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Abstract

The paper demonstrates that product con�guration ap-
plications �t naturally the framework of answer set
programming. It is shown that product con�guration
knowledge can be represented systematically and com-
pactly using a logic program type rule language such
that the answers of a con�guration task, the con�g-
urations, correspond to the models of the rule repre-
sentation. The paper presents such a rule-based for-
malization of a uni�ed con�guration ontology using a
weight constraint rule language. The language extends
normal logic programs with cardinality and weight con-
straints which leads to a compact and simple formaliza-
tion. The complexity of the con�guration task de�ned
by the formalization is shown to be NP-complete.

Introduction

A product con�guration task takes as input a con�g-
uration model consisting of a set of prede�ned compo-
nent types and restrictions on combining the component
types, as well as a set of customer requirements. The
output is a con�guration, a speci�cation of a product in-
dividual that is correct with respect to the con�guration
model and satis�es the requirements. Knowledge-based
systems for con�guration tasks, product con�gurators,
are an important application of AI techniques for com-
panies selling products tailored to customer needs.
Product con�guration �ts nicely the framework of

answer set programming. In a con�guration task the
con�guration model and requirements can be seen as a
theory and the answers to the task, the con�gurations,
as models (or answer sets) satisfying the theory. The
aim of this paper is to establish a systematic mapping
from product con�guration to answer set programming.
We develop a general approach to translating con�gura-
tion model knowledge and requirements into logic pro-
gram type rules in such a way that the con�gurations
correspond to the models of the rules.
A rule-based approach is employed because rules pro-

vide a natural way of representing con�guration knowl-
edge. As the semantical basis we use stable mod-
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els (Gelfond & Lifschitz 1988) because they provide a
groundedness property crucial for product con�gura-
tion. The property states roughly that everything in
a con�guration must be grounded (or justi�ed) by the
con�guration model. This is hard to capture in alter-
native approaches (see more details in the section on
related work). However, we use an extension of nor-
mal logic programs (Niemel�a, Simons, & Soininen 1999;
Niemel�a & Simons 2000). This language extends the
propositional rule language of (Soininen & Niemel�a
1999) to the �rst order case and adds constraints on
sets of weighted literals to capture cardinality and re-
source constraints. This facilitates compact modeling
based on a rich and practically relevant ontology. The
language is implemented in the Smodels system and,
hence, a prototype product con�gurator can be build
on top of it with relatively little e�ort.
The rest of the paper is structured as follows. We �rst

introduce brie
y the extended rule language. Then, we
show how a simpli�cation of a generalized con�guration
ontology (Soininen et al. 1998) can be formalized using
the rule language so that con�gurations correspond to
stable models. Finally, we discuss the computational
complexity of the con�guration task de�ned in this way
and �nish by discussing related work.

Weight Constraint Rules

In this section we brie
y introduce the weight constraint
rule language used for formalizing con�guration knowl-
edge; for more information, see (Niemel�a, Simons, &
Soininen 1999; Simons 1999; Niemel�a & Simons 2000).
The language is equipped with weight constraints for
representing weighted choices with lower and upper
bounds and with conditional literals restricted by do-

main predicates to encode sets of atoms over which the
choices are made.
First we consider ground rules where variables are

not allowed. A weight constraint rule

C0  C1; : : : ; Cn (1)

is built from weight constraints Ci of the form

l � fa1 = w1; : : : ; an = wn;

not an+1 = wn+1; : : : ; not am = wmg � u (2)



where l and u are two numbers giving the lower and
upper bound for the constraint, each ai is a ground
atomic formula and each wi a number giving the weight
for the corresponding literal (an atom or its negation).
The semantics for such rules is given in terms of models
that are sets of ground atoms. We say that a positive
literal a is satis�ed by a model S if a 2 S and a negative
literal not a if a 62 S. A weight constraint is satis�ed by
a model S if the sum of weights of the literals satis�ed
by S is between the bounds l and u. For example,

