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Abstract. Product configuration management is presented as a practical
application for a prototype-based object model. Data model requirements for
a configuration system are first introduced using a realistic example from
industry. Problems with the traditional type-instance model in this application
domain are then identified and given as motivation for the prototype
approach. A prototype-based object model with inheritance tree transforma-
tions, constraints and component relationships is presented as a tool for
expressing dynamic configuration data. Finally, a sample configuration proc-
ess is described using the prototype object model.
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1 Introduction

Most object-based models are built upon the concepts of object types (or classes) and their
instances. In fact, sometimes the distinction between types and instances is presented as
a fundamental property of object models. Nevertheless, object models based on prototyp-
ing (which typically use delegation for sharing information between objects) do not con-
tain the concept of an object type [9, 11, 12].

In this paper we discuss a real-life application in which the prototype approach seems
to have a clear advantage over more traditional models based on the type-instance distinc-
tion. The application—the management of product configurations—is introduced in
Sect. 2.

Section 3 shows the problems of the type-instance model in our application and gives
motivation for the prototype approach. Readers unfamiliar with prototypes should not
have any trouble in following this section. For more background on prototype models,
see for example [9].

1. This paper has appeared in the Object-Oriented Programming, M. Tokoro and
R. Pareschi (Eds.), Proc. of the 8th ECOOP Conference, Lecture Notes in Computer Sci-
ence 821, Springer-Verlag, pages 513–534, 1994.
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We are developing a prototype-based object model; this model is described to some
detail in Sect. 4. The object model specifies operations for manipulating data in the
objects (represented as attributes) and conditions for valid data (represented as con-
straints). The objects, however, do not contain methods or other means to describe user-
defined behaviour. Using the terminology defined by Wegner [18] the model described in
this paper can be classified asprototypical.

Section 5 shows how the object model can be used to represent configurations and the
steps in which the configurations are produced. Finally, Sect. 6 provides conclusions and
briefly brings up issues that could not be treated in this paper.

2  Configuration Problem

This section outlines some main issues of product configuration management. We
describe the problem domain before our solution because our research aims at solving a
configuration problem; we are not looking for an application for the prototype object
model.

In many industrial areas there is a constantly increasing demand for more customized
solutions. The increased customization inherently forces some of the design decisions to
be made only after the customer order has been received. Typically for this type of prod-
ucts it is not rational to design each single customer order from scratch. Instead, the cus-
tomer needs should be fulfilled using combinations of predefined, usually parametrized
components. Related portion of the product life cycle, i.e., the configuration process, is a
routine design task for determining a consistent combination of components and their
parameter values. Since this process should produce not only valid, but at least close to
optimal configurations, mechanisms are needed for guiding the search for such solutions.

In certain cases it may be possible to consider all the possible solutions and execute a
domain independent search through the design space, but in general that is not a feasible
approach. Instead, one can design a product model, which has some of its properties or
components fixed or restricted to certain choices and some left unrestricted because of
technical, business related, etc. decision criteria. The configuration process then uses this
domain specific knowledge for generating a suitable configuration [16].

Some product models allow a configuration to be created automatically from the cus-
tomer specification. In these cases the products are totally pre-engineered and the essence
of the models is to select certain component combinations with suitable attribute values.

Sometimes, however, the customer specification cannot be satisfied by any available
product model. There are several ways of creating such non-standard configurations:
(1) Starting from a clean table and selecting the components on the basis of designer’s
experience, (2) taking an old product as a starting point and making the needed compo-
nent changes, or (3) starting from an existing product model and then at a certain point of
time departing the design from the limitations of that product model.
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In the first case, the configuration must still obey some general rules of the application
domain; the configuration process thus never starts from a completely clean table. In the
second and the third case, the constraints of the starting point (whether an old product or
an existing product model) should be made available to the new design. Then the designer
must only make those modifications that are absolutely necessary, reusing most of the
existing knowledge.

