
1

An Object Model for Evolutionary Configuration Management

Hannu Peltonen, Tomi Männistö, Reijo Sulonen and Kari Alho
Helsinki University of Technology
Department of Computer Science
Otakaari 1, 02150 Espoo, Finland

Abstract

An object model for evolving engineering design data is presented. The model is based on
prototype objects and includes tree transformations for object generalization and specialization
during a design process. In addition to attribute data, objects contain constraints for checking
their validity. Objects are arranged into component hierarchies, and constraints can express
dependencies between arbitrary objects in such hierarchies.

1 Introduction

In many manufacturing industries products are built from predefined components according to

customer specifications. In order to fulfil the specification, the designer must select appropriate

components and determine suitable values for various parameters associated with the

components.

Often the designer has a range of standard products available as a basis for his or her work.

A standard product defines some components and provides default values for parameters,

reducing the effort to create a detailed description of the delivered product. We call the task of

creating a product description from components a configuration process. The process is

illustrated in Figure 1.

We want to study object models for representing the configuration process. From our point

of view the problem has two important aspects we want to emphasize: gradual refinement and

graceful evolution. The configuration process—like design processes in general—is an

Figure 1: Configuration process

specification

configurator

configuration

user
standard products

components

2

iterative, sometimes experimental process where many different representations, some of them

quite tentative, may have to be created. Designs and their representations, in terms of design

objects, or simply objects, grow and evolve during the design process. Properties of objects

may be added, modified, or dropped quite freely; both non-structural, e.g., changing attribute

values, and structural changes, e.g., adding new attributes or methods, have to be

accommodated. The design proceeds from abstract to concrete by gradually incorporating more

details through design decisions, or from potentiality to actuality using the terms of Aristotle.

In principle, a finished design represents an unambiguous, “real” product, while an unfinished

design still stands for a whole set of acceptable products. Thus, to us it would be an advantage

to have a framework which could nicely support some form of gradual refinement of designs.

The life-times of many industrial products are quite long, often tens of years; in

construction industry even much longer. During the life-time of a product two different forces

drive the changes. On one hand the delivered products are being maintained or enhanced on an

individual basis; for instance, two similar products delivered to different customers may end up

quite soon being quite different. On the other hand, the design knowledge, i.e. the components

and standard products, used at any particularly moment to configure new products is evolving,

in principle, independently from changes to previously delivered products. We may run into a

situation where we want to replace a component of a product delivered five years ago by a new

component using the validity rules of the original product, possibly long ago rejected from the

product line. We call catering for these two “orthogonal” change processes as graceful

evolution.

The prototype approach [6, 8, 9] seems to provide us with the flexibility needed to cope

with gradual refinement and graceful evolution. The fundamental idea is to allow each object

to serve both as a representation of some “rudimentary version” [3] and as a source for further

refinements; there is no distinction between classes and instances. We have elaborated the

prototype approach using single inheritance for attributes, their value assignments and

constraints. In the model every object may serve as a type for its children which are instances

of their parent; however, types and instances are strictly in the eyes of the viewer. The

constraints are used to express conditions valid objects and their valid descendants have to

satisfy. With respect to validity, an object can be mutated as long as it remains within its

3

constraints. To support more radical object changes, we have introduced a number of tree

transformation operations akin to specializations and generalizations. Special semantics is

associated with composite structures to represent the familiar hierarchical product structure;

global constraints can be specified between components within the product structure.

The rest of the paper is organized as follows. Sections 2 deals with objects, attributes and

constraints. Section 3 introduces composite objects, which are used to represent configurations.

Section 4 describes more complex constraints, which express the conditions for valid

configurations. The constraints allow a designer to check the validity of a configuration (both

internally and with respect to the specification). Finally, Section 5 provides a brief summary

and discusses further work.

2 Basic Object Model

All components, standard products and configurations are represented as objects. An object is

a collection of object elements, which comprise attribute declarations (Section 2.2), attribute

assignments (Section 2.3) and constraints (Section 2.4). The idea of an object type (or class) has

been rejected; nevertheless an object can inherit elements from other objects.