30 � f a = 10; b = 20; not c = 30; not d = 35 g � 40

is satis�ed by a model fa; b; c; dg for which the sum of
the weights is 10+20 = 30 but not by a model fa; b; cg
for which the sum is 65. A missing lower bound is taken
to be �1 and a missing upper bound 1. Note that
"<" could also be similarly used in a constraint.
We use shorthands for some special cases of weight

constraints. A cardinality constraint where all weights
are 1 is written as

l fa1; : : : ; an; not an+1; : : : ; not amg u (3)

and a cardinality constraint 1fpg simply as a literal p.
We call rules where all constraints Ci are literals normal

rules. We can also write mixed rules such as

0 fa; bg 1 c : (4)

The semantics of a set of rules is captured by stable

models ful�lling two properties: (i) a stable model sat-
is�es the rules and (ii) is justi�ed by the rules. A rule of
form (1) is satis�ed by a model S i� S satis�es the head
C0 whenever it satis�es each of the body constraints
C1; : : : ; Cn. A rule without a head is satis�ed if at least
one of the body constraints is not. We explain the ba-
sic idea of justi�ability through an example. Consider
rule (4) satis�ed, e.g., by a model fag. This model is
not justi�ed by the rule since the body of (4) enabling
the choice of a, is not justi�ed. Indeed, for (4) the only
stable model is the empty set. Suppose we add a fact
c . Then each stable model of the two rules contains
c. The rules have three stable models fcg, fc; ag, and
fc; bg as the body of (4) is justi�ed by the new fact.
For compact and structured representation and ease

of maintenance, it is very useful to provide rules
with variables. The semantics for rules with vari-
ables (Niemel�a, Simons, & Soininen 1999) is obtained
by considering the ground instantiation of the rules
with respect to their Herbrand universe. However, in
this general case the rule language is highly undecid-
able. A decidable subclass is obtained by considering
the function-free and domain-restricted case (Niemel�a,
Simons, & Soininen 1999). Here each variable has a
domain predicate in the body of the rule providing the
domain over which the variable ranges. Domain pred-
icates can be de�ned using non-recursive normal rules
starting from basic ground facts. The rules de�ning
domain predicates have a unique stable model. By the
domain-restrictedness of the rules, this model provides
the domains of the variables in all the rules.

In order to compactly represent sets of literals in con-
straints, conditional literals, i.e., expressions such as
part(X;D) : ide(D), can be used in place of literals
where the conditional part ide(D) is a domain predi-
cate (or conjunction of them). When using conditional
literals we need to distinguish between global variables
(quantifying universally over the whole rule) and lo-

cal ones (with a scope of a single conditional literal).
The distinction is made implicitly by using the following
convention: a variable is local to a conditional literal if
it appears only in this literal in the rule and all other
variables are global in the rule. For example, in the rule

1 fpart(X;D) : ide(D)g 2 pc(X) (5)

the variable D is local to the conditional literal in the
head but X is a global variable. A rule with condi-
tional literals is understood as a shorthand for a set of
ground rules resulting from a two step process. First all
global variables are replaced by ground terms satisfy-
ing the domain predicates in every possible way giving
a set of rules where variables appear only as local ones
in conditional literals. Each such literal corresponds
to a sequence of ground instances of the main predi-
cate such that the domain predicate in the conditional
part holds. For example, consider rule (5). By domain-
restrictedness, predicates ide(D) and pc(X) are domain
ones and de�ned by non-recursive rules. Now (5) cor-
responds to a set of ground rules

1 fpart(pci; d1); : : : ; part(pci; dm)g 2 pc(pci) (6)

where X is replaced by a constant pci for which
pc(pci) holds and where the resulting conditional lit-
eral part(pci; D) : ide(D) corresponds to a sequence of
ground facts part(pci; dj) for which ide(dj) holds.
An implementation of the weight constraint rule

language called Smodels is publicly available at
http://www.tcs.hut.fi/Software/smodels/. The
current implementation supports only integer weights
in order to avoid complications due to �nite precision of
standard implementations of real number arithmetic.

Con�guration Knowledge

In this section we show how to represent con�guration
knowledge using the rule language. We distinguish be-
tween the rules giving ontological de�nitions and the
rules representing a con�guration model. The former
are not changed when de�ning a con�guration model of
a product and are enclosed in a box in the following.
The latter appear only in the examples and are prod-
uct speci�c. We further make the convention that the
domain predicates are typeset normally whereas other
predicates are typeset in boldface .
The representation is based on a simpli�ed version

of a general con�guration ontology (Soininen et al.