The data model used by a configurator should describe the pieces of knowledge within
the entities they belong to. Ideally, for example, components themselves describe their
properties and constraints from their own point of view, whereas a product model
describes how these components are used in a particular situation. This is essential since
the total amount of the configuration knowledge of a complex product is very large, mak-
ing its maintenance in a non-structured fashion impossible. In general the maintenance
of large knowledge bases is identified as a major problem [2]—the problem is even ampli-
fied within the constantly evolving environment of industrial products. In addition to the
changes and refinement of the individual configurations, we must thus also cope with the
orthogonal evolution of the configuration meta information, i.e., product models, compo-
nents, standards, etc.

Superficially the relation between product models and configuration looks similar to
the relation between schema and data in the database world. This may suggest that
schema maintenance methods for databases would also be successful in configuration
meta information management. There are, however, two fundamental differences.
Firstly, conversion of data after the schema is modified is generally out of the question,
since the configurations may represent separate, physical entities possibly delivered to the
customers. Changes in product models thus should not automatically propagate into these
entities. Further, the configuration information needs to be accessible even years later, so
we cannot sacrifice the representation function, i.e., the correspondence between entities
in the database and the real world, by storing only the single current schema. Secondly,
the configuration process includes operations, e.g., adding an attribute, that may actually
be data manipulation in configuration domain but would be considered as data definition
manipulation in the context of databases. These points will be further illustrated later.

A good domain for product configuration modelling research is provided by lifts since
they vary from standard to semi- and fully customized [6, 10, 19]. Therefore, a model
that defines the entities, operations, and processes for a lift configurator should also be
applicable to a wide variety of other products.

3  Motivation for Prototype Approach

In this section we first describe briefly the properties of the traditional type-instance
model, and then show what kind problems we encountered when we tried to apply this
model to the configuration problem. Similar ideas, although in a less precise application
domain, have also been presented by Demaid and Zucker [3].
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The goal of this paper is to demonstrate the unsuitability of the distinction between
types and instances in our particular application. The last qualification is important: We
do not claim that prototype models would in general be better than type-based models
(object-based models with classes and inheritance are calledobject-oriented by
Wegner [18]).

3.1  Type-instance Model

The “traditional” type-based object model makes a sharp distinction between a schema,
which describes the structure of the data, and objects, which store the actual data as
described by the schema.

The schema defines a number of types, and each type contains a number of attribute
declarations. Each object is an instance of a type and can assign values to attributes
declared by its type. Figure 1 shows how product models could be represented as types
and configurations as their instances.

Note that this description applies equally well to relational databases, where a table
corresponds to an object type and the rows of a table represent instances of that type.

Moreover, in most object-based systems, and in some extended relational systems
(e.g., Postgres [13]), all types in a schema are organized as an inheritance hierarchy. As
shown in Fig. 2, an instance of a type can assign values to all attributes declared by the
type and its ancestors.

Figures 1 and 2 present types and their instances as a single tree. As long as one travels
down the nodes in the “type world”, each node adds new attribute declarations. When one
crosses the border and enters the “instance world”, one can have only a single node, which
contains assignments to those attributes whose declarations were encountered on the
“type” path.

Figure 1: Types and instances

lift

speed : float

L1

speed ← 0.6

L2

speed ← 0.8

types

instances
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The difference between types and instances also affects user roles. Types and their
attributes are typically specified by a database administrator when the database is created.
Ordinary users operate in the “instance world” by creating and deleting instances and
modifying their attribute values. Types are modified only by the database administrator.
Type modification is usually a major operation, undertaken only when absolutely neces-
sary because of new requirements for the database system [1].

Often there are separate data definition and data manipulation languages. These terms
reflect the static nature of the schema from an ordinary user’s point of view; the creation
of a new type or a new attribute is not part of ordinary data manipulation.

3.2  Representation of Configuration Data

Figure 3 shows what kind of configuration data we want to represent with the object
model. All boxes in the figure are rectangles because no distinction between types and
instances is made. In fact, the figure will be used for demonstrating the impossibility of
this distinction.

In addition to attribute declarations and assignments, the objects contain constraints
written in curly braces. Constraints are conditions that must be satisfied by valid config-
urations.

