
HELSINKI UNIVERSITY OF TECHNOLOGY

Department of Computer Science

Laboratory of Software Business and Engineering

Varvana Myllärniemi

Kumbang Configurator—A Tool for Configuring

Software Product Families

Master’s Thesis

Supervisor: Professor Tomi Männistö

Instructor: Professor Tomi Männistö

1

HELSINKI UNIVERSITY OF ABSTRACT OF THE

TECHNOLOGY MASTER’S THESIS

Author and name of the thesis:
Varvana Myllärniemi

Kumbang Configurator—A Tool for Configuring Software Product Families

Date: January 24th, 2005 Number of pages: 1+134

Department: Professorship:
Department of Computer Science, Laboratory of

Software Business and Engineering

T-76

Supervisor:
Professor Tomi Männistö

Instructor:
Professor Tomi Männistö

Software product families are an emerging trend that tries to cope with increasing

variability and challenges of reuse. Software products are derived from the family in

a prescribed way utilising common family assets. The derived product often includes

some amount of integrating glue code or even product-specific tailoring.

In the domain of traditional, mechanical products, configurable products have been

developed. Individual products are configured according to a predefined model, with

no need for adaptive or innovative design.

When comparing these two approaches, remarkable similarities are found. In a con-

figurable software product family, software products are configured based on a prede-

fined configuration model. Building the product usually requires no product-specific

programming.

The purpose of this thesis was to develop a tool for deriving product individuals

from configurable software product families. This tool, called Kumbang Configurator,

utilises existing modelling language Kumbang, which combines both feature-based

and architecture-based modelling methods. Kumbang Configurator prevents configu-

ration errors by checking whether the configuration is consistent and complete. This

configuration reasoning employs inference engine smodels. The implementation was

validated with two example cases.

Keywords: Software Product Family, Configuration, Tool Support

2

TEKNILLINEN KORKEAKOULU DIPLOMITYÖN

TIIVISTELMÄ

Tekijä ja työn nimi:
Varvana Myllärniemi

Kumbang-konfiguraattori—Työkalu ohjelmistotuoteperheiden konfigurointiin

Date: 24. tammikuuta 2005 Sivumäärä: 1+134

Osasto: Professuuri:
Tietotekniikan osasto, Ohjelmistoliiketoiminnan

ja tuotannon laboratorio

T-76

Työn valvoja:
Professori Tomi Männistö

Työn ohjaaja:
Professori Tomi Männistö

Ohjelmistotuoteperheet ovat saavuttaneet suosiota tapana vastata kasvaneeseen va-

rioituvuuteen ja uudelleenkäytön haasteisiin. Yksittäiset perheen ohjelmistotuotteet

johdetaan etukäteen määritellyllä tavalla, käyttäen hyväksi yhteisiä varantoja. Usein

derivoinnissa tarvitaan integroivaa koodia tai jopa tuotekohtaista räätälöintiä.

Tavallisista, mekaanisista tuotteista on kehitetty konfiguroitavia tuotteita. Yksit-

täiset tuotteet konfiguroidaan käyttäen hyväksi ennaltasuunniteltua mallia, lisäämättä

jälkikäteen muokkaavaa tai innovatiivista suunnittelua.

Näiden lähestymistapojen välillä on huomattavia yhteyksiä. Konfiguroitavassa

ohjelmistotuoteperheessä tuoteyksilöt konfiguroidaan ennaltasuunnitellun konfiguraa-

tiomallin pohjalta. Varsinainen tuotteen rakentaminen ei vaadi ollenkaan tuote-

kohtaista ohjelmointia.

Tämän diplomityön tarkoituksena oli kehittää työkalu tuoteyksilöiden johtamiseen

konfiguroitavasta ohjelmistuoteperheestä. Tämä työkalu, nimeltään Kumbang-

konfiguraattori, perustuu Kumbang-kieleen. Kumbang-kielessä yhdistyvät sekä omi-

naisuuslähtöiset että arkkitehtuurilähtöiset mallitustavat. Kumbang-konfiguraattori

tarkastaa konfiguraation oikeellisuutta ja valmiutta, ja täten ehkäisee konfiguraatiossa

syntyviä virheitä. Konfiguraatiopäättely käyttää hyväkseen smodels-päättelykonetta.

Toteutettu työkalu validoitiin kahdella esimerkkitapauksella.

Avainsanat: Ohjelmistotuoteperhe, Konfiguraatio, Työkalutuki

3

Acknowledgments

I would like to thank the following persons:

Timo Asikainen for his invaluable help and support - this thesis wouldn’t have seen

daylight without his knowledge of Kumbang and his willingness to answer all

my questions.

Professor Tomi Männistö for his support, guidance and suggestions for improve-

ment. He is clearly the best supervisor I’ve had so far. :)

Professor Timo Soininen for his comments and suggestions.

Andreas Andersson for his guidance on WeCoTin and suggestions for the implemen-

tation.

John MacGregor for allowing me to use a case from Robert Bosch GmbH.

Ville Partanen for providing the best home support one can ever have.

This research has been supported by National Technology Agency of Finland (Tekes)

and Academy of Finland (project number 51394).

Espoo, December 2004

Varvana Myllärniemi

Contents

1 Introduction 7
1.1 Background . 7

1.2 Thesis Structure . 11

2 Software Product Families 12
2.1 Basics . 12

2.1.1 Variability and Variation Points 14

2.1.2 Domain and Application Engineering 15

2.2 Domain Engineering in Software Product Families 17

2.2.1 Modelling Requirements with Feature Models 19

2.2.2 Modelling Product Family Architecture 21

2.3 Application Engineering in Software Product Families 24

3 Configurable Product Families 26
3.1 Background . 26

3.2 Modelling Configurable Product Families 28

3.2.1 Configuration Modelling Concepts 29

3.2.2 Example Configuration Model 31

3.3 Deriving Configurable Product Individuals 33

3.3.1 WeCoTin Configurator . 34

4 Configurable Software Product Families 37
4.1 Basics of Configurable Software Product Families 38

4.1.1 Configurable Product Base as the Highest Level of Reuse . . . 39

4.1.2 Applying Traditional Configuration Techniques to Software . 40

4

CONTENTS 5

4.2 Koalish, Forfamel and Kumbang . 42

4.2.1 Koala . 42

4.2.2 Koalish . 45

4.2.3 Forfamel . 48

4.2.4 Kumbang . 50

5 Research Aims 52
5.1 Research Objectives . 52

5.2 Research Questions . 53

5.3 Research Method . 54

5.4 Scope . 55

6 System Implementation 57
6.1 Requirements . 57

6.1.1 How To Obtain Requirements 57

6.1.2 Overall Description of the System 59

6.1.3 Detailed Requirements . 61

6.2 How the Tool Works . 66

6.2.1 Implementation of Configuration Reasoning 70

6.2.2 Implemented Requirements 71

6.3 System Architecture . 72

6.3.1 Language and Platform . 72

6.3.2 System Context . 74

6.3.3 Structural View . 74

6.3.4 Layered View . 78

6.3.5 Code Architecture View . 80

6.4 Contribution from Other Developers 85

7 System Validation 86
7.1 Case: Car Periphery System . 86

7.1.1 Description of the Case . 86

7.1.2 Constructing the Configuration Model 87

7.1.3 Configuration Task . 92

7.2 Case: Weather Station Network . 92

CONTENTS 6

7.2.1 Description of the Case . 92

7.2.2 Constructing the Configuration Model 93

7.2.3 Configuration Task . 95

7.3 Validation Conclusions . 96

8 Discussion 97
8.1 Evaluation . 97

8.1.1 Evaluation of Basic Requirements 97

8.1.2 Evaluation of Configuration Requirements 99

8.1.3 Evaluation of User Interface Requirements 100

8.1.4 Evaluation of Quality Attributes 102

8.1.5 Evaluation of Cases and Validation 105

8.1.6 Evaluation of Other Interesting Aspects 106

8.2 Related Work . 110

8.2.1 Using Traditional Configurators for Configuring Software . . 111

8.2.2 Mae . 116

8.2.3 Generative Programming and Domain-Specific Languages . . 119

8.2.4 Other Related Work . 120

8.3 Comparison with Research Questions and Objectives 122

9 Conclusions and Future Work 124

Bibliography 128

Chapter 1

Introduction

1.1 Background

An emerging trend in software development is increasing variation. Instead of a ho-

mogeneous pool of customers, each customer or customer segment has a unique set

of requirements. To satisfy these customers, one would have to include a potentially

large set of different capabilities in one software product. This approach is not always

feasible or even possible. For example, a hand-held device has a limited processing

and memory capacity, and thus software in such a device must be kept as small and

lightweight as possible. Further, software has to comply with varying hardware and

varying regulations and laws. All these factors increase variability in software prod-

ucts.

However, it is inefficient to separately develop variant products that share some

similar characteristics. In fact, if one reused existing pieces when developing new

variant products, one would be able to cut development costs. But practice has shown

that reuse, especially opportunistic and unplanned, is hard to apply effectively (Bosch,

2000).

A novel solution to this problem (managing variability with reuse) is applying soft-

ware product lines, also known as software product families (SPF) (Clements and

Northrop, 2001; Bosch, 2000). A software product family is a set of product indi-

viduals in which products are developed according to a common family architecture

and are constructed from common reusable software components.

A software product family consists of core assets; examples of core assets include

7

CHAPTER 1. INTRODUCTION 8

Figure 1.1: A simplified model of domain and application engineering. Domain engi-

neering produces core assets, while application engineering utilises these assets when

deriving individual products.

family architecture and reusable components (Clements and Northrop, 2001). A clear

distinction is made between two processes: domain engineering and application engi-

neering (see Figure 1.1). Domain engineering is interested in describing the domain

and its common and variant properties, while application engineering is interested in

deriving individual products from the product family. Domain engineering activities

produce core assets, which are then used during application engineering.

The variability of the software product family manifests itself on many levels.

Firstly, there is variability on the requirements level. Software product family research

uses the term feature to represent an abstraction of requirements. There isn’t one com-

mon definition of a feature, but it has been defined as “an end-user visible characteristic

of a system” (Kang et al., 1990) or as “a logical unit of behaviour that is specified by

a set of functional and quality requirements” (Bosch, 2000). Secondly, the variability

manifests itself in the family architecture. A software architecture is the organisation

of a system that consists of components, their relationships, and the principles that

guide system design (IEEE Std 1471, 2000). Thirdly, the variability manifests itself in

the implementation units that are part of the software family.

If one applies software product family paradigm, satisfying varying customer re-

quirements becomes a manageable task: one doesn’t have to start from scratch when

creating a new product individual. Still, the creation of product individuals requires de-

velopment effort. In addition to selecting the desired features and components and in-

tegrating the components with glue code, the product derivation process might require

CHAPTER 1. INTRODUCTION 9

tailored, customer-specific components or modifications to the family architecture.

The idea of mass-customising products from a common product family is not new.

In the domain of traditional, mechanical products this approach has been successfully

applied for many years. To minimise customer-specific tailoring, one has developed

this approach even further: a configurable product family is a product family where

all product instances are derived in a routine manner from pre-existing components.

The derivation of product individuals is called a configuration task. Because this con-

figuration task can be a complex process, there are several tools to aid it; such a tool

is called a configurator. One of these tools is WeCoTin configurator (Tiihonen et al.,

2003), which utilises an inference engine smodels (Simons et al., 2002) for configura-

tion reasoning.

Meanwhile, software engineering community has identified that reuse can happen

at different levels (Bosch, 2002). When the domain is stable and well-known, it is

possible that one can derive a product individual using only existing reusable assets.

The derivation happens in a routine manner; thus one can say that products are not

developed but configured from the family assets. This approach is often called a con-

figurable software product family (CSPF) (Männistö et al., 2000). Product individuals

are composed of pre-existing assets in a routine manner, and actual implementation

requires either no additional programming or just adding simple glue code. This ap-

proach is more or less analogous to traditional configurable product families.

However, one often needs tool support for configurable software product families,

as has been the case with traditional configurable product families. There are several

reasons for this. Firstly, tool support enables routine and automated derivation with

only minimal effort. Secondly, it is typical that there are dependencies between dif-

ferent family elements; for example, one feature might exclude another. Especially in

case of a large family, it might be extremely difficult or at least error-prone to resolve

these dependencies manually.

In order to utilise tool support, the domain knowledge must be transferred to the

tool. Some approaches encode this knowledge in the tool implementation itself. How-

ever, if one wants to provide a tool that is independent of the domain, one needs to

separate the domain knowledge into a description that is given to the tool. In case

of configurable software product families, this description is called a configuration

model. A configuration model is an unambiguous and machine-readable description

CHAPTER 1. INTRODUCTION 10

that portraits the commonality and variability in the family.

But since similar problems have been tackled with traditional product configura-

tion earlier, one should investigate on applying these ideas to software. Can existing

modelling mechanisms for traditional products be used for modelling software prod-

uct lines? What are the differences between software and traditional products, and

how do these differences affect the situation? Moreover, can one use existing product

configurators for configuring software?

Since applying techniques from traditional product configuration to software prod-

uct families is a novel research area , there aren’t any certain answers to these ques-

tions. There exists several examples on how one could configure software using tradi-

tional configurators, but it is unclear whether these tools can be used in all situations.

There exist three modelling languages, Koalish, Forfamel, and their combination

Kumbang, that have been developed as a part of the research conducted in this area.

These languages take their conceptual and formal basis from the traditional product

domain, which enables the use of existing configuration techniques and tools. Yet they

exhibit concepts that are specific to the software domain. In essence, these languages

provide means for describing the product family in a configuration model. This model

can then be used in the product derivation process.

Koalish (Asikainen, 2004) is a modelling language that is derived from software

architecture description language Koala by adding mechanisms for variability. Thus it

offers the possibility to manage variability at the architecture level. In contrast, For-

famel (Asikainen, 2004) adapts and synthesises existing feature modelling languages

that have been proposed for software product families. Thus it is meant for managing

variability at the requirements level. Kumbang combines the ideas of Koalish and For-

famel into one language. All these languages are based on a configuration ontology

for traditional product families. Further, they are provided a formal basis by mapping

them to a general-purpose weight constraint rule language (WCRL). This mapping

enables the use of smodels inference engine (Simons et al., 2002) for configuration

reasoning.

A following question arises: how can one implement a software configurator tool

that utilises Koalish, Forfamel and Kumbang languages and applies existing tool sup-

port from traditional product configuration domain? This is the question this thesis

tries to answer.

CHAPTER 1. INTRODUCTION 11

1.2 Thesis Structure

The rest of the thesis is organised as follows. Chapter 2 introduces software product

families and discusses domain and application engineering activities. Chapter 3 dis-

cusses the concepts of traditional configurable product families and the methods used

in the configuration. Chapter 4 discusses how these two approaches can be combined,

and introduces Koalish, Forfamel and Kumbang. Together these chapters constitute

the literature survey, which gives background and motivation for the the actual re-

search conducted in this thesis.

Chapter 5 presents aims of this research, such as research questions and goals,

research methods used and scope of the research. Chapter 6 describes the system that

was developed to meet the research aims. Chapter 7 validates the system by presenting

two example cases. Chapter 8 discusses and evaluates the results and does comparison

with other related work. And finally, Chapter 9 draws conclusions and suggestions for

future work.

Chapter 2

Software Product Families

2.1 Basics

The idea of reuse is not new in software engineering. Software systems are complex

and their development is time-consuming and error-prone. Thus reuse has been seen

as a mean to alleviate these problems: instead of developing a software product from

scratch, one would be able to compose a product out of existing pieces. But it seems

that software reuse has failed to deliver on its promises. Since the first attempts at

software reuse, one has learned two important lessons. First, opportunistic reuse is not

effective in practice; reuse must be a planned and proactive effort. Second, bottom-

up reuse does not function in practice; successful reuse programmes are required to

employ a top-down approach and develop components that fit the higher-level structure

defined by software architecture. (Bosch, 2000, Chap. 1)

Software product families (also known as software product lines) are a rapidly

emerging paradigm that provides means to incorporate reuse as a part of software de-

velopment (Clements and Northrop, 2001; Bosch, 2000). The idea of software product

families is simple: instead of developing variant products independently, one reuses

existing components that are designed to be reused.

The terms product line and product family seem to have slightly different mean-

ings, although they are often used as synonyms. A product line is a set of systems

scoped to satisfy a given market need, while a product family is a set of systems shar-

ing enough common properties to be built from a common set of assets (Czarnecki

and Eisenecker, 2000). Thus a product line isn’t necessarily a product family and vice

12

CHAPTER 2. SOFTWARE PRODUCT FAMILIES 13

versa. But the distinction between these two is not always so clear—some use these

terms interchangeably. For example, Software Engineering Institute (SEI) defines soft-

ware product line as “a set of software-intensive systems that share a common, man-

aged feature set satisfying a particular market segment’s specific needs or mission and

that are developed from a common set of core assets in a prescribed way” (Northrop,

2002). This definition clearly includes both aspects: satisfying market needs and being

developed from common set of assets. Thus it can be argued that these terms are more

or less equal. For consistency, the term “product family” is used throughout this text.

The definition of SEI uses the term core asset. Core assets are the building blocks

of software product families; these include the architecture, reusable common compo-

nents, documentation, requirements, test cases and so on. The architecture is the key

among these assets, since it describes the overall structure of the family and tells how

product individuals are composed from reusable components “in a prescribed way”.

As said earlier, software reuse in general hasn’t been able to deliver its promises.

So why does reuse in software product families work? There are several reasons for

this.

Firstly, past reuse agendas were mainly concentrating on fortuitous small-grained

reuse. Software developers wrote small-sized components for one application, and

added these components to a reuse library. Further, there was rarely support for locat-

ing, configuring and integrating components in the reuse library. Consequently, it was

often more effective to write a new component from scratch than to use an existing

one. In a software product line approach, the reuse is planned, enabled and enforced.

Reusable assets include more than just components. Further, all assets are designed to

be reused, designed so that they fit the overall product family. (Clements and Northrop,

2001)

Secondly, reuse was often seen as a technical activity only. However, software

product families are as much about business practices as they are about technical prac-

tices (Northrop, 2002). Applying software product families is a strategic decision

which requires management commitment (Northrop, 2002) and even organisational

changes (Bosch, 2000).

And finally, software product families are not a solution to every situation. It cer-

tainly costs more to develop reusable common assets than to develop components for

one application only. In order to gain benefits, one has to derive several products from

CHAPTER 2. SOFTWARE PRODUCT FAMILIES 14

the product family that use these assets. Bosch (2000) identifies three primary issues

that determine the applicability of the product family approach: amount of commonal-

ity between single products, ownership of software and negotiability of requirements.

If these three aspects are fulfilled to a sufficient extent, the software product family

approach can be applied successfully (Bosch, 2000).

2.1.1 Variability and Variation Points

There are are two concepts that often come up when discussing software product fam-

ilies: commonality and variability.

Commonality is the functionality or quality that all the products in the product

family share. Since commonalities possess a high reuse potential in the family scope,

they should be incorporated as part of the reusable common components (Geyer and

Becker, 2002). In contrast, variability describes how products in the family differ

from each other; it is the ability to change or customise a system. Variability might be

expressed as a set of optional or alternative elements, as a numerical range, or it might

simply be an open issue (van Gurp et al., 2001).

A concept closely related to variability is variation point. A variation point is

characterised as a location in a software asset where variation will take place (Geyer

and Becker, 2002). Thus variation points reflect the variability found in the assets.

There is a n to m relation between variation points and variabilities: selection of one

variant might affect several variation points, and vice versa (Geyer and Becker, 2002).

Associated with each variation point is its binding time, which is the moment at

which the decision is made and the variability is resolved (Geyer and Becker, 2002).

For example, variation point might be resolved at the design stage, during the compi-

lation, or even at runtime (compare to Figure 2.1).

The trend has been towards later binding of variation points: one wants to delay

decision making to the latest possible moment. The situation can be depicted as two

life-cycle funnels in Figure 2.1. The space between the arrows represents the amount

of variability in the system. At each step of development, one makes design decisions

that limit the number of possible systems. In a software product family, the delayed de-

cision making corresponds to late binding of variation points: variation is not resolved

until later stages of product development. (van Gurp et al., 2001)

CHAPTER 2. SOFTWARE PRODUCT FAMILIES 15

Figure 2.1: Two systems with early and delayed variability (van Gurp et al., 2001)

However, later binding doesn’t come without a cost. For example, if binding is

delayed until runtime, the running application must include implementation for all

possible variations. This potentially increases memory consumption. In some cases

the cost of delayed binding might simply be too much. An example of this case is

Linux Familiar: one cannot install all possible Linux Familiar packages into a hand-

held device, since that would consume too much memory (Ylinen et al., 2002).

2.1.2 Domain and Application Engineering

An important characteristic of a software product family is the separation of two

equally important processes: domain engineering and application engineering.

Domain engineering is the activity that designs and produces core assets of the

family, while application engineering activities develop individual products based on

these core assets. Weiss and Lai (1999) define domain engineering as “a process of

creating the production facilities for a family”, while application engineering is de-

fined as “a process for rapidly creating members of a family (applications) using the

production facilities for the family”.

In other contexts, these two separate processes are called with different names.

Some call these processes development and deployment (Bosch, 2000), or software

product family development and product derivation (Männistö et al., 2000), or even

core asset development and product development (Clements and Northrop, 2001).

CHAPTER 2. SOFTWARE PRODUCT FAMILIES 16

Figure 2.2: Example activities in both domain engineering and application engineer-

ing. The core assets serve as links between these activities. (Figure modified and

compiled from Thiel and Hein, 2002a; MacGregor, 2002; SEI Software Technology

Roadmap, 1997, p.160)

In practice, it has been reported that a successful software product family pro-

gram must consider this separation of domain and application engineering, even at

organisational level. When pressure for the next product release is high, it is easier

to add product-specific features than to develop core assets. Consequently, effort is

geared from domain engineering towards application engineering, which diminishes

reuse potential. One solution is to dedicate parts of the organisation for domain engi-

neering only. This ensures that releases of the family are not degenerated into separate

products. (Bosch, 2000)

The separation of domain and application engineering is also highlighted by Soft-

ware Engineering Institute (SEI). SEI defines three essential activities that constitute

product family development. These activities are called core asset development, prod-

uct development and management (Clements and Northrop, 2001). Besides domain

engineering and application engineering, this definition separates management as an

important activity. This partly reflects the idea that applying software product families

is a planned and managed effort.

Figure 2.2 identifies some example activities in both domain engineering and appli-

CHAPTER 2. SOFTWARE PRODUCT FAMILIES 17

cation engineering. According to Figure 2.2, domain engineering contains three basic

activities: product family analysis, product family architecting and product family im-

plementation. These activities produce a feature model that describes the features of

the family, a product family architecture and reusable components and implementation

units. In contrast, application engineering activities derive the product features from

the family feature model, create the product architecture, and finally implement the

product utilising reusable components.

Although the model shown in Figure 2.2 corresponds to the approach taken in this

thesis, it worth noting that the activities and core assets listed in Figure 2.2 are just

examples. There are some approaches that do not utilise feature models at all, and

some approaches that generate needed components during application engineering.

The following sections discuss domain engineering and application engineering

in more detail. Section 2.2 discusses some relevant aspects of domain engineering,

especially how product family features and architecture can be modelled. Section 2.3

shows how one can derive product individuals based on these models.

2.2 Domain Engineering in Software Product Families

Domain engineering (also known as core asset development, or software product fam-

ily development) is the activity that produces and maintains core assets in a software

product family. These core asset include not just software components, but models

that describe the product family. As shown in Figure 2.2, these models might include

feature models and product family architecture. Figure 2.3 shows how Thiel and Hein

(2002a) see the typical activities in domain engineering (which they call core asset

development), and how these activities produce some of the core assets.

Product line analysis (see Figure 2.3) is interested in describing the domain and

its requirements. This analysis partly resembles traditional requirements engineering

processes, but there is one special issue that should be concerned: variability. Prod-

uct family requirements must capture both commonality and variability found in the

products. There are several approaches for describing product family requirements,

many of which are feature-oriented. Section 2.2.1 discusses these feature modelling

approaches more thoroughly.