The model specifies operations for manipulating the attributes and constraints of the

objects. At this point, the objects do not contain methods or other means to describe user-

defined behavior. The objects only store attribute values and constraints for checking the

validity of the objects.

2.1 Object Inheritance

Each object, except the predefined root object, has a single object as the parent object. The

parent object must be specified when a new object is created. Section 2.5 explains how an

object can be changed to have a new parent. The root object may not contain any elements.

The relationships child, ancestor and descendant are defined in the normal way from the

parent relationship. As an object cannot be its own ancestor, the inheritance hierarchy forms a

tree.

An object inherits all elements (declarations, assignments and constraints) of its ancestors.

Moreover, an object is said to possess all elements that it either contains or inherits.

4

Each objects has its own identity and a name for reference. The detailed format of object

names is irrelevant in this paper.

2.2 Attribute Declarations

Objects store data as attributes, which must be declared before use. An object can therefore

contain a number of attribute declarations. Each declaration specifies the name and type of an

attribute. Simple attribute types include integers, floating point numbers and strings. Attributes

that refer to other objects will be introduced in Section 3.

A newly created object does not contain any elements. An attribute declaration can be

added to any object (except the root object) provided that the object does not already contain a

declaration for an attribute with the same name.

However, an object and some of its ancestors can declare attributes with the same name.

This paper will occasionally mention the possibility of this kind of name conflict, but its full

treatment is beyond the scope of this paper.

2.3 Attribute Assignments

If an object possesses the declaration of an attribute, an attribute assignment to the attribute can

be added to the object (unless the object already contains an assignment to the same attribute).

The assignment specifies the name1 of an attribute and a value, which must conform to the

attribute type in the declaration. The value in an assignment can be later changed.

The value of a particular attribute in a particular object is read from the first assignment to

the attribute on the path of objects from the given object towards the root object along the parent

links. If the path does not contain any object with an assignment to the attribute, but a

declaration for the attribute is found, the attribute value is unknown. If not even a declaration

is found, an attempt to read the attribute value is an error.

Figure 2 shows four objects with attribute declarations and assignments. The dotted lines

between objects represent the parent-child relationships. The results of reading attribute values

in the objects are shown on the right. Question marks denote unknown values.

1. The connection between attribute declarations and assignments is complicated by the possibility of
name conflicts. The details are not presented here.

5

The value assigned to an attribute in an object can thus be regarded as a default value for

the attribute in the descendant objects because the assignment is inherited, but any descendant

can add an assignment to the same attribute.

2.4 Constraints

In addition to attribute declarations and assignments, an object can possess constraints, which

specify the conditions for the validity of the object. Constraints make it possible to check the

validity of a configuration since configurations will be represented as composite objects

(Section 3), and constraints can be defined for composite objects (Section 4). The

representation of the specification of a configuration by means of constraints will be discussed

in Section 4.5.

A constraint is an expression which evaluates to true , false, or unknown, and is composed

of literals, references to attributes and usual numeric and string operators.

Basically, an object is valid if all the constraints it possesses are true, the object is invalid

if any constraint is false, and otherwise the validity of the object is unknown. A more precise

definition for the validity of composite objects will be given in Section 4.

The complete set of constraints of an object can be unsatisfiable. The system may, but need

not, detect this and tell the user that the object can never be valid.

At the moment, the model only defines how the validity of an object is checked but says

nothing about when this is done or how the system reacts to an invalid object. In any case, the

system can contain invalid objects, which often arise during a configuration process. These

issues are connected with the concept of a design transaction [1].

Figure 2: Attribute declarations and assignments

A x : int, y : string

B x = 12, z : float, z = 2.5

C y = “abc” D x = 5

Object
Attribute values

x y z

A ? ? error

B 12 ? 2.5

C 12 “abc” 2.5

D 5 ? 2.5

6

2.5 Parent Change

As was explained in Section 2.1, each object has a single other object as a parent. The model

gains much of its flexibility from the possibility of changing an object to have a new parent.

Many important operations, such as object copying, can be implemented by means of parent

change.