The figure shows the following information:

• All lifts have a floating point attribute for the speed.

Figure 2: Type hierarchy and instances

types

instances

rope_thickness← 1.5

L3

speed← 0.7

lift

speed: float

rope lift

rope_thickness : float
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• A rope lift is a special case of a lift. Rope lifts have an attribute for rope thick-
ness. The default value for this attribute is 10 mm. The speed of a rope lift is
always between 0.6 and 1.6 m/s.

• A hydraulic lift is also one kind of a lift with speed between 0.4 and 0.9 m/s.

• Lift model RX is a rope lift with speed between 0.8 and 1.2 m/s. Default speed
is 1.0 m/s.

• Customer order 123 is an order for a RX lift. The speed of the lift is specified by
the customer to be between 0.8 and 0.9 m/s.

• The actual configuration for order 123 has speed of 0.85 m/s. Rope thickness has
the default value 10 mm of all rope lifts.

The only way to force Fig. 3 into the type-instance model would be to regard the bot-
tom-most entity (order 123 / configuration) as an instance and all other entities as types.
This, however, would be awkward for the following reasons:

Figure 3: Configuration data

lift

speed : float

rope lift

rope thickness : float

{ 0.6 ≤ speed≤ 1.6 }
rope thickness← 10

hydraulic lift

{ 0.4 ≤ speed≤ 0.9 }

lift model RX

{ 0.8 ≤ speed≤ 1.2 }

order 123 / specification

{ 0.8 ≤ speed≤ 0.9 }

order 123 / actual configuration

speed← 0.85

speed← 1.0
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(1) The manipulation of an order is part of an ordinary user’s job. The type-
instance model, however, would regard the specification of an order as a type
and the actual configuration as an instance. As pointed out in Sect. 3.1, most
systems make a sharp distinction between operations on types and instances.
It is much more natural to treat the two order 123 objects together as an
“instance” and the definition of lift model RX as part of the “schema”. This
division of an order into separate objects will be further illustrated in Sect. 5.

(2) It may become necessary to add attribute declarations and constraints to
“instances”. (This is elaborated below.)

(3) It may become necessary to add new objects below “instances”. (This is also
explained below.)

 For point (2) above, suppose the lift of order 123 will be installed in a hot environment
in a factory and the engine room must be equipped with an extra fan, which is not specified
by the lift model RX. The designer can represent this requirement by adding a new
attribute declaration to the configuration object. As long as a specific fan model has not
been selected, the configuration contains an attribute without an assigned value and the
configuration system knows the configuration to be incomplete.

For point (3), suppose the designer has fixed the speed to be 0.85 m/s and wants to rep-
resent the fact that the speed must not be changed while other attributes, which are not
shown in the figure, can be modified more freely. This can be done by creating a new
object below the “instance” as illustrated in Fig. 4. Now attributes can be modified freely
in the “open configuration” without the possibility of accidentally modifying attributes of
the “fixed configuration”. It is also possible that fixed configuration is created by one
designer, who determines some important attribute values and gives the configuration to
another designer for further work. This mechanism will be further elaborated in Sect. 5.
The two separate objects can represent this division of responsibilities between the two
designers. Note that the fixed configuration has both an assignment and a constraint for
the speed; without the constraint the assignment would only be a default value that could
be overridden in the open configuration.

4 Object Model Elaboration

The previous section presented our reasons for abandoning the division between types and
instances in favour of a prototype-based object model. This section describes our elabo-
ration of the prototype model in more detail.

All components, standard products and configurations are represented as objects. Each
objects has its own identity, a name andproperties. The properties compriseattribute
declarations (Sect. 4.2),attribute assignments (Sect. 4.3) andconstraints (Sect. 4.4).
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4.1  Object Inheritance

Each object, except the predefinedroot object, has a single object as theparent object. The
parent object must be specified when a new object is created. As will be explained in
Sect. 4.5, an object can be changed to have a new parent and this operation plays an
important role in the representation of a configuration process.

The relationshipschild, ancestor anddescendant are defined in the normal way from
the parent relationship. As an object cannot be its own ancestor, the inheritance hierarchy
forms a tree.