After product line analysis is done and family requirements are known, product

CHAPTER 2. SOFTWARE PRODUCT FAMILIES 18

Figure 2.3: Typical activities in core asset development, and how they relate to main

core assets (Thiel and Hein, 2002a)

line architecting (see Figure 2.3) produces the product family architecture. This ar-

chitecting phase resembles traditional architecture design, but again variability brings

its twist. For example, Bosch (2000) discusses how functionality-based architecture

design could be applied to designing a product family architecture. Again, the family

architecture should be able to depict the variability in the family. A couple of methods

for modelling software product family architectures are discussed in Section 2.2.2.

Finally, product line design and implementation (see Figure 2.3) produces the

actual reusable components and other implementation units. This activity includes

specifying requirements for individual components, designing and implementing them

(Bosch, 2000).

As was seen in the activities discussed above, handling variability is as essential

part of domain engineering. Variability affects all product family artefacts, from re-

quirements to code. Despite this, variability is often underlooked (Thiel and Hein,

2002a): designers might give variability incidental treatment. What is needed is a sys-

tematic and explicit way of expressing and modelling variability in software product

families (Thiel and Hein, 2002a).

As is illustrated in Figure 2.3, family requirements, architecture and reusable com-

ponents are all related to each other. The variability in the family can be traced from

requirements to architecture and from architecture to components. As Thiel and Hein

(2002a) point out, product family requirements and architecture depict the system from

different perspectives—variation points in the requirements manifest themselves as

variation points in the architecture. Thiel and Hein (2002a) raise two observations

CHAPTER 2. SOFTWARE PRODUCT FAMILIES 19

about this correspondence. Firstly, variation points in the architecture do not introduce

new variability, they are just manifestations of variation points in the requirements.

Secondly, variation points in the requirements can be mapped to several variation

points in the architecture, and vice versa.

The following sections discuss different approaches for modelling variability in

both requirements and architecture. Section 2.2.1 presents feature modelling concepts

for requirements, while Section 2.2.2 presents approaches for architecture modelling.

2.2.1 Modelling Requirements with Feature Models

In many approaches, a feature model is an essential result of product family require-

ments analysis. Feature models capture product family members’ functional and non-

functional features, as well as their commonalities and variabilities. (Thiel and Hein,

2002a)

There are several definitions of features, but none of them seem to unambiguously

capture the concept. A feature can be seen as a characteristic of a system that is visi-

ble to the end-user; for example, when a user buys an automobile, a decision must be

made about which transmission feature (automatic or manual) the car will have (Kang

et al., 1990). But this requirement of direct effect on end-user might sometimes be too

restrictive. Therefore, a broader definition is made: a feature is a distinguishable char-

acteristic of a concept that is relevant to some stakeholder of the concept (Czarnecki

and Eisenecker, 2000). However, this definition is quite broad, since it could cover

almost anything in a software system.

One of the most widely-known feature modelling approach and the first one to

introduce feature models is Feature-Oriented Domain Analysis (FODA) (Kang et al.,

1990). FODA is a method discovering and representing commonalities among related

software systems; its primary focus is the identification of features of the software sys-

tem. The FODA process consists of three phases: context analysis, domain modelling

and architectural analysis. Domain modelling is the key among the FODA process,

since it produces the feature model. A FODA feature model consists of the following

four elements:

Feature diagram a hierarchical composition of features

Feature definitions description of features, including classification of binding time

CHAPTER 2. SOFTWARE PRODUCT FAMILIES 20

Figure 2.4: An sample feature diagram describing feature hierarchy in a car (Kang

et al., 1990). Every car must have transmission and horsepower, but air conditioning

is optional. Transmission can be either automatic or manual. In addition, the figure

shows one composition rule and one rationale for this diagram.

Composition rules tells which feature combinations are legal

Rationale reasons for selecting or not selecting features

Figure 2.4 shows an example of a feature diagram, which also includes a compo-

sition rule and a rationale. This diagram illustrates some of the basic ideas of feature

models. Features are organised in a tree, and the structure of the tree reflects the struc-

ture of the features: a particular feature cannot be selected into a system if its parent is

not selected. A mandatory feature (feature without decorations) must be selected into

a system when its parent is selected. An optional feature (empty circle) may or may

not be selected. Arcs represent alternatives between different features - they form a set

from which exactly one feature can be chosen. Similar or roughly similar notations are

used in many other feature modelling methods.

Besides FODA, there exist numerous other approaches for modelling features.

Feature-Oriented Reuse Method (FORM) (Kang et al., 2002) extends FODA to incor-

porate reuse-oriented development methods. Czarnecki and Eisenecker (2000) extend

FODA diagrams with several new concepts, such as or-features, alternative or-features

and so on. Later on, they also propose adding cardinalities and attributes to feature

CHAPTER 2. SOFTWARE PRODUCT FAMILIES 21

models (Czarnecki et al., 2002, 2004). Furthermore, one approach proposes external

features, which are features that are external to the system, but that are still used by

the system - for example, features offered by a target platform (van Gurp et al., 2001).

Finally, this work is based on a synthesised feature modelling method called Forfamel

(see Section 4.2.3).

However, despite the ample variety of different feature modelling methods, they

often lack rigorous semantics. The example FODA diagram in Figure 2.4 shows some

of the problems with vague semantics. The diagram implies that feature “horse power”

has something to do with numbers, since the composition rule says that horse power

must be more than 100. However, the notation of feature “horse power” is exactly sim-

ilar to notation of feature “transmission”, although transmission definitely has nothing

to do with numbers. These and other similar issues limit the use of feature models to

human reading only. Without rigorous semantics, they cannot be used in computer-

aided deduction. Only lately has one tried to define the semantic basis for feature

models (see e.g. Asikainen, 2004; Czarnecki et al., 2004).

2.2.2 Modelling Product Family Architecture

Although it is widely known that architecture is a central product family asset, and that

architecture for a software product family must portrait the variability in the family,

there are only few approaches for actually depicting variability in architecture. This is

in clear contrast with the number of methods proposed for describing requirements of

a product family.

Architecture Description Languages (ADL) provide dedicated languages and nota-

tions for describing software architectures. However, none of the ADLs offer explicit

mechanisms for describing the variability and optionality in architectures (van der

Hoek et al., 1999). It is certainly possible to capture some aspects in some languages,

but this often quickly leads to a complicated and chaotic architectural description

(van der Hoek et al., 1999).

Although van der Hoek et al. (1999) claim that ADLs aren’t really suitable for de-

scribing variability, Koala (van Ommering, 2004) has been used for building software

product populations at Philips. This is possible, since product populations are built by

plugging reusable components to into product-specific framework. Thus Koala does

CHAPTER 2. SOFTWARE PRODUCT FAMILIES 22

Figure 2.5: Figure (a) shows how different types of variants could be described with

subtyped numbers. Figure (b) shows how a variant could be decomposed into modules.

(Bachmann and Bass, 2001)

not need to provide explicit mechanisms for variability. For further discussion about

Koala and its variability mechanisms, please refer to Section 4.2.1.

Bachmann and Bass (2001) propose a notation for describing variability of soft-

ware modules. In particular, they distinguish different types of variants: optional,

alternative or a set of several alternatives or options. To support these and all possi-

ble combinations, they offer notation shown in Figure 2.5. However, the numbering

scheme they use differs from the typical way cardinalities are expressed. For exam-

ple, they represent an optional element with number zero, while optionality is often

described with cardinality [0...1]. Further, Bachmann and Bass discuss variation

points as a mechanism to build a connection from features to places in the architecture

that are designed to support those variations. However, their ideas of variation points

seem to be contradictory with the notion that variation points manifest themselves in

both feature models and architecture models (see e.g. Thiel and Hein, 2002a).

Another approach is presented by Thiel and Hein (2002b). They propose an exten-

sion to IEEE 1471 recommended practice for architectural description (IEEE Std 1471,

2000) to support product-family specific issues. In particular, they propose four basic

extensions: product line extension, feature variability extension, architecture variabil-

CHAPTER 2. SOFTWARE PRODUCT FAMILIES 23

ity extension, and design element extension. Out of these extensions, architecture

variability extension covers the explicit representation of variability in the architec-

tures. It contains an architectural variability model, which is described by architec-

tural variation points, which in turn address architectural view models of the IEEE

1471 recommendation.

Extensions proposed by Thiel and Hein (2002b) do not commit to any particu-

lar way of describing architectural variation points or architectural variability models.

However, they present an example how their extensions could be applied in practice.

In effect, their extensions separate the actual architectural model (that describes the

structure of the system) from the variability found in the architecture. This separation

has its pros and cons: it makes the derivation of a particular product architecture easier,

but it may hinder the understandability of the whole product family architecture.

Yet another method for describing variability in the architectures is xADL2.0 (van der

Hoek, 2004) and its supporting environment Mae (Roshandel et al., 2004). xADL2.0

is an architectural description language that is build as a set of extensible XML (eX-

tensible Markup Language) schemas. It supports both space variability (traditional

variability) and time variability (evolution). For space variability, it recognises op-

tional elements, variant elements and optional variant elements. Variabilities are man-

aged and resolved with Boolean guards. Mae provides support for the specification

of these variabilities, for resolving these variabilities, and for consistency checks. In

general terms, this approach aims to represent the same concepts as in many ADLs,

namely components, interfaces and connectors. However, this solution is language-

independent, since the elements used in the descriptions can be tailored. Mae is further

discussed in Section 8.2.2.

And finally, the architectural modelling language that is the basis of this work is

Koalish (Asikainen, 2004), which provides several mechanisms for explicitly describ-

ing variability. Koalish is presented in Section 4.2.2.

CHAPTER 2. SOFTWARE PRODUCT FAMILIES 24

Figure 2.6: How individual products are derived using the product family feature

model and product family architecture (Thiel and Hein, 2002a)

2.3 Application Engineering in Software Product Fam-

ilies

Application engineering (also known as product development, or product derivation) is

the process of deriving product individuals from a software product family. In essence,

the whole idea of setting up a software product family is to make product derivation as

easy as possible. This is achieved by providing reusable assets that can be used in the

deployment of product individuals.

Figure 2.6 (Thiel and Hein, 2002a) illustrates how product development can utilise

feature model and architectural model. The feature model of the product family acts

as a starting point for deriving the product. The feature configuration process selects

the features for the individual product, and the result is a description of the product

features. After that, architecture configuration process determines the product archi-

CHAPTER 2. SOFTWARE PRODUCT FAMILIES 25

Figure 2.7: Artefacts that are produced during the product instantiation process

(Bosch, 2000, Chap. 12)

tecture based on the product family architecture and product-specific features. The

result is a derived architecture that conforms to product features. It also serves as a

basis for potential customisations in the architecture-adaptation process, which yields

the actual product architecture. (Thiel and Hein, 2002a).

Another approach for product instantiation activities is given by Bosch (2000,

Chap. 12). The artefacts that are produced in this process are depicted in Figure 2.7.

Firstly, one needs to specify the product-specific requirements and produce the cor-

responding feature model (called feature graph in Figure 2.7). Secondly, the product

architecture is derived from the product family architecture. This derivation might

include activities such as pruning unneeded parts of the architecture, extending the

architecture with product-specific features, resolving conflicts, and assessing the ar-

chitecture. After that, one needs to develop components that match the derived ar-

chitecture. This can include both selection and instantiation of existing product family

components, and development of product-specific components. Naturally the intention

is to use existing product family components to the widest possible extent. After the

components have been instantiated, they are integrated into one product and the system

and its components are validated. Finally the product is packaged and released.

These two approaches are roughly similar but address the issue from different per-

spectives. Thiel and Hein (2002a) cover the earlier activities (selecting features, deriv-

ing and adapting architecture), while Bosch (2000) shows more details concerning the

later stages (developing and building the implementation).

Chapter 3

Configurable Product Families

Chapter 2 discussed how software development has been organised into software prod-

uct families. Meanwhile, product families have been previously utilised in the domain

of traditional, mechanical products. A configurable product family is such that indi-

vidual products are configured from pre-designed assets in a routine manner, with no

need for innovative design. Thus this activity assumes that the product is assembled

from a fixed set of well-defined components, and that these components interact with

each other in a predefined way (Sabin and Weigel, 1998).

This chapter presents the basic concepts of configurable product families. In par-

ticular, this chapter discusses two topics that are relevant to this thesis: how config-

urable product families are modelled, and how configurator tools are used for deriving

individual products. Section 3.1 gives a brief overview of the basic concepts of con-

figurable product families. Section 3.2 describes how the domain knowledge of the

product families can be modelled, while Section 3.3 discusses the tools and techniques

that are used for deriving the product individuals from the product family.

3.1 Background

The industrial revolution, that is, the transition from cut-to-fit craftsmanship to the au-

tomated mass-production of goods from interchangeable parts, took about 200 years

(Czarnecki and Eisenecker, 2000). Although products are still being mass-produced,

customers increasingly demand adaptation to their own requirements. However, pro-

ducing a specific design for each customer is not economical. Instead, producers use

26

CHAPTER 3. CONFIGURABLE PRODUCT FAMILIES 27

standardised sets of parts that can be configured into products satisfying a wide range

of requirements (Faltings and Freuder, 1998). This kind of hybrid between mass-

production and customisation is often called mass-customisation.

Mass-customisation affects both product-realisation and order-realisation processes

of the organisation. At the product-realisation level, the goal shifts from designing sin-

gle products towards designing families of products. At the order-realisation level,

one needs to understand the requirements of the customer and to configure a product

individual description to match those needs. (Sabin and Weigel, 1998)

According to Tiihonen et al. (1998), a configurable product has the following prop-

erties:

1. Each delivered product individual is tailored to the individual needs of an indi-

vidual customer.

2. The product has been pre-designed to meet a given range of different customer

requirements.

3. Each product individual is specified as a combination of pre-designed compo-

nents or modules. Thus, there is no need to design new components as a part of

the sales-delivery process.

4. The product has a pre-designed general structure.

5. The sales-delivery process requires only systematic variant design, not adaptive

or original design.

Thus a configurable product is configured from a pre-designed configurable prod-

uct family to meet the requirements of a given customer. This derivation activity is

called a configuration task, and it produces a configuration, which is a description of

the product individual to be delivered. As stated in the above definition, configuration

task is performed in a routine manner, with no need for creative design or product-

specific implementation.

Tiihonen et al. (1998) make a separation between the product development process,

which produces a model of the family, and the configuration process, which produces a

specific configuration. This distinction between two phases is also mentioned by Sabin

and Weigel (1998), although they call these phases describing the domain knowledge

and specifying the desired product. In any case, the main target of the first activity

CHAPTER 3. CONFIGURABLE PRODUCT FAMILIES 28

is to produce a description of domain, its elements and how these elements can be

combined. This description of the family is often called a configuration model, and

it contains all the information on the possibilities of adapting the product to customer

needs (Tiihonen et al., 2003).

Often the required flexibility of a product family means hundreds or even thou-

sands of configurable parts, which in turn increases the possibility of errors during

configuration. These errors can create majors slips in the schedule and lead to costly

iterations (Sabin and Weigel, 1998). Since computing correct and optimal configura-

tions quickly is so critical, the situation strongly favours automating the configuration

process (Faltings and Freuder, 1998).

Thus the configuration task must often be supported by dedicated tools that prevent

configuration errors. A product configurator (or a configurator for short) is a tool

that enables the creation and management of configuration models and supports the

configuration task that produces a description of the product specification (Tiihonen

et al., 2003).

There are several areas applicable for configurable product families. Examples in-

clude computer industry (PC configuration), telecommunication industry (configura-

tion of switching systems) and automotive industry (car sales configuration) (Felfernig

et al., 2001).

3.2 Modelling Configurable Product Families

Instead of explicitly defining a set of product variants in a product family, a config-

urable product is associated with a configuration model that contains all the informa-

tion of the possible products. This model defines a set of pre-designed components,

rules on how these can be combined into valid products and rules how one can achieve

the desired functionality for the customer (Tiihonen et al., 1998).

As Sabin and Weigel (1998) point out, most of the complexity of solving the con-

figuration problem lies in representing domain knowledge. This is because the con-

figuration model must explicitly state all the relations and constraints among different

components. Modelling the domain knowledge is thus a critical part of the configura-

tion problem. (Sabin and Weigel, 1998)

There are several approaches for capturing the domain knowledge. For example,

CHAPTER 3. CONFIGURABLE PRODUCT FAMILIES 29

configuration knowledge can be captured with rules (rule-based approach), hierar-

chies of concepts, such as taxonomical hierarchies or structure hierarchies (structure-

based approach), with constraints between elements (constraint-based approach), us-

ing resource exchange (resource-based approach) or using case-based technologies.

Together these approaches are often called knowledge-based configuration methods.

(Günter and Kühn, 1999)

3.2.1 Configuration Modelling Concepts

In order to distill domain knowledge into a configuration model, one needs a modelling

language for this purpose. There exist several languages for representing configuration

knowledge, most of which are designed for certain tools. But many of these languages

share similar properties. These similar properties can be captured in a configuration

ontology, which tries to define a set of concepts that can be used for representing the

configuration knowledge. Soininen et al. (1998) present a synthesised configuration

ontology, while Felfernig et al. (2001) present a configuration ontology that is based on

Unified Modelling Language (UML). These two ontologies bear many similararities

with each other. But since this thesis is based on the configuration ontology by Soini-

nen et al. (1998), called configuration ontology in the following, this section covers

that particular ontology in more detail.

The configuration ontology presented by Soininen et al. (1998) consists of a set of

concepts for representing the configuration knowledge and the restrictions on possi-

ble configurations. The ontology synthesises existing modelling approaches, such as

resource-based, rule-based and constraint-based methods.

The configuration ontology distinguishes three classes of configuration knowledge:

configuration model knowledge, configuration solution knowledge and requirements

knowledge. Configuration model knowledge specifies the elements that may appear

in the configuration and how they can be combined. In other words, this knowledge

specifies all correct configurations that may be derived. In contrast, configuration so-

lution knowledge specifies a configuration, while requirements knowledge specifies

the requirements of a particular configuration. The configuration ontology provides

concepts only for the first two knowledge classes, since requirements knowledge can

be specified with the concepts provided by other two classes. (Soininen et al., 1998)

CHAPTER 3. CONFIGURABLE PRODUCT FAMILIES 30

Figure 3.1: Basic structure of the configuration ontology presented by Soininen et al.

(1998)

The basic structure of the configuration concepts by Soininen et al. (1998) is de-

picted in Figure 3.1. It distinguishes three levels of abstraction. On the top-level are

configuration model concepts, which form a taxonomy of configuration-specific con-

cepts and relation definitions. On the second level are product-specific types in one

particular configuration model. These types are direct subclasses of the configuration

model concepts. On the lowest level are individuals that exist in a particular configu-

ration. These individuals are instantiated from the types occurring in the configuration

model. (Soininen et al., 1998)

The distinction between types and individuals is important. However, it is common

that configuration knowledge is discussed using terms that do not distinguish between

types and instances. For example, a sentence “car has an engine as a part” can have

two meanings. If it is part of configuration model knowledge, it states that every

car individual must have an engine individual as a part. If it is part of configuration

solution knowledge, it states that a configuration includes a car individual that has an

engine individual as a part. (Soininen et al., 1998)

In the following, one presents briefly the basic configuration model concepts in the

ontology, which correspond to the highest hierarchy level in Figure 3.1. For further

CHAPTER 3. CONFIGURABLE PRODUCT FAMILIES 31

details of the concepts, please refer to (Soininen et al., 1998).

A configuration type is either a component type, port type, resource type or func-

tion type. A component type represents a distinguishable entity in a product that is

meaningful for product configuration. A configuration is composed of component

individuals that are instantiated from component types in a configuration model. A

component type can specify its part roles as a set of part definitions. A part definition

specifies a part name, possible part types and a cardinality. Further, ports are used

to connect components through compatible interfaces. A port type is a definition of

a connection interface, whereas port individual represents a “location” where another

port individual in other component individual may be connected. In addition to com-

ponent type and port type, a resource type captures the production and use of abstract

entities, such as power or space in rack. Finally, functions bring a non-technical as-

pect to the configuration model. A function type represents a functional specification,

which in turn is mapped to technical elements through implementation constraints.

In addition to configuration types, the ontology offers attributes, which represent

the characteristics of a type. Finally, one can use constraints to restrict other concepts

in the configuration model.

3.2.2 Example Configuration Model

This section tries to clarify the concepts presented in Section 3.2.1 by presenting an

example configuration model. Figure 3.2 shows a part of a configuration model for

drilling machines (Tiihonen et al., 1998). The example model is written with a lan-

guage that conforms to the configuration ontology concepts presented in Section 3.2.1,

and it illustrates several examples of those concepts.

Figure 3.2 contains several components, which are either abstract or concrete. The

top-level component in the part hierarchy is Drilling boom assembly, which contains

exactly one component Boom & Feeder, one component Rockdrill, and an optional

component Suction head. Further, a Rockdrill could be either HL500, HL600 or

HL700, which consume different amounts of power (resource Power).

The configuration model in Figure 3.2 specifies several ports. Ports BA and DA are

compatible, and they both specify two concrete ports (HBA and LBA for BA, HDA and

LDA for DA). Component DA (drilling attachment) contains port DA, while component

CHAPTER 3. CONFIGURABLE PRODUCT FAMILIES 32

Figure 3.2: An example configuration model (or a part of it) and the corresponding

legend (Tiihonen et al., 1998)

CHAPTER 3. CONFIGURABLE PRODUCT FAMILIES 33

Rockdrill contains port BA. Further, different concrete drilling attachments and rock

drills contain different concrete ports (for example, component HL500 contains port

LBA).

The hexagons in Figure 3.2 represent constraints. For example, if component Hose

reel is present in the configuration, drilling attachment must be of type LDA.

Finally, there are some concepts in the ontology, such as attributes and functions,

that do not have examples in Figure 3.2.

3.3 Deriving Configurable Product Individuals

This section discusses how tools can be used for deriving product individuals.

To recapitulate Section 3.1, the derivation activity is called a configuration task, and

it produces a configuration, which is a description of the product individual. Further,

the configuration task is performed in a routine manner, without creative design or

separate implementation.

Because of the complexity of the configuration task, it must often be supported

by dedicated software tools called configurators (Soininen et al., 2002). A config-

urator enables the user to specify the configuration; the tool generates a description

of a product individual that meets the customer requirements and complies with the

configuration model (Tiihonen et al., 2003).

Fundamentally, a configurator must check completeness and consistency of the

configuration. Completeness means that all the necessary selections are made, while

consistency means that no rules of the model are violated. It should be impossible to

order an inconsistent or incomplete configuration. (Tiihonen et al., 2003)

Configuration techniques have been studied in the field of artificial intelligence,

and there exists a wealth of techniques for this purpose. Examples include constraint

satisfaction problems, description logics and different specialised problem solving

methods. (Soininen et al., 2002)

Although several techniques exist, many of them have been shown to be potentially

computationally very expensive. In the worst case configuration task requires at least

an exponential amount of time in the size of the problem. However, conventional

wisdom states that practical problems do not exhibit this kind of behaviour. Although

this statement hasn’t been proven yet, there are cases where configuration has been

CHAPTER 3. CONFIGURABLE PRODUCT FAMILIES 34

efficient. (Tiihonen et al., 2002)

Besides configuration techniques, there exist implemented tools for the same pur-

pose (e.g. Günter and Hotz, 1999; Hollmann et al., 2000; Tiihonen et al., 2003). One

of them is an academic configurator prototype WeCoTin (Tiihonen et al., 2003). Since

the work done in this thesis bears many similarities with WeCoTin, the following sec-

tion discusses WeCoTin more thoroughly.

3.3.1 WeCoTin Configurator

WeCoTin (Tiihonen et al., 2003) is an academic configurator prototype that can be

used for configuring product individuals from configurable product families. It pro-

vides both a web-based configuration tool and a modelling tool. The configuration

tool supports the configuration task by visualising and checking the configuration and

provides a remote repository of configuration models that the user can choose to con-

figure. The modelling tool provides a graphical user interface for creating and editing

configuration models. The user interface of WeCoTin is presented in Figure 3.3.

