Soininen T., An Approach to Knowledge Representation and Reasoning
for Product Configuration Tasks. Acta Polytechnica Scandinavica, Mathe-
matics and Computing Series. No. 111, Espoo 2000, 209 pp. Published by the
Finnish Academies of Technology. ISBN 951-666-560-8. ISSN 1456-9418.

Keywords: Product configuration, knowledge representation, reasoning

Abstract

A configurable product is tailored to meet the individual requirements of a
customer. For such a product, the configuration task is roughly defined as de-
signing a product individual using a set of predefined component types while
taking into account a set of known restrictions in combining the components.

In this work, a configuration ontology, i.e. a conceptualization, for repre-
senting knowledge on the component types and the restrictions in an informa-
tion system was developed. It synthesizes and extends several previous ap-
proaches. In addition, three formal languages with declarative semantics that
extend logic programs and constraint satisfaction problems with configuration
specific constructs were developed. A simplified version of the ontology was
formalized using one the languages. The languages and the formalization are
novel in that their semantics captures the notion of groundedness, i.e. that a
configuration must only contain things that are allowed by a configuration
model of the product. This property and the configuration specific constructs
made uniform formalization of the ontology straightforward.

The computational complexity of the configuration task and relative ex-
pressiveness of the languages and the simplified ontology were analyzed. For
most of the languages and the formalization, the task is NP-complete. The
groundedness property was shown to increase the expressive power. Prelimi-
nary empirical evidence for the practical relevance of the approach and feasi-
bility of implementing it was found by modeling simple case products and
testing a prototype implementation of the languages on small problems.

The main conclusion of this work is that, although there is no general
formal model of product configuration yet, the different approaches can be
unified under a formal framework. However, the ontology, languages and im-
plementation should all be further empirically tested and validated. Several
topics for their further development are also pointed out.

© All rights reserved. No part of the publication may be reproduced, stored, or
transmitted, in any form or by any means, electronic, mechanical, photocopying, re-
cording, or otherwise without the prior written permission of the author.

4

Supervisor

Professor Reijo Sulonen

Department of Computer Science and Engineering
Helsinki University of Technology

Espoo, Finland

Reviewers

Professor Gerhard Friedrich

Institut fur Wirtschaftsinformatik und Anwendungssysteme
Universitat Klagenfurt

Klagenfurt, Austria

Professor Jukka Paakki
Department of Computer Science
University of Helsinki

Helsinki, Finland

Opponent

Professor Markus Stumptner
Institut fir Informationssysteme
Technische Universitit Wien
Wien, Austria

Contents

ABSTRACT ..oeuuiiieiuerteteeranetenerencraserasesssesssesssesssesssssssessssesssssssssssesnnees 2
ACKNOWLEDGEMENTS ...cotteueieriemesscsresnssassesnssscssssasssssssnssssssssasssssssans 6
LIST OF PUBLICATIONS...cccuuttttteuenirreenessesresnssssssssassessssnssssssssnsssssssnnssss 7
1 INTRODUCTION ...cereeuuerereennencereenenscssennssssesnnsssssssnssssssssnssssssannnnes 8
1.1
1.2
1.3
1.4 SCOPE oottt st s st e ss st as st ba s st s e s ssebebetansananas 17
1.5 OUTLINI OF THIEL THIESIS oottt nse e 18
2 A CONFIGURATION ONTOLOGY AND ITS FORMALIZATION 19
2.1 A GENERALIZED CONFIGURATION ONTOLOGY . ooiveeiririereeesenrenns 20
2.2 A SIMPLIFIED CONFIGURATION ONTOLOGY woveviiveeeiveeeveeereeveeevenas 21
2.3 CONIFIGURATION RULE LANGUAG wovivvececeeeeeeeeeee e 27
2.4 EXIENDED DYNAMIC CONSTRAIN'T SATISFACTION PROBLEM....... 32
2.5 WIEIGHT CONSTRAINT RULIE LANGUAGH cvcoviciicieeiecieseeeese e 39
2.6 FORMAL SEMANTICS OF THIL LANGUAGES .ovicvievieiecieeeeeeese e 53
2.7 FORMALIZING 'I'TIE SIMPLIFIED CONFIGURATION ONTOLOGY 54
2.8 ANALYSIS OF THI FORMALISMS ..ottt 62
2.9 EMPIRICAL EVIDENCI FOR THE APPROACH ..o 72
3 DISCUSSION AND COMPARISON WITH PREVIOUS WORK 76
3.1 GENERAL DISCUSSION AND CONCLUSIONS....cvoeeririirerereresrereresessenens 77
3.2 MODELS OF NAJMAN AND STEIN witriiieviiriierierineiee st eeeeceseeeeeeeeee 85
3.3 DESCRIPIION LOGIC-BASED APPROACIIES ooviviveiiiriereeevesve e 86
3.4 CONFIGURATION DESIGN ONTOLOGIES .ovcoiviivireeisiireeesesveeesssaesens 90
3.5 UML-BASED CONCEPTUALIZATION AND CONSISTENCY-BASED
CONFIGURATION Lvitiveteiisiiteteiissesesessssssesesssssesesassssssesessssssssessssssssssensnns 92
4 FURTHER WORK ...ccevuuiiriennncereenenceseenensessennssessennessssssnnssssssnnnes 100
4.1 PRELIMINARY EVIDENCI FOR THIE APPROACH oo 100
4.2 FURTHIR EMPIRICAL EVALUATION ..coooviiiecieeeeceeee e 102
4.3 FURIIER TIHEORETICAL WORK ..voveiiriivereisesiereesessssessessssssssssssssssens 104
5 CONCLUSIONS....cetteueeceerensecererssssssesnsssssssnnsssssasnessssssnnssssssnnnes 108

REFERENCES ..cuvuetuitteetereereeceeseeseasessessessssssssssssssssssssssssssssssssssssssnnes 110

Acknowledgements

This thesis was prepared in the Product Data Management Group (PDMG) of
the HUT. I gratefully acknowledge the financial basis for it, the graduate assis-
tantship of Helsinki Graduate School in Computer Science and Engineering
(HeCSE). Research project funding from the Technology Development Centre
of Finland and the Academy of Finland is also gratefully acknowledged.

I wish to thank all the people of PDMG for the stimulating and fun
working environment. The supervisor of this thesis, Professor Shosta Sulonen,
has done a great job in creating its material infrastructure and spirit. I thank
you for the advice, constructive criticism, and especially support during the
difficult moments along the way. I am also grateful for instilling in me the re-
spect for real-world practical problems as a guide for research.

Lic. Tech. Juha Tithonen has been a valuable colleague in analyzing the
practical issues related to product configuration. Thank you for advising me on
research-related matters and the many practical work-related issues. Dr. Sc.
Tomi Mannisti has been a source of excellent constructive criticism and aid in
exploring the concepts in this work. I am grateful to you for having the time
for the discussions that sometimes seemed to meander along without direction
but at other times provided surprising insights. Dr. Sc. Hannu Peltonen has also
provided invaluable comments and advice on how to best put things down in
writing, for which I am grateful. I also thank Research Director Asko Martio tor
providing insight on the industrial practices and on many other practical issues.

Beyond PDMG, I am very grateful to Professor I/kka Niemeld whose ex-
cellent teaching on formal methods have inspired me to study these issues.
Thank you for the excellent co-operation and practical advice in exploring
them. I am also grateful to Ph.D. Esther Gelle for her collaboration and the
many valuable and enjoyable discussions on thesis and research work we have
had. Professor Martti Mdntyli, director of HeCSE, has also supported the pro-
gress of my thesis and many other aspects of my work, for which I am grate-
ful. T extend thanks to the pre-examiners of my thesis, Professors Gerbard
Friedrich and Jukka Paakfki, for their valuable comments and advice. I am also
grateful to Ms Kathleen Tipton for reviewing the English language of the thesis.

A special thank you goes to Mia. Without your patience, support and love
this thesis would never have been completed. Thank you for Jubo as well.

Espoo, November 21, 2000

Timo Soininen

List of Publications

This thesis is based on the following publications, which are referred to in the
text by their Roman numerals.

1

1II

111

v

VI

Niemeld I., Simons P. and Soininen T'. Stable Model Semantics for
Weight Constraint Rules. In Gelfond, M., Leone, N., and Pfeifer, G. (ed.)
Logic Programming and Non-Monotonic Reasoning 5th International Conference,
LPNMR '99, Proceedings, Springer-Verlag. Pages 317-31. 1999.

Soininen T., Gelle E. and Niemeld 1. A Fixpoint Definition of Dynamic
Constraint Satisfaction. In Jaffar, J. (ed.) Principles and Practice of Constraint
Programming- CP'99 5th International Conference, CP'99, Proceedings, Springet-
Verlag. Pages 419-33. 1999.

Soininen T. and Niemeld I. Developing a Declarative Rule LLanguage for
Applications in Product Configuration. In Gupta, G. (ed.) Practical Aspects
of Declarative Langnages: First International Workshop, PADIL'99, Proceedings,
Springer-Verlag. Pages 305-19. 1999.

Soininen T., Niemeld I., Tiithonen J. and Sulonen R. Unified Configura-
tion Knowledge Representation Using Weight Constraint Rules. Techni-
cal Report B149. Laboratory of Information Processing Science, Helsinki
University of Technology. 2000. Presented at the ECAIOO0 Workshop on
Confignration, 21-22 August, 2000.

Soininen T, Tithonen J., Mannisté T. and Sulonen R. Towards a General
Ontology of Configuration. Artificial Intelligence for Engineering Design, Analy-
sis and Manufacturing, 12(4):357-72. 1998.

Tiihonen J., Lehtonen T., Soininen T., Pulkkinen A., Sulonen, R. and Rii-
tahuhta A. Modeling Configurable Product Families. In Tichem, M. et al
(eds.) Proceedings of the 4th WDK Workshop on Product Structuring, October
22-23, 1998, Delft University of Technology. Pages 29-50. 1998.

! Authors ate given in alphabetical order for this publication.

1 Introduction

In this section, the background of the thesis is first covered in Section 1.1 by
taking a brief look at the phenomenon of product configuration and the pre-
vious related research. The research problems and goals of the research are
then enumerated in Section 1.2. The method of research is described in Sec-
tion 1.3 and the scope of the thesis outlined in Section 1.4. Finally, the struc-
ture of the rest of the thesis is given in Section 1.5.

1.1 Background

The design and production of goods that satisfy the specific needs of individ-
ual customers are of central interest to many companies. Some major trends in
the business environment of these companies include diminishing lifetimes of
products® and pressure for shorter lead-times in the sales-delivery process.
Moreover, there is increasing pressure to adapt product individuals according
to customer requirements. This leads to increasing complexity and an increas-
ing number of variants of products.

One way to cope with the changes in the business environment is to de-
velop and deliver configurable products. Such products can be characterized by the
following properties (Tithonen et al. 1998; Tithonen et al. 1996):

e Fach delivered product individual is adapted to meet the requirements of
a custometr.

® The product has been pre-designed to meet a given range of different
customer requirements. It is not meant to be adapted to meet require-
ments outside this range.

e Fach product individual is specified as a combination of pre-defined
component types according to known rules. New component types are
not designed in the sales-delivery process to adapt the product.

¢ The product has a pre-designed general architecture.

e The adaptation in the sales-delivery process requires only routine design
(Tong and Sriram 1992) and can be done in a systematic manner.

2 In the following, the term “product” encompasses both physical and logical products, such as
software, and services.

A configurable product typically has a large number of variants. As the set of
components and the rules of adaptation are known, a configurable product
allows systematic adaptation, configuration, through which the customer-specific
variants are generated. The goal is to do this while keeping the configuring of
the product inexpensive, cost-effective, and the lead-time of the sales-delivery
process short. In other words, a configurable product aims at combining some
of the benefits of mass-produced, fixed products, such as relatively low price
and short delivery time, and one-of-a-kind products, such as adaptability to
customer requirements. This type of operation has sometimes been classified
as mass-customization (Hales 1992; Carson 1997).

A configurable product may be very complex to configure due to a large
number of components and large number of or highly complex interdepend-
encies of the rules of adaptation. It is also often the case that the product is
incompletely or unclearly documented. These aspects lead easily to errors in
configuring the product. The errors can be to some extent eliminated by ap-
plying a product configurator’, ot configurator for short, an information system that
configures a product or supports a person in doing it.

The configuration task carried out by a configuration engine in a configurator
can be roughly defined as the problem of designing a product individual using
a set of pre-defined component types while taking into account a set of well-
defined rules on how the components can be combined (Figure 1.1). The in-
puts of the problem are a configuration model, which describes the components
that can be included in the configuration and the rules on how they can be
combined to form a working product, and reguirements that specify some prop-
erties that the product individual should have. The output is a configuration, an
accurate enough description of a product individual. The configuration must
be suitable, i.e. satisty the requirements, and correct, i.c., be composed of the
components in the configuration model and not break any of the rules in it.

Product configurators have been used as an aid in the sales-delivery proc-
ess at least from the beginning of the 1980s (McDermott 1982). In the last five
years, the number of vendors of product configurators has bloomed
(Richardson 1997). The commercial importance of the field is also witnessed
by the growing number of companies that have taken a configurator into use
(Richardson 1997; Faltings and Freuder 1998). In a survey of ten manufactur-
ing companies it was found that there is a clear need for product configurators

3 The word “configurer” is sometimes used with the same meaning. There seems to be no
standard terminology. The word “configurator” is used in this thesis for an information sys-
tem. The word “configurer” is reserved for a person that does the configuration task, possibly
supported by a configurator.

10

| Customer } | Adaptation i
| Needs | | Possibilities |
_____‘ _____ SN x _______ 4
Configuration
Requirements Model L egend:
\/ Formal entity
Configuration " Real-world entity |
Engine A J
L ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, } represents
i —P dataflow
Configuration
Configurator

Individua

Product i

Figure 1.1 Configuration task carried out by a configurator

(Tithonen et al. 1998; Tithonen et al. 1996). However, there is no generally ac-
cepted commercial or even theoretical solution that would cover the different
products and needs of companies.

Theoretical models of configuration tasks and product configurators have
been developed within the field of artificial intelligence (Al) for at least two
decades, motivated by the practical importance. Representing the configuration
knowledge, i.e., configuration models, requirements and configurations, is a natu-
ral target of the knowledge representation subfield of Al The configuration
task fits into the Al-typical formulation of a task as a search for a solution
through a search space of possible configurations. This thesis is a further study
in representing configuration knowledge and the reasoning for configuration
tasks in computers.

Numerous diverging theoretical models of product configuration tasks
and reports on implemented configurators have been presented in the pro-
ceedings of configuration workshops (Faltings and Freuder 1996; Faltings et al.

11

1999; Baader et al. 1990), special issues on configuration (Faltings and Freuder
1998; Darr et al. 1998) and surveys (Sabin and Weigel 1998; Schreiber and
Birmingham 1996; Schreiber and Wielinga 1997). The models and reports on
implemented configurators have usually addressed (at least some of) the prob-
lems of

e developing a conceptualization (explicit or implicit) and formal languages
for representing the configuration knowledge,

e developing algorithmic solutions, i.e. problem solving methods, for carrying
out or supporting configuration tasks by configuration engines,

¢ implementing the languages and algorithmic solutions as efficiently as
possible, and

e oathering empirical evidence of the suitability of the models and meth-
ods to real-world configuration problems.

Most of the research has concentrated on applying problem solving methods,
such as constraint satisfaction and its extensions (Mittal and Falkenhainer 1990;
Stumptner et al. 1998; Gelle 1998; Weigel and Faltings 1996; Sabin and Weigel
1998), and propose-and-revise type approaches (Balkany et al. 1993; Schreiber
and Birmingham 1996). Other approaches have defined specific configuration
domain-oriented conceptualizations. These include the three main conceptuali-
zations of configuration knowledge as resource balancing (Jiingst and Heinrich
1998), product structure (e.g. (Cunis et al. 1989)) and connections within a
product (Mittal and Frayman 1989).

Rule- and knowledge-based systems (KBS) employing the problem solving
methods and relatively well-understood general formalisms, such as constraint
satisfaction, its extensions, description logics and logic programs have been
applicable to real-world product configuration tasks (Faltings and Freuder
1996). This is due to the well-defined, complete configuration knowledge and
well-defined nature of the configuration task, which is in contrast to several
other application domains where Al has yet to demonstrate significant success.

Despite the research no widely accepted theoretical model of configura-
tion knowledge and tasks that would cover all the relevant aspects in a satis-
factory manner has emerged. The approaches have radically different view-
points on configuration knowledge. The conceptualizations underlying the
knowledge representation and the reasoning required for configuration on the
basis of the knowledge in these approaches have little in common.

A general conceptualization of the configuration knowledge would be
useful to re-use and share configuration models between researchers and prod-
uct configurators based on the different methods. Such a general model of

12

configuration knowledge is an equally important research issue as the problem
solving methods. These two issues are connected, as the conceptual model af-
fects the computational methods that can be used to carry out the configura-
tion task and vice versa, and they should be given equal attention.

Most of the models presented also lack a sound formal basis that would
allow a rigorous analysis of the configuration knowledge and tasks, compari-
son of the models and their implementations, and developing efficient imple-
mentations, although this has been to some extent remedied in the recent re-
search. The theoretical models presented so far have widely diverging view-
points on configuration. Notable formal models include those developed in
(Najman and Stein 1992), (Klein et al. 1994), (Gruber et al. 1996), (Felfernig et
al. 1999), some of the approaches in (Baader et al. 1996) and the constraint-
based approaches mentioned above. Despite the research, few formal models
of configuration unifying the different formal and conceptual approaches ex-
ist. The formal models presented accommodate only some aspects of the
product configuration problem, while the more extensive models are less for-
mal. The diversity of approaches also holds for the implemented systems.

The differences in the models, lack of formal, unifying models and the
practical significance of the field make further research on the theoretical basis
of configuration knowledge, configuration tasks and product configurators
important.

1.2 Research Problem and Goals
The problem that this work addresses is twofold:

e Is there a unified formal conceptualization for representing the knowl-
edge in real-world configuration models, requirements and configura-
tions?

e How hard are the configuration tasks computationally?

The problems are related to developing a conceptual and computational model
of real-world configuration tasks. The primary goals of this work were to:

e Develop an explicit, detailed model of the configuration concepts that can be
used to represent configuration models, configurations and require-
ments. The model should enable accurate communication of the knowl-
edge and its computer-based manipulation. It should synthesize the pre-
vious research and extend it according to experience with real products.
(Addressed in V, VL)

13

e Develop formal models of the configuration tasks, i.e. of the computa-
tion and reasoning required in them. The models should support repre-
senting configuration models based on the configuration concepts. In
addition, they should be analyzed from the computational complexity
point of view to characterize how difficult the configuration tasks are

(Addressed in I-1V).

e Provide empirical evidence of the feasibility of the approach taken by
modeling real products and developing the foundation of a prototype
that carries out configuration tasks based on the formal models. (Ad-
dressed in I-I1T and VI.)

1.3 Method

The approach to configuration knowledge representation taken in this work
was two-layered (Figure 1.2): at the top layer, the conceptualization of con-
figuration knowledge was analyzed and developed, while concurrently at the
bottom layer formal declarative languages for formalizing the top layer were
developed. The development of the bottom layer was heavily influenced by the
results of the top layer. Furthermore, the top layer was partially formalized
using a formal language developed at the bottom layer.

The approach taken here is similar to other work in configuration, and in
general in the knowledge representation field of Al, where it is sometimes re-
ferred to as “logic through the backdoor”. The idea is to provide knowledge
representation languages that are intuitively understandable to domain experts,
such as product designers creating the configuration models, while “hiding”
underneath a rigorous formal semantics upon which inference, for example in
a configuration engine, can be based.

The two-level approach was adopted for two reasons:

e It was not originally clear what the concepts were nor what their formal
semantics would be. Therefore, general formalisms where different con-
cepts and their semantic variations could be tried were desirable.

¢ By using an implementation of a bottom layer language, fast prototype
implementations of the configuration task based on different conceptu-
alizations were achieved.

However, the emphasis of this work was not in developing a particular knowl-
edge representation language for configuration tasks. Rather, the conceptuali-
zation undetlying the knowledge was analyzed and partially formalized. Several
different types of languages, rule-like, object-oriented, etc., could be based on

14

o= mmmmmmmmmm s N L egend:

| Configuration |)

| Knowledge | Formal entity
P, 7 ________ 4 e

describes aview on

Conceptualization of ——> association

Vvl Configuration Knowledge
Research on the Conceptual Foundation
commitsto Research on the Formalization
v Formal Representation

of Configuration Knowledge

represented using

=111 Formal Language

Figure 1.2 The research approach. The numerals refer to the publications in
which each area is dealt with.

the same conceptualization. This choice was made to increase the generality of
the approach.

The development of the formal models of configuration tasks (I-IV) was
carried out within the context of research on knowledge representation and
reasoning (KR), which is a sub-field of Al concentrating on representing,
maintaining and manipulating knowledge on an application domain
(Lakemeyer and Nebel 1994). This is done by developing representation lan-
guages for different application purposes and representing knowledge about
the application domains using the languages. In addition, reasoning mecha-
nisms on the knowledge represented are specified and the properties of the
reasoning analyzed. Finally, systems that implement the languages and the re-
lated reasoning are constructed.

The main assumption behind this branch of research is that the knowl-
edge is explicitly and declaratively represented in a knowledge base consisting of a
set of formal entities and whose meaning can be specified without referring to
the procedural application of the knowledge. The research often consists of
defining appropriate languages, inference methods for inferring implicit knowl-
edge not explicitly represented in the knowledge base, and analyzing the com-

15

putational properties of the representations and the inference methods. In
many cases, a balance must be sought between the expressiveness of the lan-
guage and its computational properties to guarantee efficiency.

The formal models of configuration tasks were explored by developing a
set of progressively more expressive formal languages that can be used to rep-
resent typical configuration knowledge elements and by giving each language a
formal declarative semantics. The languages considerably extend the previous
approaches to configuration knowledge representation, although they are based
on some earlier approaches. The languages were defined with the goal that at
least some of the concepts in the configuration ontology could be straightfor-
wardly represented in them. In addition, the aim was that it should be possible
to represent the rest of the concepts by extending the language.

Techniques developed in non-monotonic reasoning and logic program-
ming research (see, e.g. (Ginsberg 1987; Lloyd 1987; Przymusinska and Przy-
musinski 1990; Dix 1995)) on providing a declarative semantics for logic pro-
gram rules of form

av--va «b,...,b,,notc,...,notc,

turned out to be relevant for capturing the justification or groundedness of the
elements in a configuration. This rules are intuitively read as “if by,...,b, are

true and Cy,...,C, are not, then @, or ... or @, is true”. The research has tried

to give an intuitive, common sense formalization of the meaning of such rules
ot their special cases. This is done by developing and analyzing different formal
semantics for what it means that a rule provides a justification for concluding
that @, or ... or @ is true. Groundedness in a configuration context means

that a configuration should not include anything that is not necessary for the
product to work, i.e., anything that is not justified by the requirements and the
configuration model. This aspect has been identified as an important aspect of
configuration knowledge and tasks, and incorporated in limited forms in sev-
eral approaches (Mittal and Falkenhainer 1990; Stumptner et al. 1998). In con-
trast, in the formal models presented in this work the groundedness aspect is
treated uniformly for all constructs of the languages by equipping each with a
formal semantics that encodes it.