An object inherits all properties (declarations, assignments and constraints) of its
ancestors. Moreover, an object is said to possess all properties that it either contains or
inherits.

In the future the objects will be allowed to have multiple parents. Multiple inheritance
might, for instance, represent country-specific safety regulations. Figure 5 shows lift
models X andY; safety regulations for two countries; andmodel X lift order 234 for Fin-
land. For brevity we have referred to the objects with namessafety regulations andFin-
land, althoughorder 234 is not a kind of Finland, neither is Finland a kind of safety
regulation. More precisely, objectsafety regulations represents lifts that satisfy certain
safety regulations, andFinland represents lifts that fulfil the Finnish safety regulations.

Except for some specific examples, the rest of the paper deals only with single inherit-
ance. Some additional uses for multiple inheritance will be given in Sect. 6.

Figure 4: Fixing attribute values of a configuration

order 123 / specification

{ 0.8 ≤ speed≤ 0.9 }

order 123 / configuration (fixed)

speed ← 0.85
{ speed = 0.85 }

…

order 123 / configuration (open)

…
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4.2  Attribute Declarations

Objects store data as attributes, which must bedeclared before use. An object can there-
fore contain a number ofattribute declarations. Each declaration specifies the name and
type of an attribute. Simple attribute types include integers, floating point numbers and
strings. Attributes that refer to other objects will be introduced in Sect. 4.6.

A newly created object does not contain any properties. An attribute declaration can
be added to any object provided that the object does not already contain a declaration of
an attribute with the same name. Note that an object and its ancestors can declare
attributes with the same name (see also Footnote 2).

4.3  Attribute Assignments

If an object possesses the declaration of an attribute, anattribute assignment to the
attribute can be added to the object (unless the object already contains an assignment to
the same attribute). The assignment specifies the name2 of an attribute and a value, which
must conform to the attribute type in the declaration. The value in an assignment can be
changed later.

When the value of a particular attribute in a particular object is needed, the object and
its ancestors are examined from the object towards the root, and the attribute value is
taken from the first assignment—the effective assignment—to the attribute. If only a dec-
laration for the attribute is found, the attribute value is unknown. If not even a declaration
is found, an attempt to read the attribute value is an error.

2. The name is only used for locating the attribute declaration. The actual assignment in
the object does not store the attribute name but a reference to the declaration. The same
applies to attribute references in constraints. Full treatment of this issue is beyond the
scope of this paper.

Figure 5: Safety regulations with multiple inheritance

model X

lift

model Y

safety regulations

SwedenFinland

order 234
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Figure 6 shows four objects with attribute declarations and assignments. The lines
between objects represent the parent-child relationships. The results of reading attribute
values in the objects are shown on the right. Question marks denote unknown values.

The value assigned to an attribute in an object can thus be regarded as a default value
for the attribute in the descendant objects; the assignment is inherited, but any descendant
can add an assignment to the same attribute, overriding the default value.

4.4  Constraints

In addition to attribute declarations and assignments, an object can possessconstraints,
which specify the conditions for the validity of the object. A constraint is an expression
which evaluates totrue, false, orunknown.

Basically, an object is valid if all the constraints it possesses are true, the object is
invalid if any constraint is false, and otherwise the validity of the object is unknown. This
approach to constraints and validity is similar to EXPRESS [5] language defined in the
STEP programme.

The complete set of constraints of an object can be unsatisfiable. A system implement-
ing the model may, but need not, detect this and tell the user that the object can never be
valid.

Figure 6: Attribute declarations and assignments

Object
Attribute values

x y z

A ? ? error

B 12 ? 2.5

C 12 “a” 2.5

D 5 ? 2.5

A

x : int
y : string

B

x ← 12
z : float

z ← 2.5

C

y ← “a”

D

x ← 5
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4.5  Tree Transformations

As explained in Sect. 4.1, each object has a single other object as a parent. The model
gains much of its flexibility from the possibility of changing an object to have a new par-
ent. Many important operations, such as object copying, can be implemented by means
of parent change.