The parent of an object can be changed freely as long as one does not attempt to create a

cycle in the object hierarchy. The effects of a parent change depend on the relationship between

the original and the new parent.

The inheritance rules for declarations, assignments and constraints mean that all

descendants of an object have at least the same attributes as the object (but not necessarily the

same attribute values), and all valid descendants of an object satisfy the constraints of the object.

One can thus view an object as a description for a set of possible valid descendant objects. Each

object represents a subset of the possible objects of its parent object.

2.5.1 Specialization

When the new parent of an object is a descendant of the old parent, the object is “specialized”.

It may inherit more attributes and constraints than before and represents a subset of possible

objects.

In Figure 3, an elevator order is represented with the object order-123. Originally the order

is only specified to be some kind of a hydraulic elevator. Later during the configuration process,

the designer selects HEX from the available standard elevators as a basis for the order. This

standard elevator includes an automatic ventilation system and accordingly object HEX

contains a declaration for attribute fan_power. After order-123 is changed to have HEX as the

parent, an assignment to fan_power can be added to order-123.

Figure 3: Object specialization

elevator

hydraulic-elevator

order-123

HEX fan_power : float

elevator

hydraulic-elevator

HEX fan_power : float

order-123 fan_power = 0.5

7

2.5.2 Generalization

An object is generalized by changing it to have a new parent which is an ancestor of the original

parent. As a result, the object may inherit fewer elements than before. If an object is regarded

as an instance of the type represented by its parent, the generalization of an object makes it an

instance of a more general type.

To preserve some of the semantics of the object, we copy the intervening elements

(declarations, assignments and constraints) to the object. The generalization of an object

preserves the elements the object possesses. However, some attributes and constraints become

“local properties” that can be modified without affecting other objects (except of course the

descendants of the modified object). This approach differs from [2] where the removal of a

class from the superclass list of a class requires dropping existing instance variables. The

possibility of making local definitions for attributes as a result of inheritance changes is

mentioned in [10].

Figure 4 shows the same objects as Figure 3. Elevator has an attribute max_load, which is

constrained in the standard elevator HEX to lie between 100 and 500. The maximum load of

order-123 has been assigned value 600. Since this violates the inherited constraint, the order no

longer belongs to the set of valid elevators as specified by the standard elevator HEX.

The designer therefore generalizes the order into a hydraulic elevator. The order is still

invalid but the violated constraint is now local and can be relaxed or deleted in the order (it has

been deleted in Figure 4). The declaration of fan_power is automatically copied from HEX to

order-123, which allows the order to preserve the value assigned to the attribute.

Figure 4: Object generalization

elevator max_load : float

hydraulic-elevator

HEX fan_power : float
{ 100 <= max_load <= 500}

order-123 max_load = 600,

elevator max_load : float

hydraulic-elevator

HEX fan_power : float
{ 100 <= max_load <= 500}

order-123 max_load = 600
fan_power: float

fan_power = 0.5

fan_power = 0.5

8

2.5.3 Combined Parent Change

It is also possible that the new parent is neither a descendant nor an ancestor of the original

parent. In this case, the “lowest common ancestor” of the original parent and new parent is

found. The object is first generalized “up” to the common ancestor and then specialized “down”

to the new parent.

2.6 Types and Instances

The model does not incorporate concepts of an object type and instance. In some sense, one can

regard an object with children as a type and its children as instances of that type. On the other

hand, the children can often also be seen as subtypes. The distinction between an instance and

a subtype is never absolute in our model because any instance can serve as a parent for another

object and thus become a subtype.

Our rationale for dispensing with types and instances in the description of engineering data

is very similar to that of Demaid and Zucker [3]. Our model also resembles the hybrid model

in [9].

If parent objects are regarded as types, it is also possible to talk about “type evolution”

[2, 7] in our model. Object T in Figure 5 represents a type, which declares attributes a and b,

while object X represents an instance of this type. Now we want to create a new version of type

T, called T2, in which attribute b is deleted and a new attribute c is added. Then we also want

to change instance X to be of this new type.