The semantics of the languages are thus closely related to the declarative
semantics of logic programs. This relation was exploited in developing a pro-
totype implementation of the languages. It is based on extending an existing
declarative logic programming system Swodels (Simons 2000) and developing
translations from the languages in this work to the one supported by it.

16

The analysis of the conceptualization of configuration knowledge (V) was
carried out within the context of research on ontology engineering, a subfield
of AI with links to philosophy and linguistics (Gruber 1995; Guarino 1995;
Guarino 1997; Guarino and Giaretta 1995). This branch of research aims at
developing reusable libraries describing the essential features of a domain of
interest. Such libraries are called onfolggies. They explicitly and formally specify
an intensional conceptualization of a domain, i.e. the concepts, their properties
and relations to each other that are relevant to reasoning on the domain, inde-
pendent of a particular problem-solving method used.

The development of the configuration ontology was based on the synthe-
sis of a set of previously presented theoretical models, which had little in
common except the central notion of a component. These models were cho-
sen because they all have gained popularity in the research community or have
been used in commercial applications. Experience with configurable products
gained in projects dealing with the management of configurable products and
support for the configuration carried out in co-operation with several industrial
companies (Tithonen 1994; Tithonen and Soininen 1997; Tithonen et al. 1998;
Tiihonen et al. 1996) indicated that a synthesis of these models is needed to
compactly and adequately represent the knowledge on products.

The configuration ontology was defined based on the Frame Ontology of
the Ontolingua approach to ontology development (Gruber 1993; Gruber
1992). The basic concepts in Frame Ontology are classes, instances, relations and
functions. These can be defined to have properties, such as that instances of a
particular class are always in some relation or that a particular relation is transi-
tive. Classes collect the definitions that apply to all their instances. A class C, is
said to be a subclass of class C, if and only if every potential instance of C| is
also an instance of C,. The subclass-relation induces a faxonomy in which the
definitions are monotonically inberited. A superclass-relation between classes is de-
fined as the inverse of the subclass-relation in the obvious way. An instance I is
said to be a direct instance of a class C; if there is no class C, such that C, is a
subclass of C, and [is an instance of C,. A direct subclass is defined similarly.

A subset of the configuration ontology was also formalized using the
most expressive language to illustrate the formalization part of the approach
).

The complexities of the main configuration related computational tasks
for the languages and the simplified configuration ontology were analyzed us-
ing the techniques developed in the field of computational complexity (see,
e.g., (Papadimitriou 1994)). Computational complexity provides a theoretical
framework for mathematically analyzing how hard a computational problem is
to solve by a computer. The major motivation for such analysis is to classify

17

computational problems to those that can be solved efficiently using a com-
puter, those that cannot be solved efficiently and those that cannot be solved at
all. A second benefit is to provide a deeper understanding of the problems,
information on how they relate to each other, and hints on how to develop
efficient algorithms for them or on how the problem should be modified to get
an efficient algorithm (Lakemeyer and Nebel 1994). Several simplifying as-
sumptions make the theory independent of the actual computer used to carry
out the computation and make the analysis feasible while still providing mean-
ingful information on the nature of the computational problems.

The practical feasibility of the ontology was studied by partially modeling
three case products (IV-VI). In addition, in order to estimate the feasibility of
the formal models, several simple imaginary configuration problems were rep-
resented in the languages, and the efficiency of their implementations tested.

(I-110).

1.4 Scope

When developing the conceptualization, only the major approaches that have
left a lasting impression on research or were shown practically relevant and
provided a clearly defined conceptualization were reviewed, synthesized and
compared with the results of this work. In addition, when developing the for-
mal models, only those previous approaches providing a clear formal model
were reviewed, used as a basis for developing the formalisms and discussed in
relation to this work. Thus, reports describing single use systems not based on
a general conceptual model or applications of such systems in a company were
not considered relevant to this work.

In developing the configuration ontology, a product configuration point of
view was taken instead of considering configuration design in the product de-
velopment process. The ontology does not cover the geometry, pricing, deliv-
ery times and optimality of configurations, which are important for some
products. Construction and control knowledge on how to accomplish the con-
figuration task, i.e. the actions and their ordering for configuring a product
(Gunter et al. 1990), were also excluded. This restriction was made to simplify
the problem, especially since the main emphasis in this work is to provide a
declarative, non-procedural, representation of configuration knowledge. It is
assumed that the missing aspects can be defined on top of the ontology devel-
oped in this work.

The formal models of the configuration task and their implementations
were also based on a simplification of the real-world configuration tasks and
the configuration concepts. It was assumed that the more complex tasks and

18

configuration concepts could be defined on top of this model. The reason for
this restriction was again the complexity of the whole problem. Only proof of
concept for the approach was sought. The implementations of the formal
models were tested on a few small examples only instead of modeling a large
set of real world products. This was done to get preliminary results on the fea-
sibility of this approach before proceeding with any more large-scale experi-
ments.

1.5 Outline of the Thesis

The remainder of this thesis is organized as follows: in Section 2 the main re-
sults of this thesis are given. In Section 3 the results are discussed and com-
pared with several previous approaches to configuration knowledge represen-
tation and reasoning. Further empirical and theoretical work is outlined in Sec-
tion 4. In Section 5 conclusions on the work are given. The publications an-
nexed to the thesis follow as appendices.

19

2 A Configuration Ontology and its
Formalization

In this section, the main results of the thesis are described. First, the concep-
tual modeling of configuration knowledge is addressed. In Section 2.1 a gener-
alized informal configuration ontology synthesizing and extending previous
work (V, VI) is described in brief. Then, in Section 2.2 a simplification of the
generalized ontology (IV) and a simple visual notation to represent configura-
tion knowledge based on it are described in more detail. A simple configura-
tion model of an example product (IV) is also given.

Then, attention is turned to tools for formal representation of configura-
tion knowledge. Three formalisms designed to represent configuration knowl-
edge and implementing the configuration task based on them are presented.
The intuitions behind the syntax and semantics of the formalisms are pre-
sented and simple examples of modeling products using the formalisms are
given. The first two formalisms (Sections 2.3 and 2.4), Configuration Rule
Language and Extended Dynamic Constraint Satisfaction Problem, extend
normal logic programs (III) and dynamic constraint satisfaction problems (II),
respectively, with constructs that are useful in representing configuration
knowledge. The constructs allow direct representation of configuration-typical
choices between elements in a configuration model, optional choices, and de-
pendencies between the elements in a configuration model. Normal logic pro-
grams and dynamic constraint satisfaction problems do not adequately support
representing this type of knowledge.

The third formalism, Weight Constraint Rule Language, (I) in Section 2.5
generalizes the first two formalisms. First weighted choices for representing
resource interactions are introduced, resulting in a Propositional Weight Con-
straint Rule Language. Then, this language is further generalized to First-order
Propositional Weight Constraint Rule Language by introducing predicate and
object symbols which represent the relations between the objects in a configu-
ration. Encoding these types of knowledge using the first three languages
would be very cumbersome. A special case of the fourth language, Domain
Restricted Weight Constraint Rule Language with restricted use of variables
and quantification, is also defined. This language is specifically designed for
representing configuration knowledge based on the simplified configuration
ontology in a uniform and simple manner, while considering the computational
efficiency of the configuration task. A brief explanation of the technique for
defining the formal semantics with the groundedness property for the three

20

formalisms is given in Section 2.6. The technical details on the formalisms can
be found in (I-I1I).

Next, the conceptual modeling and formal representation of configura-
tion knowledge are brought together. The configuration model of the case
product in Section 2.2 based on the simplified ontology is formalized using the
third, most expressive of the developed formalisms (IV) (Section 2.7), provid-
ing a synthesis of the representation formalisms and the configuration ontol-
ogy.

After this, results on the computational complexity of the relevant rea-
soning tasks for and the expressivity of the formalisms are given in Section 2.8
(I-III). The computational complexities of the configuration related tasks
based on the simplified ontology are also analyzed (IV).

Finally, empirical evidence supporting the approach taken in this work is
presented in Section 2.9. Simplified models of a further two case products
based on the ontology are described to show the applicability of the ontology
(IV-VI). A prototype implementation of the formalisms, and hence the ontol-
ogy, is also briefly described and test results for simple examples given (I-I1I).

2.1 A Generalized Configuration Ontology

The generalized configuration ontology presented in (V) is a synthesis of the
main conceptual approaches to configuration. These approaches are based on
modeling the structure of (e.g. (Cunis et al. 1989)), connections within (Mittal
and Frayman 1989), and resource interactions (Jingst and Heinrich 1998) in a
product. It consists of a set of concepts for representing the knowledge on a
configuration and the restrictions on possible configurations.

There are three main categories of knowledge in the ontology: configuration
solution knowledge, configuration model knowledge and requirements knowledge. Configu-
ration solution knowledge specifies a (possibly partial) configuration. Configu-
ration model knowledge specifies the entities that may appear in a configura-
tion and the rules on how the entities can be combined. Requirements knowl-
edge specifies the requirements on a configuration to be constructed. This
knowledge can be specified with similar concepts as configuration model
knowledge. Therefore, in the following only the representation of configura-
tion model knowledge and configuration solution knowledge is discussed.

The ontology consists of a set of concepts that is introduced to capture
configuration model and configuration solution knowledge. The concepts in-
clude components, attributes, resources, ports, contexts, functions, constraints and relations
between these. Components and their compositional structure represent the
building blocks out of which a product is constructed and how they are com-

21

posed of other building blocks. Resources are produced and used by compo-
nents. Ports represent interfaces at which components can be connected to
each other. Contexts represent subsets of a configuration in which resource
production and use must be balanced. Different combinations of components
produce different functions, which are descriptions of the effects that the
product produces in its environment or provides to the customer or user.
Components, resources, ports and functions may define attributes that describe
their inherent properties. Constraints define conditions that a correct configu-
ration must satisfy.

The ontology extends earlier approaches with new concepts arising from
practical experience on configurable products. The main extensions are in the
detailed conceptualization of knowledge on product structures and in extend-
ing the resource concept with contexts for limiting the availability and use of
resources. The concepts are treated uniformly in an object-oriented manner
with respect to type-instance distinction and classification, which had not been
the case in previous work. In addition, constraint sets representing different
views on the product are introduced.

2.2 A Simplified Configuration Ontology

In this section, a simplified version of the generalized configuration ontology
(IV) is described in more detail. A simple visual notation for the concepts and
examples on using the concepts are also given.

2.2.1 Types, Individuals and Taxonomy

Most approaches to configuration distinguish between #pes and individuals, of-
ten called classes and instances. Types in a configuration model define inten-
sionally the properties, such as parts, of their individuals that can appear in a
configuration. In the simplified ontology, a configuration model includes the
following disjoint sets of types: component tjpes, resource types and port tjpes. In
addition, a configuration model includes a set of constraints. The types are ot-
ganized by Is.A-relation in a taxonomy ot class bierarchy where a subtype inberits the
properties of its supertypes in the usual manner. For simplicity, only individu-
als of concrete, i.e. leaf, types of the taxonomy that unambiguously describe the
product, are allowed in a configuration. In Figure 2.1(a) a simple visual nota-
tion (VI) for representing the different types and in Figure 2.1(b) the notation
for taxonomy of a configuration model is given.

22

Concrete Resource type
component type

Port
Abstract
component type type
(@
A

(b)

Figure 2.1 (a) Notation for the types and constraints in a configuration model.
(b) Notation for the classification hierarchy: Component type B ISA compo-
nent type A, i.e. is a subtype of A. Similarly for component type C.

Example 2.1 A simplified configuration model of a PC in Figure 2.2 is used
to demonstrate the simplified configuration ontology and its formalization.
The taxonomy of the PC configuration model is as follows: A PC is repre-
sented by component type PC, which is a subtype of ¢mp, the generic compo-
nent type. The component type ide (IDE device) is also a subtype of cmp. A
type representing IDE hard disks, hd, is a subtype of ide. Actual hard disks are
represented as subtypes of hd, namely hda and hdb. IDE CD ROM devices
cda and cdb are subtypes of type €d, which in turn is a subtype of ide. Soft-
ware packages are represented by type SW. Software package types Swa and
SWh are subtypes of SW. Port and resource types in the configuration model
are introduced in the following sections.

23

cmp
[0,10] A

sw ide [[1,2]ms ¢ oc
ig.|' et bd_ecd

ide2

[eX
wn

‘ swa‘ swb

T—600 MB 700

—400 MB——

1500 MB—-

of type hd
must be
part of pc

Figure 2.2 A PC configuration model

2.2.2 Compositional Structure

The decomposition of a product down to its parts, referred to as compositional
Structure, is an important part of configuration knowledge. A component type
defines its direct parts through a set of part definitions. A part definition speci-
ties a part name, a set of possible part types and a cardinality. The part name identi-
fies the role in which a component individual is a part of another. The possible
part types indicate the component types whose component individuals are al-
lowed in the part role. The cardinality, an integer range, defines how many
component individuals must occur as parts in the part role. In Figure 2.3(a) a
simple visual notation for representing the part definitions is given.

For simplicity, it is assumed that there is exactly one independent compo-
nent type, referred to as a root component type. An individual of this type serves as
the root of the compositional structure. There is exactly one individual of the

24

root type in a configuration. Component types are assumed to be exclusive for
simplicity’s sake, meaning that a component individual is part of at most one
component individual. Moreover, a component type or its super- or subtype
may not occur as a possible part type in any of its part definitions or the part
definitions of its possible part types, and so on recursively. This implies that a
component individual is not directly or transitively a part of itself. These re-
strictions are placed to prevent counterintuitive structures of physical products.
In effect, the compositional structure in a configuration is a tree of component
individuals, and each component individual in a configuration is in the tree.

Example 2.2 The compositional structure of the PC is as follows (Figure
2.2). The root component type PC has as its parts 1 to 2 mass-storage units
(with part name mMS) of type ide, and 0 to 10 optional software packages (with

part name SWP) of the type SW.
]

2.2.3 Resources

The resource concept is useful in configuration for modeling the production
and use of some more or less abstract entity, such as power or disk space.
Some component individuals produce resources and other component indi-
viduals use them. The amount produced must be greater than or equal to the
amount used.

A component type specifies the resource types and amounts its individuals
produce and use by production definitions and use definitions. Each production or
use definition specifies a resource type and a magnitude. The magnitude specifies
how much of the resource type component individuals produce or use. In
Figure 2.3(b) a simple visual notation for representing the production and use
definitions is given.

Example 2.3 Disk space is used by the software packages and produced by
hard disks. Disk space is represented by the resource type dS (Figure 2.2)
which is a subtype of the generic resource type IeS. Each subtype of type SW
uses a fixed amount of disk space, represented by their use definitions: Swa
uses 400MB and swb 600 MB. Hard disks of the type hda produce 700MB

and of type hdb 1500MB of ds.
|

25

A @-pn

[n,m]

(@)

A magnl@magnZA B

(b)

RN

pname

(c) (d)

Figure 2.3 Notation for definitions: (a) Component type A has a part defini-
tion with part name PN, cardinality [n,m] and two possible part types, B and C.
(b) Component type A has a production definition with resource type R, and
magnitude magnl. Component type B has a use definition with resource type
R, and magnitude magn2. (c) Port type A is compatible with port type B. (d)
Component type A has a port definition with port name pname, port type P
and connection constraint C.

26

2.2.4 Ports and Connections

In addition to hierarchical decomposition, it is often necessary to model con-
nections or compatibility between component individuals. The idea is that
component individuals can be connected only if they have compatible inter-
faces. A port type is a definition of a connection interface. A port individnal repre-
sents a "place" in a component individual where at most one other port indi-
vidual can be connected. A port type has a compatibility definition that defines a
set of port types whose port individuals can be connected to port individuals
of the port type.

A component type specifies its connection possibilities by port definitions. A
port definition specifies a port name, a port type and connection constraints. Port
individuals of the same component individual cannot be connected to each
other. For simplicity, only a limited connection constraint specifying whether a
connection to a port individual is obligatory or optional is considered. In
Figure 2.3(c) a simple visual notation for representing the compatibility and in
Figure 2.3(d) a notation for port definitions are given.

Example 2.4 The configuration model includes port types idec and ided,
subtypes of the general port type prt (Figure 2.2). These types represent the
computer and peripheral device sides of the IDE connection. The compatibil-
ity definition of ideC states that it is compatible with ided . Correspondingly,
ided declares compatibility with idec.

The component type PC has two ports with the names idel and ide2 of
the type idec for connecting IDE devices. The component type ide has one
port of the type ided, called idep, for connecting the device to a computer.

The idep port definition has the connection constraint that connection to that

port is obligatory.
|

2.2.5 Constraints

All approaches to configuration knowledge representation have some kind of
constraints as a mechanism for defining the conditions that a correct configura-
tion must satisfy, i.e. the interdependencies between the types in the configura-
tion model. A constraint is a formal rule, logical or mathematical or a mixture
of these. In Figure 2.1(a), a simple way of embedding textual constraint de-
scriptions in a visual notation for representing compatibility as well as other
constraints is given.

27

Example 2.5 In the PC configuration model, there is the constraint that a hard
disk of the type hd must be a part of PC. For now, it is given in natural lan-

guage as a formal language has not yet been defined (Figure 2.2).
|

2.3 Configuration Rule Language

In this and the two following sections, attention is turned to the formal mod-
eling of configuration knowledge. In this section, a simple formal rule-based
Configuration Rule Language (CRL) for representing configuration knowledge
is described (III). The aim is to define a simple language for representing ab-
stracted, simplified configuration knowledge. The language extends those de-
veloped within the fields of logic programs and their non-monotonic seman-
tics (Lloyd 1987; Przymusinska and Przymusinski 1990) by constructs useful in
the configuration domain. The syntax and semantics of the language are in-
formally presented and the formal, declarative semantics of the language
briefly discussed. In addition, a configuration model of a simple configurable
product is formalized using the language.

2.3.1 Intuition

There are several different languages for modeling configuration knowledge. A
common denominator is that each of them defines some basic elments out of
which a configuration is combined. These may be components, functions,
statements about the properties of these, or the structure, connections or re-
source use of the product. In CRL, these are modeled uniformly as afomic
propositions or atoms for short, with no commitment to their inner structure or
information content. As an example, elements representing components in a
personal computer domain could include different types of displays, mass
memories such as hard disks, CD ROMs, floppy disks, RAM disks, and differ-
ent types of extension cards.

A second common denominator is that there is a means for representing
choices from a set of alternative elements. In CRL, choices among a set of ele-
ments are represented using chozce-rules, allowing conditions for when choices
are made, of the following two forms:

a |-|a «Db,...,b,,not(c),...,not(c,)
a,®--®a «b,...,b,,not(c),...,not(c,)

28

For brevity, the left-hand side of the rule is referred to as the head, and the
right-hand side as the body, using the standard terminology of logic programs.
Furthermore, the atoms without a preceding “not” are called positive literals
and those with a preceding “not” negative literals. The meanings of the rules

are: if elements b,..., b, are in a configuration and elements C,...,C,ate not,

then a choice between elementsa,,...,a must be made. In the case of rules of

the first form, the choice is znclusive, 1.e. any subset of the alternatives may be
chosen. For rules of the latter form, the choice is exc/usive, i.e. exactly one of
the alternatives must be chosen. It is important to note that if the condition
expressed by the body of a choice rule does not hold in a configuration, then
the choice in that rule is not made. This means that in constructing a configu-
ration, the set of choices changes dynamically according to the results of other
choices. This aspect is captured by the semantics (I1I).

Example 2.6. Consider the following set of rules:
computer «
IDEDisk | SCSdisk | floppydrive «— computer
FinnishlayoutK B @ UKlayoutKB <« computer

The first rule states that there is a computer in the configuration. The second
rule states that if there is a computer in a configuration, then one or more
mass memory, which may be an IDE disk, SCSI disk or a floppy drive must be
chosen. The third rule states that if there is a computer in the configuration,
then either a keyboard with a Finnish layout or a keyboard with an UK layout
must be chosen, but not both.

The third common denominator is that in addition to elements and choices
between elements, there are dependencies between the elements. In CRL, the
dependencies are expressed as either requires-rules or incompatibility-rules, ex-
pressed as follows, respectively:

a, < b,...,b,,not(c),...,not(c,)
<« b,...,b,,not(c),...,not(c,)

The meaning of the requires-rule is that the presence of elements b,...,0b, in
a configuration and the lack of elements C,,...,C, require the element @, to be

in the configuration. Again, only if the condition expressed by the body of the
rule holds in a configuration, the head element can be added to the configura-

29

tion. The meaning of the incompatibility rule is that by,...,b,, being in a con-
figuration and C,...,C, not being in the configuration is not compatible, i.e. it

must not be the case that b, ..., b, are in the configuration while C,...,C, ate

not.

Example 2.7. As an example of dependencies in the PC domain, it could be
that an SCSI hard disk requires a specific SCSI controller, and that a PII proc-
essor does not work with the 1820 motherboard. This would be represented by
the rules

CScontroller « SCAdisk
« Pllprocessor, 1 820motherboard

2.3.2 Syntax and Semantics

As requires and incompatibility rules are special cases of both inclusive and
exclusive choice rules, the above types of knowledge are represented uniformly
in CRL using rules of the form

a |-|a «Db,...,b,,not(c),...,not(c,)

a,®--®@a «b,...,b,,not(c),...,not(c,)

whete &;,0, C ate propositional atoms.

In CRL semantics, a configuration is a set of atoms, a configuration
model a set of rules and a set of requirements also a set of rules. The declara-
tive semantics of CRL is based on the model theoretic semantics of proposi-
tional logic, by interpreting “,” as conjunction, “not” as negation, “|” as dis-
junction, “@” as exclusive disjunction, and “¢="" as implication. A configura-
tion satisfies a set of rules if the corresponding set of atoms satisfies each rule.
A configuration satisfies a rule if, when its body is satisfied by a configuration,
then its head is also satisfied by the configuration. In CRL terms, a correct
configuration with respect to a configuration model and a set of requirements
must satisfy the two sets of rules in the configuration model and the require-
ments. However, this is not a sufficient condition.

The semantics of CRL additionally includes the property of groundedness
ot supportedness. Intuitively, groundedness means that there must not be any

30

element in the configuration that is not necessary to satisfy the rules in the
configuration model. This property guarantees that a configuration such

as {computer , IDEdisk, UKlayoutKB, SCSlcontroller, MPEGcard } is not cor-

rect with respect to the PC configuration model presented in the previous sec-
tion and the empty set of requirements. This is due to two reasons. First, the
SCSI controller is not needed for the configuration to be correct, since there is
no SCSI disk in the configuration. Second, there is no rule in the configuration
model implying that an MPEG card can be included in the configuration.