WeCoTin has been used for modelling and configuring real products from different

domains. For these products, it has been shown that the system is efficient enough for

practical use. (Tiihonen et al., 2003)

The configuration modelling language that WeCoTin employs is called PCML

(Product Configuration Modelling Language). PCML is based on the configuration

ontology presented in Section 3.2.1. The main concepts of PCML are similar to the on-

Figure 3.3: Graphical user interface of WeCoTin environment. Modelling tool is on

the left and configuration tool is on the right. (Tiihonen et al., 2003)

CHAPTER 3. CONFIGURABLE PRODUCT FAMILIES 35

Figure 3.4: A data flow model that shows how WeCoTin uses smodels for configuration

reasoning

tology: component types, compositional structure with cardinalities and variant types,

attributes of components, contraints to components, and so forth. However, there are

some aspects of the configuration ontology that are missing from PCML, such as ports

and resources. (Tiihonen et al., 2003)

PCML has been given semantics by mapping it to WCRL. WCRL (Weight Con-

straint Rule Language) is a general-purpose knowledge representation language, which

is a form of logic programs (Simons et al., 2002). The translation from PCML to

WCRL is provided by Soininen et al. (2001). The basic idea is to treat the sentences

of the model as a set of rules in WCRL. A configuration is a logical model (so called

stable model) of the set of rules representing the configuration model.

A closely related concept is BCRL (Basic Constraint Rule Language), which serves

as a “normal form” for general weight constraint rule language. Basic constraint rules

play a major role in implementing general weight constraint rules. (Simons et al.,

2002)

By providing a mapping from PCML to WCRL one enables the use of smodels

(Simons et al., 2002), which is an inference engine operating on WCRL and BCRL

programs. The smodels system has a two-level architecture: a front-end lparse and

actual smodels kernel. To compute the stable models of a WCRL program, lparse

first translates the program to WCRL. This compilation is called grounding, and it

CHAPTER 3. CONFIGURABLE PRODUCT FAMILIES 36

is potentially very costly, since it removes variables in the WCRL program. After

grounding, smodels kernel computes the desired stable models. This computation is

implemented with an effective search algorithm. (Simons et al., 2002)

Figure 3.4 shows how WeCoTin utilises smodels for calculating the stable models.

Before the configuration task starts, the system translates the configuration model

written in PCML first to WCRL and then to BCRL (upper part of Figure 3.4). Since

some of these activities (e.g. translation to BCRL, also called as grounding) take a lot

of time, it is beneficial to perform them in advance.

During the configuration task, the configurator tool (see Figure 3.3) provides a

web-based user interface. This interface contains a configuration tree, which gives an

overview of the configuration, its compositional structure and properties. The user

makes configuration selections by setting the properties of the elements (see Fig-

ure 3.3). Every time the user makes configuration selections, the system checks the

configuration state (lower part of Figure 3.4). The current configuration is given as a

compute statement, which represents the selections made so far. This compute state-

ment is then used for calculating desired stable models.

Chapter 4

Configurable Software Product
Families

Chapter 2 discussed software product families and their properties, while Chapter 3

presented configurable product families for traditional products. When comparing

these two approaches, it seems that they have quite a lot in common. Both share

the notion of two separate processes: one that designs the family structure and the

other that derives product individuals based on that design. The main idea in both ap-

proaches is to ease the derivation process and enable quick derivation of new variant

products. In fact, configurable product families for traditional products take this idea

even further: the derivation process does not include innovative design or implemen-

tation at all. Instead, the derivation is performed in a highly routine manner, with the

support of dedicated configurator tools.

The similarity between these areas raises questions. Could the idea of configurabil-

ity be applied to software product families? Could one automate the product derivation

process so that software product individuals are not developed but configured out of

existing core assets? This would mean that a software product family would become a

configurable software product family.

This chapter presents some basic ideas of configurable software product families

and presents the conceptual basis of this thesis. Section 4.1 discusses some basic as-

pects of configurable software product families. Section 4.2 presents three modelling

languages, named Koalish, Forfamel and Kumbang, that synthesise ideas from soft-

ware product families and from traditional product configuration domain.

37

CHAPTER 4. CONFIGURABLE SOFTWARE PRODUCT FAMILIES 38

4.1 Basics of Configurable Software Product Families

A configurable software product family is such that individual software products are

created in a highly routine manner from a predefined set of variants. Such a family may

potentially contain millions of variants. This means that one must be able to manage a

large set of variants and to select and produce a correct individual for a particular need

from the set of all variants. This approach becomes important, for example, in case of

embedded software: if the memory is limited, the loaded software cannot include all

possible implementations for variability. (Männistö et al., 2000, 2001a,b)

In case of large number of variants, it is clear that tool support is needed, both for

managing the variety and for producing correct product individuals. However, there

are different approaches for managing and expressing the variability. Männistö et al.

(2001b) propose a model-based approach: the variability of the family is captured in a

configuration model that describes the functional capabilities as well as software archi-

tecture of the product family. But there are also industrial cases in which variability is

encoded in the tool implementation itself. One can argue that utilising a model-based

approach improves portability and maintainability: if the domain knowledge is in the

model, it is easier to utilise the same implementation for many domains.

Since configurable software product family is a novel research area, there exists

relatively little research on the topic. However, there are some recorded examples of

industrial configurable software product families. Raatikainen et al. (2003) present a

case study of two configurable software product families. Both companies had de-

veloped proprietary tools for configuring individual products, and both domains were

relatively stable. Further, Bosch (2000, 2002) presents one configurable product family

in which the company involved produced fire alarm systems. Each customer received

the same code base, which was configured and installed using a configuration tool

developed for this purpose.

This section tries to highlight some of the research aspects of configurable software

product families. Section 4.1.1 discusses configurability as the highest level of reuse,

while Section 4.1.2 discusses how techniques and ideas from traditional configurable

products could be employed.

CHAPTER 4. CONFIGURABLE SOFTWARE PRODUCT FAMILIES 39

Figure 4.1: Maturity levels for software product families and how an organisation

typically evolves along these levels (Bosch, 2002)

4.1.1 Configurable Product Base as the Highest Level of Reuse

The most obvious distinction between configurable product families and software prod-

uct families is the amount of innovative design needed in the product derivation pro-

cess. The usual case for a software product family is that one has to implement

product-specific design during the derivation process (see Section 2.3). The amount of

product-specific implementation is often inversely proportional to the amount of reuse.

The more one can reuse existing assets when deriving the product individual, the less

one needs to add product-specific implementation.

This amount of reuse is one of the affecting factors in the classification presented

by Bosch (2002). Bosch proposes a hierarchy of levels, which he calls maturity levels,

that correspond to different approaches for software product family development (see

Figure 4.1). A higher maturity level corresponds to a situation where effort has moved

from product development (application engineering) to family development (domain

engineering). This in turn reflects the amount of intra-organisational reuse.

Bosch (2002) points out that although literature often presents only one particu-

lar technique to adopting a product family approach, there are several levels at which

reuse can take place in the organisation. As the organisation changes and evolves, the

approach taken may also change. Starting from a situation in which each product is de-

veloped independently, the main maturity development path consists of a standardised

infrastructure, a platform, a software product line, and finally, a configurable prod-

CHAPTER 4. CONFIGURABLE SOFTWARE PRODUCT FAMILIES 40

uct base. Two additional developments can be identified: a product population and a

program of product lines. (See Figure 4.1.)

A configurable product base corresponds to the highest maturity level. Rather than

developing a number of different products, the organisation moves towards developing

only one configurable product base that is configured into the desired product. This

configuration is typically supported by automated tools or techniques. Once this ap-

proach is fully adopted, all development effort has moved from application engineering

to domain engineering. All variation points must have an explicit representation in the

tool that is used for resolving the variability. (Bosch, 2002)

If we look at this characterisation of a configurable product base, it very much

resembles a traditional configurable product, with the exception that it is performed

for software. However, Bosch (2002) seems to imply that the variability should be

encoded in the tool itself, not in a separate configuration model. Further, it seems that

he does not make a distinction between configuration task and building, similar to what

is done in traditional product configuration.

Also, it is worth noting that “mature” is a bit confusing term, since it easily im-

plies that all organisations should aim at maturity. Instead, one should choose the most

appropriate level for a particular situation. The right level depends on several factors:

maturity of the organisation and maturity of the domain itself (Bosch, 2002). Thus

a configurable product base as an approach is suitable for situations where a large

number of products is developed in a highly stable domain and in which the organ-

isation is stable enough in terms of domain understanding, project organisation and

management. The requirement for domain stability is quite essential: since effort has

moved from application engineering to domain engineering, the initial cost of starting

a configurable product base is substantial. If requirements and the domain itself are

constantly changing, there is not enough time for the investments to be pay off.

4.1.2 Applying Traditional Configuration Techniques to Software

As stated, a key question is: Could the practices used with traditional products be trans-

ferred to the software product family domain? Are there some differences between the

domains that need to be considered?

According to Brooks (1987), software has the following inherent properties: com-

CHAPTER 4. CONFIGURABLE SOFTWARE PRODUCT FAMILIES 41

plexity, conformity, changeability and invisibility. Since software is so complex, it

forces the developers to design conform interfaces. And although it is complex, it is

seemingly easy to change software. And finally, due to its invisibility, it is hard to

concretise software. Hotz and Krebs (2003a) suggest that at least these factors might

affect how software can be configured, but they also state that this is a subject worth

studying.

Männistö et al. (2001a) present a comparison between concepts in both domains.

In particular, they take the configuration ontology presented by Soininen et al. (1998)

as a representative for traditional product configuration. They find remarkable sim-

ilarities, but also areas where some mismatch exist. Based on these findings, they

present two potential areas where knowledge could be transferred between these do-

mains. First, the appropriate level of abstraction for software product families should

be adjusted, especially for dynamic behaviour. Second, it is not clear whether con-

nections between components should be represented as first-class entities like in many

architecture description languages. In fact, modelling connectors and evolution are

two areas where knowledge might be transferred from software domain to traditional

product domain. (Männistö et al., 2001a)

Geyer and Becker (2002) claim that techniques known from the traditional knowledge-

based community are insufficient for software configuration, since they concentrate

too much on inheritance structure and neglect aggregation. Unfortunately Geyer and

Becker (2002) do not give any examples of traditional techniques that have this prop-

erty. In fact, if we look at the configuration concepts and techniques presented in

Chapter 3, aggregation of components is a central concept in them.

Indeed, there are some approaches that have applied traditional, knowledge-based

configuration techniques to software. Some attempts have been made to use existing

configurators as such for configuring software product families (Asikainen et al., 2004;

Ylinen et al., 2002). Other approaches take existing knowledge-based configuration

techniques and build software-specific tools on top of them (see e.g. Hein and Mac-

Gregor, 2003; Hotz and Krebs, 2003b; Hotz et al., 2004). For further discussion about

other approaches that use either directly or indirectly techniques from the traditional

product domain, please refer to Section 8.2.

The dilemma is as follows: how to avoid re-inventing the wheel but take the charac-

teristics of software into account? It seems that one answer is to build software-specific

CHAPTER 4. CONFIGURABLE SOFTWARE PRODUCT FAMILIES 42

configurators on top of traditional techniques. Indeed this is exactly the approach taken

in this thesis: to build a software configurator that reuses techniques and tools from

traditional product configurators.

4.2 Koalish, Forfamel and Kumbang

This section presents three modelling languages, Koalish and Forfamel, and their com-

bination, Kumbang.

These languages are developed to be used for modelling configurable software

product families, but they can also be used for other modelling purposes also—for

example, for modelling ordinary software product families.

Koalish, Forfamel and Kumbang are influenced by concepts from the traditional

product configuration domain. In particular, they are developed to conform to the con-

figuration ontology presented in Section 3.2.1. However, these languages are designed

for software domain; they take the characteristics of software into account. Further,

these languages are designed so that they can be used with smodels inference engine

(Simons et al., 2002). This way, one can build configuration support that employs

smodels for configuration reasoning, similar to what is done in WeCoTin product con-

figurator (see Section 3.3.1).

The rest of the section is organised as follows. Section 4.2.1 presents Koala, which

is an architecture description language that is the basis of Koalish language. Sec-

tion 4.2.2 covers Koalish, which is a Koala-based modelling language specifically de-

signed for configurable software. Section 4.2.3 presents Forfamel, which is a feature

modelling language that synthesises other existing feature modelling methods. Finally,

Section 4.2.4 discusses briefly how Koalish and Forfamel could be combined into one

modelling language, Kumbang.

4.2.1 Koala

Koala (van Ommering et al., 2000; van Ommering, 2002, 2004) is a modelling lan-

guage that can be used for describing component-based architectures for embedded

software. There are many architectural description languages available, but Koala is

one of the very few that has practical value. Koala was developed at Philips Consumer

CHAPTER 4. CONFIGURABLE SOFTWARE PRODUCT FAMILIES 43

Figure 4.2: An example of an architecture described using Koala (Asikainen et al.,

2003b)

Electronics to aid in developing software for embedded television sets (van Ommer-

ing et al., 2000). There are a number of products developed using Koala in the market,

and a couple of hundred developers are using the tools based on Koala (van Ommering,

2002). Thus its industrial usage gives Koala practical relevance.

The main concepts of Koala are components and interfaces. A component in Koala

is “an encapsulated piece of software with an explicit interface to its environment”.

Components can be compound components, meaning that one component can have

several components as parts. Together they form a hierarchy of components, which

constitutes the system: a configuration is a component that has no interfaces and that

is not contained in any other component. (van Ommering et al., 2000)

As the definition implies, a component communicates with its environment through

interfaces, which are small sets of related functions. Each interface is either a requires

or provides interface—components access all external functionality through required

interfaces, while provided interfaces provide this external functionality to other com-

ponents. Since interfaces are basically sets of functions, one can compare these sets.

Thus one can say that an interface type is a subtype of another type if it contains at

least all the functions that are contained in its supertype interface.

In addition, components can be connected with each other. Since all communica-

CHAPTER 4. CONFIGURABLE SOFTWARE PRODUCT FAMILIES 44

tion happens via interfaces, only interfaces can be connected with each other. These

bindings between interfaces correspond to function calls between components. The

general rule is that one can connect a calling interface (a “tip”) to a called interface (a

“base”). If components are at the same level, one can connect a required interface to

a provided interface only. In addition to topological rules, one must ensure that con-

nected interfaces are type-compatible. This means the called interface must provide at

least all functions found in the calling interface.

Figure 4.2 shows an example of a system that is described using Koala. The system

contains a three-level aggregation hierarchy of components, and it has three bindings

that connect interfaces.

Koala makes a distinction between types and instances, both for components and

interfaces. Thus each component and interface instance is of one certain component

or interface type. The elements in Figure 4.2 are component and interface instances.

Types and names of these instances are written with notation name:Type in the figure.

Koala has been used for managing product populations at Philips. Product pop-

ulations are software product families that incorporate reuse between product fami-

lies. However, explicit variability mechanisms of Koala are rather weak, especially

when comparing to the expressiveness of many traditional configuration techniques

(see for example configuration ontology in Section 3.2.1). Koala provides a couple

of explicit mechanisms for variability. Examples of these constructs include switches

that are used for binding varying components, diversity spreadsheets that are used for

parametrising components, and interfaces that can be optional (van Ommering, 2004).

But if Koala has been used for building product populations, how is it possible

that Koala doesn’t provide strong mechanisms for expressing variability? The answer

lies in the difference between philosophies. Typical product family consists of a com-

mon family architecture, into which one can include common, varying and product-

specific components. This means that one has to be able to explicitly specify how

components can be combined in the family architecture. In contrast, Koala assumes

that products are built by plugging reusable, parametrised components into a product-

specific framework (van Ommering, 2004). Thus Koala does not have to provide ex-

plicit mechanisms for variability, since there is no need to specify explicit variation of

components.

Fundamentally, the difference between configurable software product families and

CHAPTER 4. CONFIGURABLE SOFTWARE PRODUCT FAMILIES 45

Koala lies in the assumption about how products are built. Koala assumes that devel-

opers who build products know what they are doing and know how components can

be combined. In contrast, the person who performs the configuration task for a con-

figurable software product family does not ideally need to know anything about the

technical issues of the family. Further, if one aims at providing computer-aided con-

figuration reasoning, one needs to provide explicit mechanisms for specifying the rules

of the family. One definitely cannot assume that a computer knows without explicit

instructions how components can be combined into products.

In (Asikainen, 2002), Koala is compared with the configuration ontology discussed

in Section 3.2.1. The thesis concludes that there are some concepts that are missing

from Koala, but that Koala could rather easily be modified to meet the configura-

tion ontology concepts. This would enable it to be used with traditional configuration

techniques. Next section presents Koalish, a modification of Koala, which tries to

incorporate ideas from the configuration ontology into Koala.

4.2.2 Koalish

Koalish is a language for modelling the architecture of configurable software product

families (Asikainen et al., 2003a,b; Asikainen, 2004). The language is obtained by

combining basic modelling elements of Koala with a number of variability mecha-

nisms adopted from the product configuration domain. In particular, Koalish uses the

concepts from the product configuration ontology (see Section 3.2.1). This enables

the use of existing methods of traditional knowledge-based configuration. However,

Koalish is designed for software architectures. Thus it can be used for modelling ar-

chitectures of software product families (see Section 2.2.2).

The basic building blocks of Koalish are components, interfaces, attributes and

constraints. Koalish components and interfaces are similar to Koala components and

interfaces in many respects. Koalish makes a distinction between types and instances.

This distinction is also included in Koala and the configuration ontology (see Sec-

tion 3.2.1). A Koalish model is a description of a configurable software product fam-

ily, and it may contain component types, interface types, attribute value types and

constraints. A Koalish configuration is derived from a certain model, and it may con-

tain component instances with attributes, interface instances and bindings between

CHAPTER 4. CONFIGURABLE SOFTWARE PRODUCT FAMILIES 46

interface instances. Thus the distinction between types and instances is shown in the

relationship between models and configurations. Models contain types, while config-

urations derived from those models contain instances derived from the corresponding

types.

Koalish introduces two variability mechanisms that are lacking from Koala, but are

included in the configuration ontology. Namely, it offers the possibility to explicitly se-

lect the number and type of parts in the composition hierarchy. In addition, constraints

can be used for restricting these variability mechanisms.

The Koalish composition hierarchy is quite similar to the Koala composition hi-

erarchy: components can contain other components as parts. In addition, the Koalish

composition hierarchy includes the variability of the parts, namely the possibility to

select the number and type of parts. Thus component type specifies its parts by stating

a part name, a set of possible part types and a cardinality definition. The cardinality

is an integer range that specifies the number of component instances that must exist as

parts under the given component.

Figure 4.3 contains an example Koalish model that resembles the Koala system

described in Figure 4.2. For example, component CSystem can have one, two or three

clients, which may each be of type CBasicClient or CExtendedClient.

Similar to Koala, a Koalish interface type is a set of functions. These interface types

can be inherited from each other. For example, interface type IRpc2 with functions f

and g is a subtype of interface IRpc with function f.

There are some concepts that exist in Koala but have been omitted from Koalish.

For example, there is no counterpart for module, switch or diversity spreadsheet. There

concepts were left out in order to keep the model as simple as possible while still

having the necessary concepts for modelling variability. In addition, there are some

concepts that exist in the configuration ontology (see Section 3.2.1), but are missing

from Koalish. For example, one cannot inherit Koalish components from each other.

This means that component taxonomy is always only one level deep.

Koalish has been provided semantics by mapping it to Weight Constraint Rule

Language (WCRL) (Simons et al., 2002). Besides semantics, this mapping provides

a way to utilise smodels inference engine (Simons et al., 2002), which operates on

WCRL programs. Thus smodels can be used for providing configuration reasoning

support for Koalish.

CHAPTER 4. CONFIGURABLE SOFTWARE PRODUCT FAMILIES 47

Figure 4.3: An example of a Koalish configuration model (Asikainen, 2004)

CHAPTER 4. CONFIGURABLE SOFTWARE PRODUCT FAMILIES 48

4.2.3 Forfamel

There exists a large number of different feature modelling languages for software prod-

uct families (see Section 2.2.1). These languages describe the product family through

its variant and common features. However, many of these languages seem to be un-

suitable for modelling configurable software product families. Since configuration

task must be at least partially automated, automation sets several requirements for the

modelling language. Firstly, the language must be expressive enough to capture all

relevant information in the configuration model itself. Secondly, the language must

have rigorous and unambiguous semantics so that the configuration engine can reason

about the model.

Forfamel (Asikainen, 2004) is a feature modelling language that has been devel-

oped for configurable software product families. Forfamel synthesises many existing

feature modelling languages, namely FODA, FORM and that of Czarnecki (see Sec-

tion 2.2.1). This means that Forfamel is compatible with the ideas present in the soft-

ware product family domain. In addition, Forfamel applies techniques and concepts

utilised in traditional knowledge-based configuration (see Section 3.2.1). This in turn

enables the use of existing configuration techniques for traditional product families.

The main modelling elements of Forfamel are features. Forfamel makes a distinc-

tion between feature types and feature instances, just like the configuration ontology

does (see Section 3.2.1). A Forfamel model defines feature types and their relations,

while a configuration contains feature instances derived from the corresponding types.

A feature type can be either abstract or concrete. If a feature type is abstract, it cannot

be instantiated directly.

Features can be organised into two kinds of hierarchies: taxonomies and composi-

tional structures. Firstly, feature types can inherit other feature types. This inheritance

is a IsA-relation: a feature type inherits all properties of its supertype.

Secondly, features can contain other features as parts. This relationship corre-

sponds to the hierarchy relations in many feature modelling approaches: a feature in-

stance cannot exist in the configuration without its parent feature. The compositional

structure offers a variability mechanism. Unlike many other feature modelling ap-

proaches, Forfamel does not include separate concepts for variant or optional features.

Instead, Forfamel delivers expressiveness for variability and optionality by providing a

CHAPTER 4. CONFIGURABLE SOFTWARE PRODUCT FAMILIES 49

Figure 4.4: An example of a Forfamel model (Asikainen, 2004)

CHAPTER 4. CONFIGURABLE SOFTWARE PRODUCT FAMILIES 50

possibility to select the number and type of subfeatures. This is achieved through sub-

feature definitions. This definition specifies a set of possible feature types from which

one can choose, and a cardinality that indicates the minimum and maximum number

of subfeatures that can be instantiated.

In addition to being part of type or compotitional hierarchies, features in Forfamel

models can specify attributes. These attribute definitions are inherited along all other

properties in the type taxonomies.

Finally, Forfamel offers the possibility to specify constraints in the model.

Figure 4.4 depicts an example configuration model written in Forfamel. The sys-

tem contains a root feature type TextEditor, which contains several subfeatures as

parts. For example, the system can have optional support for SQL-imports (subfea-

ture sqlImport with cardinality from zero to one), and the SQL-import can either be of

type OCI or JDBC. In addition, the system must specify exactly one language for user

interface (subfeature uiLanguage), which can be either English, Finnish or Swedish

(inherited from an abstract feature type Language). Further, a feature type MultiItem-

Clipboard defines an attribute capacity, which has either value 3, 5 or 9. Finally, the

system contains two constraints that specify how certain elements can exist in the con-

figuration.

Forfamel has been provided with semantics by mapping it to Weight Constraint

Rule Language (WCRL) (Simons et al., 2002). Besides semantics, this provides a way

to utilise smodels inference engine (Simons et al., 2002), which operates on WCRL

programs. Thus smodels can be used for providing configuration reasoning support for

Forfamel.

4.2.4 Kumbang

Two previous sections presented two modelling languages that are designed for mod-

elling configurable software product families: Koalish can be used for modelling the

family architecture, while Forfamel describes family features. As was discussed in

Section 2.2, feature models and architecture models represent the same software prod-

uct family from different viewpoints. If one provides a mapping between these models,

one can use features to specify product-specific architecture.