1998). In the ontology, there are three main categories
of knowledge: con�guration model knowledge, require-
ments knowledge and con�guration solution knowledge.
Con�guration model knowledge speci�es the entities



that can appear in a con�guration and the rules on
how the entities can be combined. More speci�cally, a
con�guration model represented according to the sim-
pli�ed ontology consists of (i) a set of component types,
(ii) a set of resource types, (iii) a set of port types, (iv) a
taxonomy or class hierarchy of types, (v) compositional
structure of component types, (vi) resource production
and use by component types, (vii) connections between
ports of components types, and (vii) a set of constraints.

In our approach, a con�guration model is represented
as a set of rules. Con�guration solution knowledge spec-
i�es a con�guration, de�ned as a stable model of the
set of rules in the con�guration model. These de�ni-
tions correspond to the usual answer set programming
paradigm. However, for con�guration tasks the require-
ments knowledge, represented as another set of rules,
has a di�erent status from that of the con�guration
model. The requirements must also be satis�ed by a
con�guration but cannot justify any elements in it.

Types, Individuals and Taxonomy

Most approaches to con�guration distinguish between
types and individuals, often called classes and instances.
Types in a con�guration model de�ne intensionally the
properties, such as parts, of their individuals that can
appear in a con�guration. In the simpli�ed ontology,
a con�guration model includes the following disjoint
sets of types: component types, resource types, and port

types. They are organized in a taxonomy or class hier-
archy where a subtype inherits the properties of its su-
pertypes in the usual manner. For simplicity we require
that each individual in a con�guration is of a concrete,
i.e. leaf, type.

Individuals of concrete component types are nat-
urally represented as object constants with unique
names. This allows several individuals of the same type
in a con�guration. Types are represented by unary do-
main predicates ranging over their individuals. Since a
resource of a given type need not be distinguished as
an individual, there is exactly one individual of each
concrete resource type. The individuals ci in a con�g-
uration are represented by the predicate in(ci).

The type predicates are used as conditional parts of
literals to restrict the applicability of the rules to in-
dividuals of the type only. This facilitates de�ning
properties of individuals (see below). The taxonomy
is represented using rules stating that individuals of a
type are also individuals of its supertypes, which en-
ables monotonic inheritance of the property de�nitions.

Example 1. A computer is represented by component
type pc (PC), which is a subtype of cmp, the generic
component type. For each individual pci of component
type pc in a con�guration it holds that pc(pci). Com-
ponent type ide (IDE device) is also a subtype of cmp.
A type representing IDE hard disks, hd, is a subtype
of ide. Actual hard disks are represented as subtypes
of hd, namely hda and hdb. IDE CD ROM devices cda
and cdb are subtypes of type cd, which is a subtype

of ide. Software packages are represented by type sw.
Software package types swa and swb are subtypes of sw.
Resource and port types are introduced in the follow-
ing sections. The following rules de�ne the component
types and their taxonomy:

cmp(C) pc(C) ide(C) hd(C) hd(C) hda(C)
cmp(C) ide(C) ide(C) cd(C) hd(C) hdb(C)
cmp(C) sw(C) sw(C) swa(C) cd(C) cda(C)

sw(C) swb(C) cd(C) cdb(C)

Compositional Structure

The decomposition of a product to its parts, referred
to as compositional structure, is an important part of
con�guration knowledge. A component type de�nes its
direct parts through a set of part de�nitions. A part
de�nition speci�es a part name, a set of possible part

types and a cardinality. The part name identi�es the
role of a component individual as a part of another. The
possible part types indicate the component types whose
component individuals are allowed in the part role. The
cardinality, an integer range, de�nes how many compo-
nent individuals must occur as parts in the part role.
For simplicity, we assume that there is exactly one

independent component type, referred to as root type

of the compositional structure formed by the part def-
initions. An individual of this type is the root of the
product structure. In a con�guration there is exactly
one individual of the root type of the compositional
structure. Component types are also for simplicity as-
sumed to be exclusive, i.e. a component individual is
part of at most one component individual. Further,
a component individual must not be directly or tran-
sitively a part of itself. These restrictions are placed
to prevent counterintuitive structures of physical prod-
ucts. In e�ect the compositional structure of a con�gu-
ration forms a tree of component individuals, and each
component individual in a con�guration is in the tree.
The fact that a component individual c1 has as a part

another component individual c2 with a part name pn
is represented by the predicate pa(c1; c2; pn). A part
name is thus represented as an object constant and the
set of part names pni in a con�guration model are cap-
tured using the domain predicate pan(pni).
A part de�nition is represented as a rule that em-

ploys a cardinality constraint in the head. The indi-
viduals cj of possible part types in a part de�nition
with part name pn of a component type whose individ-
uals are ci are represented using the domain predicate
ppa(ci; cj ; pn). It is de�ned as the union of the individ-
uals of the possible component types.