Requiring groundedness changes the semantics of the language from that
of standard propositional logic, particularly the meaning of the connectives of
“=” and “not”. The “not”-connective has a default semantics, which roughly
means that a negated literal is true if the atom within it cannot be derived using
the rules. This contrasts with a classically negated literal, which is true only if
the negative literal itself can be derived from the rules when considering the
“¢—"" connective as an inference rule.

The groundedness property is formalized as follows: the presence of each
element in a configuration must be grounded by being derivable using the rules
in the configuration model. That is, every element, i.e. atom, in a configuration
must occur in the head of at least one rule, whose body consists of, a) positive
literals that are in a configuration and are in turn grounded similarly, and b)
negative literals that are not in a configuration.

This property is formally defined using a technique similar to that used in
the semantics of logic programs. It is expressed as a fix-point equation on con-
figurations. The condition states that after a transformation depending on the
configuration that removes the negative literals from the rules in the configu-
ration model the following must hold: forward chaining of the transformed
rules must produce exactly the original configuration. If this is the case and the
configuration satisfies the rules in the configuration model, the configuration is
correct. If the configuration further satisfies the requirements, it is su#ztable. Such
a configuration, i.e. a set of atoms, is then called a stable model of the set of
rules.

2.3.3 Example

In this section the use of CRL is demonstrated by representing the configura-
tion knowledge of a simple PC configuration problem.

Example 2.8. A computer is configured using the following configuration
model: one must choose

31

a mass-memory, one or more of the set

{IDEdisk, SCSldisk, floppydrive},

a keyboard, exactly one of the set{FinnishlayoutkB,UKlayoutkB},
a processor, exactly one of the set{PII,PIll },

a motherboard, one of the set {ATX, 1820}, and

a graphics card, gcard .

In addition, the following dependencies must be respected:

the SCSI disk requires an SCSI controller (SCS controller),

the PIl processor is incompatible with the 1820 motherboard and the
PHI processor with the ATX motherboard, and

a graphics card need only be chosen if the motherboard does not con-
tain one embedded in it. An ATX motherboard contains one, but an

1820 does not.

The following rule set represents this configuration model:

Given

computer «—
IDEDisk | SCSIdisk | floppydrive «— computer
FinnishlayoutK B @ UKlayoutKB < computer
PIl & Pl « computer
ATX @ 1820 «~ computer
S controller « SCSdisk
<~ PII1,1820
« PHI, ATX
gcard « not(gcardinmb)
gcardinmb « ATX

this configuration ~ model, consider = the requirements

{FinnishlayoutkB <} and the following configurations:

32

C, = {computer, SCSdisk,UKlayoutkB, PIl, PllI, gcard }
_ | computer, IDEDisk, FinnishlayoutkB, PII1, ATX, SCScontroller,
B gcardinmb

_ | computer, SCS disk, FinnishlayoutKB, PII, ATX, SCS controller,
* | gcardinmb

2

The configuration C, is not correct for several reasons. It does not satisfy the
configuration model, since there are two processors in the configuration, which
conflicts with the exclusive choice in the fourth rule of the configuration
model. In addition, no motherboard has been chosen as per the fifth rule al-
though a computer is in the configuration. The dependency that if there is no
graphics card in the motherboard then one must be added is satisfied, though.
Configuration C; does not satisfy the requirements either, since there is no
Finnish layout keyboard in the configuration.

The configuration C,does satisfy the requitements. However, it does not

satisfy the configuration model, since there is a Pl processor and an ATX
motherboard in it, an incompatible combination according to the eighth rule in
the configuration model. Even though this problem were fixed by changing the
processor or motherboard, the changed C, still would not be correct, as it is

not valid. This is due to the presence of the SCSI controller in the configura-
tion, although no rule supports its inclusion. By changing the processor and
the type of mass-memory, the configuration C;is obtained. This configuration

satisfies the configuration model and the requirements. Furthermore, it is now
correct, since the SCSI disk now provides the reason for including the SCSI
controller in the configuration.

2.4 Extended Dynamic Constraint Satisfaction Problem

Dynamic constraint satisfaction problems (DCSP) are a formalism introduced
in (Mittal and Falkenhainer 1990) for capturing the dynamic nature of configu-
ration knowledge. Where CRL introduced in the previous section extends
logic programs, DCSP extends constraint satisfaction problems (CSP)
(Mackworth 1977), another popular formalism, to incorporate configuration
specific features. In this section, the use of CSP in representing configuration
knowledge is briefly explained. The original notion of DCSP is introduced and
motivated by the dynamic nature of configuration problems. Then DCSP is

33

extended with more expressive constructs motivated by the configuration do-
main. The intuition behind a new declarative semantics for the extended DCSP
(EDCSP) that coincides with the original when restricted to the original DCSP
class is briefly outlined. The semantics uses a fix-point condition similar to the
one discussed in the previous section instead of the original minimality condi-
tion introduced in (Mittal and Falkenhainer 1990). This allows a computation-
ally more feasible semantics (II).

2.4.1 Constraint Satisfaction Problems Applied to Configuration

A CSP consists of a set of variables, a set of possible values for each variable,
called the domain of the variable, and a set of constraints (Mackworth 1977). A
constraint defines the allowed combinations of values for a set of variables by
specifying the allowed subset of the Cartesian product of the domains of the
variables. A solution to a CSP is an assignment of values to all variables such that
the constraints are satisfied, i.e., the value combinations are allowed by at least
one tuple of each constraint.

When applying CSP to configuration knowledge presentation, a configu-
ration model becomes an instance of CSP. A variable in the CSP instance rep-
resents a choice and the domains of the variables represent the possible alter-
natives for the choices. The constraints are used to represent the dependencies
between choices. A solution to the CSP instance corresponds to a configura-
tion. Requirements are represented as an additional set of constraints that a
correct configuration must satisfy.

Example 2.9. A simplified configuration task for an industrial mixer (II) is
used to illustrate CSP and DCSP in this section. An industrial mixer can be
used for different mixing processes, such as chemical reactions, the mixing of
side products etc. It consists of a set of standard components, such as a vessel
containing the products to be mixed, the mixer itself with impellers and an
engine. Depending on the chemical properties of the products to be mixed,
heat is produced which requires the use of a cooler or a condenser. To repre-
sent the configuration model of a mixer as a CSP, the components and their
properties, for example the volume, are represented as variables. The mixing
process is represented by a variable for the mixing task. The components can
be of different types; e.g. the mixer can be a reactor, storage tank, or simple
mixer. These as well as the different types of mixing tasks and the volume of
the vessel are represented as discrete domains of the variables. To designate
variables and values in the problem, the first letters of their names are used. A
partial configuration model for the mixer configuration task consists of the

34

Table 2.1 Variables and their domains in the mixer configuration model.

Variable | Description | Domain

Mt Mixing task | {d(ispersion), s(uspension), b(lending) }
Mi Mixer {m(ixer), r (eactor), t(ank) }

Coo Cooler {cool(cooler1)}

Con Condenser {con1(condenser1), con2(condenser 2}
\ol Volume {i(arge), s(mall)}

variables in Table 2.1 and the following constraints on condenser and volume
and mixer and volume, respectively:

¢,(Con,Vol)= {(con1,1),(con2,1), (con2, s)}

c,(Mi,vol)={(r,s),(m,s),(m1),(t,s),(t,1)}

Given the above mixer CSP, and the requirement that the mixing task is of the
dispersion type, represented as a constraint C3(|V|t) = {(d)}, the assignment
{Mt =d, Mi = m,Coo = cool, Con = conL, Vol =1} is a correct configuration
as it is a solution of the CSP, i.e. it satisfies the constraints in the configuration
model, and satisfies the requirement. The assignment
{Mt = d, Mi = m,Coo = cool, Con = con1,Vol = s} is not a correct configu-

ration, since, although it satisfies the requirement, it does not satisfy C; .

2.4.2 Dynamic Constraint Satisfaction Problems

Product configuration problems exhibit dynamic aspects in the generation of
problem spaces. This means that the set of choices, i.e. variables, in a solution
changes dynamically based on other choices, i.e. assighments of values to vari-
ables. When configuring a mixer, for example, a condenser is a typical optional
component that does not have to be present in every solution. It is only neces-
sary if the vessel volume is large and chemical reactions occur during the mix-
ing process.

Such dynamic aspects are difficult to capture in a standard CSP in which
all variables are assigned values in every solution. One way to deal with an op-
tional component is to add a special NULL value to the domain of the variable

35

representing the component (Gelle 1998). In addition, each constraint that re-
fers to the variable needs to be modified to function properly in the presence
of NULL. More seriously, an additional constraint is needed to prevent values
other than NULL for the variable if there is no reason for including the op-
tional component in the solution. Such constraints may have a very large arity
and cardinality, as many variables may affect the value of the variable repre-
senting the optional component. Much effort has therefore been invested to
include dynamic aspects in CSPs (Mittal and Falkenhainer 1990; Stumptner et
al. 1998; Sabin and Freuder 1996; Gelle 1998). One of these is the framework
of dynamic constraint satisfaction problems CSPs (Mittal and Falkenhainer
1990) which adds activity constraints to CSP. The activity constraints govern
which variables are given values, i.e. are active, in a solution.

A DCSP is an extension of a CSP that also has of a set of variables, do-
mains and constraints (called here compatibility constraints). However, all the vari-
ables need not be given a value, i.e., be in a solution. Hence, a compatibility
constraint is defined to be satisfied by an assignment if the variables it con-
strains are active in the assignment and their assigned values are allowed by the
constraint, or at least one of the variables is not active in the assighment.

A DCSP additionally defines a set of initial variables that must be active in
every solution and a set of activity constraints. An activity constraint states either
that if a given condition is true then a certain variable is active, or that if a
given condition is true, then a certain variable must not be active. The condi-
tion may be expressed as a set of compatibility constraints (require and require
not activity constraints) that must all be satisfied and active, i.c., the variables
they refer to must all be active. Alternatively, a condition may state that some
set of other variables are active (always require and ahways require not activity con-
straints). An activity constraint is satisfied by an assignment if 1) its condition
is not active, i.e. at least one of the constraints or variables in the condition is
not active in the assignment, or if 2) the condition is active and the activated
variable is active in the assighment.

A solution to a DCSP is an assignment of values to variables such that it
1) satisfies the compatibility and activity constraints, 2) contains assignments
for the initial variables, and 3) is subset minimal. The subset minimality condi-
tion in effect excludes assignments with active variables whose activity is not
justified by the variables being in the set of initial variables or by at least one
activity constraint which is satisfied and active.

Example 2.10. The configuration model of the industrial mixer presented in
Example 2.9 also includes dynamic aspects, which will be now addressed. The
constraints in that example are now compatibility constraints.

36

A mixing task, mixer type and volume need to be chosen in every configu-
ration of a mixer. This is represented by including the corresponding variables
in the set of initial variables, i.e. V, = {Mt,Mi,Vol }. A cooler and a condenser

are not needed in every solution, but only if the mixer is of the reactor type
and the mixing task is dispersion, respectively. Therefore they are not included
in the set of initial variables but are introduced by the activity constraints

a,anda,:
. ACT
alz(l\/ll :rACoo)
ACT
a, = (Mt:d —>Con)

An extended configuration model for the mixer configuration task represented
as a DCSP consists of the variables and compatibility constraints in Example
2.9 and the set of initial variables and activity constraints defined here.

Given the above mixer DCSP, the assignment {Mt = b, Mi = m,Vol =1} is

a correct configuration as it is a solution of the DCSP, i.e. satisfies the activity
and compatibility constraints in the configuration model, contains assighments
for the initial variables, and there is no other solution which would be its sub-
set. The assignment {Mt =b, Mi =r,Coo = cool,Vol = S} is another correct
configuration with a different set of active variables. However, the assighment
{Mt =b, Mi = r,Coo = cool, Con = con2,Vol = S} is not a correct configura-
tion, since the second configuration is its subset, and therefore the initial vari-
ables or activity constraints do not justify the assignment of a condenser.

2.4.3 Extending Dynamic Constraint Satisfaction Problems

The activity constraints of DCSP are not particularly expressive. For instance,
in some configuration tasks a functional requirement can be satisfied by any of
a given set of components, which would require disjunctive activity constraints
(Mittal and Falkenhainer 1990). Another case that cannot be represented in a
straightforward manner is that a choice needs to be made, i.e., a variable is ac-
tive, under the condition that some variables are not active or not given par-
ticular values in an assignment. In other words, it would also be useful to allow
conditions referring to the complement of activity or constraints.

37

The DCSP is thus extended to extended dynamic constraint satisfaction problem
(EDCSP) by allowing generalized activity constraints of the following form:

ACT
cl,...,cj,not(cj+l),...,not(ck)—> miv, |-+, Jn

where 0 <m<n. Intuitively, this activity constraint states that if constraints
C,...,C; are active in and satisfied by an assignhment and the constraints

Cj11s---» G ate not satisfied or not active in the assignment, then a subset of

the variables V,,...,V, is activated, such that the cardinality of the subset is
between Mand N. If M=1 and N=1 this becomes an inclusive disjunction
or choice of the variables. On the other hand, if m=n=1, the right hand side
becomes an exclusive disjunction or choice. Rules with m= 0 are also allowed
for representing gptional variables, i.e., variables that may be active or inactive,
and rules with N =0 for expressing ‘requires not’ activity constraints. ‘Always
require’ and ‘always require not’ activity constraints, i.e. activity constraints
where the constraints are replaced by variables are again treated as short hand
notation for constraints that allow any value of the variable.

Example 2.11. In Example 2.10, the configuration
{Mt =d, Mi = r,Coo = cool, Con = con2,Vol = s} with a condenser and a
cooler is correct. In order to avoid having both condenser and cooler active,
consider the following DCSP obtained by replacing the activity constraint @, by

an “exclusively disjunctive” activity constraint:

a, = (04 Sl{Coo | Conﬁ)
c,(Mi,Mt)={(r,d)}

Now, the assignment A = {Mt =d, Mi =r,Con = con2,Vol = S} is a solution
since it clearly satisfies the constraints, the initial variables are active in it and all
the active variables are justified by activity constraints whose condition is ac-
tive. The activity constraint @, is satisfied, since its condition is active and sat-
isfied and exactly one of the activated variables Cooand Con is active, as re-
quired by the cardinality limits. On the other hand,
{Mt = d, Mi = r,Con = con2,Coo = cool,Vol = s} is not a solution, since it
does not satisfy the cardinality limits in a,.

|

38

Example 2.12 If the activity constraints of Example 2.10 were replaced with
the activity constraint

ACT
a, = (not(Coo = cool) — 1{Conh)

with default negation, the assignment A would still remain a solution, since
a, is satisfied in it and the condenser variable is active. The condition of a,1is

satisfied, since the cooler variable is not active.

Example 2.13 If the activity constraints of Example 2.10 were instead re-
placed with the “inclusively disjunctive” activity constraint

a; = (cs gl{Coo |Con}2)
cs(Mi,Mt)={(r,d)}

the assignment A would still remain a solution, since 85 is satisfied in it and

activates the condenser variable. However, now also the assighment
{Mt =d, Mi =r,Con = con2,Coo = cool,Vol = s} is a solution, since the

cardinality limits of @5 allow it to activate two variables.

Extending the original definition of the semantics of DCSP with such con-
straints would easily lead to highly complex computational problems (II).
Therefore, in (II) a novel semantics for the original and extended DCSP is de-
veloped whose computational complexity remains lower. In the semantics, the
minimality condition is replaced with a transformation of the activity con-
straints with respect to a potential solution, and a fixpoint definition based on
an operator on the lattice of solutions. This semantics is similar to the seman-
tics of CRL in that it preserves a form of groundedness. The active variables
in a solution must be grounded by them being in the set of initial variables or
by activity constraints, the variables of whose left hand side are also similarly
recursively justified. In the definition, the minimality requirement is in fact re-
laxed. The activity constraints or initial variables justify each active variable in a
solution, but a disjunctive activity constraint may justify more variables than a
subset minimal solution would contain, as demonstrated by Example 2.13.

39

2.5 Weight Constraint Rule Language

In this section a first order weight constraint rule language (WCRL) is de-
scribed (I). The language includes cardinality constraints for representing com-
plex choices and weight constraints for representing resource constraints. It is
first-order, i.e. includes predicates and variables, for representing rules and re-
lations between different types of objects in a configuration in a compact
manner. The languages for representing configuration knowledge presented in
previous sections do not offer adequate support for representing and reasoning
on these aspects. The syntax and declarative semantics of WCRL are infor-
mally presented and an example of its use in representing configuration
knowledge is given.

2.5.1 Cardinality Constraints

A natural extension of the inclusive and exclusive choices of CRL (Section
2.1) is to allow cardinality constraints for representing choices where the number
of alternatives chosen is more generally restricted. These choices are similar to
the cardinality bounds in the activity constraints of the extended DCSP (Sec-
tion 2.4) and can be used in place of choices in rules. A rule with a cardinality
constraint in its head is an expression of the following form:

L<{a,...,a,}<U «b,...,b,not(c,),...,not(c,,)

The intuitive meaning of such rules is that if by,...,[3 are in a configuration
and C,,...,C,are not, then a subset of a,,...,a, such that the cardinality of the
subset is between L and U (lower and upper bound, respectively), including L

and U, is in a configuration.

Example 2.14 Consider a situation where there are three slots for extension
cards in a PC, and a selection of five different cards that can be connected to
the slots, one per slot. In addition, only one of each card can be in the configu-
ration. However, the slots can be empty. The choice of 0 to 3 cards out of 5
possibilities without repetition of the same card can be represented by the
following rule:

computer «
0<{card,, card,,card, card,,,card, } < 3« computer

The configuration {computer } satisfies these rules, as well as the configuration
{computer, card,, card,, card, }, since the cardinality limits of the weight con-

40

straint are satisfied. However, the configuration
{computer, card,, card,, card,, card, } is not valid, since the upper bound of

the weight constraint is not satisfied.

2.5.2 Weight Constraints

For some products, it is natural to model the dependencies between compo-
nents as resource production and use. Sometimes it is also necessary to impose
global constraints on some resource usage, such as the total cost of the con-
figuration. Representing such knowledge motivates generalizing cardinality
constraints with weights. The idea is to view the set of atoms in a cardinality
constraint as a sum over those atoms satisfied by a configuration, whose value
must be between the lower and upper bound. In order to represent resource
constraints, a real-valued unique coefficient, weight, is associated with each
atom, ie. summand. In addition, an atom must not be repeated in such a
weight constraint. A rule with a weight constraint in its head is of the following
form:

L<fa=w, ,...,a,=w, {<U < b,...,b,not(c)...,not(c,)

The intuitive meaning of such rules is that if by,...,[3 are in a configuration
and C;,...,C,are not, then the sum of the weights of those atoms of

a,...,a, that are in a configuration must be between L and U, inclusive, i.e.

the following inequality must hold:

L SZai isin Wai =U

configuration,

I<i<n
Example 2.15 Consider again the situation where there is a selection of 5 dif-
ferent cards that can be connected to the slots in the motherboard. However,
the cards consume power in different amounts, and the power source of the
PC is only capable of producing 100W. The production and consumption of
the power resource and the natural dependency that the production of power
must be at least as much as its consumption can be captured using the follow-
ing rules:

41

computer «—
power sour ce «—
card = —-20, card ,= —20, card = —40,
0< :

<100 « computer
card = —40, card = —80, power source = 100

The configuration {computer, powersource} satisfies these rules, as well as the
configuration {computer, powersource, card,, card,,card, }, since the sum of

the weights of the atoms in the configuration and in the weight constraint is
100 in the first case and 20 in the second case, thus greater than the lower

bound.
[|

2.5.3 Propositional Weight Constraint Rule Language

Cardinality constraints can be viewed as a special case of weight constraints
with each literal having weight one. Therefore, the extension of CRL is based
on weight constraints and the resulting language called propositional weight
constraint rule language (PWCRL). Weight constraints are also useful in repre-
senting disallowed situations in the body of an incompatibility rule. Further-
more, it is useful to allow negated literals in addition to positive ones within the
body weight constraints. Therefore, the rules of PWCRL are of the following

uniform form:
C,«<C,....C,
where C,,...,C, are weight constraints of the form
L< {alz W, ,...,&8, =W, ,nota,,=w, ,..,nota,= wam}SU

and C, contains only positive literals. The intuitive meaning of such rules is

that if the weight constraints in the body of the rule are satisfied in a configu-
ration, then the weight constraint in the head of the rule must also be satisfied
in the configuration. The notion of when a weight constraint is satisfied must
be extended to handle negated literals as follows:

< <
Ls Zai isin Wai +za1- isnotin Wai sU

configuration, configuration,
I<i<n n+1<i<m

42

In addition, any literal must not be satisfied in a configuration unless it is
grounded by appearing in the head constraint of at least one rule whose every
body constraint is satisfied by literals recursively grounded by other rules. In
addition to “<7”, strict inequality can be introduced similarly and can be used in
the rules as well.

Such rules are a generalization of the choice- and requires-rules of CRL,
as easily can be seen. An inclusive choice rule

a |--|a «b,...,b,,not(c),...,not(c,)

can be represented using a weight constraint rule by noting that a literal | (ne-
gated or positive) can be seen as a shorthand for the simple weight constraint

1<{ =1}<1, and the choice captured using a weight constraint, as follows:

1<{a=1...,a =1}<l «1<{p, =1}<1,...1<{po, =1}<1,
1<{notc, =1}<1,...1<{notc, =1}<1

An exclusive choice rule can be represented similarly by setting the upper
bound to one. The head constraint Cymay be missing, in which case the rule
becomes an incompatibility rule, i.e. that at least one of the body constraints
C,,...,C, must not be satisfied. For brevity, the above short hand notation for

literals, i.e. | stands for 1< {| = 1}S 1, is often used. Moreover, the weights in a

weight constraint are omitted if they all are 1 and the bounds integers, i.e. if
the constraint is a cardinality constraint. In this case, the relation operators can
also be omitted. Another convention is that the lower or upper bound of a
weight constraint may be omitted, in which case it is taken to be —oo or oo,
respectively.

2.5.4 First-order Weight Constraint Rule Language

So far in the treatment of the languages for configuration knowledge repre-
sentation in this thesis, the actual information content of the elements, i.e. at-
oms, in a configuration has been omitted. This aspect is tackled in this section
by generalizing PWCRL by replacing propositional atoms with atoms con-
structed of predicates, variables and object constants, following the usual pro-
cedure for first-order languages (Hodges 1983). This also facilitates a much
more compact representation of dependencies between sets of objects in a
configuration using rules. The notion of conditional atoms is also added to
support the representation of knowledge pertaining to only certain types of
objects. The resulting language is called the first-order weight constraint rule

43

language (FOWCRL). However, the whole machinery required for first-order
languages is not dealt with here. (Hodges 1983) gives a thorough exposition of
these issues.