First we create object T2 with T as its parent (situation 2). Then we change the parent of

T2 to be S (situation 3); this copies all declarations of T to T2. Then the declaration of b is

deleted from T2 and the declaration of c is added (situation 4). Next we want to “coerce” X to

conform with type T2 by changing its parent to be T2 (situation 5); the declarations in T are

copied to X.

X no longer inherits attribute b from its type. Nevertheless, the attribute is still available

in X as a local declaration. X inherits the new attribute c from the new type. Attribute a

becomes ambiguous in X. Typically the declaration of attribute a in X is now removed and all

references to the attribute are replaced with references to the attribute a in T2 (situation 6b). It

is, however, possible that attributes with the same name in the old and new type version do not

9

represent the same data. If X must have both the “old” and “new” attribute, attribute a in X is

renamed (situation 6b).

Note that we could make a copy of the instance X in exactly the same way. First we create

a new object X' with X as the parent, and then we generalize X' to have T as the parent.

Of course, this mechanism does not solve the type evolution problem. It, however, gives

us the handle to deal with the problems in a meaningful way. We are developing the model

mainly as a data representation for configuration processes. Therefore, unlike Skarra and

Zdonik [7], we have not addressed the problem of application programs that must access

instances of one version of a type as if they were instances of another version of the type.

3 Composite Objects

Configurations are represented as composite objects, which have other objects as components.

We make a distinction between simple references and actual component links, which have

special semantics and can be associated with special constraints for describing valid

configurations [4, 5].

Figure 5: Type evolution

S

T a, b : int

X T2

(2)(1) S

T a, b : int

X

T2 a, b: int

S

T a, b : int

X

(3)

S

T a, b : int

X

T2 a, c: int

(4) S

T a, b : int

X a, b : int

T2 a, c: int

(5)

S

T a, b : int

X b : int

T2 a, c: int

(6a) S

T a, b : int

X aa, b : int

T2 a, c: int

(6b)

10

3.1 Reference Attributes

The value of an attribute of the type reference is a reference to some object. If it is necessary to

limit the set of objects that a reference attribute in an object can take as a value, a constraint can

be added to the object. A constraint of the form “a ≤ C”, where a is a reference attribute and C

is an object is true if the value of a is a reference to object C or a descendant of C. These

constraints can also be used with component attributes (see below).

3.2 Component Attributes

An object can have other objects as components. The components are represented with

attributes of type component, which, like reference attributes, have references to other objects

as values. Object Y is a direct component of object X if some component attribute in X refers

to Y. We use the term component for the transitive closure of the direct component relationship.

If a composite object is considered to represent a physical part hierarchy, the components

should always form a strict tree because a single part cannot be physically included in more than

one object [5]. For each object X, there can be at most one assignment to a component attribute

with X as the attribute value. Whenever an assignment to a component attribute is added to an

object, a new object is created and a reference to this object is used as the attribute value. During

the configuration process, however, we allow a limited form of component sharing by means of

inheritance. This will be treated in more detail in Section 3.4.

Typically the physical components in a product are copies of standard components. An

object representing a standard component is thus given as the parent when a component is

created. If the component has no data which is specific to the particular copy of the standard

component, the component need not contain any attribute declarations or assignments of its

own.

Figure 6 shows object elevator, which contains a declaration for component attribute door.

Component relationships are marked with solid lines. The constraint in the elevator object

forces the attribute to refer to elevator_door or any of its descendants. Object order-123 has

elevator as its parent and inherits the attribute declaration. Object elevator_door represents any

kind of door and object XYZ door represents a particular door type with attribute width, that can

take values between 1000 and 1500.

11

Now suppose order-123 should have an XYZ door as a component. An assignment to

attribute door is added to order-123. The value is a reference to a new object with XYZ door as

the parent. An assignment to attribute width can then be added to the component object.

A component object cannot be used as the parent of any object (however, see Section 3.5).

