of physical
products. Then, a third level environment, i.e., a dream
environment, also includes knowledge about the nature
of modifications. One would know in detail how two
generic product structures differ and be able to operate
with product structures of different times, e.g., upgrade
old physical products using new components.

Currently most configuration systems struggle with
the problems related to the first level. Knowledge man-
agement is still a real problem in configuration systems.
Much of the problem stems from the complexity of the
configuration models—they are “programmed” by com-
puter specialists and not understood by the product ex-
perts. One of the goals we hope to achieve is a structured
and understandable method for describing configuration
knowledge.

Modifications to the generic product structure result
from various sources. These include market situation,
customer demands, different regulations in different
market areas, advances in technology, corrections of old
designs, just to mention few. A company must have a
clear policy how these changes are incorporated to the
configuration knowledge. Definition of good practices is
a part of the overall solution.

Management of changes is essentially based on deci-
sions, typically made by humans. These decisions need

to be recorded and they can be used for describing the
relevant history of the whole model.

It is not clear which concepts are needed for storing
the evolution of generic product structures. A straight-
forward way is to create a copy of the whole configura-
tion model after each modification. In this much of the
information on changes is lost. For a better modelling of
the evolution one should record the changes of smaller
pieces of information. Classes, for example, could be
changed by creating new versions of them. The problems
arise then how class versions relate in classification hier-
archy and how to incorporate versions in generic product
structures.

In addition, the history of changes to the descriptions
of physical products needs to be retained. The real chal-
lenge is to incorporate the evolution of generic and
physical product structures in a useful manner.

For example, imagine the following scenario. A cus-
tomer has two products from the company: one three and
the other five years old. Last year a capacity upgrade
was made for the newer one. Now the customer wants to
know whether a similar upgrade would be possible for
the older one as well.

Given the full historical data, one can find out the
product configuration environment, e.g., configuration
model and components, at the time the upgrade of the
newer product took place, and naturally the current
situation. In addition, there would also be a full history
of service modifications.

Typically, the answer to the customer inquiry would
be positive, but usually an engineer is required to design
the needed modifications almost from scratch. With an
ideal environment the engineer might find the following
possibility: There is an modernisation package for the
old product to the level X and from there a modernisa-
tion package to the current level where the requested
capacity upgrade is directly possible with newest com-
ponents. These two modernisations can be combined, but
one must manually check the versions of components q, s
and l for compatibility.

Conclusions

Product configuration modelling is essentially based on
description of generality in product structures. We di-
vided the used methods two categories: explicit and im-
plicit and discussed briefly how previous approaches
relate to these. Our own approach uses both methods: a
generic product structure description has an explicit
structure as basis and implicit rules are used for pruning
out invalid structures. We believe that this would make
the generic product descriptions more clearer and there-
fore easier to construct and maintain.

The management of evolution of configuration knowl-
edge is a critical long term goal for a configuration mod-
elling environment. We approached the problem by de-
scribing the key elements in the state of the practice and
then painted a vision for the future work. This is an area



�

with plenty of open questions; many of them fundamen-
tally difficult. We try to emphasis the needs of the in-
dustry as criterion for selecting the course of future re-
search in the field of product data modelling and man-
agement.

Acknowledgements

This research has been partly funded by the Academy of
Finland.

References

Banerjee, J.; Kim, W.; Kim, H.-J.; and Henry, F. K.
1987. Semantics and implementation of schema evolu-
tion in object-oriented databases. In Proceedings of the
International Conference on Management of Data
(SIGMOD).

Barker, V. E., and O'Connor, D. E. 1989. Expert sys-
tems for configuration at Digital: XCON and beyond.
Communications of the ACM 32(3):298-318.

Cunis, R.; Günter, A.; Syska, I.; Peters, H.; and Bode,
H. 1989. PLAKON—an approach to domain-
independent construction. In Proceedings of the Second
International Conference on Industrial & Engineering
Applications of Artificial Intelligence & Expert Systems
IEA/AIE-89.

Heinrich, M., and Jungst, E. W. 1991. A resource-
based paradigm for the configuring of technical systems
from modular components. In Proceedings of the seventh
IEEE conference on Artificial Intelligence Applications.

Kim, W.; Bertino, E.; and Garza, J. F. 1989. Compos-
ite objects revisited. In Proceedings of the International
Conference on Management of Data (SIGMOD).

McDermott, J. 1993. R1 ("XCON") at age 12: Lessons
from an elementary school achiever. Artificial Intelli-
gence, 59(1-2):241-247.

Mittal, S., and Frayman, F. 1989. Towards a generic
model of configuration tasks. In Proceedings of IJCAI
89.

Peltonen, H.; Männistö, T.; Alho, K.; and Sulonen, R.
1994. Product configuration—an application for proto-
type object approach. In Mario Tokoro and Remo Pare-
schi, editors, Object Oriented Programming, 8th Euro-
pean Conference, ECOOP'94. Springer-Verlag.

SAP 1994. Der SAP Konfigurator (Reference Man-
ual).

Schönsleben, P., and Oldenkott, H. 1992. Enlarging
CAD and interfaces between PPC and CAD to respond
to product configuration requirements. In Pels H. J., and
Wortmann, J. C., eds., Integration in Production Man-
agement Systems.: Elsevier Science Publishers B.V.

van Veen, E. A., 1991. Modelling Product Structures
by generic Bills-of-Material. Ph.D. diss., Technische
Universiteit Eindhoven.