In representing configuration, and indeed any, knowledge, it is useful to be
able to refer to the objects that may appear in a configuration, all or some ob-
jects in the domain, and the relations between the objects. The method for
accomplishing this is to introduce object constant, variable and quantifier, and predi-
cate symbols into the language.” Informally, an object constant symbol refers to
an object in the domain that knowledge is being represented on. A variable
symbol refers to some object in the domain. A quantifier is associated with
each variable to express knowledge such as that “all” or “some” of the objects
in the domain have a given property or are related to each other in a given way.
Predicate symbols refer to these properties of and relations between objects.

The change from the propositional rule language to a first-order one is
syntactically accomplished by first replacing atomic propositions with azoms® of
form

p(x,..., %)

where P is an #-ary predicate symbol and X,,..., X, are either object constant
symbols or variable symbols, collectively referred to as zerms. Intuitively, such
an atom expresses the situation where X,..., X, are related to each other via

the relation named by p. In writing the rules, the standard notation of using
uppercase first letters for variables and lower case letters for constant object
and predicate symbols is adopted.

Note that an atomic proposition can be considered a 0-ary atom, i.e. an
atom without any terms. In addition, an atom without any variables, i.e. only
constants, is also equivalent to an atomic proposition. Whether an atomic
proposition is satisfied, i.e. true, in a configuration can be defined by referring
to the atomic proposition only. In contrast, the truth-value of an atom with
arity greater than zero and with variables depends on what values its compo-
nent variables assume. For example, the relation /less than, denoted by the two-

ary predicate “< (X,y)”, is true if X refers to 1 and Y to 2, ie. < (1,2) is true,

but not for 2 and 1, in the usual natural number interpretation of the object
constants 1 and 2.

* Function symbols are omitted for reasons discussed in Section 4.3.2.

5> Hereafter, the term atom refers to the construct defined here, and when referring to an atom
in the propositional sense, the term atomic proposition is used.

44

The truth-value of an atom with a variable such as < (X,Z) depends on

what the variables, in this case X, refers to. Quantifiers “all” and “some”, de-
noted by V and 3 and called the wniversal and existential quantifier, respectively,
can also be attached to the variables. They express the knowledge that for all
objects in the domain an atom is true or that for at least one object in the do-
main the atom is true, respectively.

The rules of FOWCRL are rules of PWCRL where propositions are re-
placed by atoms of form given above, and furthermore, each variable is univer-
sally quantified, i.e. of form:

vx(C, < C,,...,C,)

where VX denotes universal quantification for all the variables in the rule and is
usually assumed implicitly and omitted from the rules for brevity. C, may

again be lacking. The weight constraints C,,...,C are of the form:

[P)=, N
not p,,,,(X...)=w, ,....not p (X,)=w,

where X,,... % are the variables in the atoms p,(),..., p,(). C, is similar to

C,,...,C, except that it may not contain negative literals. The notational con-

vention of logic programming, i.e. denoting object and predicate constants by
names starting with lower case letters, and variables by names starting with
upper case letters is followed when writing the rules.

Intuitively, the difference of first order rules to the propositional rules is
that a first order rule is satisfied only if it is satisfied for every object in the
domain. In other words, every propositional rule obtained by substituting ob-
ject constants consistently (i.e. that the same variable is substituted with the
same object everywhere in the rule) in place of variables in every possible way
must be satisfied in a configuration for the first-order rule to be satisfied.

Example 2.16 Consider again the situation where there are 3 slots for exten-
sion cards in a PC, and a selection of 5 different card types that can be con-
nected to the slots, one per slot. However, this time several cards of the same
type are allowed in the configuration. Assume further that the allocation of
cards to slots is an important part of the configuration task for installation
purposes. The following rules using predicates and variables capture this con-
figuration knowledge:

45

dot(s,)« dot(s,)« dot(s,) «
card(c,)« card(c,)« card(c,)<«
card(c,)« card(c,)«
0 < {conn(s,,C),conn(s,,C),conn(s,,C)}< 3« card(C)

« dot(S),card(C,),card(C,),
conn(S,C,),conn(S,C,),
noteq(C,,C,)

eq(C,C) « card(C)
The first eight rules introduce the three slots and five card types as objects in
the domain. In addition, they introduce the two unary predicates dot() and
car d() whose extensions define the slot and card objects. The ninth rule
captures the fact that all cards (C is universally quantified) can be connected to

from zero to three slots. Here the predicate conn() on a slot and card is used

to represent the fact that the slot is connected to the card. The tenth rule states
that for each slot, there is at most one card connected to it, by requiring that if
there were two cards connected to the slot, they would have to be the same
card. The equality of two cards represented as the predicate €g() is defined

simply to mean that the two are the same card object.

To see how the first order rules differ from propositional ones, consider
the meaning of the last rule. It states that for all cards it holds that a card is
equal to itself. In other words, the last rule is satisfied in the configuration only
if the following rule set is satisfied (if the object constants in the rule set rep-
resent all the objects in the domain):

eq(s;, s) « card(s,)
eq(s,,s,) < card(s,)
eq(s;, s,) < card(s,)
eq(c,, ¢,)« card(c,)
eq(c,,c,) « card(c,)
eq(c,, ¢,) « card(c,)
eq(c,,c,)« card(c,)
eq(cy, &) < card(cs)

46

One could represent this configuration knowledge using propositional rules by
introducing a distinct proposition conn(card, slot) for each card-slot pair, 15
in all. However, instead of the ninth rule, one would have five similar rules,
one for each card. The tenth rule is even more problematic, since to have the
same effect the following 30 propositional rules are needed:

« conn(S,C,),conn(S,C,),

for Se {511521%}1C1€ {C11C2103’C41C5}C2 € {Cl,Cz,C3,C4,CS},C1 <G,
[|

As demonstrated in Example 2.16 universally quantified variables make it eas-
ier to capture knowledge compactly. However, a similar mechanism would be
useful for capturing compactly the set of literals in a choice rule. Next, a
mechanism for accomplishing this in FOWCRL is defined. It also allows ex-
pressing that a predicate ranges over a subset of the objects of domain only.
This is useful in representing knowledge pertaining to certain classes or types
of objects in a configuration model. After this extension, the entire FOWCRL
has been introduced.

The mechanism is to allow the attachment of a conditional part to an atom,
and to allow conditional literals, i.e. atoms or their negations with a conditional
part, in place of previously defined atoms in rules. The resulting atom is called
a conditional atom and is of the form

p(%): a(y)
where P(X) and q(V) are both atoms, called the proper part and conditional part,

respectively. A conditional atom is satisfied in a configuration if both p(X)

and (V) are satisfied in a configuration. Conjunctions of arbitrary length are
allowed in the conditional part as well, such as

p(%): a(¥): r(2)
The idea is to use such atoms to limit the domains of variables in P(X) to the
objects for which q(?) and r(Z) hold. For instance, the ninth rule in
Example 2.16 can be captured more compactly as:

0<{conn(S,C): dlot(S)}< 3« card(C)

The intuition behind such a rule is that the set of literals in a weight constraint
consists effectively of the proper parts of conditional literals for which the
conditional part is satisfied in a configuration. More precisely, the variables that

47

occur in several weight constraints such as C in the above rule are called global
variables. They are defined, as eatlier, to be universally quantified. The variables
occurring in only one conditional literal are called /ocal/ variables. The general
definition of a first-order weight constraint rules remains the same, but the
generalized weight constraints are now of the form:

< pl()_(l):q(yl)zwpl""’pn(xn):q(yn)zwpn’ <U
- nOt pn+1()_(n+l): q(?nﬂ): mel""'nOt pm(Xm): q(ym): me -

The intuitive meaning of such a weight constraint is that it is satisfied in a con-
figuration, if the sum of weights of the set of ground literals, obtained by
grounding the literals in the weight constraint for which both the proper and
conditional parts are satisfied, is between the upper and lower bounds, inclu-
sive. A ground literal is a literal with no variables. The set of literals obtained
by grounding a literal of the form P(X): q(V) is the set of ground literals ob-
tained by substituting consistently the local variables in X and Y with ground
terms in every possible way.

Example 2.17 Consider again Example 2.16. The following rule set utilizing
local variables is equivalent to the previous rules:

dot(s)« dot(s,)« dot(s,) <
card(c,)« card(c,)« card(c,)«
card(c,)« card(c,)«
0<{conn(S,C): slot(S)}< 3« card(C)
« dot(S),2 < {conn(S,C): card(C)}

The first eight rules again represent the different slots and cards. The ninth
rule states that every card is connected to from zero to three slots. The tenth
rules states that for each slot it holds that it must not have two or more con-
nected cards. To illustrate the difference between local and global variables,
consider the ninth rule. Its grounding is obtained by first substituting each
global variable in the rule, in this case C, with every possible ground term as
follows:

48

0<1{conn(S, ¢,): slot(S) ()
0<{conn(S,c,): slot(S) (c,)
0<{eonn(s, c,): slot(s) ()
0<{conn(S,c,): dot(S)}< 3« card(c,)
0<{conn(S, c,): dlot(S) (c,)
0<{conn(S,s): dlot(S) (
0<{conn(S;s,): slot(S) (s,)
0<{conn(S,s,): slot(S)}< 3« card(s,)
The resulting set has only local variables, in this case only S Note that the
bodies of the last three rules cannot be satisfied, so they can never introduce
anything to a configuration. Next, the local variables within weight constraints
are substituted with every possible ground term, which removes the rest of the
variables. Doing this for the first rule in the previous set results in the follow-
ing ground rule:
conn(c,, ¢,): slot(c,), conn(c,, ¢,): dot(c,),
conn(c;, ¢,): slot(c,), connl(c,, ¢,): slot(c,),

@00 S0t heom(e,0):dote | o
conn(c,, ¢,): slot(c;), conn(s,, ¢,): slot(s,),

(

conn(s,,c,): slot(s,), conn(s,, ¢,): slot(s,)

To see the equivalence of the first order form of the ninth rule and its propo-
sitional form in Example 2.16, note that since the condition part of the literals
is only satisfied for slot objects, only the literals grounded with slot objects will
in effect remain within the cardinality constraint:

0< {conn(sl,cl): dot(s,),

conn(s,, ¢,): slot(s,), conn(s;,, ¢,): Slot(%)} <3« card(c,)

2.5.5 Domain Restricted Weight Constraint Rule Language

In this section, a slightly restricted version of FOWCRL called domain re-
stricted weight constraint rule language (DRWCRL) is presented. It is moti-
vated by the intended use of conditional parts of literals to represent different
types of objects in the configuration and efficient implementation of such a

49

representation (I). It also allows a convenient way to define the weights of lit-
erals in weight constraints using rules.

The underlying idea of DRWCRL is to separate the predicates appearing
in the set of rules in two categories: domain predicates and general predicates. Do-
main predicates are intended to represent the types, classes or sorts of objects
that can appear in a configuration. General predicates are used to represent
their general relations. In Example 2.17 the predicates Slot and card can be
considered domain predicates defining the types of objects in a configuration,
whereas the predicate CONN is a general predicate.

Since in configuration knowledge the types of objects that can appear in a
configuration are well known, it seems reasonable not to provide too much
expressive power for defining domain predicates. The crucial issue here is that
each object can be considered to have a known set of types, and thus the
model of the domain predicates is uniquely defined for any configuration
model. There is no need to express incomplete knowledge on the domain
predicates. Thus, defining domain predicates using rules can be restricted so
that for any set of such rules there is at most one model that is efficiently
computable. This restricts the expressive power of such rules but is enough for
representing types. There are several ways of doing this, of which one rather
general scheme, stratified domain predicates, is presented here.

A stratified-domain predicate is a predicate defined by stratified normal logic
program rules only. A predicate is defined by the subset of rules in whose head
the predicate appears, and by the rules in whose heads the predicates in the
bodies of the rules of the first set appear, and so on recursively. A normal logic
program rule is a rule with only literals (negative or positive) in the body and with
exactly one atom in the head of the rule. A set of normal logic program rules
is stratified if no predicate is negatively recursively defined. A predicate is nega-
tively recursively defined if in some rule in the rule set that defines it the same
predicate appears in a negated literal. A set of such rules has a uniquely deter-
mined efficiently computable model under the semantics of weight constraint
rules, as preferred for domain predicates. This holds since the semantics coin-
cides with the stable model semantics of normal logic programs (Przymusinska
and Przymusinski 1990).

The types of rules allowed in DRWCRL can now be defined. These are
stratified-domain restricted weight constraint rules, for which the following holds: each
variable in a rule must appear in a positive domain predicate in the body of the
same rule or in the conditional part of some conditional literal in the rule.
Furthermore, each condition part of a conditional literal is a stratified-domain
predicate. The rules in Example 2.17 fulfill this condition and are therefore
DRWCRL rules.

50

Stratified-domain predicates can also be used to allow compact definition
of the weights of literals in weight constraints. This is done by allowing a vari-
able symbol in the place of a weight of a literal in a weight constraint, with the
restriction that the variable symbol must occur in a stratified-domain predicate
that occurs in the conditional part of the literal. Fach literal must also have a
unique weight defined in this manner.

Example 2.18 The configuration model of Example 2.15 can be represented
using DRWCRL as follows:

prod(card,,—20) <

prod(card ,,—20) «

prod(card ,—40) «

prod(card ,,—40) «

prod(card,,—80) «

prod (power source,100) «

in(powersource) «

0<{in(C): prod(C,P)=P}<100 «
The amount that each card and power source produces and uses is represented
using the stratified-domain predicate prod and the fact that a card or power
source is in a configuration by the general predicate in. The grounding of the

last rule, after pruning the literals for which the condition part does not hold in
any configuration, is effectively as follows:

in(card,): prod(card,—20)=-20,
in(card,): prod(card ,,—20) = —20,
in(card,): prod(card,—40)= —40,
in(card,): prod(card ,—40) = —40,
in(card,): prod(card,,—80)=—80,
in(powersource): prod (powersource,100) =100, |

<100 «

2.5.6 First-order Semantics

Introducing first-order rules necessitates redefining a configuration. A configu-
ration model and a set of requirements can remain the same, i.e. two sets of

51

rules. A configuration, on the other hand, can no longer be just any set of at-
oms.

A starting point for defining a configuration is provided by the notion of a
model of a first-order language (Hodges 1983). Such a model is usually defined
by defining an znterpretation for each symbol in the language, i.e. logical connec-
tives, object and predicate constants and variables. An interpretation represents
a possible situation or state of things in the domain of interest. Therefore, the
interpretation of object, predicate and variables symbols may vary, but the in-
terpretation of logical connectives is fixed. A model of a set of sentences in
the first order language is an interpretation which satisfies the sentences in the
set. Thus, it is natural to define a configuration as a type of model of the set of
rules in a configuration model, similarly as for propositional rules.

Defining an interpretation usually relies on the notion of a structure. A
structure specifies a set of objects called the domain to which object and vari-
able symbols may refer. It also specifies to which objects in the domain the
object constant symbols refer and to which relations on the objects in the do-
main the predicate symbols refer. In addition to a structure, it is necessary to
specify to which object in the domain a variable symbol refers to by means of
an assignment.

In general, structures and assighments may not give a unique interpreta-
tion for all symbols in the language. Alternatively, it may be that there are ele-
ments in the domain or relations over them for which there no are symbols in
the language. For configuration knowledge representation, the object constant
and predicate symbols appearing in the configuration model play a role in the
definition of a correct configuration. This is because it is undesirable to have
objects in a configuration or relations between them that are not mentioned in
the configuration model. The configuration model is supposed to represent all
the necessary knowledge on the elements and their dependencies, after all. Re-
stricting the attention to these types of models is accomplished in the follow-
ing by using the notion of Herbrand models, as is usual for logic program type
rules (Lloyd 1987; Przymusinska and Przymusinski 1990; Dix 1995).

Given a set of first order sentences, its Herbrand universe is the set of all
ground terms that can be formed from the constants and function symbols in
the set. For a configuration model, represented as a set of weight constraint
rules, its Herbrand universe is simply the set of constant symbols appearing in
the rules. A Herbrand base of a configuration model is the set of ground atoms,
L.e. atoms without variables, constructible from the predicate symbols appear-
ing in the configuration model by substituting each variable consistently with
all members of its Herbrand universe.

52

Example 2.19 The Herbrand universe of the configuration model in
Example 2.17 is {Sl, s, $;,C,C,,C5,Cy, Co } Its Herbrand base is as follows:

[dot(s) dlot(s,),...,sot(c,), sot(c,),

card(s,), card(s,),...,card(c,),card(c;),
J conn(s,, s,),conn(s,, s,),...,conn(s,, c,), conn(s,, c,), >
conn(s,, s,),conn(s,, s,),...,conn(s,,c,), conn(s,, c;),

| conn(c,, s,), conn(c;, S,)., conn(cs, ¢,), conn(cy, G5) |

A Herbrand interpretation of a configuration model represented in FOWCRL or
DRWCRL is an interpretation in which every object constant is interpreted as
the object with the same name. This allows the identification of interpretations
of a configuration model with subsets of its Herbrand base. The ground at-
oms in the subset of the Herbrand base are those that are true in the Herbrand
interpretation, and all other ground atoms are false. A (possibly incorrect) con-
figuration is then naturally defined as a Herbrand interpretation of a configura-
tion model. A correct configuration is defined as a Herbrand interpretation that
satisfies the rules and is grounded by the rules in the configuration model, i.e. a
stable Herbrand model’ of the set of rules in the configuration model.

Example 2.20 Consider again the configuration model in Example 2.17. The
configuration, given as the subset of the Herbrand base of the configuration
model,

dot(s,) slot(s,), slot(s,),
card(c,), card(c,), card(c,),card(c,), card(c;),

conn(s,, ¢,), conn(s,, ;)

is incorrect, since the tenth rule that only one card should be connected to a
slot is not satisfied. The configuration

¢ Because of the established terminologies in the research traditions on configuration and
logic, the word model is here used in a slightly confusing manner.

53

sot(s,), slot(s,), slot(s,),
card(c,),card(c,), card(c,), card(c,), card(c;),

conn(s,, c,)

is correct since it satisfies the rules in the configuration model and is grounded.

2.6 Formal Semantics of the Languages

The semantics of all the languages in Sections 2.3 to 2.5 formally capture the
idea that a correct configuration must not contain anything that cannot be
grounded in the configuration model. The formal definition of this property
of configuration knowledge representation languages has been largely ne-
glected with some. It has been identified as important in for instance the re-
search on dynamic constraint satisfaction problems (DCSP)(Mittal and Falken-
hainer 1990) and generative constraint satisfaction problems (GCSP)
(Stumptner and Haselbock 1993).

The groundedness property is formalized in the semantics of the lan-
guages presented in this work using a technique similar to those developed in
the research on non-monotonic reasoning and semantics of logic programs
(Przymusinska and Przymusinski 1990). Only the basic outline of the tech-
nique is given here. More details can be found in (I-III).

The semantics are all based on a very similar two-part definition of a cor-
rect configuration. The first part of the definition states that the rules or con-
straints in the configuration model are satisfied. However, this is not enough,
as a configuration with unnecessary elements can also satisfy the rules or con-
straints. Thus, the second part is needed. It is based on a fixpoint equation on
the lattice formed by the possible configurations and their subset relation. For
CRL and PWCRL, the possible configurations are all the subsets of the atoms
in the rules representing a configuration model. For FOWCRL and
DRWCRL, the possible configurations are all the subsets of the Herbrand
Base of the configuration model. Finally, for DCSP, the possible configurations
are the subsets of all the possible assignments of values to variables.

The fixpoint condition in the definition is a way of ensuring that the rules
or activity constraints and initial variables ground all elements in a correct con-
figuration. To capture this, a reduction of the rules or activity constraints and
initial variables with respect to a configuration is defined. The intuition behind
the reduction is that it produces for each element in a configuration a set of
simpler rules or activity constraints that can ground the element. The whole set

54

of rules thus obtained is called a reduct. If some element is not in a configura-
tion, then there is no need for it to be grounded and consequently no corre-
sponding simpler rule or activity constraints are included in the reduct.

Then, an operator T(.) on the lattice formed by the set of all possible
configurations and the subset relation on these is defined. Intuitively, the op-
erator captures how the simpler rules or activity constraints introduce new
elements to a configuration when their bodies or left hand side constraints, are
grounded and satisfied.

A correct configuration contains all and only the elements that are
grounded by the rules. Since elements may be justified recursively, a correct
configuration must be a fixpoint of the above-defined operator for the reduct
of the configuration model with respect to the configuration. A fixpoint configu-

ration @ of an operator T(.) is such that T(q)= . This ensures that every

element with a (possibly recursive) ground is included in the configuration, as
the operator will only then produce the same configuration as its input.

For the semantics of the languages in this work, the operators T() are
monotonic, i.e., for any two configurations ¢, and (], it holds that g, € Q,

implies T(q,) = T(g,) (Lloyd 1987). A monotonic operator has a unique /ast
fixcpoint. As a correct configuration must not contain ungrounded elements, it is
defined as such a least fixpoint. This ensures that all elements in a correct con-
figuration solution are grounded by the simplified rules or activity constraints,
thus formalizing the groundedness.

2.7 Formalizing the Simplified Configuration Ontology

In this section the formal treatment of configuration knowledge representation
is continued by representing the PC configuration model presented in Section
2.2 using DRWCRL introduced in Section 2.5 (IV). As the main interest in
this work is on the configuration task, in the following it is assumed that the
configuration model is correct with respect to the ontology in the sense that the
types, their property definitions and constraints in it are allowed by the ontol-
ogy.

In the representation, configuration model knowledge, i.e. a configuration
model, is represented as a set of DRWCRL rules. Configuration solution
knowledge, i.e. a configuration, is then defined as a stable Herbrand model of
the set of rules in the configuration model. Requirements knowledge, i.e. the
requirements on a configuration, is defined as another set of DRWCRL rules
that a configuration must satisfy. A distinction is made between the rules giving
ontological definitions and the rules representing a configuration model. The for-

55

mer are not changed when defining a new configuration model. The latter ap-
pear only in the formalization of the example. Moreover, domain predicates
giving the taxonomy of the configuration model, i.e. the types of objects that
may appear in a configuration, are typeset normally whereas other predicates
defining the configuration are typeset in boldface.

56

cmp Cres D

swa swb

A T prt

hda hdb cda cdb

ided idec
(2)
cmp(C) « pc(C) ; ide(C)« hd(C) ; hd(C)« hda(C)
cmp(C) « ide(C) ; ide(C)« cd(C) ; hd(C) <« hdb(C)
cmp(C) <« sw(C) ; sw(C)« swa(C) ; cd(C)« cda(C)
sw(C) < swh(C) ; cd(C)« cdb(C)

res(R) < ds(R)
prt(P) « idec(P)
prt(P) < ided(P)

(b)

Figure 2.4 (a) Taxonomy of the PC configuration model. (b) Rule representa-
tion of the taxonomy.