Thus Koalish and Forfamel have been combined into one modelling language,

CHAPTER 4. CONFIGURABLE SOFTWARE PRODUCT FAMILIES 51

Figure 4.5: An example of a Kumbang model

Kumbang. Kumbang has been developed by our research group, but it’s full specifica-

tion has not yet been published. In essence, Kumbang is a combination of Koalish and

Forfamel elements. A Kumbang model may contain all the elements that can exist in

Koalish and Forfamel models. In addition, one can map elements in the feature model

to elements in the architecture model through implementation constraints. These im-

plementation constraints describe the relations between features and components in

the product family. An example Kumbang model that illustrates implementation con-

straints is shown in Figure 4.5.

Chapter 5

Research Aims

5.1 Research Objectives

The main objective of this work was to develop a configutor tool called Kumbang Con-

figurator. Kumbang Configurator can be used in the configuration task for configurable

software product families. The tool employs three existing modelling languages, Koal-

ish, Forfamel and Kumbang (see Chapter 4). These languages provide concepts, such

as features and architectural elements, that are designed for software domain.

However, Kumbang Configurator utilises existing techniques that have been ap-

plied in the domain of traditional configurable products. The tool uses state-of-the-art

inference engine smodels (Simons et al., 2002) for resolving dependencies between

configuration decisions.

Kumbang Configurator combines feature-based and architecture-based configura-

tion techniques. This means that the tool can be used for deriving feature configu-

rations, architecture configurations and configurations that contain both features and

architectural elements.

Since configuration task is often error-prone, Kumbang Configurator has mecha-

nisms for preventing configuration errors. The tool checks the configuration for con-

sistency and completeness. A consistent configuration does not contain any conflicts

against the rules of the configuration model. A complete configuration is such that all

necessary configuration decisions are made.

Finally, Kumbang Configurator and its implementation must be validated. This

means that the tool has to be tested using some kind of example cases.

52

CHAPTER 5. RESEARCH AIMS 53

Research questions Method or means of development

Method for analysis

Design, evaluation or analysis of a particular instance

Generalisation or characterisation

Feasibility

Research results Procedure or technique

Qualitative or descriptive model

Empirical model

Analytic model

Notation or tool

Specific solution

Answer or judgement

Report

Validation techniques Analysis

Experience

Example

Evaluation

Persuasion

Blatant assertion

Table 5.1: Different types of research questions, results and validation methods (Shaw,

2002)

5.2 Research Questions

Shaw (2002) discusses the characteristics of good research in software engineering

and classifies different types of research questions, results and validation methods (see

Table 5.1). A particular research strategy is constructed by selecting a suitable combi-

nation of these types. Naturally not all combinations make sense; Shaw (2002) gives

examples of combinations that have existed on submitted conference papers.

Given the general objectives presented in Section 5.1, one can start to construct

research questions for this work. Firstly, this work can be seen as a feasibility study.

Examples of research questions for feasibility include questions like Is it possible to

accomplish X at all? and Does X even exist, and if so what is it like? (Shaw, 2002).

CHAPTER 5. RESEARCH AIMS 54

One can indeed treat this work as a feasibility study for tool-supported configuration

based on Kumbang language and on methods that employs techniques from traditional

product configuration. Secondly, this work can also be seen as a method or means

of development. An example of this type of research question is How can we do or

automate doing X? (Shaw, 2002). It makes sense to treat this work as providing means

for configuration task for configurable software product families. However, it must

be noted that the goal of this work is to develop a prototype, not a tool ready for

production. This also means that the feasibility purpose of this work is much more

predominant.

Thus, the research questions of this paper can be summarised as follows:

1. Is it possible to build a configurator tool that can be used for configuring product

individuals from a configurable software product family described with Koal-

ish, Forfamel or Kumbang language, so that the implementation utilises existing

inference engine smodels?

2. If it is possible to build the aforementioned configurator tool, does the tool sup-

port the user in the configuration task and provides service that outweigh manual

configuration?

3. Given the developed tool presented above, can the feasibility of the approach be

validated with example cases?

5.3 Research Method

Given the research questions and objectives presented above, what is the research

method that is used for answering those questions? Table 5.1 identifies different types

of research questions, results and validation methods. As was discussed, this work

tries to answer both feasibility questions and to provide means of development.

Firstly, to give background for the research, this thesis contains a literature survey.

The first part of the study analyses the domains of software product families and tra-

ditional product families, and then discusses the techniques for combining these two.

This material is achieved through literature, and it is meant to give proper background

information to the rest of the work. The literature study spans Chapter 2, Chapter 3

and Chapter 4.

CHAPTER 5. RESEARCH AIMS 55

Secondly, this work tries to answer the research questions using constructive meth-

ods. This means that this work provides an implemented tool that embodies a certain

technique (category notation or tool of research results in Table 5.1). This tool tries

partly to show the feasibility of the approach and partly to provide means for product

derivation in configurable software product families. The implementation is discussed

in Chapter 6.

Finally, the research result is validated through example cases (category example

of validation techniques in Table 5.1). Shaw (2002) gives two categories for examples:

a toy example, perhaps motivated by reality, and a system that is a slice of life. The

validation technique of this work contains both types of examples: one invented ex-

ample and one real-life case. The research result (a tool) is thus validated by showing

how it works on two kinds of example cases. The validation is discussed in Chapter 7.

In summary, the research strategy of this thesis combines the following categories

from Table 5.1. The research questions combine both feasibility questions and means

of development, while the result is a tool that is validated with two examples. The

research strategy of development of method/means as a question, notation/tool as a

result and example as a validation technique was also found in submitted conference

papers (Shaw, 2002). In addition, this work adds the feasibility aspect to that particular

strategy.

5.4 Scope

This section covers the scope of this thesis. Firstly, the goals of this thesis affect the

scope. For example, this thesis takes Koalish, Forfamel and Kumbang languages for

granted, since the goal of this thesis is to develop a configurator tool based on these

languages.

The scope of this thesis can be easily summarised in the following way. Figure 5.1

describes the some of the activities in both domain engineering and application en-

gineering. (For further discussion about this issue, see Section 2.1.2.) The scope of

this thesis is the highlighted area in Figure 5.1. Taken the scope of this thesis, feature

models are described with Forfamel elements, architecture models with Koalish, and

Kumbang provides traceability between these elements. Together these form a con-

figuration model, which is used for deriving product individual during the application

CHAPTER 5. RESEARCH AIMS 56

Figure 5.1: Examples of core assets and activities in both domain engineering and

application engineering. The scope of this thesis is the highlighted area in the figure.

engineering.

As is illustrated by Figure 5.1, this thesis concentrates on application engineering

activities only. This means that core assets are taken for granted. For example, this the-

sis assumes existing configuration models written in Koalish, Forfamel or Kumbang,

and that reusable components have been implemented. However, one could support

product family analysis and product family architecting by providing a graphical mod-

elling tool that can be used for creating Koalish, Forfamel and Kumbang configuration

models.

In addition, this thesis leaves out implementation issues (product implementation

in Figure 5.1). The tool produces only a description of the complete and consistent

product individual. How the actual product in built is out of the scope. This task could

also be supported by providing tools for building the actual product.

Finally, how the product requirements are achieved is out of the scope of this the-

sis. The product requirements are taken for granted, and it is assumed that the user

of the configurator tool knows how these requirements affect configuration decisions

(selecting features and components).

Chapter 6

System Implementation

This chapter describes Kumbang Configurator, which that was implemented to meet

the research goals and answer the research questions presented Chapter 5.

The rest of the chapter is organised as follows. Section 6.1 describes the require-

ments of the system. Section 6.2 gives a brief overview of how the tool works from

the user point of the view, while Section 6.3 describes the system internals and its ar-

chitecture. Finally, Section 6.4 identifies contribution from other developers that took

part in the implementation.

The aim is that this chapter does not include evaluation of the implemented system.

However, this chapter tries to give rationale for the implementation decisions made.

For the complete evaluation of the system, please refer to Section 8.1.

6.1 Requirements

6.1.1 How To Obtain Requirements

In general terms, requirements for a software set out what the system should do and

define constraints on its operation (Sommerville, 2004). Requirements act as a bridge

between system goals and the its implementation. If requirements are not explicitly

specified or are specified incorrectly, it is really difficult to implement a system that

actually meets the given goals and satisfies the user needs. Thus this section specifies

the requirements that were set for the system. But the question is: how does one obtain

these requirements?

57

CHAPTER 6. SYSTEM IMPLEMENTATION 58

The process of finding out and analysing the requirements of a system is often

called requirements elicitation and analysis. This activity includes discovering the

requirements, organising them, giving them priorities and documenting them. Out

of these activities, requirements discovery is the probably the most challenging one.

Possible sources of information during requirements discovery include documentation,

system stakeholders and specifications of similar systems. In particular, gathering the

requirements from the system stakeholders directly often yields best requirements.

(Sommerville, 2004)

Considering the requirements of Kumbang Configurator, there are several sources

for requirements:

Literature review Requirements are discovered from the scientific literature. This is

one major source of requirements for this system, but consideration must be ap-

plied. Firstly, all ideas might not be applicable to this case. Secondly, literature

gives requirements at a very superficial level, yielding only major requirements

of the tool.

Traditional configurators Requirements are discovered by comparing to traditional

product configurators. Many of the requirements have been gathered by compar-

ing to WeCoTin configurator (see Section 3.3.1). However, requirements cannot

be taken directly, since there are differences between the domains that might

affect the requirements.

Software configurators Requirements are discovered by comparing to other existing

software configurators. Unfortunately, there are only few of them, and they have

very little industrial relevance.

Industrial experience Requirements are discovered from industrial stakeholders through

interviews or similar methods. This would have been the best solution, but there

were several difficulties. Firstly, the process of identifying and interviewing sys-

tem stakeholders from the industry takes a lot of time, and given the scope and

resources of this thesis, it is too much. Secondly, even if one was able to ask the

stakeholders what they want, the stakeholders might not know what they want.

This is due to the novelty of the research area.

CHAPTER 6. SYSTEM IMPLEMENTATION 59

Figure 6.1: A high-level black-box view that shows how the configurator tool devel-

oped in this thesis works.

6.1.2 Overall Description of the System

This section gives a brief overview of the requirements of Kumbang Configurator.

Figure 6.1 describes the high-level black-box view of the tool. It shows how the

tool supports the configuration task for deriving product individuals. The tool takes a

configuration model as input. This configuration model describes the product family,

and it is written in Koalish, Forfamel or Kumbang. Based on this model, the tool offers

the user the possibility to make configuration decisions. An example decision could

be “I want feature X in this product” or “I want component Y with attribute Z” or “I

want to connect interface I1 to interface I2”. Based on these configuration decisions,

the tool builds the configuration.

As the user makes the configuration decisions, the tool checks the configuration for

consistency and completeness. In addition, the tool is able to deduce the consequences

of the configuration decisions made so far. This means that the tool automatically fills

those instances that are implied by previous decisions and identifies those instances

that are conflicting with previous decisions.

The completeness and consistency checking and further deducing the configura-

CHAPTER 6. SYSTEM IMPLEMENTATION 60

tion is a complex and possibly time-consuming task. This is where the tool employs

existing techniques from traditional product configuration. This is done by using a

state-of-the-art inference tool called smodels (Simons et al., 2002), which can resolve

dependencies between configuration decisions.

When the configuration is complete, meaning that all the necessary decisions are

made, the tool produces a description of the product individual. This is a feature and

architecture description that can be used for building the product from existing assets.

Thus the tool does not generate code nor provide a mapping from software components

to actual implementation.

In order to ease the configuration task, the tool offers a graphical user interface.

This means that the tool visualises the current configuration. Since the configuration

consists of instances, which are in turn composed into instance hierarchies, the tool

visualises this composition hierarchy. In addition, the tool shows the configuration

decisions that the user can make. In general, the idea is that the user doesn’t have

to know a thing about the configuration model when using the tool. This is partly

justified by the fact that often the user of the configurator tool is not the same person

who designs the configuration models.

The visualisation of the tool resembles existing approaches where possible. For

example, the component configuration can be visualised with Koala-like notation.

The tool conforms with the given languages, Koalish, Forfamel and Kumbang, as

tightly as possibly. The configuration can consist of a feature hierarchy, or of a compo-

nent hierarchy, or it can be a combination of both. The feature configuration consists of

feature instances, their part relations and attributes in features. The component config-

uration consists of component instances and their part relations, attributes, interfaces

and bindings. The user can add and remove these instances freely, as long as these

modifications conform to the configuration model at hand.

Since this tool is merely a prototype that is used for demonstrating the feasibility

of this approach, requirements concerning quality attributes are not so strict. However,

maintainability, usability and performance are at least considered in the implementa-

tion. Maintainability eases the further development of the tool, while usability and

performance make demonstration easier.

CHAPTER 6. SYSTEM IMPLEMENTATION 61

Priority Description

1 Requirement is essential.

2 Requirement is conditional.

3 Requirement is optional.

Table 6.1: Priority descriptions of the requirements.

6.1.3 Detailed Requirements

Based on the above sources and overall description of the system requirements, a de-

tailed list of requirements was constructed. Further, requirements were organised into

three groups, and each requirement was given a priority from one to three, which

correspond to essential (priority one), conditional (priority two) and optional (prior-

ity three) requirements. (See Table 6.1.) An essential requirement is part of the core

functionality, conditional requirement eases the use of the tool noticeably, and optional

requirement may be implemented if there is enough time.

The requirements presented in the following are deliberately kept on user require-

ments level. User requirements are statements, often presented in natural language, of

what the system is expected to provide from the user point of the view; they do not

depict detailed specifications of the system (Sommerville, 2004). Detailed system re-

quirements cannot be included in this document, partly because they occupy too much

space, partly because the amount of detailed information would not give any real value

to the reader of this thesis.

Table 6.2 contains requirements that cover the basic functionality of the system.

For example, Table 6.2 contains requirements for modifying the configuration, which

means adding, removing or editing instances in the configuration.

Table 6.2 also contains requirements that concern configuration models. These

models are used as a basis for the configuration task. Thus the configuration task is

started by initialising the configuration based on a pre-designed configuration model.

The system must also manage configuration models in a centralised repository. This

way the user of the tool does not need to possess the configuration model, or even

know anything about the model. This enables separation of domain and application

engineering organisations.

CHAPTER 6. SYSTEM IMPLEMENTATION 62

ID Requirement Priority

B1 The system conforms to Koalish, Forfamel and Kumbang languages and

offers all the functionality they offer.

1

B2 The user can open a pre-designed configuration model, which is written

either with Kumbang, Forfamel or Koalish. The tool should initialise the

configuration based on the model.

1

B3 The user can save an existing (partial) configuration. 2

B4 The user can open a saved (partial) configuration. 2

B5 The system can produce a description of the configuration. 1

B6 The user can add new instances (features, components, interfaces, bindings)

to the configuration, according to the rules of Kumbang and the configura-

tion model.

1

B7 The user can remove instances (features, components, interfaces, bindings)

from the configuration, according to the rules of Kumbang and the config-

uration model.

2

B8 The user can set attribute values for components and features, according to

the rules of Kumbang and the configuration model.

1

B9 The user can do function binding, that is, to bind interfaces using only a

subset of available functions, according to the rules of Kumbang and the

configuration model.

3

B10 The user can use the system without knowing anything about the rules of

the configuration model.

2

B11 The system must enable centralised management of configuration models. 2

B12 The user can load configuration models to a centralised repository. 2

B13 The user can store additional information along with the loaded configura-

tion models, such as name, version and description.

3

B14 The user can initialise a configuration by opening a centrally-managed con-

figuration model.

2

Table 6.2: Basic requirements

CHAPTER 6. SYSTEM IMPLEMENTATION 63

ID Requirement Priority

C1 Configuration reasoning employs smodels and lparse modules. 1

C2 Every time the user makes a configuration selection, the system should check

the configuration for consistency and completeness.

1

C3 The system shows constantly whether the current configuration is consistent

or inconsistent.

1

C4 The system shows constantly whether the configuration is complete or incom-

plete.

1

C5 If the user makes a selection that causes the configuration to be inconsistent,

the user can cancel that selection.

1

C6 If the user makes a selection that causes the configuration to be inconsistent,

the user can try to manually correct the situation.

2

C7 If the user makes a selection that breaks a constraint, the system must tell

which constraint is broken.

3

C8 If the user makes a selection that causes the configuration to be inconsistent,

the system must tell a reason for inconsistency.

3

C9 The system should be able to deduce positive consequences (selections that

must be present in the configuration) and select them in the configuration, ei-

ther manually or automatically.

2

C10 The system should be able to deduce negative consequences (selections that

must not be present in the configuration) and inform these selections to the

user.

2

C11 If there exists at least one complete and consistent configuration, the system

should be able to find it and fill in missing selections.

2

Table 6.3: Requirements that cover configuration reasoning

CHAPTER 6. SYSTEM IMPLEMENTATION 64

ID Requirement Priority

U1 The system shows the compositional hierarchy of the current configuration in

a tree, both for features and for architectural elements.

1

U2 The system provides a taxonomy of the types available in the configuration

model in a tree.

3

U3 The user can browse the architecture configuration in a diagram, one level at a

time.

1

U4 The user can browse the feature configuration in a diagram, one level at a time. 2

U5 The system shows those locations in the diagrams into which new instances

can be added.

2

U6 The system must initialise layout of elements in the diagrams. 1

U7 The user can move the elements in the diagrams. 2

U8 The system should use graphical notation for the configuration that resembles

existing notations, such as Koala and feature trees.

1

U9 The user can show or hide elements in the diagram. 3

U10 The user can select among different graphical representations for the elements

(such as UML).

3

Table 6.4: Requirements that cover the graphical user interface

Table 6.3 contains requirements that cover the aspects of the configuration reason-

ing. When the user modifies the configuration, the system must constantly check the

consistency and completeness of the configuration. When the user makes a selection

that causes the configuration to be inconsistent, the user can either cancel that selection

or try to manually correct the situation. In addition, configuration reasoning includes

deduction of consequences, which means adding those instances that must be present

in the configuration and preventing those that cannot be present. Further, the system

could tell why a selection makes the configuration inconsistent. However, being able to

tell reasons for inconsistency is probably very hard, and in general it requires separate

explanation mechanisms built on top of the configuration mechanism.

Table 6.4 contains requirements that cover the graphical user interface of the sys-

tem. Basically the graphical user interface must show the current configuration and

enable its modification. This calls for two separate representation mechanisms that

show different views to the configuration. Firstly, one needs trees that show the whole

CHAPTER 6. SYSTEM IMPLEMENTATION 65

ID Goal Priority

Q1 The usability of the system should be good enough for demonstration purposes. 1

Q2 The system should be as extensible and modifiable as possible in order to sup-

port further development of the system.

1

Q3 The system performance should be good enough for demonstration purposes. 2

Table 6.5: System goals that cover quality attributes of the system

configuration in one compositional hierarchy. (For example, WeCoTin configurator

employs trees for this purpose, see Section 3.3.1.) Unfortunately, it is quite difficult to

represent bindings in a tree, since bindings connect two separate interfaces in the con-

figuration. One solution could be adding two nodes to the list to represents bindings,

but this isn’t as informative as the graphical presentation. In addition, adding bind-

ings is definitely easier when one can just draw a line from one interface to another.

Further, one might want to have more detailed information in a structure that shows

how elements are contained in other elements. This requires a separate diagram repre-

sentation, which shows only one composition level of the configuration. (An example

level could look something like in Figure 4.2, if one removed component dbase:CDb

from the figure.) These levels can then be browsed up and down along the composition

hierarchy (for example, by double-clicking component server:CServer in Figure 4.2

in order to reveal component dbase:CDb).

Finally, Table 6.5 contains some system goals that are related to quality attributes.

They are called goals, not requirements, since they are on a very abstract level. A good

requirement should be measurable, so that one can verify whether the implemented

system fulfils that requirement. The purpose of this system is to demonstrate the fea-

sibility of the approach and provide a first prototype around the concepts. Thus it was

seen to be unnecessary to specify strict limits for quality attributes. However, one can

give guidelines for quality attributes that best support the purpose of this system. Es-

pecially system usability and modifiability are important goals. Without usability, it

is hard to demonstrate the system so that others understand what is going on. Usabil-

ity is especially important for Kumbang Configurator, since underlying configuration

concepts are rather difficult.

CHAPTER 6. SYSTEM IMPLEMENTATION 66

Figure 6.2: A screen shot from the system. This is the view that shows the architecture

configuration. The configuration tree is on the left, and it shows the whole composi-

tional hierarchy. Diagram representation is on the right, and it shows the compositional

hierarchy one level at a time.

6.2 How the Tool Works

This section presents an overview of the implemented tool and shows briefly how the

tool works. Figure 6.2 shows a screen shot from the tool. This screen shot illustrates

some of the basic principles of the tool. Firstly, the graphical user interface is di-

vided into two separate areas, one for feature configuration (see Figure 6.3) and one

for architecture configuration (see Figure 6.2). In a usual scenario, user modifies the

configuration from the feature area, and then these selections are reflected automati-

cally to the architecture configuration. However, user can also modify the architecture

configuration directly.

The graphical user interface is divided into four separate areas. The tree structure

on the left contains a hierarchical list of the current component configuration (Fig-

CHAPTER 6. SYSTEM IMPLEMENTATION 67

ure 6.2) or feature configuration (Figure 6.3). Each node in the list represents one

instance or attribute in the configuration. The diagram area on the right shows the

same configuration, but one level at a time (Figure 6.2 or Figure 6.3). The user can

browse these levels up and down. The area on the bottom left corner shows the sta-

tus of the configuration: it is either incomplete (Figure 6.3), complete (Figure 6.2) or

inconsistent. The area on the bottom right corner shows detailed information of one

particular instance. When user selects an instance from the tree or from the diagram,

this area shows detailed information and offers buttons for several actions on that par-

ticular instance.

As can be seen from Figure 6.2 and Figure 6.3, trees and diagrams are tabbed. Thus

user can freely select which trees or diagrams to show at a time. Trees and diagrams

are constructed so that basically user can modify the configuration from either one of

them. In a typical scenario, user selects feature tab from the tree and component tab

from the diagram. The modifications made to the feature tree are then reflected to the

component diagram.

There are several ways to modify the configuration. Firstly, one can modify the

configuration through trees, since nodes in the tree provide pop-up menus that contain

needed functionality. Secondly, the configuration can be modified through diagrams.

Diagrams provide locations into which new instances can be added (an example lo-

cation can be found in Figure 6.4). Further, elements in the diagram provide pop-up

menus for other purposes. Finally, information area on the bottom-right (see Figure 6.2

and Figure 6.3) provides buttons for modifying the configuration.

As was presented in Figure 6.1, a typical usage scenario consists of three steps.

Firstly, the user opens a configuration model and the tool initialises the configura-

tion based on that model. Figure 6.5(a) shows a dialog that lets the user to select a

pre-loaded configuration model from the repository. Secondly, the user modifies the

configuration by adding, editing or removing instances. For example, when the user

wants to add a new component, the system opens a dialog in Figure 6.5(b). The user

can select the type of the component, set attribute values and select interfaces. Finally,

after the configuration is complete, the user can export a description of the configu-

ration (see Figure 6.5(c)). The description can either be written in XML (eXtensible

Markup Language), or it can be a text file that resembles Kumbang model files.

The graphical user interface mimics graphical UML (Unified Modelling Language)

CHAPTER 6. SYSTEM IMPLEMENTATION 68

Figure 6.3: A screen shot from the system. This is the view that shows the feature

configuration. The configuration tree is on the left, and it shows the whole composi-

tional hierarchy. Diagram representation is on the right, and it shows the compositional

hierarchy one level at a time.

Figure 6.4: An example of the locations in the UI where the user can add new instances.

It shows the name and cardinality of the part. The number of icons corresponds to

the number of instances that can still be added (in this example, one can add one

component). There is one location for each part in the diagram, and the user can move

or hide them if desired.

CHAPTER 6. SYSTEM IMPLEMENTATION 69

Figure 6.5: These screen shots from the dialogs of the system exemplify three basic

steps: opening a configuration model (a), adding new instances to the configuration

(b) and exporting a description of the configuration (c).