Nevertheless, an object with components can freely be used as a parent. Consider the upper part

of Figure 7, which shows object order-456 with order-123 of Figure 6 as the parent. Since

component assignments are inherited in the same way as other assignments, attribute door in

order-456 refers to the same component as in order-123. Both order-123 and order-456 thus

have the same object as a component (see also Section 3.4).

3.3 Component Copies

Continuing on Figure 7, suppose the parent of order-456 is changed to be elevator. According

to Section 2.5, the inherited attribute assignment in order-123 should be copied to order-456.

However, since there cannot be two references to the same component, object x is copied and

the copied assignment in order-456 will refer to this copy. More precisely, a new object x' with

x as the parent is created1, x' is changed to have the same parent as x, and the assignment which

is copied to order-456 is changed to have x' as attribute value.

Suppose object x has components. When x is copied by changing x' to have the same parent

as x, the above rules for parent change are applied recursively. As a result, the components of

Figure 6: Adding a component

1. During this operation, we temporarily break the rule that a component cannot be used as a parent.

elevator door : comp

order-123

elevator_door

XYZ door width : int

elevator door : comp

order-123 door = x

elevator_door

x width = 1200

{ door ≤ elevator_door }

{ door ≤ elevator_door }

{ 1000 <= width <= 1500 }

XYZ door width : int
{ 1000 <= width <= 1500 }

12

x are copied to become components in the copy of x. Note that this rule of “copying the

components” only affects component assignments. If object x has an inherited component, the

copy of x simply inherits the same component.

3.4 Shared Components and Instantiation

As explained in Section 3.2, our model does not allow several component attribute assignment

to refer to the same object. However, the inheritance of assignments makes it possible for

several objects to have common components.

Suppose the designer is configuring an elevator group, which contains two identical

elevators and some common control electronics. While the elevator group is being designed,

the identical properties of the elevators, such as their cars, should be described only once. As

shown in Figure 8, the common properties can be represented with an auxiliary object, which

servers as the parent for both elevators in the elevator group.

Object elevator_group has two components: elevator_1 and elevator_2, which have

model_elevator as the parent. Since model_elevator has car_x as a component, elevator_1 and

elevator_2 also have this component. All changes in car_x thus affect both elevators. However,

when the elevator group is actually manufactured and installed, the two cars should be

instantiated, i.e., they should have their own identities because they now correspond to two

Figure 7: Copying a component

elevator door : comp

order-123 door = x XYZ door

x width = 1200order-456

elevator door : comp

order-123 door = x XYZ door

x width = 1200

order-456 door = x'

x' width = 1200

13

separate physical entities. For example, components in one car can be changed without

affecting the other one.

One way to instantiate an object is to change it to have the root object as the parent. Since

the root object does not contain any elements, all elements that the instantiated object has

inherited from other objects are copied to the object as “local” elements. When elevator_1 and

elevator_2 in the above example are changed to have the root object as the parent, they will,

among other things, have their own copies of car_x. An object instantiated in this manner

becomes fully “self-contained”; it does not inherit any elements from other objects.

An alternative is to leave the object with its original parent, but to copy all inherited

assignments. (Individual assignments can be copied from the parent object; components are

copied recursively in the same way as when the parent is changed.) The object is then not

affected by any changes in the attribute values—including component assignments—of the

parent object. However, since the constraints are still inherited from the parent object, the

instantiated object must satisfy the constraints of the parent. In other words, the object remains

an instance of the type specified by the parent.

3.5 Component Specialization

A component object cannot be used as a parent for other objects because it would be difficult to

specify the meaning of this construction. (What would actually be the component?) However,

it is quite conceivable that sometimes one wants to use an existing component as a basis for

developing new components. This situation is handled with a component specialization

operation. When a component assignment in an object is specialized, a new object with the

original component as the parent is created, and the assignment is changed to refer to this new

object. The original component can be now used as a parent for other objects.

Figure 8: Shared components

elevator_group_x

elevator_1 elevator_2car_x

model_elevator

control

elevator

14

4 Constraints for Composite Objects

4.1 References to Other Objects

A constraint in an object can refer to other objects by means of reference and component

attributes. For example, suppose an elevator includes a car and a motor. The car has attribute

weight and the motor has attribute max_load. The weight of the car must not exceed the

maximum load of the motor.