The parent of an object can be changed freely as long as one does not attempt to create
a cycle in the object hierarchy. The effects of a parent change depend on the relationship
between the original and the new parent.

The inheritance rules for declarations, assignments and constraints mean that all
descendants of an object have at least the same attributes as the object (but not necessarily
the same attribute values), and all valid descendants of an object satisfy the constraints of
the object. One can thus view an object as a description for a set of possible valid
descendant objects. Each of these descendants in turn describes a subset of this set. (This
bears some resemblance to the concept of derived subtypes in some semantic data
models [4]. A derived subtype specifies a predicate, and all instances of the supertype that
satisfy the predicate are automatically classified as instances of the derived type.)

Specialization. When the new parent of an object is a descendant of the old parent, the
object is “specialized”. It inherits more attributes and constraints than before and repre-
sents a smaller set of possible valid objects.

In Fig. 7, a lift order is represented with the objectorder 345. Originally the order is
only specified to be some kind of a hydraulic lift. Later during the configuration process,
the designer selects HEX from the available standard lifts as a basis for the order. This
standard lift includes an automatic ventilation system and accordingly objectHEX
contains a declaration for attribute fan power. Afterorder 345 is changed to haveHEX as
the parent, an assignment tofan power can be added toorder 345.

Generalization.  An object is generalized by changing it to have a new parent which is
an ancestor of the original parent. As a result, the object will inherit fewer properties than
before. If an object is regarded as an instance of the type represented by its parent, the
generalization of an object makes it an instance of a more general type.

We want the generalized object to possess the same attributes and constraints as before
the operation. Therefore the intervening properties (declarations, constraints and effec-
tive assignments) are copied to the object. The generalization of an object does not
change any attribute values or validity constraints. However, some attributes and con-
straints become “local properties” that can be modified without affecting other objects
(except of course the descendants of the generalized object). This approach differs
from [1] where the removal of a class from the superclass list of a class requires dropping
existing instance variables. The possibility of making local definitions for attributes as a
result of inheritance changes is mentioned in [20].

Figure 8 shows the same objects as Fig. 7. Lift has a new attributemax load, which is
constrained in the standard lift HEX to lie between 100 and 500. The maximum load of
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order 345 has been assigned value 600. Since this violates the inherited constraint, the
order no longer belongs to the set of valid lifts as specified by the standard lift HEX.

Figure 7: Object specialization

Figure 8: Object generalization

lift

hydraulic lift

lift model HEX

fan power : float
order 345

lift

hydraulic lift

lift model HEX

fan power : float

order 345

fan power← 0.5

lift

hydraulic lift

lift model HEX

fan power : float

order 345

fan power← 0.5

max load : int

{100 ≤ max load≤ 500}

max load ← 600

lift

hydraulic lift

lift model HEX

fan power : float

order 345

fan power← 0.5

max load : float

{100 ≤ max load≤ 500}
max load ← 600
{100 ≤ max load≤ 500}
fan power : float
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The designer therefore generalizes the order into a hydraulic lift. The order is still
invalid but the violated constraint is now local and can be relaxed or deleted in the order.
The declaration offan power is automatically copied fromHEX to order 345, which
allows the order to preserve the value assigned to the attribute.

In some prototype languages, such as SELF [17], a new object is created by making a
copy (clone) of an existing prototype object. In our model, this effect is achieved by first
creating a new object with the prototype object as the parent and then generalizing the new
object to become a child of the parent of the prototype object.

4.6  Composite Objects

The model has been designed to represent physical artifacts. Although on the physical
level every component in an artifact is a unique entity, it is not desirable to represent each
component (e.g., a simple screw) in the data model as a separate instance. Nevertheless,
some components should have a unique identity in the data model as well; this paper con-
centrates on their representation. The termcomponent thus refers specifically to such
unique components. (Non-unique components can be represented with simple reference
attributes.) The semantics of components are discussed in more detail in [7, 8].

Component Attributes.  The (unique) components are represented with attributes of
typecomponent, which store references to other objects. Object Y is adirect component
of object X if some component attribute in X refers to Y. We use the termcomponent for
the transitive closure of thedirect component relationship.