CHAPTER 6. SYSTEM IMPLEMENTATION 70

Figure 6.6: This figure depicts how the system uses smodels for configuration reason-

ing

editors in many respects. For example, Poseidon UML editor (Poseidon for UML,

2004) has the same basic structure for creating UML diagrams. It has a list of ele-

ments, a graphical diagram and a panel for detailed information. But there are obvious

differences also. For example, the hierarchical structure is much more predominant

in Kumbang Configurator. But it can be stated that it is often beneficial for a tool to

resemble other typical tools. If user is familiar with the layout, it is easier to use the

tool.

6.2.1 Implementation of Configuration Reasoning

The configuration reasoning implemented in the system resembles the configuration

reasoning of WeCoTin (see Section 3.3.1) in many respects.

First and foremost, the system uses smodels and lparse (Simons et al., 2002) for

configuration reasoning. Figure 6.6 shows how the system achieves this.

Before one can utilise smodels, the configuration model must be translated into a

form understood by smodels. These activities constitute the upper part of Figure 6.6.

They are performed before the configuration task starts, and only once for each con-

figuration model. Firstly, the configuration model is translated into WCRL. WCRL

(Weight Constraint Rule Language) is a general-purpose knowledge representation

language, which is a form of logic programs (Simons et al., 2002). After that, the

model is translated into BCRL (Basic Constraint Rule Language), which serves as a

CHAPTER 6. SYSTEM IMPLEMENTATION 71

ID Priority Status ID Priority Status ID Priority Status

B1 1 x C1 1 x U1 1 x

B2 1 x C2 1 x U2 3 -

B3 2 x C3 1 x U3 1 x

B4 2 x C4 1 x U4 2 x

B5 1 x C5 1 x U5 2 x

B6 1 x C6 2 - U6 1 x

B7 2 x C7 3 - U7 2 x

B8 1 x C8 3 - U8 1 x

B9 3 - C9 2 x U9 3 x

B10 2 x C10 2 x U10 3 -

B11 2 x C11 2 x

B12 2 x

B13 3 -

B14 2 x

Table 6.6: A requirement matrix that shows how each requirement has been fulfilled.

Column Status shows whether the requirement has been implemented (x) or not (-).

“normal form” for general weight constraint rule language (Simons et al., 2002). This

compilation is called grounding, and it is potentially very costly, since it removes the

variables in a WCRL program.

During the configuration task, the system repeatedly performs the activities in the

lower part of Figure 6.6. When the user modifies the configuration, the system con-

structs a compute statement, which specifies the current configuration. Using this state-

ment, one can call smodels to produce desired stable models that identify the status of

the configuration. Further, configuration consequences can be identified from a partial

stable model. A partial stable model tells which statements concerning the configura-

tion must be true, which must be false and what is still unknown.

6.2.2 Implemented Requirements

Table 6.6 contains a matrix that shows whether each requirement has been imple-

mented. The requirements are labeled with same ID numbers as in Tables 6.2, 6.3, 6.4.

CHAPTER 6. SYSTEM IMPLEMENTATION 72

Quality attribute goals (Table 6.5) have been omitted, since it is very hard to say exactly

whether one has met such unmeasurable goals or not. Out of 35 total requirements, the

system implements 28. Out of 28 total implemented requirements, 14 requirements are

essential, 13 are conditional and one is optional. Out of 7 unimplemented requirement,

6 are optional and one is conditional. Thus one can roughly summarise that the system

implements almost all essential and conditional requirements and almost none of the

optional requirements.

Implemented and unimplemented requirements are discussed more throroughly in

Section 8.1.

6.3 System Architecture

This section discusses the architecture of Kumbang Configurator. It presents the scope

and context of the system and describes the architecture through several architectural

views.

According to IEEE standard (IEEE Std 1471, 2000), every system has an archi-

tecture, whether it is recorded or not. Architectures are recorded by an architectural

description, which is organised into one or more architectural views. Each view ad-

dresses one or more concerns of the system stakeholders. A certain view of the system

is characterised by a viewpoint. Thus a viewpoint defines the language and methods

for composing a certain view for the system. (IEEE Std 1471, 2000)

A view can adopt one or more styles. An architectural style is a common form

of design. It determines the vocabulary of how component and connectors can be

arranged. This can include topological constraints (for example, no cycles). Styles

can be applied system-wide, or they can be applied to a very specific area of the sys-

tem. Examples of well-known styles include pipes and filters, layers, client-server and

blackboard. (Shaw and Garlan, 1996)

6.3.1 Language and Platform

Kumbang Configurator is implemented using Java programming language. There are

several reasons for this. Firstly, Java is virtually platform independent. Thus the con-

figurator tool can easily be ported to many platforms, including Windows, Linux and

CHAPTER 6. SYSTEM IMPLEMENTATION 73

Unix variants. Secondly, Java offers many built-in mechanisms that ease the imple-

mentation. These mechanisms include network protocols like Remote Method Invo-

cation (RMI), graphical user interface (GUI) libraries like Swing, logging services,

and many others. Finally, the author of this thesis has good knowledge in Java, thus

enabling faster development cycles. Naturally, one could argue that there are some

drawbacks in Java. Considering the performance, C++ might be a better solution.

Fortunately, the computationally heaviest part, checking the consistency of the config-

uration, is performed by external modules smodels and lparse.

The implementation uses Java version 1.4.2. There are some parts of the system,

like logging, that use capabilities that are available only in versions 1.4 or higher.

Thus the code cannot be ported to older versions unless these parts of the system are

rewritten.

At the moment, the implementation works only on Windows platform. This is be-

cause the tool requires binaries of smodels and lparse, which are platform-dependant.

In order to use the tool on other platforms, one needs to compile smodels and lparse

binaries to these platforms also.

Figure 6.7: The context of the system and system interactions with the external world.

CHAPTER 6. SYSTEM IMPLEMENTATION 74

6.3.2 System Context

Figure 6.7 describes the system context. Almost all software system have interfaces

to one or more external entities. A system context model specifies externally visible

properties of the system through these interfaces. The system may have interfaces to

several external entities at different levels—an external system can be either a higher-

level, lower-level or peer-level entity. (Bosch, 2000)

Kumbang Configurator is a relatively autonomous system. Basically it takes user

input through a graphical user interface. At the other end, the tool sends commands

to smodels and lparse modules in order to check the configuration for consistency and

completeness. This communication happens through process calls.

6.3.3 Structural View

The structural viewpoint defines a view that shows the system divided into its parts.

These parts, or components, hide some chosen aspects of the overall system. Clearly

separated responsibilities and interfaces are essential to this view. According to IEEE

standard (IEEE Std 1471, 2000), structural viewpoint tries to answer the following

concerns: what the computational elements of a system are, how those elements are

organised, what components and interfaces constitute the system and how they are

connected.

Figure 6.8 shows a simple model that presents the system from the structural view-

point. Further, Table 6.7 lists the elements found in the view and describes their re-

sponsibilities briefly.

One can identify several architectural decisions that concern the structural view of

the system. In the following, one discusses decisions and their rationale.

Decision: The system is distributed into one server and several clients. The struc-

tural view employs an architectural style that is called client-server, which is one form

of distributed styles. In such a system, server provides services to clients, but the server

does not know the identities of the clients in advance. On the other hand, clients know

the identity of the server and access its services through remote procedure calls. (Shaw

and Garlan, 1996)

There were several reasons for applying the client-server style. In any case, the

CHAPTER 6. SYSTEM IMPLEMENTATION 75

Figure 6.8: The structural view of the system. The system is divided into two compo-

nents, client and server. In addition, server operates two external components, lparse

and smodels.

system has to provide some kind of distribution. The need for distribution comes from

the requirement that configuration models have to be managed centrally. With a central

model repository, user can operate the tool without having a configuration model at

hand. Thus centrally managed models enable the separation of domain engineering

and application engineering organisations. But having distribution is also beneficial to

configuration reasoning. Configuration reasoning is the computationally heavy part,

and it operates external modules smodels and lparse. Thus the configuration reasoning

can be assigned to a dedicated, robust high-end computer, while the client can run on

a light-weight hardware. Finally, distribution brings flexibility to the system. In fact,

if the above-mentioned issues are not applicable, one can run the client and the server

in the same machine.

Among different distributed styles, the client-server style was chosen partly be-

cause it is relatively simple and easy to implement, partly because it fits intuitionally

with the responsibilities of the components.

CHAPTER 6. SYSTEM IMPLEMENTATION 76

Element Description

configurator client Configurator client takes care of direct user interaction. It pro-

vides a graphical user interface that shows the configuration and

allows its modification. Client also manages the current configu-

ration and stores data structures that represent the configuration.

configurator server The main responsibility of configurator server is to provide ser-

vices for configuration reasoning. Server also manages model

repository that contains loaded configuration models. In addition,

server manages sessions with several clients.

RMI API Server provides a RMI interface for clients. This interface con-

tains services for configuration reasoning as well as loading and

fetching models and starting and ending sessions with clients.

lparse call Server calls external lparse component by creating a separate pro-

cess and giving the input as a WCRL file that contains the config-

uration model. The result of this call is the same program trans-

lated into BCRL.

smodels call Server calls external smodels component by creating a separate

process and giving the input as a BCRL program.

Table 6.7: Element catalogue for structural view of the system.

Decision: Client has two main responsibilities: providing a graphical user in-
terface and managing the configuration. The main responsibility of the client is

to offer a graphical user interface, which visualises the configuration and configura-

tion task activities. Another responsibility is to manage the current configuration; this

means that the client must manage data structures that represent the configuration.

It is quite natural to assign the graphical user interface to the client. Trickier part

is to decide whether the configuration data structures should reside on the client or on

the server. This system implements thick client scheme for several reasons. Firstly,

the graphical user interface is quite tightly connected to the actual structures that rep-

resent the configuration. If these structures resided on the server, the client would be

constantly asking information about the current configuration. This would increase

remote traffic. Furthermore, especially large configurations can take quite a lot mem-

ory. It is thus beneficial to divide this memory consumption between all clients, not to

CHAPTER 6. SYSTEM IMPLEMENTATION 77

dump all structures from all clients to the server.

Decision: Server has three main responsibilities: providing configuration reason-
ing, managing model repository and managing sessions with clients. The main

responsibility of the server is to provide services for configuration reasoning. Config-

uration reasoning employs two external components, lparse and smodels. This com-

munication happens through process calls. Unfortunately, external smodels and lparse

modules accept input only through files. When the system needs to check the the con-

figuration, the system constructs a file that contains the current configuration along the

rules of the configuration model in WCRL. After that, the system creates a process

and calls lparse in order to compile this file into BCRL. Finally the system creates a

process and calls smodels with the BCRL file as input. Fortunately, parts of these oper-

ations can be done in advance, so that the actual configuration reasoning query can be

conducted faster. Especially the potentially costly operation of translating the WCRL

file into BCRL file can be done in advance. Thus only the current configuration must

be updated for each configuration reasoning query.

Another responsibility is to manage configuration models. This enables centralised

model repository that every client can use. Clients can load pre-designed configuration

models to the server, and then initialise configurations by selecting a configuration

model from a list. The server stores each loaded model in four forms. One is a textual

Kumbang model, another is a serialised binary file that contains the model parsed into

Java objects. Third and fourth are WCRL and BCRL files that contain the model

rules. Since these files are constructed and stored in advance, one can speed up the

initialisation of the configuration and configuration reasoning.

Thirdly, since the server must manage several clients with different configurations,

the server must keep track of sessions with each client. For each session, the server

stores identity of the client and configuration information.

Decision: Clients use server through RMI (Remote Method Invocation). The

communication technique between clients and a server is Remote Method Invocation

(RMI). Another option would have been using raw network sockets and sending com-

mands with a proprietary protocol. However, there would have been several drawbacks

with this approach. Firstly, one should have invented the protocol for communication.

CHAPTER 6. SYSTEM IMPLEMENTATION 78

Although the protocol would have been quite simple, this task would have taken some

time. Secondly, RMI is quite easy to implement.

Using RMI, the communication between clients and a server is quite straightfor-

ward. The server offers one remote interface for clients, which use this interface for

calling the server. In addition, there is a set of serialisable objects that are passed as

parameters in the communication. The RMI interface offers services for configuration

reasoning, loading and fetching models and starting and ending sessions.

Decision: Server uses lparse and smodels through process creation. One of the

requirements was that the system must employ lparse and smodels modules for con-

figuration reasoning. These modules offer two ways to operate. Firstly, one can call

these modules from the command line, which basically creates a new process for each

command line call. Secondly, one can directly operate smodels through C++ appli-

cation programming interface (API). Unfortunately, given the scarce resources of the

implementation, the task of bridging a C++ interface to the system through Java Na-

tive Interface (JNI) would be too great. Thus this system employs direct process calls,

which are less effective performance-wise.

6.3.4 Layered View

According to Bachmann et al. (2000), the layered view of the architecture is one of the

most commonly used view in software architecture. Layering reflects a division of the

software into units, which are called layers. A layer is a collection of software units

that provide together provide a cohesive set of services. The relation among layers is

“allowed to use”. If two layers are related by this relation, any unit of software in the

first layer is allowed to use any unit of software in the second. The layers in a system

are often ordered, and the usage in them flows downwards. This means that layers are

dependent on layers below them and independent on layers above them. (Bachmann

et al., 2000)

This system uses a modified version of the layer style. Figure 6.9 depicts the

layered view of the system. There are five layers that are ordered on top of each other,

and the relations between these layers are typical to the layering scheme: a layer may

use the services of the lower layer. In addition, there is one layer that provides services

CHAPTER 6. SYSTEM IMPLEMENTATION 79

Figure 6.9: The layered view of the system. The system is divided into six separate

layers. One of the layers provides services for all the other layers, while other layers

use only services provided by the adjacent lower layer.

Element Description Mapping to elements in structural
view

graphical

user inter-

face

Provides a graphical user inter-

face.

Maps to configurator client

client core Manages current configuration

and connects to the server.

Maps to configurator client, including

required interface RMI API

server

services

Provides remote services to the

client, manages sessions.

Maps to configurator server, including

provided interface RMI API

server core Manages model repository, han-

dles and relays configuration

reasoning requests.

Maps to configurator server

smodels ser-

vices

Provides configuration reason-

ing services.

Maps to configurator server, includ-

ing required interface lparse call and

smodels call

kumbang

services

Provides services to the whole

system.

Maps to all elements

Table 6.8: Element catalogue for layered view of the system, and mapping to elements

in the structural view.

CHAPTER 6. SYSTEM IMPLEMENTATION 80

for all the other layers. This particular layer is drawn vertically in Figure 6.9.

Table 6.8 lists the elements found in the layered view. In addition, it provides a

mapping to the elements found in the structural view (see Section 6.3.3). The mapping

is quite straightforward. Client maps to two layers that separate two main responsi-

bilities of the client: providing a graphical user interface and managing configuration

data structures. Server maps to three layers that roughly correspond to the three main

responsibilities: session management, model management and configuration reason-

ing. But there are some services and operations that are clearly needed in many layers.

These services include basic operations and data structures that represent configura-

tion models and configurations. Thus one of the layers is called kumbang services,

and it provides services that stem from Kumbang language. These services are needed

throughout the system.

There are a couple of architectural decisions that are relevant to this view.

Decision: Each major responsibility in the structural view roughly corresponds
to one layer in the layered view. This decision is quite easy to justify, since assign-

ing responsibilities to layers provides the cohesion that is required from architectural

layers in general.

Decision: All those services and structures that relate to Kumbang language and
are needed in other parts of the system are separated into one layer. This de-

cision separates all functionality that stems from Kumbang language into a separate

layer. This decision tries to enhance the extendibility of the system. Kumbang lan-

guage is independent of the configurator implementation, which means that those ser-

vices that provide Kumbang functionality are independent from the rest of the system.

This means that Kumbang layer can be separated from the implementation of this sys-

tem, and be used in the implementation of another system. For example, Kumbang

layer could potentially be used as such for implementing Kumbang modelling tool.

6.3.5 Code Architecture View

Code architecture view describes the view divided into its implementation units, which

means that it relates directly to the system implementation. An example implementa-

tion unit is a package, which can be further aggregated into a package hierarchy. A

CHAPTER 6. SYSTEM IMPLEMENTATION 81

Figure 6.10: The code architecture view of the system. This model shows the code

packages that constitute the system and how they depend on each other. Packages

below these packages are omitted in order to keep the model easy to read.

package is said to be a leaf package if it does not contain any other packages, otherwise

it is an aggregate package. Relations between packages are dependency relations: one

package depends on another package if it uses the services provided by that package.

Figure 6.10 depicts a model from the code architecture view of the system, while

Table 6.9 lists the elements found in that model. The elements presented in Figure 6.10

and Table 6.9 are Java packages in the implementation. Figure 6.10 and Table 6.9

omit some of the leaf packages that aren’t architecturally interesting. However, these

packages are mentioned in Table 6.9 as child elements for other packages.

There are a couple of major architectural decisions that relate to this view. There

are also other decisions, such as division of packages client.gui, kumbang.configuration

and kumbang.model into smaller packages, but these decisions are not architecturally

interesting enough to be discussed here.

Decision: Each layer will get its own package, and package dependencies follow
layer relations. It is relatively easy to justify that each layer has been assigned its

CHAPTER 6. SYSTEM IMPLEMENTATION 82

Element Parent ele-
ment

Child ele-
ments

Implements

client - gui, core Client-related functionality

server - services,

core, smodels

Server-related functionality

kumbang - configuration,

model, util

Functionality covering Kumbang language

gui client core, dia-

gram, tree,

dialog,

template

Graphical user interface

core client task Management of the current configuration and

connection to the server

services server - Functionality that provides services to the

client and session management

core server - Model management and handling and relay-

ing configuration reasoning requests

smodels server - Configuration reasoning and connecting to

lparse and smodels

configuration kumbang instance,

core, task

Structures that represent instances in a config-

uration and some basic operations how those

can be modified

model kumbang type, parser,

visitor, syn-

taxtree

Structures that represent types in a configura-

tion model and services that parse these mod-

els

util kumbang - Kumbang-related utilities, such as logging

operations

Table 6.9: Element catalogue for code architecture view of the system. NOTE: pack-

ages not shown in Figure 6.10 do not have a description in this catalogue.

CHAPTER 6. SYSTEM IMPLEMENTATION 83

own package. Layers in the layered view form coherent units, which can easily be as-

sociated into packages. The dependencies between packages (see Figure 6.10) follow

exactly the relations of “allowed to use” in Figure 6.9.

Decision: Package kumbang is further divided into packages configuration, model
and util. The rationale behind splitting kumbang package is to separate model-related

and configuration-related issues from each other. Entities in the configuration model

(such as types) are independent of entities in the actual configuration (such as in-

stances). A configuration model can exist without a configuration, but a configuration

cannot exist without a model. If one separates these two issues into packages, one sees

that package configuration depends on package model, since model is used as a basis

for the configuration. These dependencies are also shown in Figure 6.10. Further, this

separation also acts as a separation of responsibilities, since package model was not

implemented by the author of this work (see Section 6.4).

In addition to packages configuration and model, there is a separate package util

for functionality that is not directly related to model or configuration. This funtionality

includes for example logging.

Decision: There is a separate package that represents types in the configuration
model and there is a separate package that represents instances in the configura-
tion. The key assets in packages configuration and model are the data structures that

represent instances in the configuration and types in the model. Because they are so

central to the system, they are both separated into packages that contain nothing but

the data structures. Package kumbang.model.type contains classes that represent types

in the configuration model, while package kumbang.configuration.instance contains

classes the represent instances in the configuration. Since the latter package is part

of the core functionality implemented by the author, the following paragraphs briefly

present the contents of that package.

Figure 6.11 shows the inner structure of package kumbang.configuration.instance.

The taxonomy of the instances in Figure 6.11 is quite deep, but is still reasonable. The

basic building blocks of configurations are components and features (classes Compo-

nentInstance and FeatureInstance). Since these both can be combined into composi-

tional hierarchies, it is reasonable to derive them from one superclass. Components

CHAPTER 6. SYSTEM IMPLEMENTATION 84

Figure 6.11: Package kumbang.configuration.instance provides data structures that

represent instances in a configuration. This UML diagram shows some of these classes

and their relationships.

and features can have attributes, and they are composed into hierarchies through part

instances (class PartInstance).

Interfaces, components and features all have a name and a type, thus they extend

superclass ElementaryInstance. In contrast, bindings do not have a type nor name.

But all these instances are extended from IdentifiedInstance. Thus all instances have a

unique ID that is used for many purposes, such as for naming them to smodels.

Class PotentialInstance is kind of a convenience class in the taxonomy (see Fig-

ure 6.11). This instance represents those locations configuration where new instances

can be added. There exists one potential instance for each part in the configuration,

and it keeps track of those instances that have been instantiated under that part. Thus it

knows how many instances can still be added and how many instances can be removed.

CHAPTER 6. SYSTEM IMPLEMENTATION 85

6.4 Contribution from Other Developers

It is important to emphasise that this work was conducted as a part of research in

a research group. Thus there are other developers who have contributed to the sys-

tem implementation. Before the actual implementation of the system started, Timo

Asikainen1 had implemented a preliminary system. This implementation included data

structures for configuration models, a parser for parsing a model file into Java objects,

and a preliminary implementation for translating the configuration model to WCRL.

During the implementation, he continued to make improvements to these parts of the

system.

It can be roughly said Timo Asikainen implemented package kumbang.model (see

Section 6.3.5), although the author of this thesis later re-organised this implementation

into the current package hierarchy. Further, the author of this thesis integrated this

implementation into the whole system.

However, the line between the responsibilities of each developer is not so clear-cut.

Timo Asikainen has made modifications to other parts of the system, while the author

of this thesis has made modifications to package kumbang.model.

1Helsinki University of Technology, Laboratory of Software Business and Engineering

Chapter 7

System Validation

This chapter presents the validation of the system that was implemented to meet the

research goals. Kumbang Configurator is depicted in more detail in Chapter 6.

As was discussed in Section 5.3, the system is validated through two example

cases: one that is a real-life case from automotive industry (Section 7.1) and one toy

example that shows chosen aspects of the system (Section 7.2). These two example

types as validation technique are also mentioned by Shaw (2002).

These two example cases are presented in Section 7.1 and in Section 7.2. Both

sections first describe the case and its background, describe how it was modelled into

a Kumbang model and describe the configuration task. Finally, Section 7.3 draws some

conclusions based on these two cases.

The validation techniques, cases and methods are evaluated in Section 8.1.5.

7.1 Case: Car Periphery System

7.1.1 Description of the Case

The case presented in this section is originates from Robert Bosch GmbH (MacGregor,

2004). Robert Bosch GmbH is a company that developes various embedded systems

for cars. A distinguishing characteristic of automotive industry is the large number of

variants. This is partly because of the diversity of the hardware underneath.

The case depicts a part of a car periphery system (CPS). The CPS product can con-

tain several applications, such as parking assistance, pre-crash detection, blind spot

86

CHAPTER 7. SYSTEM VALIDATION 87

detection, parking spot detection and so forth. The product that is configured in this

case contains only two example applications, parking assistance and pre-crash detec-

tion.

Parking assistance application monitors the distance to objects while the vehicle

is parking. This includes displaying the distance to the object and sounding an alarm

when boundaries are crossed. There are four zones (near, very near, imminent, in

proximity) that represent different distances to objects nearby. When an object enters

one of these zones, the system uses the corresponding sound and colour to inform the

user.

Pre-crash applications try to detect an imminent crash. This includes sensitising the

airbag sensor (application PreSet) and firing a seatbelt tensioner (application PreFire).

Both applications have corresponding activation zones and trigger zones that either

activate the capability or trigger it.

The case material has been fully obtained from a presentation by MacGregor (2004).

Figures 7.1-7.4 show the original model that represents the case. (Some parts of the

configuration model have been omitted. The original material (MacGregor, 2004) con-

tains the full configuration model.)

The original presentation (MacGregor, 2004) included a demonstration that showed

how this particular CPS system can be configured. The configurator tool used in the

demonstration is presented by (Hotz et al., 2004). Similar to Kumbang Configurator,

it is based on techniques and concepts derived from traditional product configuration.