57

2.7.1 Types, Individuals and Taxonomy

Individuals of concrete port and component types are naturally represented as
object constants with unique names. This allows several individuals of the
same type in a configuration. Types are represented by unary domain predi-
cates ranging over their individuals. Since a resource of a given type need not
be distinguished as an individual, there is exactly one individual of each con-
crete resource type. The individuals that are included in a configuration are
represented by the unary predicate in() ranging over individuals.

The type predicates are used as the conditional parts of literals to restrict
the applicability of the rules to individuals of the type only. This facilitates the
definition of properties of individuals (see below). The type hierarchy is repre-
sented using rules stating that the individuals of the subtype are also individu-
als of the supertype. This means that any rules on the individuals of the su-
pertype are also applicable to the individuals of the subtypes, which effects the
monotonic inheritance of the property definitions.

Example 2.21 The taxonomy of the PC configuration model is represented
using rules in Figure 2.4.

2.7.2 Compositional Structure

The fact that a component individual has as a part another component individ-
ual with a given part name is represented by the tertiary predicate pa() on the
whole component individual, the part component individual and the part
name. A part name is represented as an object constant and the set of part
names in a configuration model is collected using the domain predicate

pan().

A part definition is represented as a rule that employs a cardinality con-
straint in the head. The individuals of possible part types in a given part defi-
nition of a given component type are represented using a domain predicate

ppa(). It is defined as the union of the individuals of the possible compo-
nent types.

Example 2.22 The root component type PC, the part names, possible part
types and the part definitions of PC are represented using rules in Figure 2.5.

58

[0,10] swp

SW

ide 1,2 —ms—<¢

pc

(2)
root(C) « pc(C)

pan(ms) «
ppa(cl’ C,, ms) — pC(Cl)' ide(cz)
{pa(C,,C,,ms): ppa(C,,C,,ms)R « in(C,), pc(C,)

pan(swp) «
ppa(C,,C,, swp) < pc(C,), sw(C,)
0{pa(C,,C,,swp): ppa(C,,C,,swp)i0 « in(C,), pc(C,)

(b)

Figure 2.5 (a) Structure of the PC configuration model. (b) Rule representa-
tion of the structure.

The ontological definitions that exactly one individual of the root type is in a
configuration, and that other component individuals are in a configuration if
they are parts of something are represented as follows:

2in(C): root(C)}1 «
in(C,) « pa(C,,C,,N),cmp(C,),cmp(C,), pan(N)
The exclusivity of component individuals is captured by the following onto-

logical definition that a component individual cannot be a part of more than
one component individual:

59
« cmp(C,).2{pa(C,,C,,N): cmp(C,): pan(N)}

2.7.3 Resources

A resource type is represented as a domain predicate. Only one resource indi-
vidual with the same name as the type is needed, since a resource is not a
countable entity. A production and a use definition of a component type is

represented using a tertiary domain predicate prd() on component individual

of the producing or using component type, a component individual of the
produced or used resource type, and the magnitude. Use is represented as
negative magnitude.

Example 2.23 The production and use definitions in the PC configuration
model are represented using rules in Figure 2.6.

|
The production and use of a resource type by the component individuals is
represented as weights of the predicate in() The ontological definition that

the resource use must be satisfied by the production is expressed with a weight
constraint rule stating that the sum of the produced and used amounts must
be greater than or equal to zero:

«res(R),{in(C): prd(C,RM)=M }<0

2.7.4 Ports and Connections

Port types are represented as domain predicates and port individuals as
uniquely named object constants. The compatibility of port types is repre-

sented as the binary domain predicate cmb() on port individuals of compati-

ble port types and as a rule that any two compatible port individuals can be
connected. The connections are represented as the symmetric, irreflexive bi-

nary predicate cn() on two port individuals. A port individual is connected to

at most one other port individual. The following rules represent these onto-
logical definitions:

ofen(P,, PR < in(R.), in(R,), cmb(R,, F,)
cn(R,, P) < en(P, R,), prt(R), prt(R,)
< prt(R).2fen(R, B,): prt(R,)}
« prt(R).cen(P, R)

60

sSwa

swb
L600 MB 700 MB

400 MB

— hda hdb

——1500 MB——

(a)
prd(C,ds,—400) < swa(C) ; prd(C,ds700) « hda(C)
prd(C,ds,—600) < swh(C) ; prd(C,ds1500) < hdb(C)

(b)

Figure 2.6 (a) Resource production and use definitions in the PC configura-
tion model. (b) Rule representation of the resource production and use defini-
tions.

A port definition of a component type is represented as a rule very similarly to
a part definition, but with the tertiary predicate po() signifying that a com-
ponent individual has a port individual with a given port name. The pon()

domain predicate captures the port names.

Example 2.24 The compatibility definitions of port types and the port defini-
tions are represented using rules in Figure 2.7.

The ontological definitions that a port individual is in a configuration if some
component individual has it, and that port individuals of one component indi-
vidual cannot be connected are also needed:

in(P) < cmp(C), pon(N), prt(P), po(C,P,N)
« cmp(C), pon(N,), prt(R,), po(C, P, N,),
pon(N,), prt(P,), po(C, P,, N,),cn(R,, P,)

7777777777 idec ide oc
g Oblig. jﬁﬂ -

61

ide1 jnﬂ _idﬂec_‘

ide
P ide2

(2)

cmb(P,, P,) « idec(P,),ided (P,)
cmb(P,, P,) < ided(P,),idec(P,)

pon(idel) « ; 1{po(C,P,idel): idec(P)i « in(C), pc(C)
pon(ide2) « ; 1{po(C,P,ide2):idec(P)}l « in(C), pc(C)

pon(idep) « ; 1{po(C,P,idep):ided(P)} « in(C),ide(C)
« ide(C),ided(R,), po(C, P,,idep),{en(R,, B,): prt(R,)0

(b)

Figure 2.7 (a) The compatibility definitions of port types and the port defini-
tions in the PC configuration model. (b) Rule representation of the compati-
bility definitions and port definitions.

2.7.5 Constraints

Rules without heads are used to represent constraints.

Example 2.25 The constraint that a hard disk of type hd must be part of pcC

is represented using the following rule:

— pC(C1)1 {pa(C11C21 N): hd(Cz): pan(N)}0

62

2.8 Analysis of the Formalisms

In this section, the computational complexity of configuration related tasks for
the formalisms and the simplified configuration ontology presented above is
briefly analyzed. In addition, some results on the expressivity of the formal-
isms in relation to each other are given. Mostly only the results are presented
here. More details on their proofs and definitions can be found in (I-IV).

2.8.1 Computational Complexity

The analysis is based on the standard techniques and theory on computational
complexity. Only a brief overview of this topic is given here; more informa-
tion can be found in (Papadimitriou 1994). Recall that the usual complexity
classes according to which the computational problems are classified reflect
how hard the problem is in the worst case, for example for the most difficult
configuration model and requirements. A problem which is complete for a com-
plexity class is among the computationally most difficult problems in that class.
A problem that is hard with respect to a complexity class is at least as hard as
the problems in that class, but may be harder, i.e. in a higher complexity class.

Problems in the complexity class polynomial time, P, are considered to be
tractable, 1.e., efficiently computable even in the worst case. As the name implies,
the time taken by a computation for a problem in the worst case in this class is
bounded by a polynomial function in the size of the problem. The class P is a
subclass of the class non-deterministic polynomial time, NP, and believed to be a
strict subclass’. The potential problems that are in NP or NP-hard but not in P
are believed to be intractable, i.e. that the time taken by a computation in the
worst case is bounded by an exponential function in the size of the problem,
and thus infeasible for efficient computation. Classes P and NP atre both con-
tained in the class exponential time, EXP. The problems in this class and not
in a lower class are provably intractable, i.e. in the worst case their computation
takes an exponential amount of time in the size of the problem. The class of
decidable problems consists of all the problems that can be solved using a com-
puter, whereas a computer cannot solve #ndecidable problems.

The two generic problems related to configuration whose complexity will
be analyzed for each of the formalisms are defined in the following;

7 Itis not known if P = NP, although the general belief is that this is not the case.

63

Table 2.2 Complexity of configuration related tasks

L L, CHECK CONF(D)

CRL CRL In P (I11) NP-complete (I1I)

PWCRL PWCRL In P (D) NP-complete (I)

FOWCRL FOWCRL | ? EXP-hard, decidable

DRWCRL DRWCRL | ? EXP-hard, decidable

DRWCRL,, | DRWCRL | InP NP-complete

CSP CSP In P Mackworth 1977) | NP-complete
(Mackworth 1977)

DCSP DCSP In P (I1) NP-complete (II)

EDCSP EDCSP In P (I1) NP-complete (II)

Definition 2.1 (Problem Definitions)

CONFIGURATION CHECKING (CHECK): Given a finite configuration model
CM represented using formalism L, and a finite configuration C with respect

to L;,is Ccorrect with respect to CM ?

CONFIGURATION(D) (CONF(D)): Given a finite configuration model
CM represented using formalism L, and a finite set of requirements R on the

configuration, represented using formalism L,, is there a configuration C with

respect to L, such that C is correct with respect to CM and satisfies R?

The latter problem is the decision (denoted by (D)) version of the configura-
tion problem. Recall that a problem is at least as hard as its decision version.
Thus, the decision version can be used as an abstraction that allows a simpler
complexity analysis while still characterizing the hardness of the problem.
Therefore, the decision version is used in the following;

The definitions are parameterized with respect to the formalisms in which
the configuration model and the requirements are represented, and which de-
fine the form of a configuration. For simplicity, it is mostly assumed that the
requirements are represented using the same formalism® as the configuration

8 The word formalism is used here to mean the generic formalism, without committing to a
specific set of symbols other than the fixed ones in the formalism. Therefore, the requitements
can contain terms that do not appear in the configuration model. To be precise, one should
speak of families of formalisms, parameterized by the terms appearing in a configuration
model or requirements, instead of a formalism.

64

model. The complexity is measured with respect to the combined size of the
configuration model and configuration for CHECK and with respect to the
combined size of the configuration model and requirements for CONF(D), ex-
cept for DRWCRL,,,, as discussed below.

In Table 2.2 the complexities of the tasks for the different formalisms are
given. The formalism name DRWCRL,,,, refers to the case where the configu-
ration model is represented using DRWCRL based on the formalization of
the simplified ontology presented in Section 2.7 and given two additional as-
sumptions discussed below. The hardness and decidability results for the
CONF(D) problem for FOWCRL, DRWCRL and DRWCRL,,, are shown
below. Note that the CHECK problem has not been analyzed for FOWCRL
and DRWCRL and that the CONF(D) problem has not been precisely classified
with respect to them.

Theorem 2.1 (Complexity of FOWCRL) cONF(D) with L, = L, =
FOWCRL is decidable and EXP-hard.

Proof: Decidability can be shown as follows: By the definition of FOWCRL, a
configuration with respect to a configuration model CM represented in

FOWCRL is a subset of the Herbrand base HB, of CM . Since the Het-
brand universe HU,, of CM consists of the object constants in CM , it is
finite. Therefore HB,, , constructed by instantiating each of the finite set of

predicate symbols in CM by every member of HU,, is finite as well. A naive
algorithm for CONF(D) is obtained as follows: given CM and a set of require-
ments R, construct HU,, and HB,, . Ground CM and R by consistently

substituting every variable in CM and R by the objects in HU,, in every

possible way. Then, for each subset of HBy, , check if it is correct, i.e. a stable

model of the grounded CM that satisfies the grounded CM , and satisfies the

grounded R. If such a model is found, then the answer is “yes”, otherwise

b

“no”. The algorithm clearly terminates in finite time with the correct answer,
since HB, is finite.

The EXP-hardness can be shown by using the problem of whether a
ground atom a is true in every Herbrand model of a first-order positive Horn
clause program H without function symbols. For this problem the expression
complexity, i.e. the complexity measured in the size of the rules in H that are
not ground atomic facts and do not contain constant symbols, is EXP-
complete with respect to the van Emden-Kowalski semantics (e.g. (Schlipf

65

1995)). Since a positive first-order Horn clause program has exactly one Her-
brand model with respect to the van Emden-Kowalski semantics, this problem
is equivalent to the problem of whether the ground atom a is true in some
Herbrand model of H . This problem can in turn be reduced to CONF(D),
since for Horn clause programs the stable model semantics of FOWCRL co-
incides with the van Emden-Kowalski semantics. The reduction is simply as
follows: let CM = H and R={a < }. Now, there is a model of H in which a

is true if and only if there is a correct configuration C, i.e. a stable model of
CM satisfying CM , such that C satisfies R. Thus, CONF(D) is EXP-hatd for
FOWCRL.

|

Since DRWCRL is a special case of FOWCRL in which Horn clause pro-
grams can be represented using exactly one domain predicate which holds for
every object constant in the Horn clause program and is used as the domain
predicate for each variable, the following corollary is obtained:

Corollary 2.1 (Complexity of DRWCRL) cONF(D) with L, = L, =

DRWCRL is decidable and EXP-hard.
|

The relatively high complexity of FOWCRL and DRWCRL seems to indicate
that these formalisms capture harder configuration tasks than do CSP or
DCSP. This is due to allowing rules with variables that encode very compactly
large (exponential in the number of variables in a rule) sets of ground rules
constructed out of predicate symbols. The variables with their domains and
constraints of CSP or DCSP correspond to such ground predicates, and thus
rules with variables can encode them very compactly. Therefore, it is no longer
evident that CHECK is computationally efficient, i.e. in P.

However, for the formalization of the simplified configuration ontology
in Section 2.7 and given certain additional assumptions, CHECK remains effi-
cient. The set of DRWCRL rules resulting from the formalization of the on-
tology and a configuration model, while respecting the additional assumptions,
is called DRWCRL,,,. Next the intuition behind this result is presented and
results on the computational complexity of the configuration related tasks
based on the simplified ontology and the additional restrictions is analyzed.

To facilitate the analysis, the following basic assumptions are made. A con-
figuration model CM represented according to the ontology is translated to a

set of DRWCRL rules CM as in Section 2.7, including the rules for ontologi-
cal definitions. Then, a set of ground facts S is added, providing the individu-

66

als that can be in a configuration. S is constructed out of the domain predi-
cates representing the concrete types in CM and unique object constants as
follows: add a fact t(j)« for cach individual j whose concrete type is t. The
set of rules CM U S is all that is needed to represent the product, and subse-
quently configure it. The requirements are represented using a set of
DRWCRL rules R.

The reason for introducing the set S is as follows. It can be thought of as
representing a storage of individuals from which a configuration is to be con-
structed. The set S thus induces an upper bound on the size of a configura-
tion. This is important since if such a bound cannot be given, the configura-
tions could in principle be arbitrarily large, even infinite, and hence the CHECK
task very hard. The first assumption is thus as follows:

Assumption 1 There is a pre-computed set S representing the individuals of
concrete types that may be in a correct configuration with respect to CM and
this set is added to CM .

There is a second source of complexity for the configuration task arising from
the power of the rules with variables. To address this, the following assump-
tion is made:

Assumption 2 The number of variables in the rule representation of each
constraint in CM and each rule in R is bounded by some constant C, .

This assumption is based on the observation that even checking whether a
constraint rule or requirement rule of arbitrary length is satisfied by a configu-
ration may be computationally very hard. In most CSP approaches, for exam-
ple, only binary constraints, i.e. relations with two variables, are allowed. Since
the ontological definitions have at most five variables, this assumption implies
that there is a bound C = max(5, CV) on the number of variables in any rule of
any CM and R.

The effect of the two assumptions is to bring the complexity of the con-
figuration task to a lower class than for unrestricted DRWCRL.

Theotem 2.2 (IV) CONF (D) for DRWCRL,,,,, is NP-complete with respect to
the size of CM U SU R.
|

The checking task can similarly be shown efficiently computable (IV).

Corollary 2.2. CHECK for DRWCRL,,, is in P in the size of CM U SUC.
|

67

2.8.2 Expressiveness

Most of the formalisms addressed above have the same computational com-
plexity for the configuration task. This indicates that a problem in one formal-
ism can be translated to another formalism efficiently, i.e. in polynomial time
with the resulting problem being of polynomial size with respect to the origi-
nal, and then solved using that formalism. A natural question is to ask whether
there are any differences between the formalisms, or could one just use any of
them? To answer this question, a more fine-grained analysis of the properties
of the formalisms than that provided by complexity analysis is needed.

One concept that aids in this is wodularity. This property is important when
the knowledge represented using the formalism needs to be changed. Intui-
tively, a modular representation of knowledge is such that a small change to
the knowledge results in a small change to the representation. The essential
concept here is the notion of a modular representation of a problem originally
given in one formalism in another formalism. Such a representation allows two
disjoint pieces of the original problem to be represented so that if one of
them is changed, then only the representation of that piece needs to be
changed, while the representation of the other stays the same. In other words,
the two pieces can be represented independently of each other.

A modular representation must of course be faithful, meaning that the
solutions to the representation agree with the solutions to the original problem.
Note that even though two decision problems are in the same complexity class,
such a faithful polynomial translation may not exist, since it is enough that
there is translation that preserves the answer to the decision problem. It is also
required to be polynomial, meaning that the representation can be computed
using a systematic #ranslation in polynomial time and result in a polynomial
problem size with respect to the original problem size. Note that the latter
property implies that a formalism for which a problem of interest is hard for a
complexity class cannot be modulatly represented by a formalism for which
the problem is in a provably lower complexity class.

One can now compare two formalisms by studying whether one of them
can be modularly represented using the other, i.e. if there is a systematic,
modular, faithful, and polynomial translation from one of them to the other. If

formalism L, can be modularly represented by L, but not the other way

around, then L, allows a more easily changed representation of knowledge

and can be argued to be a more expressible and therefore preferable formal-
ism.

68

DRWCRL
A
|
|
EDCSP — — —» PWCRL
AY A
| S |
| S
| N
DCSp — —{II) —» CRL
m N a
CSP

Figure 2.8 Expressiveness of the formalisms

In Figure 2.8 some of the formalisms are compared from the modularity
point of view. A dashed arrow from formalism L, to formalism L, states that

L, can modularly represent L, but the other direction has not been analyzed.

In addition, some of the formalisms have not been compared at all and thus
some arrows may be lacking. Therefore, the figure does not give a complete
classification of the formalisms. A continuous arrow indicates that the prop-
erty has been analyzed in both directions. If there is a continuous arrow in one

direction only, the modularity is strict, i.e. L; cannot modularly represent L,.

This means that L, is strictly more expressive than L, with respect to modu-

larity. For example, CSP can be modularly represented by DCSP, but DCSP
cannot be modulatly represented by CSP. DCSP is thus more expressive. Simi-
larly, CRL can be modulatly represented by PWCRL. However, the other di-
rection has not been analyzed.

Attached to the arrow is a reference to where the property is shown. The
other results are shown below. Note that the definition of what precisely con-
stitutes a modular representation depends on the formalisms compared. In
showing these results, very weak assumptions were used. For modularity, it is
required that each rule, variable with its domain, initial variable, compatibility

69

constraint and activity constraint in a problem can be represented independ-
ently.

To show the results, it is first noted that if a formalism L, is a generaliza-
tion of L,, i.e. that the definitions of the semantics of L; coincide with the
definition of the semantics of L, for that subclass of L, which is the same as
L,, then L, can obviously represent modularly L,. This observation provides

the following results.

Theorem 2.3 (Modularity Results by Generalizations) DCSP can be
modularly represented by EDCSP. CRL can be modularly represented by
PWCRL, which in turn can be modularly represented by DRWCRL.

Proof: Any DCSP D can be transformed into an EDCSP E by leaving the sets
of variables and their domains, initial variables and compatibility constraints as
they are. For each activity constraint

in D add to E the activity constraint

¢ Sk

Any set of CRL rules I can be modularly represented by a set of PWCRL
rules W using the translation outlined in Section 2.5.3. In addition, any set of
PWCRL rules can be modulatly represented by a set of DRWCRL rules,
since a propositional atom can be seen as an atom with a zero-ary predicate.

Another way of obtaining modularity results is to consider the setting where
L, is modularly representable by L, and L, is modulatly representable by L.

This gives a modularity result for L; with respect to L.

Theorem 2.4 (Transitivity of Modularity Results) If L, is modulatly repre-
sentable by L, and L, is modulatly representable by L;, then L, is modularly
representable by L.

Proof: Assume that there are modular translations t; from L, to L, and t,
from L, to L;. For the result to hold there must be a translation t; from L, to

L, such that the translation is faithful, modular and polynomial. Since t; and

70

t, are faithful, their composition t, (tl()) is obviously also faithful. It can also
be computed in polynomial time by first applying t, and then t, to the result.
The composition can be shown to be modular by noting that any two pieces of
a problem represented in L, atre translated to two independent pieces in L,,

which in turn are both also translated to two independent pieces in L;. Now, a

change to either piece in L; clearly only affects its representation in L.

|
This result means that the diagram in Figure 2.8 implies that CSP can for in-
stance be modulatly represented as EDCSP and DCSP as PWCRL. The final

results in this section show that CRL can be modulatly represented using
EDCSP and EDCSP using PWCRL.

Theorem 2.5 (CRL vs. EDCSP) CRL can be modularly represented by
EDCSP.

Proof: Any set of CRL rules R can be transformed into an equivalent EDCSP
E by the following translation. For each proposition P appearing in R, in-

troduce a variable with the same name and with a unary domain in E. Let the
sets of initial variables and compatibility constraints in E be empty. For each
rule

a | -|a < b,..,b,,not(c),...,not(c,)

in R, add the activity constraint

bf,...,b;,not(cf)...,not(c,f)el{a1 |---|a }
and for each rule
a®d---®da «Db,...,b,not(c),...,not(c,) ,

the activity constraint

b,....b%, not(c?)., not(cS) — a, |-+ |a, 11
in E, where each of b/,...,b and cf,...,C"

..,C, 1is a constraint that the variable
corresponding to the proposition has the (unique) value in its domain.

Now the solutions to E correspond to the stable models of R by the
definitions of EDCSP and CRL (ILIII). The active variables in a solution to

E provide the atoms satisfied in a model of R. The translation is thus faith-

71

ful. It can also be carried out in polynomial time. Finally, it is also modular,
since each rule is translated independently of other rules.

Theorem 2.6 (EDCSP vs. PWCRL) EDCSP can be modularly represented
by PWCRL.