The set of objects to which a component attribute in an object is allowed to refer can
be limited with a constraint. A constraint of the form “a ≤ C ”, wherea is a component
attribute andC is an object is true if the value ofa is a reference to objectC or a descendant
of C.

The assignment to a component attribute is treated in a special way. Suppose object X
that possesses the declaration of a component attribute should have object Y as a compo-
nent. When an assignment to the attribute is added to X, the system automatically creates
a new instance3 of Y, i.e., a new object with Y as the parent, and a reference to this new
component object is assigned to the attribute. The name of the automatically created
object is usually unimportant; in this paper the component instances of Y are named as Y-
1, Y-2, etc. When an assignment to a component attribute is deleted, the referenced com-
ponent object is also deleted automatically. For each component object there is thus
exactly one attribute assignment with a reference to the object. During the configuration
process, however, we allow a limited form of component sharing by means of inheritance.
This will be treated in more detail shortly.

Typically the physical components in a product are copies of standard components. An
object representing a standard component is thus given as the parent when a component

3. Although we abandon the strict type-instance model, in some cases it still seems appro-
priate to use the term instance for the children of an object.



14

is created. If the component has no data which is specific to the particular copy of the
standard component, the component need not contain any attribute declarations or assign-
ments of its own.

Figure 9 shows objectlift , which contains a declaration for component attributedoor.
The constraint in the object means that the object cannot be valid unless the attribute refers
to lift door or any of its descendants. Objectorder 456 haslift  as its parent and inherits
the attribute declaration. Object lift door represents any kind of door and objectXYZ door
represents a particular door type with attributewidth, that can take values between 1000
and 1500 mm.

Now supposeorder 456 should have anXYZ door as a component. An assignment to
attribute door is added toorder 456. The value is a component reference, marked with a
dashed line, to a new component object withXYZ door as the parent. An assignment to
attributewidth can then be added to the component object.

Figure 9: Adding a component

lift

door : comp
{door ≤ lift door}

order 456

lift door

XYZ door

width : int
{1000 ≤ width ≤ 1500}

lift

door : comp
{door ≤ lift door}

order 456

lift door

XYZ door

width : int
{1000 ≤ width ≤ 1500}

door← •

XYZ door-1

width ← 1200
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Figure 9 shows that lifts in general should have a component of the typelift door. One
may wonder why this fact is not represented as an assignment together with a correspond-
ing graphical notation, i.e., some kind of a line between the objectslift  andlift door.

We use constraints, such as “door≤ lift door”, because they can express more complex
rules. For example, we can say that a lift has either XYZ door or ABC door with the con-
straint “door≤ XYZ door∨ door≤ ABC door”. Similarly, the door can be made optional
with the constraint “door = NULL ∨ door≤ …”.

Nevertheless, constraints of the type “X ≤ Y” will probably be quite common for com-
ponent attributes. A graphical user interface for the model should therefore recognize this
and other typical constraints as special cases and display them in a more intuitive way.

A component object cannot be used as the parent of any object (however, see compo-
nent specialization later). Nevertheless, an object with components can freely be used as
a parent. Consider the upper part of Fig. 10, which shows objectorder 567 with order
456 of Fig. 9 as the parent. Since component assignments are inherited in the same way
as other assignments, attribute door inorder 567 refers to the same component as inorder
456. Bothorder 456 andorder 567 thus have the same object as a component.

Component Copies. Continuing on Fig. 10, suppose the parent oforder 567 is changed
to be lift. According to Sect. 4.5, the inherited attribute assignment inorder 456 should
be copied toorder 567. However, since there cannot be two component references to the
same object, objectXYZ door-1 is copied and the copied assignment inorder 567 will
refer to this copy. More precisely, a new objectXYZ door-2 with XYZ door-1 as the parent
is created,4 XYZ door-2 is changed to have the same parent asXYZ door-1, and the assign-
ment which is copied toorder 567 is changed to haveXYZ door-2 as attribute value.