(For further discussion about the tool presented by (Hotz et al., 2004), please refer to

Section 8.2.1.)

7.1.2 Constructing the Configuration Model

In many respects, the case is ideal for constructing a configuration model. Firstly,

this particular case already represents a configurable product. Secondly, the concepts

used in the original case are approximately similar to the concepts utilised in Kumbang

language.

However, it was relatively difficult to construct a working configuration model

based on the case. The main reason is that the diagrams shown in Figures 7.1-7.4

are meant for communication. The primary driver for the diagrams has been clarity,

CHAPTER 7. SYSTEM VALIDATION 88

Figure 7.1: The context hierarchy presented in the original source (MacGregor, 2004)

Figure 7.2: The feature hierarchy presented in the original source (MacGregor, 2004)

CHAPTER 7. SYSTEM VALIDATION 89

Figure 7.3: The artefact hierarchy presented in the original source (MacGregor, 2004)

Figure 7.4: The interactions presented in the original source (MacGregor, 2004)

CHAPTER 7. SYSTEM VALIDATION 90

not accuracy. There are clearly some details and underlying relations that have been

omitted from the diagrams to make them more readable. In contrast, a configuration

model should be fully accurate and unambiguous. Another reason for inaccuracy might

be the background of the person who produced the diagrams. A person who knows

the domain really well may think that some aspects of the model are so “trivial” that

one doesn’t even have to explicate them. A similar situation has been identified in

requirements engineering research (Sommerville, 2004).

The rest of this section presents how the case described in Figures 7.1-7.4 was

modelled into a working Kumbang model.

The basic concepts utilised in the original case are features (Figure 7.2), software

and hardware artefacts (Figure 7.3), context (Figure 7.1), parameters, properties and

interactions (Figure 7.4). Features in the original case are directly mapped to Forfamel

features. Since Kumbang does not provide a concept for application context, context

elements are mapped to a separate branch in the feature hierarchy. Software and hard-

ware artefacts are mapped to Koalish components, each into a separate branch in the

component hierarchy. Properties in all elements are modelled as Kumbang attributes.

Since this tool does not support property ranges, ranges are modelled as two separate

attributes. Interactions in the original case are modelled as constraints in the Kum-

bang model. Finally, parameters are mostly omitted, but some of them are modelled

as attributes.

But direct mapping doesn’t yield a complete configuration model. For example,

the original model contains some properties that are clearly not meant to be attributes

set by the user. For example, each sensor configuration (Figure 7.3) is associated

with a fixed property value that describes the maximum operating range of the sen-

sor. Further, the feature hierarchy contains two supervision depth properties that are

calculated from zone depths. The idea is that the zone depths should not exceed the

operating range of the sensor configuration. To reflect this idea, these properties are

not modelled as attributes, but are encoded in the configuration model as constraints.

Another issue that is not covered in the original material is attribute values. That

is, what are the possible values for each property? Without proper domain knowledge,

one has to guess applicable values for each attribute in the configuration model. Fur-

ther, there are some features that seem to be empty (for example, Tone and Colour in

Figure 7.2). The situation is corrected by modelling them as attributes that have fixed

CHAPTER 7. SYSTEM VALIDATION 91

Figure 7.5: A screenshot that shows an axample configuration. Feature configuration

is on the left, while component configuration is on the right. (Note that some instances

in the feature configuration have been collapsed to keep the figure size reasonable.)

sets of colours and tones available. Finally, the system lacks some interactions (Fig-

ure 7.4) between elements. For example, the Kumbang model contains constraints that

map display features and alarm features to corresponding hardware.

In addition, there are some issues that are completely omitted from the Kumbang

model. For example, it seems that interfaces in the context hierarchy (Figure 7.1) don’t

have much relevance during the configuration task. Thus they are omitted altogether

from the Kumbang model. Further, the original case specifies a large number of param-

eters. Some of these parameters are modelled as attributes, but most of them have been

left out. It is still a bit unclear what the role of these parameters is in the configuration

task.

CHAPTER 7. SYSTEM VALIDATION 92

7.1.3 Configuration Task

Figure 7.5 contains an example configuration that has been derived from the Kumbang

model. At the moment, the feature configuration does not fully determine the compo-

nent configuration. In some cases, depending on the values given to zone depths, the

choice of the sensor configuration is still open. It is probable that this is due to some

missing relation that one is not able to deduce from the original description of the case.

During the configuration task, it became evident that one could indeed need some

support for the configuration order. When the configuration is large, it is hard to re-

member which selections have already been made and which are still open. If the tool

provided an order according to which selections were made, the configuration task

would become easier.

For approximate performance measurements of the case, see Table 7.1 on page 96.

7.2 Case: Weather Station Network

7.2.1 Description of the Case

The problem with the case presented in Section 7.1 is that it doesn’t portrait all capa-

bilities of the system. Namely, it doesn’t utilise interfaces or connectors. This is partly

because the tool that was originally used for configuring the case does not support con-

nectors. Since interfaces and connectors are one of the key contributions in this work,

this section presents a case that utilises those concepts.

Unfortunately, this is an invented toy example, not a real-life case as the one pre-

sented in Section 7.1. However, the case is motivated by a real-life system. Further,

this case was developed to demonstrate Kumbang Configurator and its capabilities,

which was one of the underlying goals of this research. The demonstration was held

in a seminar targeted for industrial partners, and the audience had mainly technical

background.

The case depicts a distributed weather station network that is used for measuring

weather at separate physical locations (see Figure 7.6). The system consists of one

central server and one to three measurement nodes. Each measurement node contains

one collecting main module and several sensors. There are three different sensors, one

for measuring temperature, one for measuring pressure and one for measuring wind.

CHAPTER 7. SYSTEM VALIDATION 93

Figure 7.6: A sample view of one product instance in the case family. Figure (a) shows

how nodes are connected to the server, while (b) shows internals of one particular node.

Figure (c) contains a legend.

The main module collects the data from the sensors and sends it to the central server.

The central server stores this data in a database.

7.2.2 Constructing the Configuration Model

The system is modelled to contain three features with several attributes in each. It

would have been possible to use features instead of attributes, but attributes provided

a simple and conventient way of modelling and configuring the case. At the moment,

features are used for grouping together similar attributes; they do not provide any

variability as such.

Feature Measurement specifies the number of measurement nodes (attribute num-

berOfNodes with value range from one to three) and types of weather measures col-

lected (attributes windMeasurement, temperatureMeasurement and pressureMeasure-

ment with Boolean values). Feature Network specifies two attributes that determine

whether bandwidth is high or low, and whether communication is wireless or not. Fi-

nally feature Storage specifies attribute dbTechnology (either mySQL or Oracle).

The model is designed so that any complete feature configuration fully determines

the corresponding component configuration. Firstly, the number of Node components

is specified by one attribute in feature Measurement. Measurement attributes in fea-

ture Measurement specify which sensor components are present in each node - possi-

ble types are WindSensor, TemperatureSensor and PressureSensor. Secondly, attribute

dbTechnology specifies whether component Server contains component DBmySQL or

DBOracle. Finally, feature Network determines the protocol used in the Server com-

ponent.

CHAPTER 7. SYSTEM VALIDATION 94

Figure 7.7: An example configuration derived from the case family. Feature configu-

ration is on the left, while component configuration is on the right. (Note that some

instances in the component configuration have been collapsed. Thus this figure does

not show bindings or internal structure of the second node.)

Unfortunately, there was one thing that couldn’t be modelled as desired. It would

have been appropriate to model the nodes as one part that has cardinality from one

to three (see Figure 7.8). But in order to write implementation constraints for nodes

and node sensors, one would have needed logical operators all (∀) and exists (∃). And

since the system doesn’t support such operators, one was forced to model the nodes

differently. At the moment, the model specifies three separate parts for nodes, where

each part represents one node that can be either present or not present (see Figure 7.8).

Figure 7.8: It would have been appropriate to use cardinalities from one to three (left

side). Unfortunately, the model had to be written the way shown on the right side.

CHAPTER 7. SYSTEM VALIDATION 95

Figure 7.9: Component diagrams that represent an example configuration derived from

the case family.

7.2.3 Configuration Task

The configuration task of the case went quite smoothly. Figure 7.7 and Figure 7.9

show screen shots from an example configuration. This configuration was constructed

so that one first specified all attribute values in the features, and the tool completed the

component configuration from those selections.

Unfortunately, the tool failed to automatically add one binding in the component

configuration. At the moment, the configuration rules written in WCRL are con-

structed so that smodels cannot deduce the existence of a binding between DBAPI

interfaces (see lower right corner in Figure 7.9). This is because the component type

that contains the provided DBAPI can be either DBmySQL or DBOracle. It thus seems

that one should update the translation rules to WCRL to cover this kind of situation.

For approximate performance measurements of the case, see Table 7.1.

CHAPTER 7. SYSTEM VALIDATION 96

Response time Grounding the model Invoking configuration engine

Case 1 4,0s 0,5s

Case 2 0,3s 0,2s

Table 7.1: Approximate performance of the cases with a Windows 2000 PC, 800MHz

Pentium processor, 512MB RAM

7.3 Validation Conclusions

The feasibility of the tool was clearly demonstrated by these two examples. However,

the validation raised several issues that could be improved.

It seems that a couple of new capabilities to the conceptual basis would ease the

modelling task.

Firstly, in many cases one could utilise hidden attributes and default attribute val-

ues. Hidden attributes could act as ’value locations’ and provide a way to simplify

complex constraints. Secondly, the rules that are used for mapping a Kumbang model

to WCRL should be enhanced. This way, smodels would be able to deduce the miss-

ing binding that was discussed in Section 7.2.3. Finally, the constraint language should

be extended. For example, although equivalence relation is useful for describing the

mapping between features and components, the system does not support writing equiv-

alence constraints. One can replace an equivalence with two implications, but it is

tedious to write them explicitly in the model.

Also configuration tasks revealed some areas that could be improved.

Firstly, the system should provide support for selection order during the configu-

ration task. This need was more evident in the first case, since the size of the second

configuration is rather small. Secondly, the configuration trees quickly become very

deep. This problem could be alleviated by hiding part nodes from the tree. Especially

when there is only one instance in a part, an instance could be located directly under

its parent. Finally, the performance of the system could be further investigated and

improved. At the moment, small configuration models are configured rather quickly,

but as the configuration grows, the performance may become an issue.

Chapter 8

Discussion

This chapter discusses the work that was done in this research. Section 8.1 evaluates

the work from different perspectives, while Section 8.2 presents related work and com-

pares it to the work done in this thesis. Finally Section 8.3 compares the overall work

with the research objectives set in Chapter 5.

8.1 Evaluation

This section evaluates the research conducted in this thesis. Namely, it evaluates the

system implementation (Chapter 6) and validation of the system (Chapter 7). Since

these subjects have been covered elsewhere in the thesis, it is assumed that the reader

is familiar with the system implementation and validation covered in this thesis.

In the following, one first evaluates the system against the requirements set in

Section 6.1. This is done by evaluating basic requirements (Section 8.1.1), require-

ments covering configuration reasoning (Section 8.1.2), user interface requirements

(Section 8.1.3) and quality attribute goals (Section 8.1.4). After that, Section 8.1.5

evaluates the validation of the system through example cases. Finally, Section 8.1.6

covers some other aspects that are worth discussing because of their future relevance.

8.1.1 Evaluation of Basic Requirements

Basic requirements of the system (see Table 6.2) cover such issues as opening, saving

and modifying the configuration and model management. These requirements were

97

CHAPTER 8. DISCUSSION 98

fulfilled quite well.

The first basic requirement stated that the system must fully conform to Koalish,

Forfamel and Kumbang languages. This requirement was easily achieved. This might

be due to the fact that one of the developers had originally designed these languages. In

fact, there were some minor modifications to the Koalish, Forfamel and Kumbang that

were found necessary or helpful during the implementation. For example, now each

constraint ends with a semicolon (;). In addition, the translation of the languages to

WCRL was also modified a bit (original Koalish translation can be found in (Asikainen

et al., 2003b)).

All requirements that covered opening, saving and modifying the configuration

were implemented, and they were implemented pretty well. At the moment, one can

think of one enhancement only: the system should be able to save layout information

along with the partial configuration.

The model management now resides on a dedicated configuration server. At the

moment, the user can specify a name for the model, and this name is used as a file

name for saving appropriate model files. A better solution could utilise separate prop-

erty file for each model. This property file could contain a description of the model,

a version number, a password and so forth. Even a better solution could utilise a

database for storing model information and model files. Further, the model upload-

ing and fetching now happens through configuration client. A better solution could

include a separate password-protected client for managing configuration models. This

would enable separation of tasks for domain engineering people, who are responsible

of model management, and application engineering people, who are responsible of

configuration.

There are two basic requirements that aren’t implemented, but both of them are

optional. First unimplemented requirement covers function binding. Basically the

system has been implemented so that this is easy to add. However, this would also

require extensions to the Koalish language. Second unimplemented requirement cov-

ers saving additional data with the models. Although this requirement is rather easy to

implement, there wasn’t enough time to start implementing it.

CHAPTER 8. DISCUSSION 99

8.1.2 Evaluation of Configuration Requirements

Configuration requirements of the system (see Table 6.3) cover issues that are related to

configuration reasoning. These requirements were probably the hardest to implement.

Unfortunately, this difficulty was reflected in how they were implemented. The system

currently implements eight out of eleven configuration requirements (five essential and

three conditional requirements).

The first configuration requirement states that configuration reasoning must em-

ploy smodels and lparse modules. This requirement was absolutely mandatory, since

it wouldn’t have been feasible to implement the configuration engine from scratch.

But using smodels and lparse also brought some difficulties. Firstly, one had to build

the configuration knowledge so that one could utilise smodels and lparse functionality.

Secondly, integrating two external modules to the system required quite a lot of work

and increased testing effort of other parts. Thirdly, smodels gives very little feedback

about inconsistent configurations, especially when it is invoked through a process call.

The integration to smodels and lparse modules is one of the weak points of the

system. At the moment, the system invokes these modules through process creation.

Further, lparse takes its input as filesystem files only. It is obvious that this is an

extremely heavy way of calling an external module, especially in operating systems

where process creation takes a lot of resources. In addition, writing input to files takes

some time. Fortunately, the system utilises pre-grounding: WCRL and BCRL files

for each configuration model are constructed in advance. For one particular call on

smodels, one needs to write only a brief list of instances to an input file.

But there exists a better solution to invoking smodels. This solution is based

on using smodels API (Application Programming Interface) directly. Unfortunately,

smodels API is written in C++, whereas Kumbang Configurator is written in Java. One

solution to bridge the gap is to use JNI (Java Native Interface). JNI enables calling na-

tive C++ programs from Java programs. With JNI, one could have created a Smodels

instance in C++ and called its methods directly. This would clearly have been a better

solution, but it would have taken too much resources. It would have required setting

up a C++ development environment with editors and compilers, getting to know JNI

techniques, writing some C++ code on top of smodels API and integrating this all with

the system using JNI. Thus it was better to implement a brute force solution that used

CHAPTER 8. DISCUSSION 100

process creation. This solution required only minimal effort.

There are three unimplemented configuration requirements, out of which one is

conditional and two are optional requirements. First unimplemented requirement states

that user should be able to manually correct an inconsistent situation. Although this

requirement is moderately important (conditional requirement), it was added to the re-

quirement list only at the end of the development. Thus there wasn’t enough time to

implement it. Second unimplemented requirement states that the system should iden-

tify inconsistent constraints. Unfortunately, this requirement cannot be implemented

using smodels as an external module, since it doesn’t give much feedback about in-

consistent situations. Third unimplemented requirement states that the system must

tell a reason for inconsistent situations in general. This was known to be very hard to

implement in the first place, so it was not a surprise that it was not implemented.

8.1.3 Evaluation of User Interface Requirements

User interface requirements of the system (see Table 6.3) cover issues that are related

to the graphical user interface. These were pretty well implemented: only two require-

ments out of ten were not implemented, and both unimplemented requirements were

optional.

User interface requirements stated that the system must show the compositional

structure of the configuration in two separate representations: a tree and a diagram.

This is in a line with Geyer and Becker (2002): they emphasize that the compositional

hierarchy must be central in the presentation. They claim that this eases navigation

and enhances understanding of the model.

At the moment, the graphical user interface makes a separation between features

and components. The tree area has separate tabs for features and components, and

the diagram area does the same. Another possibility would have been to put features

and components in one tree or one diagram. But if configurations are large, it soon

becomes difficult to use and understand such combined structures. Besides, another

advantage of the separation is that the user can select which trees and which diagrams

to show independently of each other. (In a typical scenario, the user might want to

see feature tree and component diagram side by side.) If one took the current solu-

tion one step further, the best solution would provide full configurability of the user

CHAPTER 8. DISCUSSION 101

Figure 8.1: A draft that shows how feature diagrams could be replaced in the future.

interface, similar to some IDE tools (Integrated Development Environment). In such a

system, the user could choose desired UI elements, and the tool would hide the rest. A

configurable user interface could be implemented using internal frames, for example.

One of the requirements states that the graphical notation of the tool should re-

semble existing notations. The component configuration mimics Koala as much as

possible, but it was hard to come up with a proper graphical notation for the feature

configuration. The feature tree is quite intuitive for those who know feature models,

but the feature diagram is certainly a bit strange.

In fact, it can be argued that the whole feature diagram is unnecessary as such.

Instead, one could utilise a concept similar to WeCoTin (see Section 3.3.1). Instead of

a feature diagram, one could show detailed information about one particular feature.

An example draft of such detailed feature diagram is in Figure 8.1. This detailed

information could show attributes and subfeatures, and offer a possibility to edit both.

In addition, this diagram could offer navigation into three directions: to parent feature,

to child features and to sibling features. This detailed feature diagram could quite

easily be integrated with configuration process support - navigation happens along

process steps, not along feature hierarchy (see Section 8.1.6).

One implementation issue was how much the tool should concentrate on attributes.

CHAPTER 8. DISCUSSION 102

For example, the user interface of WeCoTin (see Section 3.3.1) emphasises attributes

in the components. In contrast, attributes do not play a major role in the user interface

of this system. Components and features are mainly described using their types and

compositional relations. There exists industrial experience to support this choice (Hotz

et al., 2004). At their industrial partners, it was noticed that only a small number

of parameters are used for modelling features and software components. This is a

difference between software and hardware domains. However, it can be argued that

the user interface should provide better support for the visualisation of attributes. The

proposal in Figure 8.1 could partially improve the situation.

As discussed, there are two unimplemented requirements, and both are optional re-

quirements. The first unimplemented requirement states that the system should show

a type taxonomy. But since the user of the tool should be able to use the tool with-

out knowing anything about the configuration model, it can be argued that it is not

necessary to provide a type taxonomy.

The second unimplemented requirement states that there should be separate repre-

sentations for graphical elements. The actual implementation is probably rather easy:

each instance in the configuration has a separate graphical element, which draws itself

independently on the screen. Thus it is easy to add new representations for graphical

elements. The biggest problem is to find a proper notation that is compatible with the

underlying concepts. A potential candidate is UML 2.0 (Unified Modelling Language

version 2.0). Since UML is a well-known notation for software architectures, it would

be beneficial if the tool had UML-compliant notations. It seems that many concepts in

Koala have similar counterparts in UML 2.0. For example, UML 2.0 shows ports for

components with joint lollipop connections, while Koala uses triangles.

8.1.4 Evaluation of Quality Attributes

This system had three primary goals for quality attributes (see Table 6.5). Although

it is hard to measure exactly whether these goals have been met or not, it can dis-

cussed how the system reflects these goals. In the following, usability, modifiability

and performance of the system are discussed.

CHAPTER 8. DISCUSSION 103

Usability

One of the quality attribute goals (Table 6.5) states that the usability of the system

should be good enough for demonstration purposes. There are several aspects of the

system that work towards this goal.

Firstly, there are usually multiple ways of doing things. For example, user can add

new components using either component tree, component diagram, information panel

or menu bar. This way one can choose the usage mode that fits one’s preferences.

Secondly, the graphical user interface tries to guide the user with textual informa-

tion. For example, many items have informative tool tip texts that are shown when

the user points the item with a mouse. Further, dialogs usually contain a couple of

informative sentences that describe the purpose of the dialog.

Thirdly, besides textual information, the graphical user interface uses icons and

logos in a consistent manner. For example, each instance has its own icon, and they

are used throughout the user interface - in menus, buttons, trees and so forth.

Of course, there are a lot of areas that could be enhanced. Most notably, support

for configuration process (see Section 8.1.6) would improve usability. Further, the tool

does not provide any kind of help. It would be beneficial to offer at least context sensi-

tive help and help buttons in dialogs. Further, the tool does not provide key shortcuts.

Many users prefer keyboard to mouse, which means that each operation and menu item

should have its own key shortcut. Finally, the configurability of the user interface (see

Section 8.1.3) would definitely enhance usability of the tool.

Modifiability

One of the quality attribute goals (Table 6.5) states that the system should be as exten-

sible and modifiable as possible in order to support further development of the system.

In general, the system supports modifiability by utilising modularisation. The aim

was to keep modules coherent and to minimise coupling between modules. To support

this aim, the system has been structured into hierarchical modules, and dependencies

between these modules have been kept at minimum. For example, all classes that are

related to Kumbang language are separated into one module, which is further divided

into two submodules for configuration-related and model-related concepts. Further,

the system utilises layering style, which is said to support modifiability (Bachmann

CHAPTER 8. DISCUSSION 104

et al., 2000). For further discussion about system modules and their dependencies, see

Section 6.3.

In addition to modularisation, one has tried to utilise generic structures and sup-

porting elements. For example, the client provides a hierarchy of tasks that are used

for modifying the configuration. Thus all information related to a modification can be

bundled into one task, which can be passed as a parameter to different handlers of the

system.

One requirement stated that the system should provide different representations for

the configuration. Although this requirement was not fulfilled, it has been taken into

account in the implementation. The system makes a strict separation between data

elements (instances and types) and graphical elements. All graphical elements are

built as separate class hierarchies, and data elements are independent of the graphical

elements. Further, graphical elements draw themselves independently on the screen.

In order to change the layout for one element, one only needs to modify its drawing

methods.

Performance

One of the quality attribute goals (Table 6.5) states that system performance should be

good enough for demonstration purposes.

There are some implementation decisions that enhanced the performance of the

tool. One decision was to use smodels inference engine instead of implementing a con-

figuration engine from scratch. Another decision concerned translation from WCRL

to BCRL (or grounding), which is potentially a costly operation. Grounding is done

beforehand, and the grounded BCRL program is stored for future use. When smodels

is invoked, the only thing that needs to be added to the grounded BCRL program is the

current configuration.

Further, the configuration reasoning hides all unnecessary statements from WCRL

programs and from output. Thus only those statements that are relevant are parsed

from smodels output.

But there are some decisions that also degrade the performance of the system. One

of such decisions was using smodels and lparse as external modules, which brought

the need for process creation and reading and writing big files. These operations are

both quite ineffective compared to direct procedure calls. Given the current situation,

CHAPTER 8. DISCUSSION 105

it seems that this is one of the weak points in the system performance. If one integrated

smodels directly through application programming interface, one would probably en-

hance the system performance a lot.

Another decision that degrades the performance of the system is utilising total

configurations. At the moment, the tool calculates the total configuration (all possible

instances that can exist in one configuration) and keeps it in the main memory during

the configuration task. Total configuration is essential for finding topologically correct

bindings, and it eases the configuration task remarkably in other aspects also. But

total configurations grow exponentially in size, which potentially means huge memory

consumption for large configurations. (For example, the total configuration of the

model in Figure 4.3 takes a little less than 10 kB as a serialised object. This is quite a lot

when one considers the size of the model and the compressing effect of serialisation.)

In order to enhance the situation, one could store the total configuration on a disk or

on a database, and fetch instances only when needed. Further, the system could utilise

some kind of cache for fetched instances.

There exists one technique that could improve the system performance: symmetry

breaking (Tiihonen et al., 2002). Symmetry breaking means that one removes re-

dundant configurations by telling explicitly in which order instances can reside in the

configuration. At the moment, the system does not implement symmetry breaking, but

this issue is worth investigating.