Example 2. The root component type pc has as its
parts 1 to 2 mass-storage units (with part name ms) of
type ide, and 0 to 10 optional software packages (with
part name swp) of type sw. Note that using an ab-
stract (non-leaf) type, such as ide, in a part de�nition
e�ectively enables a choice from its concrete subtypes.
The fact that pc is the root type of the compositional
structure and the part names and possible part types



of PC are represented as follows:

root(C) pc(C)
pan(ms) ppa(C1; C2;ms) pc(C1); ide(C2)
pan(swp) ppa(C1; C2; swp) pc(C1); sw(C2)

The part de�nitions for the mass storage and software
package roles are represented as follows:

1 fpa(C1; C2;ms) : ppa(C1; C2;ms)g 2 in(C1);
pc(C1)

0 fpa(C1; C2; swp) : ppa(C1; C2; swp)g 10 in(C1);
pc(C1)

The ontological de�nitions that exactly one individual
of the root type of the compositional structure is in
a con�guration, and that other component individuals
are in a con�guration if they are parts of something are
given as follows:

1 fin(C) : root(C)g 1  
in(C2)  pa(C1; C2; N); cmp(C1);

cmp(C2); pan(N)

The exclusivity of component individuals is captured
by the following ontological de�nition that a component
individual can not be a part of more than one compo-
nent individual:

 cmp(C2); 2 fpa(C1; C2; N) : cmp(C1) : pan(N)g

As the structure must be a tree, the following onto-
logical de�nitions of the transitive closure of ppa and
its asymmetricity are needed:

ppat (C1; C2) ppa(C1; C2; N)
ppat (C1; C3) ppa(C1; C2; N); cmp(C3);

ppat (C2; C3)
 ppat (C;C); cmp(C)

Resources

The resource concept is useful in con�guration for mod-
eling the production and use of some more or less ab-
stract entity, such as power or disk space. Some com-
ponent individuals produce resources and other compo-
nent individuals use them. The amount produced must
be greater than or equal to the amount used.
A component type speci�es the resource types and

amounts its individuals produce and use by produc-

tion de�nitions and use de�nitions. Each production
or use de�nition speci�es a resource type and a magni-

tude. The magnitude speci�es how much of the resource
type component individuals produce or use.
A resource type is represented as a domain predicate.

Only one resource individual with the same name as the
type is needed, since a resource is not a countable entity.
A production and a use de�nition of a component type
is represented using the domain predicate prd(c; r; x)
where c is a component individual of the producing or
using component type, r the individual of the produced
or used resource type and x the magnitude. Use is
represented as negative magnitude.

Example 3. Disk space is used by the software pack-
ages and produced by hard disks. Disk space is rep-
resented by resource type ds. Each subtype of type
sw uses a �xed amount of disk space, represented by
their use de�nitions: swa uses 400MB and swb 600 MB.
Hard disks of type hda produce 700MB and of type hdb
1500MB of ds. The following rules represent the ds re-
source type and the production and use de�nition of
component types:

res(R) ds(R) prd(C; ds;�400) swa(C)
ds(ds) prd(C; ds;�600) swb(C)

prd(C; ds; 700) hda(C) prd(C; ds; 1500) hdb(C)