SupposeXYZ door-1 has components. When this object is copied by changingXYZ
door-2 to have the same parent asXYZ door-1, the above rules for parent change are
applied recursively. As a result, the components ofXYZ door-1 are copied to become
components in the copy ofXYZ door-1.

Shared Components.  We do not allow several component attribute assignments to
refer to the same object. However, the inheritance of assignments makes it possible for
several objects to share component descriptions temporarily during the configuration
process.

Suppose the designer is configuring a lift group, which contains two similar lifts and
some common control electronics. Both lifts have a car as a component. Eventually there
will be two separate physical lifts and two physical cars, each represented with a separate
object. While the lift group is being designed, however, the identical properties of the
lifts, such as their cars, should be described only once. As shown in Fig. 11, the common
properties can be represented with an auxiliary objectlifts of 999, which serves as the par-

4. During this operation we temporarily break the rule that a component cannot be used
as a parent.



16

ent for both lifts in the lift group. Bothlift 1 andlift 2 thus refer toABC car-1, which rep-
resents the common properties of the two future physical objects.

However, at some point the two cars are separated in the model. The two objects cor-
respond to two separate physical entities; they have their own identities and their proper-
ties can be changed independently.

Instantiation. After the manufacture of the product described by an object has been
started, the object no longer represents a plan for the object but the actual physical object.
The object must therefore beinstantiated so that it is not affected by changes in other
objects (i.e., its ancestors).

One possibility is to copy all effective inherited assignments to the object. Since the
constraints are still inherited from the ancestors, the validity of the instantiated object

Figure 10: Copying a component

lift

door : comp
{door ≤ lift door}

order 456

lift door

XYZ door

width : int
{1000 ≤ width ≤ 1500}

door← •

XYZ door-1

width ← 1200
order 567

lift

door : comp
{door ≤ lift door}

order 456

lift door

XYZ door

width : int
{1000 ≤ width ≤ 1500}

door← •

XYZ door-1

width ← 1200

order 567

door← •

XYZ door-2

width ← 1200
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depends on the constraints of its ancestors. In other words, the object is still regarded as
an instance of the type specified by the parent.

Another way to instantiate an object is to generalize it to have the root object as the
parent. Since the root object does not contain any properties, all properties that the instan-
tiated object has inherited from other objects are copied to the object as local properties.
An object instantiated in this manner becomes fully “self-contained”; it does not inherit
any properties from other objects.

All components of the instantiated object are instantiated recursively in the same way
as described above.

Component Specialization.  A component object cannot be used as a parent for other
objects because it would be difficult to specify the meaning of this construction. (What
would actually be the component?) However, it is quite conceivable that sometimes one
wants to use an existing component as a basis for developing new components. This sit-
uation is handled with acomponent specialization operation. When a component assign-
ment in an object is specialized, a new object with the original component as the parent is
created, and the assignment is changed to refer to this new object. The original compo-
nent can be now used as a parent for other objects.

5  Configuration Process

The object model presented in the previous section is very general. A conventional type
hierarchy with instances has a standard interpretation: Each object type represents a set of
possible object instances, and each instance corresponds to an entity in the “real world”.
A specialization hierarchy of the prototype model does not lend itself to such obvious
interpretation. In this section we describe how the prototype model can be used for mod-
elling a configuration process which is carried out in multiple phases.

Consider a lift model, such as the RX lift model of Fig. 3. A configuration of this lift
could for instance be created in the following steps:

Figure 11: Shared components

lift group

lift 1 lift 2ABC car-1

lifts of 999

control

lift model RX
order 999

ABC car



18

• A specification is created. The lift model has constraints for checking the valid-
ity of the specification. For example, the lift model can have a constraint for the
possible speed range, and the specification assigns a value to the corresponding
attribute.5

• After the specification has been checked, the first phase of configuration process
is carried out. The lift model specifies attributes that must be assigned during this
phase and constraints that the configuration must satisfy at the end of the phase.
The decisions of the first phase represent a certain commitment by the manufac-
turer. It is, for example, possible that the price of the product is fixed during this
phase or the manufacture of some components is started.