8.1.5 Evaluation of Cases and Validation

As stated in the research method, the system developed was also validated through

example cases. Chapter 7 presented two example cases and showed how they were

modelled and configured with the system. Chapter 7 also discussed briefly the issues

that were brought up during the configuration task.

If one compares the two cases with each other, it is clear that the first case (Sec-

tion 7.1) is more representative. Firstly, it is a real-world case of a real configurable

product. Secondly, it is considerably larger, which highlights the need for automated

configuration reasoning. The weakness of the first case is that it does not include con-

nections. Thus it is yet to be seen how real-world cases use connections and whether

it corresponds to the approach taken in this system. Further, it is still unclear how

CHAPTER 8. DISCUSSION 106

connections affect the performance of large-scale models.

However, it is clear that these two example cases are not nearly enough for empir-

ical validation, especially if one wants to validate whether the system really provides

value to application engineering activities. In order to provide better empirical valida-

tion, one should gather several real-world cases with different properties. These cases

should be modelled and configured in cooperation with industrial partners in order to

gather feedback and comments.

Further, the performance of the system should be tested more thoroughly. For

example, the randomised performance tests conducted by Tiihonen et al. (2002) could

provide one way of measuring the performance.

8.1.6 Evaluation of Other Interesting Aspects

This section covers some aspects that are not addressed by the requirements but have

future relevance or are interesting as such. In general, the implementation of the func-

tionality discussed below would require modifying and extending the underlying mod-

elling concepts.

Inheritance of Components

As was mentioned in Section 4.2.2, Koalish does not support inheritance of compo-

nents. (In contrast, Forfamel allows features to extend other features.) The reasoning

behind this decision is conformity with Koala: since Koala does not offer inheritance

of components, Koalish does neither. But it can be argued that inheritance can neatly

group together similar concepts. Figure 8.2 shows two examples that could utilise

inheritance of components.

The problem that must be solved when applying inheritance is how to treat con-

tained elements inside an inherited component. That is, should a subcomponent inherit

all interfaces, attributes, part components and constraints from the parent component?

Since inheritance should be an IsA-relation, the answer must be yes: all characteristics

of the parent component must be present in the subcomponent. The first example in

Figure 8.2 shows how component C2 inherits interface interf1 from parent component

C1 and specifies additional interface interf2.

But inheritance of interfaces should be taken into account. The second example

CHAPTER 8. DISCUSSION 107

Figure 8.2: Two examples that show how Koalish could utilise inheritance of compo-

nents.

in Figure 8.2 is an excerpt from Figure 4.3, and it shows two components, CServer

and CServer2. These components are otherwise exactly similar, except that CServer

contains interface callee:IRpc and CServer2 contains interface callee:IRpc2. Since

interface IRpc2 contains all functions in interface IRpc (IRpc ⊂ IRpc2), these two

components are in an IsA-relation. But how could component CServer2 be extended

from component CServer? There are two choices. First alternative is to add a new

interface type IRpc′ so that IRpc2 = IRpc ∪ IRpc′ and IRpc ∩ IRpc′ = ∅, and then

follow the scenario presented in the first example in Figure 8.2. But it is much easier to

allow direct definition shown in Figure 8.2: component CServer2 defines an interface

with the same name but with extended interface type.

Sharable Components

Hotz et al. (2004) present experience that was gained when applying software configu-

rators in an industrial context. One issue that was brought up was the need for sharable

parts. Sharable parts, such as libraries, are used in many software applications. (Hotz

et al., 2004)

At the moment, the tool supports sharing only at the same level of compositional

CHAPTER 8. DISCUSSION 108

Figure 8.3: An example that shows how one could bind interfaces across component

levels. Figure (a) shows the current situation, figure (b) shows how one could relax the

rules of binding.

hierarchy. If there is a need to globally share a component, it can happen through type-

instance mechanism. This means that one can use a certain type in several places in the

configuration. But it can be argued that this isn’t real sharing, since instances are in any

case separate and thus can have different states (for example, different attribute values).

In some special cases one can represent sharable libraries with separate instances of

the same type, but in general this solution is not enough.

In order to support sharing in general, one should be able to choose already exist-

ing instances as parts, not just to create new instances. In addition, one could extend

Koalish to include declaration of static components. A static component type couldn’t

be instantiated, but other component instances could access static component type di-

rectly.

Binding Interfaces across Component Levels

In some cases, one might need to relax the rules of connecting interfaces with each

other. At the moment, interfaces can only be connected with interfaces on the same

compositional level, or between interfaces whose components are parts of each other

(see Figure 8.3a). This requires that the family architecture ensures strict encapsulation—

components cannot see or access inner structure of other components. But in many real

CHAPTER 8. DISCUSSION 109

world situations, one might need to relax this encapsulation a bit. This would require

that one could connect interfaces to interfaces that are contained in other components

(see Figure 8.3b).

It can be argued that this extension is a bit questionable, since it violates the rules of

encapsulation. Further, the situation can be circumvented by defining a separate inter-

face at the border that acts as a bridging interface (see Figure 8.3a). This corresponds

to a situation in which new public interfaces are added to a component.

Evolution

It is said that changeability is one of the characteristics of software. It is no wonder

that the need and challenge of evolution in configurable software product families has

been addressed in many contexts (see e.g. Männistö et al., 2001a; Krebs et al., 2003;

Geyer and Becker, 2002). In order to support evolution, configuration techniques and

tools should explicitly take evolution into account.

Unfortunately, neither this tool nor the conceptual basis beneath it support evolu-

tion. At the moment, each version of the configuration model is treated as a separate

model. An enhancement to this approach could add a version number to the configura-

tion model itself. But this doesn’t solve the problem, since components can be evolved

more or less independently of each other. Thus one should add a separate version num-

ber to elements in the model. Further, one should be able to refer to these revisions in

the configuration model, and even write constraints that refer to version numbers.

But which elements in the model should be attached with version numbers? Since

software components evolve when their implementation is modified, it is natural to

assign version numbers to components. Further, requirement specifications may also

change, which means that features should also have version numbers. But it can be

argued that other elements might also need version numbers. For example, one can

modify the function specifications in an interface type, or modify the value set of one

particular attribute type. To conclude, when specifying the versioning system that

supports evolution, one should carefully decide which elements in the configuration

model should be taken into account.

CHAPTER 8. DISCUSSION 110

Support for Configuration Process

According to Geyer and Becker (2002), a configurator tool should support the user

during the configuration process, so that features can be selected in an optimal order.

This is also reflected by Hotz et al. (2004), who use procedural knowledge for describ-

ing the order in which configuration decisions are processed. Further, the order of the

configuration is also supported in WeCoTin configurator (see Section 3.3.1).

At the moment, Kumbang Configurator does not provide any kind of support for

configuration process. Instead, the user can modify the configuration in any order he

or she chooses, as long as the configuration is instantiated in a top-down order. This

means that upper parts must be instantiated before one can start to instantiate parts

below them. But once the upper parts are instantiated, one can modify them in any

order one chooses.

There are several advantages in providing support for configuration process. Firstly,

some dependencies might be easier to handle when the configuration order is speci-

fied. For example, it might be easier to avoid dead-ends and conflicting situations,

if one makes some selections first and lets the tool deduce consequences of those se-

lections. Secondly, configuration process support acts as a “wizard” for deriving a

configuration, which helps the users to understand the configuration better. Finally,

one can attach detailed information and explanations with the procedural knowledge.

But it can be argued that some experienced users don’t want to follow a fixed order

of configuration decisions, just like some users don’t want to use wizards in other

tools. This means that one should be able to use the tool both ways: with and without

configuration process support.

8.2 Related Work

This section discusses and compares related work to the work done in this thesis. Thus

the purpose of this section is to find differences as well as similarities with approaches

that try to solve the same problems.

But what should be taken as related work? The scope of this thesis does not enable

comparing this work to all approaches and issues presented in the literature survey.

The idea is to find work that is similar enough so that comparison is meaningful. Thus

CHAPTER 8. DISCUSSION 111

this section assumes that related work covers product derivation as part of application

engineering. And not just any kind of product derivation, but product derivation that

has been automatised or is aided by dedicated tools and is performed in a routine

manner. In addition, one limits the scope of this section to software product families.

Comparing to traditional configurable products or services would naturally be fruitful,

but it is unfortunately too vast a subject for this section. In summary, the scope of this

section is tool-aided routine product derivation for software product families.

The rest of the section is organised as follows. Section 8.2.1 discusses how tra-

ditional product configurator tools have been used for configuring software. These

cases include situations where configurator tool was used directly, as well as situations

where new software has been built on top of existing configurator tools. Section 8.2.2

presents an approach that combines software configuration management (SCM) ideas

with software architectures. Section 8.2.3 discusses generative programming, and fi-

nally Section 8.2.4 presents a couple of other approaches.

8.2.1 Using Traditional Configurators for Configuring Software

As was discussed in Section 4.1.2, one has tried to apply traditional product configu-

ration tools to configure software product families. These can be categorised by the

effort required to model software so that it can be given to the configurator tool. In

some cases, the model can be given almost directly to the tool, while in some cases

one needs to translate the original description of the configurable software product

into some other format. In some cases, the configurators cannot directly support all

characteristics of the software. Instead, one has built new software on top of existing

configurators to enable mapping the software description to a format understood by

the tool.

Configuring Linux Familiar

The question of whether software products can be modelled and configured with tra-

ditional configurators is investigated by configuring Linux Familiar with WeCoTin

configurator (Ylinen et al., 2002).

Linux Familiar is a distribution of the Linux operating system developed for Com-

paq iPAQ hand-held computers. Linux Familiar consists of a large number of software

CHAPTER 8. DISCUSSION 112

components, called packages. Each package can have multiple versions, which in this

case are revisions in time. Packages can have various relations between them: a pack-

age can depend on, conflict with, replace, or provide another package. When installing

the software, these relations must be taken into account. Further, an interesting char-

acteristic of software running in a hand-held device is the limited amount of resources

available. One cannot install all possible packages into the device; instead, one must

prioritise them. (Ylinen et al., 2002)

In order to solve the problem of configuring a correct set of packages, Ylinen et al.

(2002) provide a mapping to the modelling concepts used in WeCoTin configurator

tool (see Section 3.3.1). In particular, they provide an automatic mapping from Linux

Familiar package description to PCML (Product Configuration Modelling Language).

As a result of this mapping, they conclude that PCML is largely suitable for modelling

this kind of configurable product.

In order to support evolution and reconfiguration of Linux Familiar, Kojo et al.

(2003) propose a conceptualisation for modelling evolution and variability of config-

urable software product families. In addition, they present a prototype built on top of

WeCoTin configurator that supports the conceptualisation presented. Finally, they use

this prototype for modelling and configuring Linux Familiar over multiple releases.

When comparing these two cases of configuring Linux Familiar, one can note sev-

eral similarities with Kumbang Configurator. It seems that one could indeed model

and configure Linux Familiar using the tool developed in this work. This is due to

the fact that this tool resembles WeCoTin configurator in many respects. But there are

several differences also.

Firstly, there are some concepts that are provided by Kumbang Configurator but are

not actually needed in case of Linux Familiar. (Fortunately these issues do not prevent

modelling and configuring Linux Familiar with the tool developed in this work. One

should just leave out those concepts that aren’t needed.) Ylinen et al. (2002) question

the usefulness of cardinality in software configuration. In case of Linux Familiar, there

were only optional and required packages, which means that the notion of cardinality

could be replaced with the notion of optionality. Another obvious difference is the

lack of interfaces and connectors. It is the responsibility of the packages themselves

to know how they use each other, and thus package connections cannot be configured

separately.

CHAPTER 8. DISCUSSION 113

Secondly, there are some concepts that are needed in case of Linux Familiar but

are not provided by Kumbang Configurator. One obvious difference is the support for

evolution. Kojo et al. (2003) provide support for evolution of packages, whereas this

tool lacks that support completely. Another difference is the need for resources. Ylinen

et al. (2002) note that resource-based configuration would be beneficial for balancing

the memory consumption of the configuration. But resources are not provided by

WeCoTin either, so they are not essential for the configuration task.

Finally, there is even one issue that is provided by this tool but is lacking from

WeCoTin: separation of features and components. Ylinen et al. (2002) point out that

virtual Linux packages would more naturally be modelled as functions or features,

not as ordinary packages. With Kumbang Configurator, virtual packages could be

modelled as features, while other packages could be modelled as components.

In summary, it seems that it would be beneficial to try to do similar mapping from

Linux Familiar to this tool. This would also give valuable empirical data on how this

tool handles very large configurations.

Configuring Feature Models

As was discussed in Section 2.2.1, feature models have become a prominent method

for describing software product families. However, no generally accepted method or

tool for deriving feature configurations exists. Asikainen et al. (2004) investigate

whether traditional configurators could be used for deriving valid feature configura-

tions from feature models. In particular, they take WeCoTin configurator (see Sec-

tion 3.3.1) and use it for modelling a sample feature model and for deriving feature

combinations from the model.

The central observation of the demonstration is that it is indeed feasible to use

WeCoTin for modelling and deployment of feature models. The translation to PCML

(Product Configuration Modelling Language) used by WeCoTin was quite straightfor-

ward, and the configuration task went smoothly. However, WeCoTin is not perfectly

suitable for this purpose. WeCoTin makes a distinction between feature types and their

usage in the hierarchy, whereas most feature modelling methods make no such distinc-

tion. One manifestation of this mismatch is that compositional hierarchy in WeCoTin

configurator has separate part names for features as parts, whereas in feature models

there is no conceptual difference between a role of subfeature and a subfeature filling

CHAPTER 8. DISCUSSION 114

that role. But it is noted that this difference can also be an advantage. In some cases,

it might be beneficial to be able to distinguish a feature type or a role of subfeature as

separate concepts. (Asikainen et al., 2004)

If one compares the demonstration conducted by Asikainen et al. (2004) to this

work, one sees that the feature modelling concepts of Kumbang are very similar to

those found in WeCoTin. That is, Kumbang Configurator makes a separation between

types and instances as well as roles and subfeatures. But it is true that in some cases

this might be unnecessary. Especially when there is only one subfeature in a role, one

should be able to define the subfeature directly under that role, without separate type

definitions and role names. (This is somewhat similar to the concept of anonymous

inner class found in Java programming language.) This way, one could avoid useless

repetition in both configuration models and in the configurator tool.

Configuring Embedded Automotive Systems

There exists a pool of research that tries to integrate knowlegde-based configuration

techniques with software product families of embedded automotive systems (see e.g.

Hein et al., 2001; Hein and MacGregor, 2003). In the context of embedded automotive

systems, hundreds or event thousands variants are produced every year. This makes

every effort in automating product derivation worthwhile. (Hein et al., 2001)

As a result of the research, one has developed tool support to ease the configuration

task in such systems (see e.g. Hotz et al., 2004; Hotz and Krebs, 2003b). (However,

the developed tool support is independent of the domain.) This tool support utilises

several existing structure-based configurator tools, such as KONWERK (Günter and

Hotz, 1999) and EngCon (Hollmann et al., 2000). (Figure 8.4 contains a screen shot

from a case that utilises KONWERK configurator tool.) The main characteristic of

this tool support is the separation between features and artifacts. Further, ther are both

hardware or software artifacts. The concepts of the software domain are then mapped

into structural language understood by the configurator tool.

The case that is presented in Section 7.1 originates from the research conducted

for embedded automotive systems, and it is meant to be used with the tool support

(see a description of the case in Hotz et al., 2004). One can almost directly configure

the case presented in Section 7.1 with both tools. This is a strong indicator of the

similarity between Kumbang Configurator and the tool discussed by Hotz et al. (2004).

CHAPTER 8. DISCUSSION 115

Figure 8.4: A screen shot from the configurator KONWERK (Hotz et al., 2004)

For example, both tools support compositional hierarchies of elements, cardinalities,

attributes, separate features and components (artifacts), constraints between elements,

and so forth.

In addition to many similarities, there are also differences between these tools.

Firstly, the tool discussed by Hotz et al. (2004) supports the configuration task by of-

fering a mechanism for guiding the user through configuration selections. In contrast,

Kumbang Configurator does not provide any kind of guidance, but the user can freely

make selections in any order. It can be argued that support in the configuration task is

beneficial for the user, especially in large configurations. But it should also be possible

to perform the steps in any order.

Secondly, the tool discussed by Hotz et al. (2004) does not support interfaces or

connectors, whereas this tool offers both. This might partly be because the underlying

configurator tools do not support connecting elements.

Thirdly, the tool discussed by Hotz et al. (2004) allows configuration only through

features, and artifacts are automatically deduced based on feature selections. In con-

trast, the tool developed in this work allows the user to make configuration selections

on components also, and reflect those selections to the feature configuration. It is prob-

able that the user usually wants to select features first and get component configuration

automatically. However, in some cases it might be beneficial to offer the possibility to

CHAPTER 8. DISCUSSION 116

do vice versa.

Finally, it is a bit unclear whether the tool discussed by Hotz et al. (2004) supports

evolution. At least a conceptualisation of the evolution has been studied (Krebs et al.,

2003), but to one’s knowledge, these ideas have not yet been implemented in the tool

support.

Concluding Remarks

In all the cases presented in this section, there is one clear difference to the approach

taken in this thesis. None of the demonstrations or tools support connecting com-

ponents through interfaces. Since none of the underlying configurator tools support

connectors, it seems that it is quite difficult to build support for connectors on top of

these tools. Connecting components implies topological relations that are quite diffi-

cult to model using other relations, such as composition or inheritance, available in the

tools.

8.2.2 Mae

Mae (Roshandel et al., 2004; van der Hoek, 2004) is a supporting environment for

managing architectural variability and evolution. The background of Mae lies in the

principles of software configuration management (SCM); such systems have long been

used to provide support with managing configurations. But since configuration man-

agement systems tend to concentrate on source code and file management, they aren’t

really suitable for managing architectures. On the other hand, architectural description

languages (ADLs) lack explicit mechanisms for optionality and variability. The goal

of Mae is to solve these issues by providing an SCM system for managing configurable

architectures written in ADLs that explicitly model variability and optionality. In ad-

dition, Mae enables evolution of architectures by providing a versioning system for the

elements in the architecture. (Roshandel et al., 2004; van der Hoek, 2004)

Mae provides a system model that tries to combine software architecture and con-

figuration management concepts into a single representation. The system model is

built around a notional architecture model, which captures elements commonly found

in most existing ADLs. Thus Mae can be used in conjunction with many ADLs. The

system model is implemented as an extension to xADL 2.0, and it is built a a set of

CHAPTER 8. DISCUSSION 117

Figure 8.5: A screen shot from the Ménage modelling tool (van der Hoek et al., 1999)

XML (eXtensible Markup Language) schemas. (Roshandel et al., 2004; van der Hoek,

2004)

Mae contains three subsystems that perform separate tasks in the management of

evolvable and configurable arhictectures. Firstly, a design subsystem called Ménage

(van der Hoek et al., 1999) provides a graphical user interface for designing the ar-

chitectures. Secondly, a selector subsystem is used for specifying a certain architec-

ture configuration out of the available version space. Finally, an analysis subsystem

performs consistency checks, either on a selected configuration or on an architecture

designed with Ménage. (Roshandel et al., 2004)

Although Mae originates from a completely different background (software con-

figuration management compared to traditional product configuration), it bears many

similarities with Kumbang Configurator. Firstly, it provides a tool for modelling vari-

ability in architectures, deriving specific architectures from those models and checking

the consistency of the configurations. Secondly, the architectural concepts used in Mae

are quite similar to the ones used in this work. This is partly because both Kumbang

Configurator and Mae use concepts that are commonly found in many ADLs, such

as components, interfaces, connectors and constraints. And like many ADLs, both

systems make a separation between types and instances.

But there are also differences between these tools. Firstly, Mae provides a lot of

CHAPTER 8. DISCUSSION 118

functionality that is lacking from this tool: check-in/check-out mechanism, evolution

and versioning for architecture, possibility to use different languages for describing

architectures and so forth. Further, Ménage can be used to model architectures, while

this system is currently lacking modelling support.

Secondly, there are some issues that have been implemented somewhat differently.

Perhaps the biggest difference is the definition of variability and optionality. Variability

of components is achieved in Mae by using variant components. Variant components

are similar to traditional components, except that they offer a set of other components

out of which one component can be chosen. Further, variability mechanism is com-

plemented with optional elements. In contrast, this system uses cardinalities and sets

of possible types together in part definitions. It can be argued that variability mech-

anisms used in this tool are more powerful in the sense that they can express more

in simple definitions. For example, one needs several variant components combined

with optional components to express the part definition (BasicClient,ExtendedClient)

client[2-3] in Figure 4.3.

Another big difference is how selections are made. Mae attaches each optional and

variant element with a property guard - a property must have a certain value in order to

include a certain optional element, for example. When deriving a configuration from

the architecture, the user sets these property values globally, and they are propagated

down the architecture to make corresponding selections. In contrast, the selection

mechanism in this system is explicit: one makes the selections by choosing instances

directly, not through property values.

Yet another difference is the mechanism for consistency checking. In Mae, the

consistency of a configuration is checked after the configuration has been derived -

this is called after-the-fact checking. In contrast, this system checks the consistency of

the configuration after every selection and offers the possibility to cancel inconsistent

selections. It can be argued that this after-the-fact checking might sometimes be an-

noying to the user, especially if one has to iterate over and over again to find a correct

configuration.

Finally, there are a couple of things that this tool supports but that are lacking

from Mae. First and foremost, the tool developed for this system makes a separation

between features and components, while Mae addresses only architectural models and

configurations. This might partly be because this work has its background in software

CHAPTER 8. DISCUSSION 119

product family research, in which feature models are seen as an integral part of the

software product family development. Secondly, it seems that Mae does not support

attributes of any kind. Mae offers properties for elements, but they are used for binding

variability, not for modelling the domain.

8.2.3 Generative Programming and Domain-Specific Languages

Generative Programming is defined as “a software engineering paradigm based on

modelling software system families such that, given a particular requirements speci-

fication, a highly customised and optimised intermediate or end-product can be auto-

matically manufactured on demand from elementary, reusable implementation com-

ponents by means of configuration knowledge” (Czarnecki and Eisenecker, 2000).

The idea of generative programming is to mass-customise products from a software

product family. Generative programming is a direct consequence of the “automation

assumption”: if one can compose components manually, one can also automate that

process. Generative programming aims at building generative models for software

product families; these models are then used to generate concrete software products

from these models. This derivation (or generation) reuses existing implementation

components and configuration knowledge. (Czarnecki and Eisenecker, 2000)

Generative programming makes a distinction between domain engineering and

application engineering activities. Domain engineering includes modelling the fam-

ily with feature models and generative domain models and building generators and

reusable implementation components. Application engineering uses these assets for

generating desired product instances from the family. (Czarnecki and Eisenecker,

2000)

In many respects, generative programming resembles the approach taken in this

study. For example, generative programming utilises feature models for describing the

family in a similar fashion. In fact, the feature modelling concepts that are presented

by Czarnecki and Eisenecker (2000); Czarnecki et al. (2002, 2004) are quite simi-

lar to the concepts utilised in this work. Examples of similar concepts are attributes,

cardinalities, constraints and so forth. But there are also differences: Czarnecki and

Eisenecker (2000) utilise many FODA-like concepts, such as characterising features as

either optional or mandatory instead of representing the same information with cardi-

CHAPTER 8. DISCUSSION 120

nalities. Further, Czarnecki and Eisenecker (2000) do not make a distinction between

types and instances.

Perhaps the biggest difference between generative programming and this work lies

in the application engineering. Firstly, generative programming generates components

instead of selecting them to the product instance. Although generation might utilise

existing components, they are typically much smaller than those components that are

selected in product configuration.

Secondly, generative programming does not make a clear distinction between se-

lecting the configuration and building the product. Instead, these tasks are often inter-

twined into one generative model. In contrast, this tool makes a separation between

these activities; in fact this tool does not build the product at all. Although the user

often wants to perform configuration task and build task together, it is better to keep

them separate conceptually and implementation-wise. One reason for this is maintain-

ability: it is much easier to modify either one of these tasks, when they are cleanly

separated.