If the elevator has component attributes car and motor, the following constraint can simply

be added to the elevator: “car.weight <= motor.max_load”.

Typically the constraint would be part of a generic description of an elevator and the

constraint would be inherited by all specific elevators that have the general elevator object as

their ancestor.

4.2 Component DAGs and Roles

Suppose all elevators have a car and motor, but they can be located at different levels of the

component structure in different elevators. An elevator could, for example, have a component

driving mechanism, which has the motor as a component. What is needed is a mechanism by

which the elevator can refer to motor component regardless of its exact location in the

component structure. One possible solution is outlined below.

An object can be assigned an arbitrary string as a role. For example, the elevator group in

the earlier Figure 8 has the components shown in Figure 9. The role of each object is shown in

brackets after the object name.

A single object can be a component of several objects as a result of inheritance of

component assignments. The components of any given object thus form a DAG with one or

elevator_group_x [elevator_group]

elevator_1 [elevator] elevator_2 [elevator]

car_x [car]

Figure 9: Component DAG

e1 [elevator]

c4 [car] m3 [motor]

Figure 10: Elevator Components

… …

… … … …

g1 [elevator_group]

15

more paths from the object to each of its components. For example, component car_x of

elevator_group_x in Figure 9 is reached along paths elevator_group_x/elevator_1/car_x and

elevator_group_x/elevator_2/car_x . The role paths of the components of an object are formed

by replacing the objects in the component paths with their object roles.

A constraint in an object can refer to components of the object by role names using function

comps(role path pattern)

The argument is a role path where some roles may have been replaced with an asterisk. The

value of the function in object X is a set of objects. The set includes those components of X that

have a role path within X that matches the function argument. An asterisk in the argument

matches zero or more consecutive roles in the role path of a component. A component is

included only once in the result even if the component is reached along several paths that match

the pattern.

We can now return to the constraint between cars and motors. Suppose an elevator group

includes the components shown in Figure 10. The elevator e1 has components—not necessarily

direct ones—c4 and m3 in roles car and motor. Within g1, objects c4 and m3 have role paths

“elevator_group/elevator/…/car” and “elevator_group/elevator/…/motor”, respectively.

The elevator must have exactly one component in the role of a car and exactly one

component in the role of a motor and attribute weight of the car must not exceed attribute

max_load of the motor. This can be expressed by adding the following constraint to some

ancestor of e1:

let c = comps("*/car"), m = comps("*/motor")
in size(c) == 1 and size(m) == 1 and

c[1].weight <= m[1].max_load

4.3 Global Constraints

The constraint between elevator car and motor belongs to the description of an elevator as a

whole. Nevertheless, sometimes dependencies between components are recorded with one of

the components. As an example, suppose there is luxury elevator car, which can also be used

in non-luxury elevators. In this case, however, the elevator must have a special type of motor.

This particular car will have the following constraint:

When a car of this type is used as a component in an elevator, the elevator must have

exactly one motor, which is of the type special_motor.

16

This condition can be recorded as the following global constraint in the luxury_car object:

elevator:
let m = comps("*/motor")
in size(m) == 1 and m[1] ≤ special_motor

A global constraint is like an ordinary constraint except that it has a role name as a prefix. A

global constraint of an object can be checked only when the object is considered as a component

of another object. Suppose object c4 in Figure 10 is a descendant of luxury_car. The above

constraint of c4 as a component of g1 is checked as follows:

(1) Object c4 has role path “elevator_group/elevator/…/car”. The role prefix

“elevator” is found in the path and the corresponding object is e1.

(2) The constraint is checked so that the comps function is evaluated with respect to

object e1. The function “comps("*/motor")” thus finds object m3.

If the prefix were not found in the role path, the constraint would automatically be true. (The

constraint says something about the car if it is regarded as a component in an elevator, otherwise

the constraint can be ignored by making it true.)

The global rules must have the prefix which specifies how far “upwards” in the component

structure one should travel to check the constraint. For example, we only want to find the motor

of the same elevator, not the motors of all elevators in the elevator group.