Proof: Given an EDCSP E with the set of variables V with their domains, the
set of initial variables V,, the set of compatibility constraints C. and the set

of activity constraints C,, construct the following set R of PWCRL rules:

©)

®)

)

)

For each vatiable VeV with domain D consisting of the values d;,
1<i < n, add the following rule:

HYv=d,,...,v=d < act(v)

For each initial variable VeV, , add the following fact:

act(v) «
For each compatibility constraint Ce C. on vatiables Vi,...,V, with
allowed value combinations {(dlyl,...,dl’m),...,(dn’l,...,dn'm)}, add the

following rules:

m 1m

sat(c)¢ v, =d,,,...,v,, =d

=d

m n,m

sat(c)« v, =d,,,...,V
« act(v,),...,act(v,), not sat(c)

For each activity constraint aeC A of the form

ACT
cl,...,cj,not(cjﬂ),...,not(ck)em{v1|~--|v|}n with compatibility

constraints C;,...C,, each on vatiables Vlﬁi,...,vp’i,lﬁi <k, with al-

lowed value combinations {(dl,l,i yeensd),...,(d,ylﬁi U« Y)}, add the

1 M, p,i
following rules:

72

act(v,)...,act(v,,;)

Sat(cﬁ)e vy =d e Vpi = dl,p,i ,

sat(c) e vy, =d. ..V, =d, act(vy,)., act(v,))
mfact(v,)...., act(v,)ln « sat(c,)...., sat(c,) notsat(c,,)., not sat(c,)

Now the stable models of R correspond to the solutions of E by the defini-
tions of PWCRL and EDCSP. The atoms of form act(V) in the stable models

encode the active variables in a solution to E and those of form v=d, the

value assignments for the variables. The translation is thus faithful. It can also
be carried out in polynomial (in fact, linear) time. Finally, it is also modular,
since each variable with its domain, initial variable, compatibility constraint and
activity constraint is translated independently.

2.9 Empirical Evidence for the Approach

In this section, some empirical evidence that the approach, the ontology and
the formalisms in this work are relevant for practical configuration problems is
provided. First, evidence for the usefulness of the concepts in the configura-
tion ontology is provided by modeling case products. Then, a prototype im-
plementation of the formalisms is described and test results for solving small
configuration problems represented in the formalisms are given.

2.9.1 Modeling Case Products

The phenomena represented by the concepts in the generalized ontology are
found in three simplifications of case products: a hospital monitor, a rock
drilling machine and a PC. Thus, the concepts are useful for modeling configu-
ration knowledge

The configuration model of a hospital monitor (V) based on the general-
ized ontology is a simplification loosely based on a more detailed analysis on a
real configurable product for clinical measurements (Soininen 1996). The
analysis was carried out based on a manual used in a manufacturing company
for documenting the configuration knowledge. In the model, the main con-
cepts related to the taxonomy, compositional structure, connections, resource
interactions and functions were identified. In addition, several constraints were
identified, in particular between the function types and component types im-

73

Table 2.3 Performance results for some configuration problems.

Problem First All G" G*
configuration | configurations

CAR 0.05 s 0.06 s 5 197

CARx2 0.05 s 32s 6 44455

Monitor 0.06 s 0.31s 9 1319

Mixer 0.04 s 0.05s 4 87

plementing them. Most of the phenomena in the configuration model can in
fact be modeled based on the simplified ontology.

The configuration model of a rock drilling machine (VI) is also based on
the generalized ontology, although only the use of attributes in that model is
beyond the simplified ontology. The configuration model represents a simplifi-
cation of a real configurable product in which the main variation of the prod-
uct is incorporated and details omitted. The model is based on interviews and
an analysis of documentation on the product. Again, the main concepts related
to the taxonomy, compositional structure, connections, resource interactions
and functions were identified. Due to the general viewpoint of engineers on
mechanical products reflected in the documentation of the product, the com-
positional structure played a major role in the model. Resource and connection
oriented phenomena as well as to some extent functions and contexts for re-
source interactions were identifiable, however. Rather few constraints were
needed for the model at this level of abstraction as the other concepts de-
scribed the product adequately.

The configuration model of a PC (IV) based on the simplified ontology
represents a very simple part of a fictional configurable product. It is easy to
identify phenomena represented by the taxonomy, compositional structure,
resources and connections in the PC domain.

2.9.2 Test Results for the Formalisms

In (I)-(III), prototype implementations of the configuration task for CRL,
PWCRL (with only integer weights of literals and no strict inequality operators
for weight constraints), DRWCRL (with integer weights, no strict inequality,
and simpler domain predicates) and DCSP are described. The implementations
are all based on defining a faithful mapping from each of these formalisms to a
set of ground constraint rules (Simons 2000), an extension of normal logic pro-
grams with the stable model semantics. Note that the mapping from EDCSP
to PWCRL outlined in the proof of Theorem 2.1 lays a basis for similarly

74

implementing EDCSP. For CRL, PWCRL, DCSP, and EDCSP the mappings
produce a set of rules linear in the size of the original problem. For
DRWCRL, the mapping in the worst case produces an exponential number of
ground rules due to allowing variables in DRWCRL. However, by using the
information provided by domain predicates in the mapping, the set of ground
rules provided by the mapping often is considerably smaller than the entire
grounding of the problem, while still having the same configurations, i.e. stable
models (I).

Using the mappings, a configuration model represented in any of the
formalisms can be translated to constraint rules. Then, the configuration task is
carried out using an efficient implementation of such rules called the Swodels
system (Simons 2000). Smodels finds the stable models of basic constraint
rules using a Davis-Putnam-like backtracking search through a binary search
tree where nodes are propositional atoms. The search space is very efficiently
pruned by using rule propagation. In addition, the system uses a powerful dy-
namic application-independent search heuristic.

In Table 2.3, performance results are provided for the solving of several
small configuration problems using this implementation approach (II). The
problems, a car configuration problem (CAR), an enlarged car configuration
problem (CARx2), a simplified form of the hospital monitor problem (Moni-
tor), and a simplified form of a mixer problem (Mixer), were originally defined
as DCSPs. They were manually translated to a set of CRL rules and then to
constraint rules. Smodels was then used to find the first correct configuration
and all correct configurations for this set of rules. The execution times include
the time for reading the CRL input from a file, translating it and parsing it. As
an additional characterization, the number of non-deterministic guesses G for
finding the first solution and all solutions are provided. In the implementation,
a non-deterministic guess chooses a propositional atom corresponding to a
particular value assignment or activity of a DCSP variable. More details on the
experiment set up can be found in (II). The performance of the implementa-
tion for these problems is good enough to use it as a part of a configurator in
an interactive setting where the user inputs some requirements and the con-
figurator supplies suitable configurations. This can be seen by noting that the
time to provide all solutions provides a rough upper bound estimate for com-
puting a solution to any set of requirements or finding out that there is no so-
lution for a given set of requirements. This is because adding a set of require-
ments does not increase the search space and, in fact, the requirements can be
used to prune the search space.

Table 2.4 Characteristics of the problems

75

Problem [\/| |CC| / |CA| / max(JDI |) |g)| ut|onq Search

max. arity | max. arity space
CAR 8 7/3 8/1 3 198 1296
CARx2 8 7/3 8/1 6 44456 | 331776
Monitor 24 9/3 19/3 4 1320 | 196608
Mixer 8 4/2 6/1 4 88 1152

In Table 2.4 these problems are characterized by the number of variables,
compatibility constraints and their maximum arity, the number of activity con-
straints and the maximum arity of their left hand side constraints. In addition,
the maximum domain size, number of correct solutions, and size of the initial
search space calculated by multiplying the domain sizes of the variables are
given.

76

3 Discussion and Comparison with Previous
Work

In this section, the approach taken in this work is discussed and compared with
several formal and conceptually well-founded approaches to configuration
knowledge representation and reasoning. This type of analysis has mostly been
lacking in configuration research, although it is important for furthering the
maturity of the field.

First, the different approaches are discussed in general and some general
conclusions given. The generalized ontology is briefly compared with previous
approaches and found to cover, unify and extend the major conceptualizations
of configuration knowledge as structure, resource interactions, connections
and functions. General observations on the importance and effect of the
groundedness principle explored in this work are made. This principle differ-
entiates the languages developed in this work from most of the other ap-
proaches by allowing a more compact and modular representation and making
a clear distinction between the roles of the configuration model and require-
ments.

Three approaches to developing a conceptualization and formalizing it are
identified and discussed. The first specifies a fixed ontology and formalizes it
directly. The second approach is based on a neutral general-purpose represen-
tation language that is used to define an ontology. The third approach does not
specify a detailed ontology but only very general concepts. It provides a formal
language meant for configuration knowledge representation. The approach
taken in this work is closest to the second approach. The difference to that and
particularly the effect of the groundedness on the formalization is discussed.
In the final section on general discussion and conclusions, three classes of
complexity results, NP-complete, decidable and undecidable, into which the
different approaches can be divided are identified and discussed.

Then, the formalization of the simplified ontology in this work is dis-
cussed and contrasted with several models covering either the ontology or
formalization of configuration knowledge or both. The scarcity of models
combining both an ontology and a formalization emphasizes the importance
of this type of research. The discussion covers

e the models of Najman and Stein (Najman and Stein 1992),

e the description logic-based approaches of the PROSE system
(McGuinness and Wright 1998), Constructive Problem Solving (Buchheit

77

et al. 1995), a formalization of the PLAKON model (Schroder et al.
1996), and the model of Owsnicki-Klewe (Owsnicki-Klewe 1988),

e the Configuration Design Ontologies (Gruber et al. 1996), and

e a UML-based conceptualization (Felfernig et al. 1999) formalized within
the framework of consistency-based configuration (Friedrich and
Stumptner 1999).

For each of these models its ontological foundation, the formal language used,
the formalization, the computational complexity of the configuration tasks
based on the formalization, and the efficiency and practical relevance of an
implementation based on the approach are discussed.

However, comparison with empirical results on the efficiency and practical
relevance of the implementations of these models is only briefly dealt with.
This is due to the scarcity of comprehensive reports on such empirical evalua-
tion. Mostly it is only reported that one or two products were modeled and
that the model and implementation seem to work efficiently enough and sup-
port the practical needs. However, results on large-scale experiments, details on
the implementations and algorithms, test set ups, detailed product models or
thorough analyses of the usability of the systems are not provided. In addition,
the reports on commercially applied systems do not usually provide detailed
accounts on the functionality, implementation or practical relevance of the
systems, probably because that type of information is confidential.

3.1 General Discussion and Conclusions

3.1.1 Conceptualizations of Configuration Knowledge

The generalized ontology presented in Section 2.1 covers the conceptualiza-
tions of the connection-, resource-, structure- and function-oriented ap-
proaches. It is the most generic ontology in this sense and extends the previous
conceptualizations in several ways. It does not have a minimal number of con-
cepts in the formal sense for representing configuration knowledge. This con-
scious design decision is motivated by the concern that minimizing the number
of concepts in a modeling language should not compromise the clarity of con-
figuration models. Higher level concepts for representing typical forms of con-
figuration knowledge result in a more compact and understandable representa-
tion of a configuration model.

The ontology is by no means the first to synthesize some of these con-
ceptualizations. However, only the conceptualization in (Felfernig et al. 1999) is

78

comparable in that it has combined all the concepts (see Section 3.5 for more
details). Partial syntheses of the conceptual approaches include at least the
following: in the conceptualization by (Mittal and Frayman 1989), a limited
form of functional interactions accompanies the connection-oriented con-
cepts. Clarke (Clarke 1989) presented an approach that extended the function-
based approach and combined it with the structure-based approach. A set of
concepts combining some aspects of the connection- and structure-based ap-
proaches was presented in the configuration design ontology (Gruber et al.
1996). An independent approach also combining product structures and con-
nections was presented by (Axling and Haridi 1994).

Contrary to many previous approaches, the main concepts in this work are
treated uniformly with respect to several criteria. They are all defined both as
types and individuals to explicitly separate configuration model knowledge and
configuration solution knowledge. The main concept types can all be organized
in classification taxonomies and have attribute definitions. They can be speci-
fied as abstract or concrete to distinguish between accurate and inaccurate in-
formation.

Organizing the different concepts in a taxonomy to explicitly represent
their common properties and to reduce the maintenance effort is a general idea
in configuration design (e.g. (Cunis et al. 1989), (Seatrls and Norton 1990),
(Jingst and Heinrich 1998)). The explicit distinction between abstract and con-
crete component types has been made by others (e.g. (Kramer 1991) and
(Axling and Haridi 1994)), but (Weida 1996) was the first to consider it a more
generic mechanism which applies to other concepts as well, similar to the ap-
proach in this work.

In general, the earlier work on modeling structure in configuration knowl-
edge has only modeled the direct has part-relation between a component indi-
vidual and its immediate parts (e.g. (Cunis et al. 1989; Searls and Norton 1990;
Peltonen et al. 1994; Axling and Haridi 1994)). It has not explicitly considered
all the semantic restrictions that representing a has-part-relation propetrly re-
quires (e.g. (Artale et al. 1996)). The conceptualization of resource interactions
in the generalized ontology is an extension of the model presented by (Jiingst
and Heinrich 1998). The connection related concepts are similar to those pre-
sented in (Mittal and Frayman 1989). Integrating the port concept to the
structure-oriented concepts, mentioned by (Mittal and Frayman 1989), is ex-
plicitly dealt with. In (Gruber et al. 19906) the connections are restricted to the
component individuals that are direct or transitive parts of the same compo-
nent individual. This modeling restriction is not enforced in the generalized
ontology.

79

Most of the research on configuration design has not explicitly modeled
the functional domain in the sense presented in this work. The conceptualiza-
tion of the functional knowledge in the generalized ontology is similar to those
presented by Clarke (1989) and Pernler and Leitgeb (1996). However, it has
also been argued that there is no clear distinction between components and
functions (e.g. (Gruber et al. 1996; Schreiber and Wielinga 1997)). In contrast,
in this work these two concepts are kept separate, as the sales persons and
customers can view the product through its functions rather than the technical
structure of the product.

Constraints have been used in almost all of the work on product configu-
ration to represent the dependencies between components. In the generalized
ontology, a constraint is conceptualized as both an object and an expression,
similarly to the conceptualization in (Gruber et al. 1996). However, in that ap-
proach the constraints are defined as a restricted subset of the underlying KIF
language, whereas in the generalized ontology no commitment is made to a
particular language or particular forms of constraints for representing them.
Introducing constraint sets for representing different points of view on a valid
configuration has its roots in observations on how configurable products are
managed by companies.

3.1.2 Groundedness

The semantics of all the languages in this work capture formally the idea that a
correct configuration must not contain anything that cannot be grounded in
the configuration model. The formal definition of this property of configura-
tion knowledge representation languages has been largely neglected. However,
it has been identified as important in, for example, the research on dynamic
constraint satisfaction problems (DCSP) (Mittal and Falkenhainer 1990) and
generative constraint satisfaction problems (GCSP) (Stumptner et al. 1998). In
these approaches, the goal is to capture the knowledge that some choices need
only be made if other choices have also been made appropriately. In the rule
languages of this work, groundedness is uniformly incorporated in the formal
semantics of the rules. This distinguishes the languages from, for instance,
DCSP and GCSP in which some constructs (e.g. activity and resource con-
straints) have a grounded interpretation, while others do not (e.g. compatibility
constraints).

There is, however, also a more general groundedness principle of configuration
knowledge representation: anything that is not allowed by the configuration
model cannot hold in a correct configuration. Capturing the groundedness in
the semantics of the languages allows a more compact and modular represen-

80

tation of such configuration knowledge. Thus, there is no need to add so called
“completion” or “frame” axioms that forbid any other state of affairs from
holding in a configuration other than those allowed by the configuration
model. This leads to a more compact formalization of the configuration
knowledge. It also means that if a part of a configuration model or the for-
malization of the conceptualization is changed, only those parts (e.g. rules) that
represent the changed part need to be changed to capture the new configura-
tion model or formalization.

This general groundedness principle is an instance of similar ideas pre-
sented in the context of common sense reasoning, non-monotonic reasoning
and logic programs. Much of this research has concentrated on formally re-
stricting the set of possible world states, i.e. models, described by a theory to
only the intended models. The intuition is that if a theory does not speak of some
state of affairs, then that state of affairs should not hold in the intended mod-
els. This is in contrast to propositional or predicate logic. They allow models
with other things in addition to those required by the theory.

Capturing groundedness using classical propositional or predicate logic or
CSP is not straightforward. In effect, a semantics with some form of ground-
edness principle allows more inferences to be made from the same theory than
a semantics without a groundedness principle. For example, if the configura-
tion model of a computer were expressed using “standard” predicate logic
without the groundedness principle, it would allow models, i.e. correct configu-
rations, where all kinds of other things like the components of a car are in-
cluded. Using a language whose semantics includes groundedness, like
DWCRL, allows one to infer that there cannot be car components in a con-
figuration of a computer.

For example, CRL cannot be modularly represented by classical proposi-
tional logic (Soininen and Niemeld 1998). This means that when changing, for
example, a part definition in a configuration model represented as proposi-
tional logic, it is not enough to rewrite the one sentence representing that part
definition. In addition, the global completion axioms related to part definitions
need to be rewritten. It may be possible to restrict the changes to some subset
of the entire representation, but in the worst case, the entire representation
could be rewritten because of a small local change.

Another semantical issue related to groundedness is the restriction to con-
figurations that are Herbrand models for FOWCRL and DWCRL. This re-
striction means that only the objects and their relations mentioned in the con-
figuration model can appear in a configuration. Would then either of these
restrictions, groundedness or restriction to Herbrand models, be enough on its
own? The answer is no.

81

Consider the case where only the restriction to Herbrand models is
adopted and groundedness is omitted. When representing for example a part
definition of a component type, it would not be enough to state the rules in
Section 2.7.2 for each part definition. In addition, rules forbidding anything
else to be a part of the component with any other part name would also be
needed. In addition, there should be “global” rules that only those component
types defining parts may have parts. This is because if such rules were omitted,
there would be a Herbrand model of the configuration model where such un-
intended part relations hold. On the other hand, assuming groundedness but
not the restriction to Herbrand models would allow a correct configuration
with any object, since the set of objects that may appear in a configuration
would be arbitrary. Thus, both restrictions are needed.

3.1.3 Approaches to Formalization

Classes of Formalizations

The approach taken in this work facilitates formal representation of configu-
ration knowledge based on different and unified conceptualizations. This is
accomplished by capturing the configuration knowledge using a neutral repre-
sentation language, i.e. DWCRL, and implementing the configuration task us-
ing an implementation of such rules. Therefore, when changing the configura-
tion model or its underlying conceptual foundation, only the representation of
the knowledge is changed. There is no need to design a new algorithm for the
configuration task, as the general implementation of the rule language can still
be used. Thus, exploring different conceptualizations of configuration knowl-
edge is supported. Note that rules are not primarily intended to be used by
product modelers but as an intermediate language that a higher level configu-
ration modeling language committing to some configuration ontology is trans-
lated to.

This is in contrast to the class of previous formal approaches that have
fixed a certain conceptualization and then analyzed it and developed special
purpose algorithms for the conceptualization. These approaches include the
formulation as generic constraint satisfaction problem (GCSP) (Stumptner et
al. 1998) and the model in (Najman and Stein 1992)). The Unified Modeling
Language (UML)-based approach (Felfernig et al. 1999) commits underneath
to the conceptualization of GCSP but also formalizes other concepts, and thus
is somewhat similar to this work.

A second class of formalizations of configuration knowledge is based on
a neutral general-purpose representation language. This class includes the Con-

82

figuration Design Ontologies (Gruber et al. 1996), the formalization of the
structured oriented PLAKON model (Cunis et al. 1989) of configuration using
description logic (Schréder et al. 1996), and also partially the UML and GCSP-
based approach (Felfernig et al. 1999). In contrast to these approaches, the
DWCRL has been specifically designed to allow the representation of knowl-
edge on different aspects of configuration knowledge, types, individuals, con-
straints and choices, in a uniform and simple manner. At the same time, the
computational efficiency of the configuration task has also been considered,
which is not the case for the other approaches.

A third class of formalizations differs from the approach in this work in
that they do not provide a detailed ontology of configuration knowledge. In-
stead, they only specify very generic concepts like classes, relations, constraints,
individuals, and so on, by using which the configuration knowledge can be
modeled. Several DI-based formalizations fall under this category, such as the
Constructive Problem Solving (CPS) approach (Klein 1996) and the model in
(Owsnicki-Klewe 1988).

Effect of Groundedness on Formalization

A characteristic that separates the formalization in this work from almost all
other approaches is that the language used for the formalization has the
groundedness property built into its semantics, both by its use of Herbrand
interpretations and their groundedness. This makes it much easier to capture in
the formalization of the different concepts the notion that a configuration
must not contain anything that is not explicitly mentioned in the configuration
model. It also simplifies the formalization (see especially Section 3.5).

A further aspect of groundedness is that it clearly distinguishes between
the roles of the configuration model and requirements. For the approaches
without the groundedness property, one must often resort to meta-level condi-
tions such as that the configuration must not include other concepts than in a
configuration model even if the requirements state their existence. Another
way to accomplish this is to insist that the requirements can only use a distinct
restricted vocabulary dependent on the configuration model. By separating the
notions of a configuration satisfying a set of sentences and being grounded by
the set of sentences, one obtains the following clear distinction: a suitable con-
figuration must be correct, i.e. satisfy and be grounded by a configuration
model, and safisfy the requirements. Thus, any form of requirements can be
posed without them adding unwanted elements into a configuration.

It is also relatively easy to change the formalization presented in this work
due to the groundedness property. For example, adding a similar restriction as

83

in (Gruber et al. 1996) requiring that only component individuals that are di-
rect parts of the same component individual can be connected can be accom-
plished by simply adding one rule. There is no need to change any other onto-
logical definition or a configuration model represented according to the ontol-
ogy due to the modularity of representation. This is one advantage of using a
neutral representation language not committed to a specific ontology, as well.

3.1.4 Computational Complexity

In light of the many different approaches discussed in this section, it is clear
that there is no consensus on the form of the configuration task. This is also
reflected in the few available computational complexity results. As a rough
characterization, the approaches can be divided to three classes according to
the complexity class where the configuration task is or should be: in NP,
decidable, or undecidable.

In NP

The intuition why configuration tasks should be in NP is argued in (Burckert et
al. 1996) based on the properties of problems in that class. It should be easy
(i.e. tractable) to check that a given configuration is correct with respect to a
configuration model. In addition, a configuration should not be more than
polynomially larger than the configuration model. These properties imply that
the checking can be done efficiently, which is important for practical tasks. If
this is not the case, the formal model may become irrelevant for practical pur-
poses. This characterization reflects the intuition that checking whether a given
dependency in a configuration model holds in a configuration is not difficult,
but it is the task of combining an appropriate set of elements that satisfies all
the dependencies that is the problem. The DCSP, EDCSP, CRL, WCRL lan-
guages and the formalization of the simplified configuration ontology in this
work are in this class. However, it is not claimed that they are general enough
to cover all aspects. Other approaches in this category include the models of
Najman and Stein (Najman and Stein 1992) and those using CSP (Mackworth
1977).