Thirdly, this tool is domain-independent, since the domain knowledge is encoded

in the configuration model, not in the tool implementation. This means one can utilise

the same tool in many domains. In contrast, generative programming often utilises

domain-specific languages (DSL), which are used for generating the system imple-

mentation. The problem with domain-specific implementation and generators is porta-

bility: it is hard to reuse same generators in many domains, and it is harder to make big

changes to the domain. There exist some tools that utilise domain-specific languages

for generating software systems. An example system, MetaEdit, is presented by Arion

and Tolvanen (2004).

8.2.4 Other Related Work

CONSUL and pure::variants

CONSUL (Beuche et al., 2004) and its commercial successor pure::variants (Beuche,

2004) are tools that support the product family development chain from features to fi-

nal binary product. These tools use feature models as their main model for describing

variability. In addition, the tools provide mappings from features to components and

from components to actual implementation. The chain of deriving an executable prod-

CHAPTER 8. DISCUSSION 121

uct is highly customisable, and the system can be used with different implementation

languages. (Beuche et al., 2004)

The concepts related to feature models are quite similar to the ones used in for

example FODA (see Section 2.2.1. That is, the system does not make a difference

between types and instances, and variability concepts (alternatives, optionals etc.) are

incorporated in the features themselves. In these respects, the system developed in

this work differs from CONSUL system. In addition to basic concepts, CONSUL

provides feature values and restrictions, which pretty much correspond to attributes

and constraints provided by this system.

The component side of CONSUL is quite close to implementation. That is, com-

ponents in CONSUL are defined as a set of parts, which are mapped to one or more

sources. Sources in turn are physical representations to logical elements, such as files

or flags. In contrast, this system treats components as high-level architectural abstrac-

tions that can contain other components, attributes, interfaces and bindings between

interfaces. In CONSUL, it seems that components are merely a group of sources with

some additional restrictions.

CONSUL supports consistency checks, which are implemented using Prolog log-

ical programming language. Based on the papers published, it is though a bit unclear

how and when these checks are performed.

RequiLine

RequiLine (von der Maßen and Lichter, 2003) is a requirements engineering tool for

software product families that utilises feature models for describing requirements. The

user can specify and manage features and requirements, and perform queries on the

specified model (for example, by filtering certain features from the model). In addition,

the system performs consistency checks on the specified model. (von der Maßen and

Lichter, 2003)

At the moment, RequiLine does not provide support for instantiating products

through configuring, but this functionality is under construction. The aim is that Requi-

Line could provide assistance in resolving the variabilities of the model and building

consistent configurations. (von der Maßen and Lichter, 2003)

The concepts utilised in RequiLine are quite close to the concepts used in this

system, but there are differences also. Just like this system, RequiLine makes a sep-

CHAPTER 8. DISCUSSION 122

aration between features and their optinality or variability, but the mechanism is a bit

different. For example, RequiLine does not provide cardinalities, but specifies sepa-

rate relationships for mandatory, optional, alternative and or features. Further, features

cannot contain attributes. Finally, it seems that RequiLine does not make a separation

between types and instances, like this system does.

8.3 Comparison with Research Questions and Objec-

tives

This section discusses the research aims presented in Chapter 5 and compares them to

the research results presented in Chapter 6 and Chapter 7.

To iterate, the research questions set for this work were:

1. Is it possible to build a configurator tool that can be used for configuring product

individuals from a configurable software product family described with Koal-

ish, Forfamel or Kumbang language, so that the implementation utilises existing

inference engine smodels?

2. If it is possible to build the aforementioned configurator tool, does the tool sup-

port the user in the configuration task and provides service that outweigh manual

configuration?

3. Given the developed tool presented above, can the feasibility of the approach be

validated with example cases?

The answer to the first research question was found. The system can be used for

configuring product individuals based on configuration models written in Kumbang,

Koalish and Forfamel, and the implementation utilises smodels inference engine for

configuration reasoning. Further, the system fulfils all research objectives set for the

implementation in Section 5.1. Thus one can conclude that the answer to the first

research question is yes: it is indeed possible to build such tool.

The answer to the second research question is not so straightforward. The idea was

to develop such solutions that ease the configuration task and provide real value to the

user of the tool. There are many aspects of the tool that clearly target for this aim. For

example, the graphical user interface visualises the configuration and provides support

CHAPTER 8. DISCUSSION 123

for making configuration selections. Further, configuration engine prevents configu-

ration errors and ensures that the configuration is consistent and complete. However,

it is clear that this system lacks many capabilities that could support application engi-

neering activities. Many of these capabilities are discussed in Section 8.1; examples

include support for guided configuration process, support for evolution, explanation

mechanisms, better performance and so forth. Thus one can say that the research done

in this thesis only scratches the surface of the second research question. There is still

a lot of work to be done in this area.

The third research question sets the guidelines for validating the research. This

thesis presents two sample cases that were modelled and configured with the system.

Thus one can say that the feasibility of the approach (the first research question) has

been validated. However, although the success with the cases give some indication

of the usefulness of the system, these cases are not enough to validate the second

research question (providing real value and support). In order to validate the second

research question, one would need further empirical research. Firstly, one would need

to expand the number and quality of example cases to ensure that these two cases were

not accidental. Secondly, one needs to verify the system by applying it to industrial

usage. This way one can collect valuable data on whether the system really provides

value to the user.

In summary, the third research question has been achieved for feasibility, but real

value of this system is yet to be proven.

Chapter 9

Conclusions and Future Work

Variability in software products has been an increasing trend. To cope with increasing

variability and short time-to-market, a company can organise its product development

into a software product family. Individual products in software product families are

developed according to a common family architecture and are constructed from com-

mon reusable assets. In general, software product families make a distinction between

two separate processes: domain engineering, which designs and produces core assets,

and application engineering, which uses core assets for deriving individual products.

Since variability in a software product family manifests itself in requirements, ar-

chitecture and implementation, variability must be managed at all these levels. Feature

models are often used for modelling varying requirements; there exists a wealth of

different feature modelling approaches. On the other hand, there are only a few archi-

tecture modelling methods that can explicitly model variability.

The idea of easing the derivation of individual product by designing the family

beforehand has been applied also in the domain of traditional, mechanical products. A

configurable product family is such that all product instances are derived in a routine

manner, possibly with the aid of a specialised tool called configurator. There exists

several configurators; this work adopts many techniques that are similar to WeCoTin

configurator.

If one applies the idea of configurable product families to software, one gets a

configurable software product family. In such a family, product derivation is extremely

effortless; often product derivation is supported with dedicated configurator tools.

This purpose of this work was to build a working prototype tool for configuring

124

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 125

product individuals from configurable software product families. The demonstration

tool, called Kumbang Configurator, is based on modelling languages Koalish, For-

famel and Kumbang. These languages utilise concepts from software domain and

from traditional product configuration. Further, Kumbang Configurator uses smodels

inference engine for configuration reasoning.

The requirements of the tool were mainly gathered from literature and comparison

with similar tools. After that, the system was implemented to correspond to these

requirements.

The implemented tool was validated with two example cases: one real-life case

of a configurable product, and one toy example. The validation revealed some minor

issues that could be improved, but overall it showed that the tool can indeed be used

for deriving such products.

However, as was discussed in Section 8.1, there is still plenty of work to be done.

The following paragraphs discuss possible future work and present how the tool could

be improved.

Extending the capabilities of the tool in the current scope: There are several is-

sues that could be improved as such, without extending the scope or conceptual basis

of the tool. Firstly, one should improve quality attributes of the system. For exam-

ple, performance could be improved by calling smodels API directly, by removing

total configurations from main memory, or by breaking symmetries that may exist in

configurations (Tiihonen et al., 2002). Secondly, configuration reasoning should be

extended, at least by implementing those requirements that are not fulfilled in the cur-

rent system. Thirdly, it is clear that one should build support for configuration process.

This could be implemented as a separate declarative model built on top of Kumbang

model.

Extending the conceptual basis of the tool: But there are also many enhancements

that require direct modifications of Koalish, Forfamel and Kumbang languages. Per-

haps the most critical enhancement is support for evolution. One should design and

implement an extension that takes the evolution and versioning of family elements into

account. In addition, the constraint language of Kumbang should be extended consid-

erably. For example, an equivalence relation would ease writing constraints between

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 126

features and components. Further, it should be investigated how one could support dif-

ferent binding times both in the model and in the tool implementation. Besides these

three issues, there are also other, not so critical enhancements. These include support

for component inheritance and for resource modelling.

Extending the scope along application engineering activities: The scope of this

thesis was intentionally limited to actual configuration task. In future, this scope could

be extended from both ends. Firstly, one should provide tool support for constructing

the actual product. There are two choices: generation and building. To generate the

implementation, one needs generators and generative models for architectural com-

ponents. If components have already been implemented, one can provide a mapping

from components to implementation units and then build the product with dedicated

build tools (such as make or ant).

Secondly, one can also provide support for requirements. Instead of plain feature

models, the tool could offer detailed descriptions of features. Further, features could be

mapped to actual requirements, which usually reside on separate System Requirement

Specification (SRS) documents.

Extending the scope towards domain engineering activities: In addition to ex-

tending the scope along application engineering, one could also provide support for

domain engineering activities. This essentially means providing a separate modelling

tool that can be used for creating valid Kumbang models. At the moment, Kumbang

models have to be written by hand; this approach is too difficult and error-prone to be

used in practice.

Integration with other tools: It is worth remembering that no tool is an island. In

order to provide real value to the daily development, one should integrate this system

with other development tools. For example, it should be investigated whether this

tool or corresponding modelling tool could be integrated with Eclipse (Eclipse IDE,

2004). Further, software configuration management tools (see e.g. CVS, 2004) can be

used for managing implementation units and other core assets. Finally, if one provides

support for mapping between features and requirements, one must investigate whether

this system could be integrated with requirements engineering tools.

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 127

Gaining further empirical knowledge: Previous paragraphs mainly concentrated

on enhancing the capabilities of the system. However, if one hasn’t empirically verified

the system, it is quite useless to put effort in providing lots of new capabilities. Thus it

is very important to empirically test the system.

Naturally, the validation approach taken in this thesis should be continued and

extended. One should model and configure several new products with different prop-

erties and varying sizes. But this validation technique is not enough, since results are

not gathered directly from real world situations. Thus the tool should be subjected to

industrial scrutiny. One could provide demonstrations and gather comments and feed-

back from industrial partners, or one could even pioneer tool usage in a small-scale

project.

Finally, quality attributes of the system should be empirically tested. For example,

one could evaluate performance with similar randomised inputs as was done by Tiiho-

nen et al. (2002). In particular, it would be interesting to see how connections affect

the performance of the system. It is possible that connections increase the complexity

of the configuration task in general. However, this is yet to be proven.

Bibliography

Arion Slava, and Tolvanen Juha-Pekka. 2004. Metaedit+: Domain-Specific Modeling

and Code Generator Environment. In: Proceedings of the Workshop on Software

Variability Management for Product Derivation, at Software Product Line Confer-

ence (SPLC3).

Asikainen T., Soininen T., and Männistö T. 2003a. A Koala-Based Approach for Mod-

elling and Deploying Configurable Software Product Families. In: Proceedings of

the Fifth International Workshop on Product Family Engineering (PFE-5).

Asikainen T., Soininen T., and Männistö T. 2003b. A Koala-Based Ontology for Con-

figurable Software Product Families. In: IJCAI 2003 Configuration workshop.

Asikainen Timo. 2002. Representing Software Product Line Architectures Using a

Configuration Ontology. M.Sc.Tech. thesis, Helsinki University of Technology, De-

partment of Industrial Engineering and Management.

Asikainen Timo. 2004. Modelling Methods for Managing Variability of Configurable

Software Product Families. Licentiate Thesis, Helsinki University of Technology.

Asikainen Timo, Männistö Tomi, and Soininen Timo. 2004. Using a Configurator

for Modelling and Configuring Software Product Lines Based on Feature Models.

In: Proceedings of the Workshop on Software Variability Management for Product

Derivation, at Software Product Line Conference (SPLC3).

Bachmann Felix, and Bass Len. 2001. Managing Variability in Software Architectures.

In: Proceedings of the Symposium on Software Reusability.

Bachmann Felix, Bass Len, Carriere Jeromy, Clements Paul, Garlan David, Ivers

James, Nord Robert, and Little Reed. 2000. Software Architecture Documentation in

128

BIBLIOGRAPHY 129

Practice: Documenting Architectural Layers. Tech. rept. CMU/SEI-2000-SR-004.

Software Engineering Institute.

Beuche Daniel. 2004. Demonstration: Variants and Variability Management with

pure::variants. In: Proceedings of the Workshop on Software Variability Manage-

ment for Product Derivation, at Software Product Line Conference (SPLC3).

Beuche Daniel, Papajewski Holger, and Schröder-Preikschat Wolfgang. 2004. Vari-

ability Management with Feature Models. Science of Computer Programming, 333–

352.

Bosch Jan. 2000. Design and Use of Software Architectures: Adapting and Evolving a

Product-Line Approach. Addison-Wesley, Boston.

Bosch Jan. 2002. Maturity and Evolution in Software Product Lines: Approaches,

Artefacts and Organization. Pages 257–271 of: Chastek Gary J. (ed), Proceedings

of the Second Software Product Line Conference (SPLC2).

Brooks Frederick P. 1987. No Silver Bullet: Essence and Accidents of Software Engi-

neering. Computer, 20(4), 10–19.

Clements Paul, and Northrop Linda. 2001. Software Product Lines—Practices and

Patterns. Addison-Wesley, Boston.

CVS. 2004. Concurrent Versions System. http://www.cvshome.org/. Visited December

2004.

Czarnecki K., and Eisenecker U.W. 2000. Generative Programming. Addison-Wesley,

Boston.

Czarnecki K., Besnasch T., Unger P., and Eisenecker U.W. 2002. Generative Program-

ming for Embedded Software: An Industrial Experience Report. Pages 156–172 of:

ACM SIGPLAN/SIGSOFT Conference on Generative Programming and Component

Engineering.

Czarnecki Krzysztof, Helsen Simon, and Eisenecker Ulrich. 2004. Staged Configu-

ration Using Feature Models. Pages 266–283 of: Proceedings of the 3rd Software

Product Line Conference (SPLC3).

BIBLIOGRAPHY 130

Eclipse IDE. 2004. Eclipse Integrated Development Environment.

http://www.eclipse.org/. Visited December 2004.

Faltings Boi, and Freuder Eugene C. 1998. Configuration (Guest Editor’s Introduc-

tion). IEEE Ingelligent Systems, 13(4), 32–33.

Felfernig A., Friedrich G., and Jannach D. 2001. Conceptual Modeling for Configura-

tion of Mass-Customizable Products. Artificial Intelligence in Engineering, 15(2),

165–176.

Geyer Lars, and Becker Martin. 2002. On the Influence of Variabilities on the

Application-Engineering Process of a Product Family. Pages 1–14 of: Chastek

Gary J. (ed), Proceedings of the Second Software Product Line Conference (SPLC2).

Günter Andreas, and Hotz Lothar. 1999. KONWERK—A Domain Independent Con-

figuration Tool. In: Proceedings of the AAAI 1999 Workshop on Configuration.

Günter Andreas, and Kühn Christian. 1999. Knowledge-Based Systems—Survey and

Future Directions. Pages 47–66 of: Proceedings of the 5th Biannual German Con-

ference on Knowledge-Based Systems.

Hein Andreas, and MacGregor John. 2003. Managing Variability With Configura-

tion Techniques. Pages 19–23 of: Proceedings of Software Variability Management

ICSE 2003 Workshop.

Hein Andreas, MacGregor John, and Thiel Steffen. 2001. Configuring Software Prod-

uct Line Features. In: Proceedings of the Workshop on Feature Interaction in Com-

posed Systems in ECOOP 2001.

Hollmann Oliver, Wagner Thomas, and Günter Andreas. 2000. EngCon—A Flexible

Domain-Independent Configuration Engine. In: Proceedings of the Configuration

Workshop in conjunction with the 14th European Conference on Artificial Intelli-

gence ECAI 2000.

Hotz Lothar, and Krebs Thorsten. 2003a. Configuration—State of the Art and New

Challenges. Pages 145–157 of: Proceedings of the 17th Workshop, Planen, Schedul-

ing and Configuration, PuK2003.

BIBLIOGRAPHY 131

Hotz Lothar, and Krebs Thorsten. 2003b. Supporting the Product Derivation Process

with a Knowledge-based Approach. Pages 24–29 of: Proceedings of Software Vari-

ability Management ICSE 2003 Workshop.

Hotz Lothar, Krebs Thorsten, and Wolter Katharina. 2004. Combining Software Prod-

uct Lines and Structure-based Configuration—Methods and Experiences. In: Pro-

ceedings of the Workshop on Software Variability Management for Product Deriva-

tion, at Software Product Line Conference (SPLC3).

IEEE Std 1471. 2000. IEEE Standard 1471-2000: IEEE Recommended Practice for

Architectural Description of Software-Intensive Systems.

Kang K.C., Cohen S.G., Hess J.A., Novak W.E., and Peterson A.S. 1990. Feature-

Oriented Domain Analysis (FODA) Feasibility Study. Tech. rept. CMU/SEI-90-TR-

21, ADA 235785. Software Engineering Institute.

Kang K.C., Lee Jaejoon, and Donohoe P. 2002. Feature-Oriented Product Line Engi-

neering. IEEE Software, 19(4), 58–65.

Kojo Tero, Männistö Tomi, and Soininen Timo. 2003. Towards Intelligent Support for

Managing Evolution of Configurable Software Product Families. Pages 86–101 of:

Software Configuration Management (ICSE Workshops SCM 2001 and SCM 2003

Selected Papers).

Krebs Thorsten, Hotz Lothar, Ranze Christoph, and Vehring Guido. 2003. Towards

Evolving Configuration Models. In: Proceedings of the 17th Workshop, Planen

Scheduling und Konfigurieren (PuK2003) – KI 2003 Workshop.

MacGregor John. 2002. Requirements Engineering in Industrial Product Lines. In:

Proceedings of REPL02, International Workshop on Requirements Engineering for

Software Product Lines.

MacGregor John. 2004. CONIFP—Configuration in Industrial Product Families. Pre-

sentation in Workshop on Software Variability Management for Product Derivation,

at Software Product Line Conference (SPLC3).

Männistö Tomi, Soininen Timo, and Sulonen Reijo. 2000. Configurable Software

Product Families. In: ECAI 2000 Configuration Workshop, Berlin.

BIBLIOGRAPHY 132

Männistö Tomi, Soininen Timo, and Sulonen Reijo. 2001a. Modelling Configurable

Products and Software Product Families. In: IJCAI 2001 Configuration workshop.

Männistö Tomi, Soininen Timo, and Sulonen Reijo. 2001b. Product Configuration

View to Software Product Families. In: International Workshop on Software Con-

figuration Management (SCM-10) at ICSE 2001.

Northrop Linda M. 2002. SEI’s Software Product Line Tenets. IEEE Software, 19(4),

32–40.

Poseidon for UML. 2004. Poseidon for UML by Gentleware.

http://www.gentleware.com/. Visited November 2004.

Raatikainen Mikko, Timo Soininen, Männistö Tomi, and Antti Mattila. 2003. A Case

Study of Two Configurable Software Product Families. In: Proceedings of the Fifth

International Workshop on Product Family Engineering (PFE-5).

Roshandel Roshanak, van der Hoek Andre, Mikic-Rakic Marija, and Medvidovic Ne-

nad. 2004. Mae—A System Model and Environment for Managing Architectural

Evolution. ACM Transactions on Software Engineering and Methodology, 18(2),

240–276.

Sabin Daniel, and Weigel Rainer. 1998. Product Configuration Frameworks—A Sur-

vey. IEEE Ingelligent Systems, 13(4), 42–49.

SEI Software Technology Roadmap. 1997. SEI Software Technology Roadmap (28th

September 1997). http://www.sei.cmu.edu/str/. Visited November 2004.

Shaw M., and Garlan D. 1996. Software Architecture - Perspectives on an Emerging

Discipline. Prentice Hall. Chap. 2.

Shaw Mary. 2002. What Makes Good Research in Software Engineering? Interna-

tional Journal of Software Tools for Technology Transfer, 4(1), 1–7.

Simons Patrik, Niemelä Ilkka, and Soininen Timo. 2002. Extending and Implementing

the Stable Model Semantics. Artificial Intelligence, 138, 181–234.

BIBLIOGRAPHY 133

Soininen T., Tiihonen J., Männistö T., and Sulonen R. 1998. Towards a General On-

tology of Configuration. AI EDAM (Artificial Intelligence for Engineering Design,

Analysis and Manufacturing), 12(4), 357–372.

Soininen T., Tiihonen J., Männistö T., and Sulonen R. 2002. Special Issue: Configura-

tion (Guest Editorial Introduction. AI EDAM (Artificial Intelligence for Engineering

Design, Analysis and Manufacturing), 17(1–2).

Soininen Timo, Niemelä Ilkka, Tiihonen Juha, and Sulonen Reijo. 2001. Representing

Configuration Knowledge with Weigth Constraint Rules. In: AAAI Spring 2001

Symposium on Answer Set Programming.

Sommerville Ian. 2004. Software Engineering. 7th edn. Addison-Wesley.

Thiel Steffen, and Hein Andreas. 2002a. Modelling and Using Product Line Variability

in Automotive Systems. IEEE Software, 19(4), 66–72.

Thiel Steffen, and Hein Andreas. 2002b. Systematic Integration of Variability into

Product Line Architecture Design. In: Proceedings of the 2nd Software Product

Line Conference (SPLC2).

Tiihonen J., Lehtonen T., Soininen T., Pulkkinen A., Sulonen R., and Riitahuhta A.

1998. Modeling Configurable Product Families. In: Proceedings of 4th WDK Work-

shop on Product Structuring.

Tiihonen Juha, Soininen Timo, Niemelä Ilkka, and Sulonen Reijo. 2002. Empirical

Testing of a Weight Constraint Rule Based Configurator. In: ECAI 2002 Configura-

tion Workshop, July 22-23, Lyon, France.

Tiihonen Juha, Soininen Timo, Niemelä Ilkka, and Sulonen Reijo. 2003. A Practi-

cal Tool for Mass-Customising Configurable Products. In: Proceedings of the 14th

International Conference on Engineering Design (ICED’03). Accepted for publica-

tion.

van der Hoek A., Heimbigner D., and Wolf A. 1999. Capturing Architectural Config-

urability: Variants, Options and Evolution. Tech. rept. CU-CS-895-99. Department

of Computer Science, University of Colorado, Boulder, Colorado.

BIBLIOGRAPHY 134

van der Hoek Andre. 2004. Design-Time Product Line Architectures for Any-Time

Variability. Science of Computer Programming, 53(3).

van Gurp J., Bosch J., and Svahnberg M. 2001. On the Notion of Variability in Soft-

ware Product Lines. Pages 45–54 of: Proceedings of the Working IEEE/IFIP Con-

ference on Software Architecture (WICSA2001).

van Ommering R., van der Linden F., Kramer J., and Magee J. 2000. The Koala

Component Model for Consumer Electronics Software. IEEE Computer, 33(3), 78–

85.

van Ommering Rob. 2002. Building Product Populations with Software Components.

Pages 255–265 of: Proceedings of the 24th International Conference on Software

Engineering (ICSE2002).

van Ommering Rob. 2004. Building Product Populations with Software Components.

Doctor’s Thesis, University of Groningen.

von der Maßen Thomas, and Lichter Horst. 2003. RequiLine: A Requirements Engi-

neering Tool for Software Product Lines. In: Proceedings of the 5th International

Workshop on Product Family Engineering (PFE-5).

Weiss David, and Lai Chi Tau Robert. 1999. Software Product-Line Engineering—A

Family-based Software Development Process. Addison-Wesley, Boston.

Ylinen Katariina, Männistö Tomi, and Soininen Timo. 2002. Configuring Software

with Traditional Methods—Case Linux Familiar. In: ECAI 2002 Configuration

Workshop.