4.4 Validity Rules for Composite Objects

A composite object is valid if the global and non-global constraints of the object and its

components are true. If a component is reached along several paths, the non-global constraints

need only be checked once for the component, but the global constraints must be checked

separately for each path.

For example, if one asks whether the car of an elevator is valid, the global constraint

between the car and the motor is not checked. The constraint is checked only when the validity

of the elevator is examined. It is thus possible that the car is valid although the elevator is

invalid because a constraint in the car is unsatisfied.

Also, a global constraint in car_x of Figure 9 can be true for one path while the same

constraint is false for another path because the function “comps("elevator")” refers to different

object depending on the path along which the car is reached.

17

4.5 Specification

We are now able to represent the specification of a configuration (see Figure 1) as a set of

constraints attached to the root component of the configuration. However, new constraints may

be added to this object during the design. To make the specification more explicit, it can be

represented as a separate object, which only contains the specification constraints. The actual

configuration will then be created as a child to this object. This arrangement also makes it easy

to create alternative configurations for a single specification.

5 Discussion

We have presented a model for the evolutionary aspects of engineering data, especially in the

context of a configuration problem. The model is based on the well-known prototype approach

and gains additional power from the inheritance tree transformations. We believe these

operations capture important semantics of the configuration process. Object specialization

supports gradual refinement of the design. Object generalization allows the designer to say that

a design should no longer be restricted by the constraints of a particular standard product.

Global constraints allow dependencies between components in an arbitrary component

hierarchy to be recorded in the components.

The model must be developed further and evaluated with real-life situations and problems.

We plan to implement a prototype system on the basis of the ideas put forward in this paper.

A crucial element still missing from the model is the mechanism for specifying

configuration rules. We shall maintain a distinction between constraints, that tell whether a

configuration is valid, and rules, that help designers to create valid configurations.

References

[1] Bancilhon, F., W. Kim, and H. F. Korth. “A Model of CAD Transactions”. In Proc. of the
11th International Conference on Very Large Databases (VLDB), pages 25–33. 1985.

[2] Banerjee, J., W. Kim, H.-J. Kim, and H. F. Korth. “Semantics and Implementation of
Schema Evolution in Object-Oriented Databases”. In Proc. International Conference on
the Management of Data (SIGMOD), pages 311–322. 1987.

[3] Demaid A. and J. Zucker. “Prototype-Oriented Representation of Engineering Design
Knowledge”. Artificial Intelligence in Engineering. Vol. 7, pages 47–61. 1992.

18

[4] Kim, W., J. Banerjee, H.-T. Chou. “Composite Object Support in an Object-Oriented
Database System”. In Proc. International Conference on the Management of Data
(SIGMOD), pages 118–125. 1987.

[5] Kim, W., E. Bertino and J. F. Garza. “Composite Objects Revisited”. In Proc.
International Conference on the Management of Data (SIGMOD), pages 337–347. 1989.

[6] Lieberman, H. “Using Prototypical Objects to Implement Shared Behavior in Object
Oriented Systems”. In Proc. Conference on Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA), pages 214–223. 1986.

[7] Skarra, A. H., and S. B. Zdonik. “Type Evolution in an Object-Oriented Database”. In
B. Shiver and P. Wegner, editors, Directions in Object-Oriented Programming,
pages 393–415. MIT Press 1988.

[8] Stefik, M. and D. G. Bobrow. “Object-Oriented Programming: Themes and Variations”.
AI Magazine. Vol. 6, No. 4, pages 40–62. Winter 1986.

[9] Stein, L. A. “Delegation Is Inheritance”. In Proc. Conference on Object-Oriented
Programming Systems, Languages, and Applications (OOPSLA), pages 138–146. 1987.

[10] Zicari, R. “A Framework for Schema Updates in an Object-Oriented Database System”.
Chapter 7 in F. Bancilhon, C. Delobel, and P. Kanellakis, editors, Building an Object-
Oriented Database System—the Story of O2. Morgan Kaufmann Publishers, 1992.