The production and use of a resource type by the com-
ponent individuals is represented as weights of the pred-
icate in(). The ontological de�nition that the resource
use must be satis�ed by the production is expressed
with a weight constraint rule stating that the sum of
the produced and used amounts must be greater than
or equal to zero:

 res(R); fin(C) : prd(C;R;M) =Mg < 0

Ports and Connections

In addition to hierarchical decomposition, it is often
necessary to model connections or compatibility be-
tween component individuals. A port type is a de�nition
of a connection interface. A port individual represents
a "place" in a component individual where at most one
other port individual can be connected. A port type
has a compatibility de�nition that de�nes a set of port
types whose port individuals can be connected to port
individuals of the port type.
A component type speci�es its connection possibili-

ties by port de�nitions. A port de�nition speci�es a port
name, a port type and connection constraints. Port in-
dividuals of the same component individual cannot be
connected to each other. For simplicity, we consider
only a limited connection constraint specifying whether
a connection to a port individual is obligatory or op-
tional. E�ectively an obligatory connection sets a re-
quirement for the existence of and connection with a
port of a compatible component individual.
Port types are represented as domain predicates

and port individuals as uniquely named object con-
stants. Compatibility of port types is represented as
the domain predicate cmb(p1; p2), where p1 and p2 are
port individuals of compatible port types and a rule
that any two compatible port individuals can be con-
nected. A connection between port individuals p1 and
p2 are represented as the symmetric, irre
exive predi-
cate cn(p1; p2). A port individual is connected to at
most one other port individual. The following rules
represent these ontological de�nitions:

0 fcn(P1; P2)g 1 in(P1); in(P2); cmb(P1; P2)
cn(P2; P1) cn(P1; P2); prt(P1); prt(P2)

 prt(P1); 2 fcn(P1; P2) : prt(P2)g
 prt(P1); cn(P1; P1)



Example 4. The con�guration model includes port
types idec and ided that are subtypes of the general
port type prt. These types represent the computer and
peripheral device sides of an IDE connection. The com-
patibility de�nition of idec states that it is compatible
with ided. Correspondingly ided states compatibility
with idec. The following rules represent the port types
and compatibility de�nitions:

prt(P ) idec(P ) cmb(P1; P2) idec(P1); ided(P2)
prt(P ) ided(P ) cmb(P1; P2) ided(P1); idec(P2)

A port de�nition of a component type is represented
as a rule very similar to a part de�nition, but with
the predicate po(c1; p1; pn) signifying that a component
individual c1 has a port individual p1 with the port
name pn. The pon(pni) domain predicate captures the
set of port names pni.

Example 5. Component type pc has two ports with
names ide1 and ide2 of type idec for connecting IDE
devices. Component type ide has one port of type ided,
called idep, for connecting the device to a computer.
The idep port has a connection constraint that connec-
tion to that port is obligatory. In rule form:

pon(ide1) pon(ide2) pon(idep) 

1 fpo(C;P; ide1) : idec(P )g 1 in(C); pc(C)
1 fpo(C;P; ide2) : idec(P )g 1 in(C); pc(C)
1 fpo(C;P; idep) : ided(P )g 1 in(C); ide(C)

 ide(C); ided(P1);po(C;P1; idep);
fcn(P1; P2) : prt(P2)g 0

The ontological de�nitions that a port individual is
in a con�guration if some component individual has it
and that port individuals of one component individual
cannot be connected are also needed:

in(P ) cmp(C); pon(N); prt(P );po(C;P;N)
 cmp(C); pon(N1); prt(P1);po(C;P1; N1);

pon(N2); prt(P2);po(C;P2; N2); cn(P1; P2)

Constraints

All approaches to con�guration have some kinds of con-
straints as a mechanism for de�ning the conditions that
a correct con�guration must satisfy. Rules without
heads can be used in our approach to represent typi-
cal forms of constraints.

Example 6. A PC con�guration model could require
that a hard disk of type hd must be part of a PC:

 pc(C1); fpa(C1; C2; N) : hd(C2) : pan(N)g 0

Computational Complexity

For the complexity analysis of con�guration tasks we
make the following assumptions. A con�guration model
CM represented according to the ontology is translated
to a set of rules CM as above including the rules for
ontological de�nitions. Then, a set of ground facts S
is added, providing the individuals that can be in a

con�guration. Set S is constructed out of the domain
predicates representing the concrete types in CM and
unique object constants for the individuals of concrete
types. The set of rules CM [S is all that is needed for
representing the product, and subsequently con�guring
it. The requirements are represented using another set
of rules R. The set S can be thought of as a storage
of individuals from which a con�guration is to be con-
structed. It thus induces an upper bound on the size of
a con�guration. This is important since if such a bound
cannot be given, the con�gurations could in principle be
arbitrarily large, even in�nite.