In order to keep the complexity of configuration tasks in NP, a semantics
with the groundedness condition must be carefully designed. In this work, this
is accomplished using a fix point condition that can be checked efficiently. An-
other approach to groundedness would be to define a subset minimality condi-
tion on configurations, as is the case for DCSP (Mittal and Falkenhainer 1990)
and consistency-based configuration (Friedrich and Stumptner 1999). How-

84

ever, this is a stricter condition than the one provided in this work. In addition,
it may easily lead to a significantly higher complexity, as is demonstrated in the
case of rules with disjunctions in the head or EDCSP with minimality condi-
tion: the complexity increases to 2,P-hard (II). This intuitively means that
even if one could decide if there is a (possibly non-minimal) configuration in
one step of computation, one would still have an NP-hard problem in check-
ing that it is the minimal one (Papadimitriou 1994).

In the formalization of the simplified ontology, the assumptions that a
storage of individuals that can be in a configuration is given and that the num-
ber of variables in the rules of configuration a model and requirements is re-
stricted makes the configuration task remain in NP. The first assumption im-
poses a bound on the configuration similarly to consistency-based configura-
tion (Friedrich and Stumptner 1999). The second restriction in effect restricts
the constraints in the configuration model and requirements to N-ary ones,
where N is a constant. This is often also the case for CSP approaches, where
for instance only binary constraints are allowed. The underlying motivation is
to ensure that checking the constraints is easy. Other restrictions with the same
effect probably exist as well.

Decidable

In the second class of approaches, the complexity increases beyond NP but
remains decidable. The increase in complexity can in principle be a result of
two factors: the configuration may be very large, or the semantics of the con-
structs of the configuration modeling language may cause this. In the first case,
each definition in the configuration model is easy to check by itself, but the
configuration is very large and therefore the checking hard. In the latter case,
the constructs of the languages are such that it is hard to check even in isola-
tion whether they hold in a configuration. This class includes the DRWCRL
and FOWCRL languages of this work, the unrestricted consistency-based
configuration (Stumptner et al. 1998) and the UML-based approach (Felfernig
et al. 1999), which all allow large configurations. There are two further variants
in this class: the first assumes that the configurations may be exponentially
large (e.g. DRWCRL) The second assumes that the size is in principle unlim-
ited @ priori, but some form of a size limit is imposed for each configuration
task instance (Stumptner et al. 1998). A distinguishing feature of DRWCRL is
that the configuration task does remain decidable although a limit is not given.
The approach in this work thus offers a trade-off between expressiveness and
implementability. This has not been shown for consistency-based configuration
(Stumptner et al. 1998), for instance.

85

For the approaches that allow large configurations of the first type, it is
possible to model the problem using an expressive language and compile it off-
line to a (in the worst case exponentially) larger problem representation. The
configuration task would then be in NP with respect to the compiled repre-
sentation. This of course does not help for bigger problems if the size of the
compilation does increase as the worst case indicates. However, for DRWCRL
the size of the compilation is dependent on how efficiently the domain predi-
cates divide the set of object constants to smaller domains. If the domain
contains many types and there can only be a few individuals of each type in a
configuration, such a compilation could be feasible.

Undecidable

The third class of approaches tries to cover a very broad spectrum of prob-
lems with highly expressive constructs and allows even infinite configurations.
This class includes the CPS approach (Klein 1996), and the PLAKON-based
model in (Schroder et al. 1996). However, the generality of the languages in
these approaches implies an undecidable configuration task. Therefore, the
languages need to be restricted to provide practical systems. It may also be that
the configuration checking task remains decidable and can be supported by a
system based on an unrestricted language.

3.2 Models of Najman and Stein

In (Najman and Stein 1992) formal models for resource-based and structure-
based configuration are defined. The models are given as mathematical struc-
tures using set theory. The first model includes a finite set of obyects, similar to
component types, several iemzs (i.e. individuals) of the objects which may ap-
pear in a configuration, a set of functionalities and their addition and fest operators,
properties of components, and a set of demands given in terms of functions. The
properties define the functions the components produce. The addition opera-
tors define how functions are composed. A definition of a solution to a con-
figuration problem is given. Such a solution must be composed of the objects
in the configuration model and satisfy the demand. The second model adds to
the first a type of structure-based configuration knowledge. The structure is
represented using rules similar to PWCRL with only cardinality constraints.
The models differ from the approach taken in this work in that they define
a mathematical structure, corresponding to a formal ontology, upon which the
analysis is based. The models do not define a knowledge representation lan-
guage in which to formalize configuration knowledge. The conceptualizations
in these models are also significantly poorer, as they do not support the defini-

86

tion of, for instance, compositional structures where component types can oc-
cur in part definitions of several component types, or the connections of
components via ports. Functions in the models and the resource concept in
this work are closely related. The formalization of the simplified ontology in
this work adds more concepts while retaining the same computational com-
plexity of the configuration task.

The definition of a configuration as a structure ensures that only those
objects that are mentioned in a configuration model can appear in a configura-
tion. Thus, a form of groundedness is present in the first model. However, for
the second model, the rules are given a semantics close to propositional logic,
and thus correct configurations may contain elements that are not grounded by
the rules. This is a second significant difference.

The computational complexity of the configuration tasks based on both
models is analyzed and found to be NP-complete, similar to the approach in
this work based on the simplified ontology and DRWCRL with the additional
assumptions. No implementation or results on the efficiency and practical rele-
vance are reported.

3.3 Description Logic-based Approaches

3.3.1 Description Logics in Configuration

Several approaches to configuration knowledge representation and reasoning
are based on different variants of description logies (DL) (McGuinness and
Wright 1998; McGuinness and Wright 1998; Weida 1996; Buchheit et al. 1995;
Klein 1996; Klein et al. 1994). Such logics were developed for representing and
reasoning on concept descriptions. Historically they are derived from frame-
based languages, semantic networks and other similar representation methods.
They include constructs for representing concepts, roughly corresponding to
classes or types of objects, their ro/es, corresponding to binary relations, restric-
tions on the fillers of those roles, corresponding to definitions of complex binary
relations, zndividunals, corresponding to objects, and roles of individuals. The main
inference services usually provided for a DL are subsumption, classification and
consistency. Subsumption is the task of finding if a concept or individual is a
special case of another concept. Classification infers where, in the subsump-
tion hierarchy of concepts, a concept or individual belongs. Consistency checks
if a set of concepts and their role definitions are consistent or if a set of indi-
viduals and their roles are consistent with respect to their concept definitions.

87

Such logics provide tools for the knowledge engineering task, i.e. building
a conceptual model of the domain by defining concepts (e.g. components),
their roles and so on. This is the main difference to the approach taken in this
work. Here, the configuration models and the classification hierarchy are as-
sumed to be correct, complete and known, since the emphasis is on the con-
figuration task. It has also been argued that at least in some technical domains
the concepts and their subsumption relations are usually rather well known, so
such services are not crucial (Friedrich and Stumptner 1999).

However, a DIL-based system component can also be used to solve a con-
figuration problem. The main services of the DI component in solving the
problem are the classification of an individual to the most specific concept on
the basis of its properties, inferring additional properties that it (and other in-
dividuals) must have for the configuration to be correct on the basis of the
concept descriptions, and checking that a configuration is consistent with re-
spect to the concept descriptions. These services are particulatly suited for in-
cremental configuration where incomplete information is given and the indi-
viduals need to be refined when more information becomes available.

Despite the utility of these reasoning services, DI.-based approaches usu-
ally also extend the basic formalism with some sort of general forward chain-
ing rules or constraints (McGuinness and Wright 1998; Klein 1996). This
seems to be due to two reasons.

First, the basic DL semantic used in these approaches is based on an gpen
world assumption, similar to classical logics. This means that it cannot be inferred
if all the things in a configuration have been specified accurately enough, i.e., if
the configuration is complete. As the open world semantics corresponds to the
classical semantics of, for instance, predicate logic, it also means that the basic
DL semantics lacks the groundedness property. This problem has also been
raised in (Schréder et al. 1996) and addressed more thoroughly in (Weida 19906)
by using the closed terminology assumption. It essentially states that only individuals
of those concepts that are in a configuration model can occur in a configura-
tion, that they may be related by only those roles defined by their concepts, and
that every individual in a configuration corresponds to some concept in a con-
figuration model. This provides a definition for completeness of a configura-
tion. It also increases the set of inferences that can be made from the concept
descriptions. Note that the definition of the simplified ontology in Section 2.2
and its formalization using a language with the groundedness property in Sec-
tion 2.7 in effect enforce the closed terminology assumption.

Second, concepts, roles and their subsumption hierarchy are not enough
to express typical configuration constraints that may refer to more than two
concepts or concepts that have no relation in terms of roles (McGuinness and

88

Wright 1998; Klein 1996; Schroder et al. 1996). For instance, the DL language
of the CLASSIC system was found to be lacking in configuration problem
solving when rules or constraints needed to be represented (Birckert et al.
1996). In contrast to this, the approach taken in this work specifically addresses
the definition of arbitrary constraints with the groundedness property as
EDCSP or rules. In this sense, the approaches based on a DL can be seen as
complementary to the approach in this work. Some sort of hybrid representa-
tion combining grounded rules and a DL is no doubt feasible. In fact, several
formally well founded combinations of a DL and rules have been proposed,
for example in (Baader and Hollunder 1994), but not for configuration-specific
rules such as in this work.

Although the approaches based on description logics can be seen as com-
plementary, in the approach in this work a mechanism for representing indi-
viduals and types, corresponding to concepts, is provided as well. This takes
the form of domain predicates ranging over individuals, which can be used to
represent the unary predicates corresponding to concepts in a DL. However,
this mechanism is not intended for subsumption-like inference. The domain
predicates have a fixed extension in a configuration model, corresponding to
the intuition that the class hierarchy is known. However, they can be used to
restrict the applicability of rules to only individuals of a given type. This ap-
proach is similar to introducing sortal predicates and sorted quantifiers in a simple
many-sorted logic, most of which assume a fixed extension of sorts as well (Cohn
1989). In a many sorted logic, every variable has an associated sor#, corre-
sponding to a class or type, determining the objects over which it ranges.

3.3.2 PROSE

A DL-based implemented approach is reported in (McGuinness and Wright
1998). The implementation has been used successfully since 1990 in interac-
tively configuring telecommunications products. The configurator, PROSE, is
based on the CLASSIC knowledge representation system. No configuration
specific ontology is reported except for the concepts of components, their
relationships and forward chaining rules. For the variant of DL used in
PROSE the subsumption algorithm is tractable. It cannot therefore capture as
hard configuration problems as the languages in this work. The effect of add-
ing the forward chaining rules to the DL on complexity is not analyzed. The
reported benefits of the system include reduced order processing time, elimi-
nation of errors and rework, reduced staffing and easy maintenance of the
configuration models

89

3.3.3 Constructive Problem Solving

In Constructive Problem Solving (CPS)(Buchheit et al. 1995; Klein 1996; Klein et al.
1994), a configuration is defined as a (possibly partial) Herbrand model of a
theory in a description logic-like language. The language is extended with rule-
like first order constraint formulas and concrete domains for numeric attrib-
utes and arithmetic on them. The language is also given a formal semantics.
The configuration task is formally defined as finding a Herbrand model of the
configuration model represented in the language such that the model satisfies a
set of goals, i.e. requirements. The task is also shown to be undecidable for the
language.

In contrast to the approach in this work, CPS does not commit to any
specific conceptualization of configuration domain. The language is signifi-
cantly more complex, and allows arithmetic on concrete domains unlike the
approach in this work. However, it only allows features, i.e. functional roles.
These re not adequate for representing part relations (Schroder et al. 1996), for
example. The CPS approach does not seem to require that a configuration is
grounded in the configuration model, although the restriction to Herbrand
models does accomplish this to some extent. The relation and expressive
power of the rule-like constraint formulas to the rules in this work is not clear.
They are of a more restricted form called definite rules, i.e. rules with no dis-
junction and negation. On the other hand, the atoms they are composed of are
more complex. They may contain existential quantification, for example.

A major distinction between the approaches is that the CPS approach
leads to undecidable configuration tasks, whereas the formalization in this
work leads to a decidable task. Without restrictions, CPS is a theoretical study
that cannot be implemented directly. No results on implementing the approach
or its efficiency and practical relevance are available.

3.3.4 Description Logic-based Formalization of the PLAKON model

In (Schroder et al. 1996), a partial logical reconstruction of the PLAKON (also
known as KONWERK) configuration system is given. The reconstruction is
based on a DI extended with first-order logic sentences for representing N-ary
constraints. Again, a configuration is considered a model of the theory defin-
ing the configuration model. The configuration knowledge modeling language
of PLAKON based on modeling component types, attributes, compositional
structure and general constraints is translated to the extended description logic
language.

90

Completion axioms partially enforcing the closed terminology assumption
are added. The description logic used contains relatively powerful primitives,
although they are used in a restricted manner. Using such primitives may lead
to a high computational complexity of the inference tasks for configuration. In
fact, some of the constructs may even lead to undecidability (Schroder et al.
1996), which contrasts with the formalization in this work. However, no com-
plexity results are presented for the formalization.

The major differences to the formalization in this work are the lack of
groundedness of configurations and the more restricted conceptualization. A
configuration in the reconstruction of PLAKON may contain individuals of
new concepts defined as a combination of the concepts in the configuration
model, or even arbitrary new concepts. This due to incomplete handling of the
closed terminology axiom and the open world semantics. However, in
(Schroder et al. 1996) it is pointed out that allowing such freedom would be
useful in providing a language for a support tool intended for a more innova-
tive type of design.

No implementation or results on efficiency and practical relevance are re-

ported.

3.3.5 Model of Owsnicki-Klewe

In (Owsnicki-Klewe 1988) probably the first formalization of configuration
knowledge and task is presented. It uses a variant of DL extended with weak
implication rules. This language is noted to be too weak to represent generic
constraints in configuration knowledge. A fix point equation characterizing a
correct partial configuration is defined. However, the approach is interactive in
nature, i.e. the reasoning mechanism for the language does not complete the
configuration. The user has to supply some decisions. This is in contrast to the
approach taken in this work. On the other hand, the fix point equation does
provide a form of groundedness of a partial configuration in this approach.
However, it is not required that the result would be the least configuration sat-
istying the equation, which would enforce a similar groundedness as in this
work, although this seems to be implied by the discussion on the equation.

No ontology or complexity results, implementation, or results on the effi-
ciency and practical relevance are provided.

3.4 Configuration Design Ontologies

The most detailed formalization of a configuration knowledge conceptualiza-
tion is given in the Configuration Design Ontologies (Gruber et al. 1996) (CDO).

91

These ontologies were developed in connection to the VT/Sisyphus elevator
configuration challenge problem (Schreiber and Birmingham 1996). As such,
they may be influenced by domain specific considerations. This is most evident
in the ontological commitment to viewing configuration as parametric design ex-
tended by some aspects of part selection. The problem is thus described using
a set of parameters, corresponding to attributes, and constraints on them. This
makes the ontologies somewhat method dependent, in contrast to the ap-
proach in this work.

The CDO consists of a generic configuration ontology and a VT specific
theory. The generic configuration ontology includes the following set of con-
cepts: component types and individuals, structure, connections, parameters and
constraints. Component types model the structure by defining their direct
parts, similar to the simplified ontology in this work. However, the cardinality
is always one, and no alternative possible part types are allowed. Defining sub-
types of a part type allows a restricted form of possible part types. Connec-
tions are modeled as relations between component individuals, instead of using
ports to model the interfaces. The generic connection relation can be special-
ized which allows the modeling of different types of interfaces. However, since
ports are lacking, there is no mechanism for specifying the “places” in a com-
ponent to which another component is connected. Connections are reified to
connection components, to allow the modeling of the properties of connec-
tions. Connections between wholes and parts are not allowed.

The configuration design ontologies are formalized using Ontolingua,
whose formal semantics is in turn defined using the Knowledge Interchange
Format language, a variant of first-order predicate calculus (FOPC) (Gruber
1993). The conceptualization of that ontology is in several ways more limited
than the simplified ontology in this work. It also does not provide a language
for representing knowledge based on the ontology. As the semantics is based
on a classical logic, no groundedness principle is included in the semantics. In
several cases the need for some type of closed world assumption is mentioned,
but not formally given. There is no assumption that the models of the lan-
guage are Herbrand models. Therefore, a configuration with respect to a con-
figuration model committing to this ontology without additional restrictions
could contain arbitrary objects and relations between them.

No implementation based directly on CDO is reported. However, some
implementations developed to answer the Sisyphus challenge at least partially
use the ontology, which makes it relevant for the elevator domain.

92

3.5 UML-based Conceptualization and Consistency-based
Configuration

A conceptualization of configuration knowledge combining many of the pre-
vious approaches is presented in (Felfernig et al. 1999). In that approach, the
static diagrams of the Unified Modeling Language (UML) (Fowler 1997) for
representing object-oriented analyses and designs is extended with configura-
tion knowledge concepts. This is done through the stereotype extension mecha-
nism of UML and uses the object constraint langnage (OCL) extension of UML. In
addition, the concepts are given a formal semantics within the framework of
consistency-based configuration (Friedrich and Stumptner 1999).

3.5.1 Ontology

The UML-based conceptualization includes component types, their aggrega-
tion and generalization hierarchies, ports and connections, resources, attributes,
generic constraints, and special cases of constraints called requires- and in-
compatible-relations between component types. Thus, of the concepts in the
simplified ontology in this work only functions are missing.

However, there are some differences. The refinement of properties such
as part definitions seems to be missing from the UMI.-based conceptualiza-
tion. The exclusivity definition of a part definition allows specifying a cardinal-
ity for how many wholes a component can be part of in the UML-based con-
ceptualization. A restricted form of context for resource production is intro-
duced in that the producers and users of a resource must be parts of a com-
mon component. The ports are modeled as parts of the components that have
them, which seems a bit countetrintuitive. These differences in the details are
relatively minor. Other differences are that the UMI.-based conceptualization
includes attributes, shared parts, and two specific types of constraints. In the
development of the conceptualizations relatively similar design decisions were
made, which gives some credibility to both.

The visual notations in this and the UMIL-based approach are different,
although the difference is mostly just a very simple syntactical change. The
notation in this work is the same as the UML-based notation for types, Isa-
relation and structure. The UML-based notation has the benefit of being based
on a rather widely used notation for software engineering activities. This might
make its use by product modelers easier. On the other hand, all the concepts
are modeled using rather similar boxes and lines, without distinguishing visual
characteristics, as is the case for the visual notation in this work. Providing a

93

clearly differing notation may make the configuration models more under-
standable.

3.5.2 Formalization of the UML-based Conceptualization

The formalization in (Felfernig et al. 1999) is carried out using a variant of first
order logic within the framework of consistency-based configuration. A map-
ping from the formalization to a representation in GCSP and solving the con-
figuration problem using an implementation based on GCSP is also discussed.

The formalization of the UMI.-based conceptualization uses range re-
stricted first order logic clauses extended with restricted sorted existential
quantification, some set and aggregate constructs, and interpreted functions.
The semantics of the language is not clear, especially for the set and aggregate
constructs, unlike in the approach in this work. In addition, the formalization
in this work is done directly using the language that provides the implementa-
tion, which makes the relation between conceptualization and implementation
simpler.

The mapping from the conceptualization to the formalization in (Felfernig
et al. 1999) is more complex and results in a larger and more complex set of
sentences than in this work. This is partially due to a bit more complex con-
ceptualization, but there are also other significant differences. Due to the
groundedness property, the representation in this work is modular in the sense
that each ontological definition, type, property definition and constraint can be
formalized independently of other things. This is not the case for the UML-
based approach. Many of the ontological axioms given as independent sen-
tences in this work are not defined independently in (Felfernig et al. 1999), but
with reference to a given configuration model. Therefore, they need to be
changed if the configuration model is changed.

The definition of a valid configuration in (Felfernig et al. 1999) does not
include the minimality condition, which would enforce a groundedness prop-
erty. For example, it is necessary to separately add a sentence stating that every
component individual must be a part of some whole that may have it as a part
according to the configuration model. In the formalization of this work, this
additional sentence is not required, since a component individual can be in a
configuration only if is introduced by some rule as a part of some whole. The
difference means that if the configuration model changes with respect to the
part definitions in it, this sentence will need to be rewritten in the UMIL-based
approach. In the rewriting, all the part definitions in the configuration model
must be taken globally into account.

94

Furthermore, the compositional structure of the product is represented in
(Felfernig et al. 1999) using ports and connections, which leads to more com-
plexity. The underlying GCSP formalism and its implementation seem to have
affected this decision. This is in contrast to the formalization of the simplified
ontology in this work, which tries to be implementation and method inde-
pendent.

Weight constraints and domain predicates allow a compact representation
of things that require complex predicates in (Felfernig et al. 1999). As an ex-
ample, a very complex sentence is needed to enforce the lower bound of a
cardinality in a part definition. This is simple using cardinality constraints.
Component types are represented as object constants in (Felfernig et al. 1999)
unlike in this work. Thus, the relatively simple mechanism of using unary
predicates for representing types of objects is not used. This necessitates ex-
plicit modeling of the inheritance of properties.

To represent the knowledge that a component individual must be transi-
tively part of the same component individual as some other component indi-
vidual, path constructs are defined in (Felfernig et al. 1999). The path constructs
are equivalent to the transitive closure of the has part relation in this work,
which can be easily defined in the standard manner using rules. Thus, similar
path constructs can be easily incorporated into the formalization in this work.

3.5.3 Consistency-based Configuration

In (Friedrich and Stumptner 1999) it is shown that the configuration task can
be considered analogous to the consistency-based fault diagnosis task. There-
fore, the results from that domain can be imported to the configuration do-
main. Only the formalization of configuration as consistency is discussed here.

In consistency-based configuration, a configuration problem is defined as
a union of two theories. The first represents a configuration model and the
second the requirements. The configuration model theory defines a set of
component types, their ports and attributes, the domains of attributes, and
constraints. The types, ports, attributes and the values in the domains are all
represented as object constants. The formalization is limited to discrete do-
mains.

A configuration is defined to consist of the following three theories:

e a set of ground atoms defining the component individuals in a configu-
ration and of which types in the configuration model they are of

e a set of ground atoms defining the connections between component in-
dividuals through ports defined in the configuration model, and

95

e a set of ground atoms defining the attribute value assighments for the
attributes of component individuals defined in the configuration model.

In addition, there are three ontological axioms that are included in every con-
figuration model. These state that each component individual must have a
unique type, each port takes part in at most one connection and each attribute
must have a unique attribute value.

A configuration is defined as a union of the three theories representing
the components, connections and attribute value assignments. A consistent
configuration is such that its union together with the configuration model and
requirements is satisfiable, i.e. that there is a model of the entire theory thus
formed. The consistency of a configuration is not enough for defining cor-
rectness, since if the configuration model and requirements together are satis-
fiable, then the empty configuration is always a consistent configuration.

A further requirement on a correct configuration is that it must be com-
plete, ie., everything that needs to be chosen has been chosen. This require-
ment is formalized by adding a set of completion sentences to each of the sets of
sentences defining the components, ports and attributes. In effect, these repre-
sent the restriction that no ground atoms of similar form as in the configura-
tion except those that are explicitly mentioned in the configuration are true.
There are no other component individuals of these types, no other connec-
tions, and no other attribute value assignments. Now, a za/id configuration is
defined as one whose completed form is consistent with the configuration
model and requirements, i.e. that there is a model of the entire theory. Fur-
thermore, an irreducible configuration is a valid configuration no subset of
which is a configuration.