• When the configuration satisfies the constraints of the first phase, the second
phase is performed. New attributes and constraints are introduced.

• When the constraints of the second phase are satisfied, the product represented
with the configuration can be manufactured.

 Figure 12 shows these steps using the object model. Objectlift model RX contains the
attributes and constraints for the specification. The processing of a neworder 678 begins
with the creation of an object withlift model RX as the parent (situation 1). After this
object has been made valid, i.e., the specification constraints are satisfied, one can create
a new object for phase 1 data with the specification as the parent. The specification is then
changed to have phase 1 description as its parent (situation 2). The object for phase 1 data
now inherits new attributes and constraints from phase 1 description. After phase 1 data
is valid, phase 2 is carried out in a similar way (situation 3).

Note that it is not necessary to represent the specification, phase 1 data and phase 2
data of the order as three separate objects. We could have a single object for the order.
During the configuration process the parent of this object would be changed as described
above, but the attribute assignments of each phase would be added to the single object.
The separate objects, however, make it possible to record what data was added to the con-
figuration during each phase. Typically these objects also store process related data, such
as when the data was modified and by whom.

Situation 3 in Fig. 12 still looks somehow strange. For example, phase 1 data is a
descendant of phase 2 description. This means that the object for phase 1 data is probably
invalid because it only contains data that was added during phase 1 although it now inher-
its additional constraints from phase 2 description. One can sensibly examine only the
validity of the data for the “current phase”. In situation 3, for example, one can only ask
whether the object for phase 2 data is valid.

After a configuration is ready and the corresponding lift has been manufactured and
delivered to the customer, the configuration is moved to a new place within the object tree.
Figure 13 shows how the configurations of the delivered lifts are stored as ancestors of a
single object, which can declare attributes associated with the delivered lifts, such as the

5.  Note that we can only check assigned values against constraints. In general it is impos-
sible to check for inconsistencies between constraints.
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delivery date. Many of these attributes are actually common to deliveries of all lift mod-
els; multiple inheritance is therefore again likely to be used.

6 Conclusions and Future Work

We believe that product configuration management is a good example of an application
which is much better served by the prototype object approach than the more common

Figure 12: Configuration process
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type-instance model. This property seems to stem from the inherent dynamism of the con-
figuration problem. Operations that are usually classified as schema updates performed by
a database administration are part of the routine data manipulation during the configura-
tion process.

The generality of the prototype model means that an application must adopt particular
conventions for using the objects. As explained in Sect. 5, we organize the objects in a
hierarchy which represents the generic properties of lifts, the standard products, and the
individual configurations in various phases of the configuration process.

The limited space has prevented us from touching many important issues of the model.
These topics, which we hope to be able to treat in future papers, include:

• Multiple inheritance. As seen from the examples, the model requires multiple
inheritance for representing various situations encountered in actual configura-
tion process. One such situation is the problem discussed in Sect. 5 in connec-
tion with Fig. 12. As illustrated in Fig. 14, relationships between the phases can
be expressed better when phase 2 data has both phase 1 data and phase 2 descrip-
tion as its parents. Nevertheless, multiple inheritance complicates the model
considerably.

• Versioning. The uniform treatment of objects means that a single mechanism can
be used for “type versions”, i.e., for schema evolution, and for more conventional
“instance versions”. The tree transformations of Sect. 4.5 are important for type
evolution.

• Configuration processes. This paper is mainly concerned with the representation
of configuration data. We have not discussed how designers select proper com-

Figure 13: Delivered and in-progress configurations
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ponents to configurations and how they determine proper values for attribute
assignments. For this purpose, we plan to include selection and computation
procedures in the objects. We also need a mechanism to describe configuration
processes, such as the phases outlined in Sect. 5.

• Environments. According to this paper, all objects reside in single large tree. We
are developing a mechanism for extracting smaller parts of the tree to separate
environments. This mechanism will be similar to some concepts of Sun Network
Software Environment (NSE) [14].

• System architecture. The configuration system will be connected to other sys-
tems, such as CAD programs, document management systems and programs for
computing attribute values.
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