We further make the assumption that the number of
variables in the rule representation of each constraint in
CM and each rule in R is bounded by some constant.
This is based on the observation that even checking
whether a constraint rule or requirement rule of arbi-
trary length is satis�ed by a con�guration is computa-
tionally very hard. This would be contrary to the intu-
ition that checking whether a constraint or requirement
is in e�ect in a con�guration should be easy. Since the
ontological de�nitions in CM have a limited number of
variables, this assumption implies that there is a bound
c on the number of variables in any rule of CM and R.

The above assumptions lead to the following de�ni-
tion of the decision version of the con�guration task:

De�nition 7. CONFIGURATION TASK(D): Given a
con�guration model CM translated to a set of rules
CM , a set of ground facts S, and a set of rules R,
where the number of variables in any rule of CM and
R is bounded by a constant c, is there a con�guration
C (a stable model of CM [ S) such that C satis�es R?

Theorem 8. (Soininen et al. 2000) CONFIGURA-

TION TASK(D) is NP-complete in the size of CM [
S [R.

Discussion and Related Work

There are several approaches that de�ne a con�gura-
tion oriented language, a mapping to an underlying
language, and implement the con�guration task using
an implementation of the underlying language. The
main distinction and advantage provided by the answer
set programming approach taken in this work is the
groundedness property of solutions.

The groundedness property of the semantics of weight
constraint rules extends the similar property of stable
model semantics (Gelfond & Lifschitz 1988). When ap-
plied to the con�guration domain it captures formally
the idea that a correct con�guration must not con-
tain anything that is not justi�ed by the con�guration
model. There is no need to add completion or frame
axioms to accomplish this. Capturing groundedness in
the semantics thus allows a more compact and mod-
ular representation of con�guration knowledge. This
also implies that if a part of a con�guration model or
the formalization of the conceptualization is changed,
only those rules that represent the changed part need



to be modi�ed to capture the new con�guration model
or formalization.

This is in contrast to approaches based on a mono-
tonic formalism such as CSP or classical logic. For
example, in (Friedrich & Stumptner 1999) a form of
classical predicate logic is used. The mapping of con-
�guration knowledge to predicate logic is not modular,
in the sense that the types, property de�nitions and
constraints are not formalized independently. Several
completion axioms are required to ensure that a con-
�guration is complete and does not contain extraneous
things. In fact, it can be shown that even a simple spe-
cial case of propositional weight constraint rules can-
not be represented modularly by CSP or propositional
logic (Soininen & Niemel�a 1999).
A further aspect of groundedness is that it can be

used to clearly distinguish between the roles of the
con�guration model and requirements. Without the
groundedness property, one must resort to meta-level
conditions. For example, elements other than in a
con�guration model must be excluded from the con-
�guration even if the requirements state their exis-
tence (Friedrich & Stumptner 1999). By separating the
notions of a con�guration satisfying a set of rules and
being grounded by the set of rules, one obtains the fol-
lowing clear distinction: a suitable con�guration must
be correct, i.e. satisfy and be grounded by a con�gura-
tion model, but only needs to satisfy the requirements.
Thus, requirements cannot add unwanted elements into
a con�guration.
The groundedness of con�gurations has been identi-

�ed as important in, e.g., the research on dynamic con-
straint satisfaction problems (DCSP) (Mittal & Falken-
hainer 1990) and the rule based approaches to con�g-
uration in (Soininen & Niemel�a 1999; Syrj�anen 2000).
In (Soininen, Gelle, & Niemel�a 1999), DCSP is given
a new semantics using similar ideas as for weight con-
straint rules and extended with a simple form of car-
dinality constraints. It is also shown that DCSP can
be translated in a straightforward manner to weight
constraint rules and thus implemented using Smodels.
In (Soininen & Niemel�a 1999; Syrj�anen 2000) two rule
languages are de�ned and used to capture con�gura-
tion knowledge based on simpler ontologies consisting
of components, choices and dependencies. These lan-
guages turn out to be special cases of weight constraint
rules and directly implementable on top of Smodels
(Soininen 2000; Syrj�anen 2000).

DCSP does not allow straightforward formalization
of the con�guration knowledge addressed in this pa-
per as it lacks constructs for directly representing ob-
jects and domain and other predicates and for de�n-
ing new predicates on the basis of existing ones. The
same diÆculty holds also for the propositional rule lan-
guage in (Soininen & Niemel�a 1999). The rule lan-
guage in (Syrj�anen 2000) does support predicates and
their de�nitions. However, neither it or the language in
(Soininen & Niemel�a 1999) supports weight and car-
dinality constraints needed for compact con�guration

knowledge representation.
When compared to the previous rule based ap-

proaches, we handle in this paper a richer ontology
covering the practically important aspects of structure,
connections and resource interactions. However, some
central issues such as attribute modeling, constructs for
supporting optimization, and arithmetic expressions re-
main as further extensions. It should be noted that at-
tribute de�nitions with relatively small integer or enu-
merated domains and arithmetic on integers can be sup-
ported by Smodels through weight constraint rules
and built-in predicates (Niemel�a, Simons, & Soininen
1999). In addition, the weight constraints provide a way
of expressing decision versions of optimization tasks
with a given bound. This mechanism can be extended
to handle optimization criteria.
Several other logic programming languages with non-

monotonic semantics could conceivably be used for con-
�guration knowledge representation. However, most
declarative semantics and forms of logic programs are
rather inadequate for capturing many important as-
pects of con�guration knowledge. They provide lim-
ited means only, e.g. disjunctions, for expressing choices
among alternatives. Little support is provided for ex-
pressing cardinality or weight constraints on choices.
For most logic program semantics with disjunctive
choices, the models of programs are required to be min-
imal instead of grounded in the sense of weight con-
straint rules. In our view subset minimality is in fact
a speci�c optimality criterion which is not very rel-
evant for con�guration applications where measuring,
e.g., cost and resource consumption is more important.
Such optimality criteria can be added on top of the
semantics of weight constraint rules whose role is to
provide the correct solutions.
However, there are semantics allowing non-minimal

models and, in fact, if we consider the subclass of weight
constraint rules with a simpler form of choices in the
heads of rules and default negation (Soininen & Niemel�a
1999), the semantics coincides with the possible models
for disjunctive programs (Sakama & Inoue 1994). This
class of programs does not, however, include cardinality
or weight constraints. Other logic program approaches
have also associated numbers with the atoms in rules, or
with the rules. However, the numbers are usually inter-
preted as priorities, preferences, costs, probabilities or
certainty factors of rules (see e.g. (Brewka & Eiter 1998;
Buccafurri, Leone, & Rullo 1997) and the references
there). The NP-SPEC (Cadoli et al. 1999) approach
is also somewhat similar in aims. It is not based on a
generalization of the stable model semantics, however,
but on circumscription, and it does not treat choices,
weight constraints and rules uniformly.
There are also some approaches to con�guration

based on logic programming systems, e.g. (Axling &
Haridi 1994). In these approaches, the con�guration
task is implemented on a variant of Prolog based on a
mapping from a high-level language to Prolog. How-
ever, the languages are not provided a clear declarative



semantics and the implementations use non-logical ex-
tensions of pure Prolog such as object-oriented Prolog
and the cut. Several authors have also proposed using
constraint logic programs (CLP) to represent con�gu-
ration knowledge and implement the con�guration task
(e.g. (Sharma & Colomb 1998)). However, the CLP
languages in these approaches are not based on a se-
mantics with a groundedness property and do not in-
clude default negation or choices through disjunction or
cardinality constraints.

Conclusions and Future Work

We have presented an approach to formally represent-
ing product con�guration knowledge and implement-
ing the product con�guration task on the basis of the
answer set programming paradigm. We de�ned a uni-
�ed and detailed ontology for representing con�guration
knowledge on di�erent aspects of products. The ontol-
ogy and con�guration models are formalized by de�n-
ing a mapping to a new type of logic programs, weight
constraint rules, designed for representing con�guration
knowledge uniformly and in a straightforward manner.
The language allows a compact and simple formaliza-
tion. The complexity of the con�guration task de�ned
by the formalization is shown to be NP-complete.
However, the language does not allow real number

arithmetic. Extending the language and its implemen-
tation with this and optimization related constructs and
formalizing a more extensive con�guration ontology are
important subjects of further work. In addition, the
computational complexity of di�erent possible concep-
tualizations should be further analyzed, and the imple-
mentation performance should be tested.
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