When comparing consistency-based configuration with the approach
taken in this work, the first obvious difference is the notion of a configuration.
A configuration is defined as a theory of first order logic in the first and as a
Herbrand interpretation of a set of sentences in DWCRL in the latter. Al-
though the form of the theory in consistency-based configuration actually is
equivalent to a Herbrand interpretation, in the sense that it has a unique Her-
brand model with exactly the same contents as the theory, there are three dif-
ferences. First, in the Herbrand interpretation alternative it is not necessary to
restrict the form of the ground atoms in a configuration to use the vocabulary
of the configuration model. This is built into the definition of what a Her-
brand interpretation is. However, similarly as in the formalization in this work,
the component identifiers are separate from the configuration model.

The second, more important, difference is that a model of a set of sen-
tences containing positive information, i.e. that something must exist or that a

96

choice between two alternatives must be made, cannot be empty, like a theory
consistent with a set of sentences. A model must contain “enough” facts that
every sentence of the theory representing a configuration model becomes true.
Therefore, a configuration in the approach in this work is always complete.
This may not be desirable if the correctness of partial configurations needs to be
defined, which is useful for interactive configuration applications where a user
incrementally specifies a configuration. For discussion on how to extend the
approach in this work to cover partial configurations, see Section 4.2.

The third significant difference to the approach in this work is related to
the groundedness property of the representation language. This property
eliminates the need for the completion sentences, since that type of negative
information is provided by the semantics. In this sense, the valid configurations
may contain unnecessary elements when compared to the approach in this
work. However, a form of groundedness of configurations is in fact recovered
in consistency-based configuration in the definition of an irreducible configuration
by requiring that a configuration is subset minimal. This form of groundedness
is stricter than the form presented in this work and seems to be more related to
the optimality of a configuration rather than its correctness. In particular, in
(Friedrich and Stumptner 1999) it is suggested that optimality criteria such as
cost optimality could be defined on top of the set of valid, irreducible configu-
rations. It is not clear that subset and cost optimality can be thus ordered, as
they may be more or less dependent on each other. For example, if a cost op-
timality criterion were to allow negative costs of component individuals, then a
subset minimal solution is not necessarily the optimal solution.

There is also a somewhat harmless anomaly in consistency-based configu-
ration caused by defining the requirements as an additional theory that must be
satisfied. Requirements cannot introduce anything that is not mentioned in the
configuration model into an irreducible configuration because of the minimal-
ity condition. However, consider the following example. Given a configuration
model of PC, is there a configuration that satisfies the condition that Cleopatra
is the queen of Egypt? If the condition “Cleopatra is the queen of Egypt”
were added to the requirements, the answer would be yes, provided that the
rest of the requirements together with the configuration model are consistent.
This is because the resulting theory would be satisfiable, although the configu-
ration part of the theory would not contain Cleopatra in any role. Thus, the
consistency-based approach fails to distinguish between 1) satisfiable or unsat-
istiable requirements and 2) requirements that make no sense with respect to a
given configuration model.

This anomaly can be corrected in the consistency-based configuration by
insisting that the requirements are given using the terminology of the configu-

97

ration model, i.e. using the constants and predicate symbols in the configura-
tion model. However, in the approach taken in this work, the restriction to
Herbrand models and groundedness at least partially eliminates the need for
posing additional restrictions on the form of the configuration and the re-
quirements. These restrictions in effect mean that only the requirements posed
using the terminology of the configuration model can be satisfied. On the
other hand, this formulation is not perfect either, since it fails to distinguish
between requirements that cannot be satisfied and requirements that do not
make sense. For both these cases, the answer is that there is no such configura-
tion. The distinction between them could be explicated by restricting the re-
quirements to use the terminology of the configuration model.

3.5.4 Generative Constraint Satisfaction Problems

The UML-based conceptualization is first translated to a variant of first order
logic within the framework of consistency-based configuration and then to
GCSP to provide an implementation. Therefore, GCSP is discussed in some
detail in this section to give a complete account of the UMIL-based approach
and to contrast it with the approach taken in this work.

GCSP represents configuration problems by explicitly modeling comzponent,
property and port variables (Stumptner et al. 1998). It also allows an infinite, non-
predefined set of such variables in a solution. GCSP partially extends DCSP
with generic constraints and resource constraints. However, only a restricted form of
activity constraints is allowed.

Generic constraints allow the writing of constraints over undefined sets of
variables by incorporating meta-variables that refer to the CSP variables active
in an assignment. The constraints have a similar form as the inclusive choice
rules of CRL. However, instead of propositional atoms they are constructed
of the meta-variables and decidable predicates. These predicates may refer to
the values that variables have in an assignment, the identity of variables and the
activity of variables. In addition, resource constraints may be stated. These are
aggregate functions on intensionally defined sets of variables and may be used
in the generic constraints as well

The activity constraints are used to introduce the property and port vari-
ables representing the properties and ports that a component variable of a
given type has. This generates active variables to a solution. New active vari-
ables are also generated when a resource constraint indicates that there is a
need for additional resource production. The third case for variable generation
is when a port variable must be instantiated with a component variable to rep-
resent a connection, and an applicable component variable is not active in the

98

assignment. These three cases account for the dynamic change in the set of
active variables. Note that the third case reveals that component individuals are
represented both as variables and values.

There are three major differences between GCSP and the approach in this
work. The first is related to the treatment of the semantics. In (Stumptner et al.
1998) the semantics is explained in detail and is defined to include a kind of
groundedness condition, explicitly for property variables and implied for other
variables as well, as they are only generated in the above three cases. However,
GCSP has no formal semantics that would capture this groundedness aspect.
This distinguishes it from the approach taken in this work. On the other hand,
EDCSP in this work allows only cardinality constraints on the activity of vari-
ables, but no resource constraints using aggregates over variables. In addition,
EDCSP has a finite, predefined set of variables. It would seem that extending
EDCSP with infinite sets of variables, meta-variables and resource constraints
is possible. Thus, such an extension could be used to give a formal account of
GCSP as well.

The second major difference is the one between GCSP and DRWCRL in
the treatment of the component types and component individuals. In GCSP,
the component individuals are CSP variables whose domain is the set of com-
ponent types. A component individual is of the type that the corresponding
variable has as a value. In contrast, in this work object constants, correspond-
ing to values of CSP variables, represent the individuals, while unary predi-
cates, corresponding to CSP variables, define the type of the individual. This
allows usage of the standard notions of quantifiers and variables in rules with-
out introducing meta-variables and the dual representation of component indi-
viduals as variables and values. However, the current semantics of DRWCRL
does not either allow a non-predefined, infinite set of individuals.

The third major difference between DRWCRL and a constraint-based
approach is the difficulty of representing relations such as parthood or con-
nections. This is facilitated by the predicate symbols in DRWCRL. In a con-
straint-based approach, one has to encode relations in the variable names. For
example, property variables are encoded with names of form t.p when type t
has the property P in GCSP. Another example is encoding the connections

between components by the port variable having as a value the name of a
component variable. This representation problem motivated using DWCRL
instead of EDCSP or the propositional rule languages for formalizing configu-
ration knowledge in this work.

Similar to GCSP, a form of resource constraints is included in the rule
languages in this work in the form of weight constraints. However, GCSP al-
lows a richer set of aggregation functions than just the sum in this work (e.g,,

99

maximum value). In addition, constraints using arithmetic are included, which
are missing from the languages in this work. Finally, in the constraint-based
approaches there is no mechanism for defining predicates using other predi-
cates, which is facilitated by rules. In addition, there are no set-valued variables.
This means that, for example, it is very difficult to define the transitive closure
of the has-part relation using constraints.

3.5.5 Computational Complexity

The computational complexity of the configuration task within the framework
of consistency-based configuration or as a GCSP is not analyzed, unlike in this
work. However, it is noted that unless restrictions are made in the depth of the
terms in the formalization of consistency based configuration, infinite configu-
rations are also allowed and thus undecidability could result. This is considered
undesirable and simple restrictions based on the number of component indi-
viduals in a configuration are proposed. On the other hand, a restricted form
of quantification is proposed to allow the representation of configuration
models for which the configurations do not have a predefined size limit.

3.5.6 Implementation

There is no report on an implementation of the UMI-based conceptualization
or consistency-based configuration. However, a related configurator tool called
COCOS implements a configuration modeling language LCON that is close to
the UML-based conceptualization (Stumptner et al. 1998). LCON is a frame-
like language that supports modeling component types, their taxonomy, con-
nections, structure and constraints. LCON is also closely related to GCSP. In
the COCOS implementation, LCON is translated to GCSP and the configura-
tion problem solving is based on the GCSP formalism. The structure related
model elements are translated to connections in a way similar to the UML-
based approach.

The COCOS tool supports a fully automatic configuration mode, check-
ing and completion of configurations and an interactive configuration mode. A
tool called LAVA based on COCOS was reported in 1998 to have been in suc-
cessful operative use for two years. It was used for configuring digital switching
systems with as many as tens of thousands of components. The main reported
benefits are that it improved the quality of configuration results, was consid-
erably less expensive to implement than the approaches tried earlier in the
company, had a better functionality than the earlier approaches, and was more
maintainable (Fleischandelr et al. 1998).

100

4 Further Work

In this section, further empirical and theoretical research needed for concre-
tizing the approach taken in this work is discussed.

The practical relevance of the ontology and the prototype implementation
of the languages gained credibility based on a few small examples. However,
more work is needed to empirically validate the ontology, the languages and
scalability of the implementation by testing them on a larger sample of prod-
ucts and larger products. This requires implementing a configurator based on
the approach taken here. Modeling large enough samples and products is very
time consuming but crucial for validating this and other approaches to con-
figuration. Alternative approaches to generating large random test sets are dis-
cussed. The main problem identified with this approach is that it may be very
difficult to develop a practically relevant statistical model of products in gen-
eral.

The implications of the complexity results are also briefly discussed. The
main thrust is that the configuration task seems to be at least NP-complete but
there are several reasons why the worst case behavior may not actually be rele-
vant for real products.

In addition to empirical work, there is a clear need for further formal work
in developing and analyzing the ontology and languages. This work is needed
to bring this approach closer to practice. The further work includes incorpo-
rating geometric, pricing, scheduling, optimality and control knowledge into
the ontology and arithmetic into the languages. Further on, it is necessary to
extend the semantics of the languages to handle partial, incomplete configura-
tions for interactive configuration where the configurator supports a human. In
addition, problems with no pre-defined bounds on the size of the configura-
tion may need to be supported. Finally, a proper visual configuration modeling
language based on the ontology in this work should be defined. It should also
have a direct model theoretic semantics instead of translating it to another lan-

guage.

4.1 Preliminary Evidence for the Approach

The empirical and constructive part of this work is not extensive enough to
conclude that the approach can be used for practical configuration tasks. These
parts were given less emphasis, since the intention was to explore the approach
and provide some proof of concept before proceeding with more extensive
empirical work. However, there seems to be enough evidence of practical fea-

101

sibility that the approach is worth pursuing further. This evidence is discussed
next for the ontological part and implementation of the formalization.

4.1.1 Configuration Ontology

The generalized ontology covered the modeling needs of the three case prod-
ucts well. Part definitions were found a convenient way of representing the
example products. The compositional structures were easy to construct. This is
also the way that product developers describe products (Tiithonen et al. 1998).
Ports and connections would probably be easier to identify and model than
they were if the interfaces of the component types in the product were origi-
nally set to a high priority and thus better documented. Resource interactions
were not so evident in the rock drilling equipment, whereas in the PC and hos-
pital monitor they were easy to identify. The examples required relatively few
general constraints. Thus, for these examples the generalized configuration
ontology covered the typical configuration phenomena well. In fact, the simpli-
fied ontology with few extensions (e.g. attributes) would also have been equally

applicable.

4.1.2 Formalization and Implementation

The formalization of the simplified configuration ontology was easy using
DRWCRL. The efficiency of the prototype implementation for the languages
is sufficient for the small set of small problems that it was tested on. However,
these problems were very restricted in size and the phenomena they captured.
Therefore, it is not clear that the approach scales up to large products or dif-
ferent products. This is in contrast to the approaches for which empirical evi-
dence for solving real configuration problems exists (McGuinness and Wright
1998; Fleischandelr et al. 1998; Yu and Skovgaard 1998).

However, there are indications that the proposed formalization and its im-
plementation provide a basis for solving real product configuration problems.
Experience in other domains such as planning, satisfiability checking, model
checking and Hamiltonian circuits have shown that the implementation of the
basic constraint rules on which the prototypes are based is capable of handling
large problems. It also solves such complex problems with a comparable or in
some cases considerably better performance than the best problem solvers in
these domains (I, (Simons 2000).

A formalism with the groundedness principle allows a more compact rep-
resentation of knowledge than a formalism without such a principle. A more
compact representation may also beneficially affect the efficiency of problem

102

solving. In (Simons 2000), it is empirically shown that for at least some prob-
lem domains whose representation benefits from the groundedness principle,
the efficiency of problem solving is better than when using a formalism with
no groundedness principle. The comparison is carried out between the Smod-
els system implementing basic constraint rules and several state-of-the-art im-
plementations of the 3-SAT formalism.

More compelling evidence for the approach in this work is provided in
(Sytjanen 1999). In that approach, a rule language is used for formalizing the
configuration model of an operating system. The ontological basis of that ap-
proach is simpler. It consists of objects and their simple dependencies. In ad-
dition, the rule language is simpler than DRWCRL. The rule language is given
a formal semantics that incorporates a similar groundedness property as in this
work. The complexity of the configuration task is shown to be NP-complete.
The implementation is based on the same system and form of basic constraint
rules as in this work. For this configuration model, the system seems to pro-
vide adequate performance for practical purposes, i.e. running times of a few
seconds. The configuration model has roughly two thousand components,
which results in a set of tens of thousand rules in the representation.

4.2 Further Empirical Evaluation

There is a clear need for more empirical research to validate the feasibility of
the ontology, formalization and implementation in this work. Such empirical
research in the form of modeling and solving real configuration problems
would also provide input for theoretical work.

4.2.1 Validating the Ontology

The generalized ontology should be validated by modeling a larger set of dif-
ferent kinds of products. It may also have to be extended or changed. The
value of the ontology depends mostly on its utility in modeling different prod-
ucts. In addition, a more comprehensive set of modeling guidelines should be
developed to provide a modeling methodology. Such empirical evaluation is
time consuming and requires access to the confidential information of many
companies. However, this seems to be the only way to properly validate the
ontology.

103

4.2.2 Testing the Implementation and Formalization

As with the ontology, the implementation based on the formalization should
be tested on a larger set of larger problems to show whether it scales up and is
practically useful in supporting configuration tasks.

Before empirical evaluation, one needs to consider the following question:
As configuration tasks are NP-hard, i.e. intractable, for most models of con-
figuration, can efficient support for configuration tasks be offered by a com-
puter? The answer may be “yes” for two reasons. First, the analysis is based on
worst case complexity. It may be that configuration problems are so well
structured that the exponential worst-case behavior implied by NP-
completeness does not materialize. This structure could be the result of the
product being designed by humans. Designers very often recursively decom-
pose a design problem into relatively independent parts. Thus, a product is
typically not an ill-structured system where everything depends on everything
else.

Second, there are several reports on the successful use of systems based
on intractable approaches. Heuristic control knowledge in the COCOS system
(Stumptner et al. 1998) and the interactive configuration mode in the PROSE
system (McGuinness and Wright 1998) provided efficient systems that have
been in operational use for configuring very large products. In other cases, the
products have been configured efficiently enough with complete search algo-
rithms for propositional logic and rule-based representations without problem
specific heuristics (Yu and Skovgaard 1998; Syrjanen 1999).

Acquiring access to large enough sets of product models to get statistically
meaningful test results is difficult, since the models are often confidential. As
noted above, it is also very time consuming to model large products. Another
approach to providing empirical results is to use large randomly generated
problem sets. This has the failing that, as suggested above, real products may
exhibit particular structural features and not follow a random distribution.

One way of trying to work around these difficulties is to combine the best
of both worlds. This could be accomplished by modeling some set of real
world products and analyzing their common and varying characteristics. A sta-
tistical model based on the analysis could then be developed. Using the model,
large random problem sets could be generated for testing purposes. This idea
is similar to the idea underlying the GraphBase system. GraphBase contains
graphs representing real world phenomena such as maps. Using these as a seed,
it can generate large random graphs for testing algorithms (Knuth 1994).

104

4.2.3 Constructing a Configurator

In order to proceed with large-scale empirical tests of the ontology and im-
plementation, it would be necessary to construct a system for modeling con-
figuration knowledge and solving configuration problems. Such a system
should have a good graphical modeling environment to facilitate fast modeling;
It should implement the translation from the configuration modeling language
to rules and allow the use of the implementation for configuring the products.
Of course, it should be instrumented to allow testing on large sets of configu-
ration models and to provide measurement data on the performance.

For such a system, simplicity of the representation and understandability
of configuration models is a challenge. A computer-based tool at least in prin-
ciple allows a clear graphic representation of configuration models. However,
even this may not be enough if the models become very large. Additionally,
hierarchical browsing of configuration models, for instance based on the
product structure, and separate views for classification, part definitions, ports,
resources, functions and constraints would enhance the usefulness of the sys-
tem.

4.3 Further Theoretical Work

4.3.1 Ontology

Like the previous approaches, the ontologies presented in this work are proba-
bly partial ones. A more complete ontology would probably include geometric,
pricing, scheduling and optimality related knowledge and the knowledge on
how to configure a product. The geometric layout of a product is important
for some products (Tithonen et al. 1996) and may influence configuration deci-
sions based on, for example, space constraints. For practical tasks, it is also not
enough to generate only the description of a correct product. A configurator
also needs to model and reason on the price or cost of the product, and on
when it can be delivered to the customer, i.e. on scheduling knowledge.
Furthermore, not all requirements are strict and sometimes there may be
several suitable configurations for a given set of requirements (Stumptner et al.
1998). Therefore, one should be able to model and reason on preference or
optimality criteria and soff constraints and requirements. These types of constraints
and requirements are such that it would be nice if the configuration satisfies
them but this is not necessary. Finally, some configuration tasks may be such
that they cannot be carried out efficiently using a general complete algorithm.

105

Thus, it may be necessary to extend the ontology to cover control knowledge,
1.e. knowledge on how to configure the product. This approach has been taken
in, for example, the COCOS system (Fleischandelr et al. 1998).

4.3.2 Extending the Formalisms

While the formalisms in this work, particularly DRWCRL, provide a straight-
forward representation of many aspects of configuration knowledge, some
extensions to their syntax and semantics would make them more useful. In
addition, potential extensions to the ontology and alternative definitions of the
configuration task may require new constructs. The most important of these
extensions are real and integer arithmetic, aggregate functions, optimization
criteria, partial configurations, control knowledge and support for configura-
tion tasks with unlimited configuration size.

Arithmetic on integers and reals is an important representation format for
many forms of engineering knowledge, such as geometric knowledge on di-
mensions or physical measures such as weights of components, or pricing and
scheduling related knowledge. The formalisms in this work should be extended
with constructs allowing arithmetic to facilitate representing such knowledge.
Additionally, aggregate constructs similar to those introduced in, for instance,
Datalog and other database languages would probably prove useful for ex-
pressing general global constraints over the configuration. Arithmetic con-
straints and aggregates are supported by the COCOS system (Stumptner et al.
1998)

Since incorporating arithmetic easily leads to undecidable configuration
tasks, the expressivity of such an extension needs to be carefully balanced
against the complexity of configuration. The first candidates would be such
that their decision problems do not increase the complexity beyond NP, for
instance integer programs (Papadimitriou 1994). A natural extension of arith-
metic and weight constraints is to provide constructs to define optimization
criteria and an implementation that allows optimization based on those criteria.

Another direction to pursue is to define semantics for the languages in this
work that would formalize the notion of a partial, incomplete configuration.
Such a semantics would allow extending the formal model to cover interactive
configuration, where the user makes the hard decisions and the computer only
the efficiently computable ones. For example, the propositional logic-based
system in (Yu and Skovgaard 1998), the PROSE system (McGuinness and
Wright 1998) and the COCOS system (Stumptner et al. 1998) all provide such
a configuration mode. This may be the only feasible alternative for very large
or complex problems. In addition, this type of assistance in configuration tasks

106

can be more acceptable to companies than a completely automatic configurator
(Tithonen et al. 1996).

In interactive configuration, a user would specify a partial configuration.
After this, the configurator would compute the immediate consequences of the
partial configuration with respect to a configuration model, thus possibly add-
ing or removing some elements. Then, the user would add some specifications,
and so on. In this configuration mode, it is very important that the partial con-
figuration can be computed efficiently. A further line of research also sup-
porting the configuring of large products would be to investigate how to in-
corporate control knowledge in a formally well-founded manner to the lan-
guages in this work.

Some configuration problems may arguably be such that no limit on the
size of the configuration can be defined before solving the problem instance.
As an example, configuring a telecommunications network based on very ab-
stract functional requirements may give no indication of a size limit on the
number of nodes within the network. A system implementing a restricted form
of such problems and in operational use is described in (Fleischandelr et al.
1998). However, since a product is usually a physical one or embedded in a
physical framework, such as software in a computer, a configuration in princi-
ple should be finite.

There are at least two different possibilities to extend the approach in this
work to cover configuration problems without pre-defined bounds. The first is
to follow the approach taken by the GCSP by introducing “generators” in the
formalism that in effect make the set of available component individuals infi-
nite. Adding such generator functions to the language of DRWCRL or
FOWCRL makes the Herbrand Universe of a set of rules infinite. The second
is to allow an infinite set of rules without function symbols. For the formaliza-
tion of the simplified ontology, this would mean that the storage of individuals
would be infinite. Both extensions accomplish the desired results. However, the
first would allow a finite representation of the set of infinite individuals, which
makes it more amenable to practical implementation. Unfortunately, this does
not mean that decidability would be preserved in this option. Already allowing
functions in the subset of FOWCRL corresponding to normal logic programs
with stable model semantics would lead to highly undecidable configuration
problems. This can be shown based on the complexity of decision tasks for
such first-order normal logic programs (Schlipf 1995).

107

4.3.3 Formalization of the Simplified Ontology

The formalization of the simplified ontology in this work does not cover the
generalized ontology. It is relatively easy to extend our representation to cover
most of it or the one in (Felfernig et al. 1999). However, some aspects cannot
be captured in a straightforward manner in the present form of DRWCRL.
The lack of arithmetic makes encoding numeric attributes and the constraints
on them difficult. For discrete domains, this is in principle possible by intro-
ducing an object constant for each value and representing a constraint on them
as a set of allowed values. However, this is not very convenient.

Furthermore, a formal visual language for representing configuration
knowledge based on the ontology and in a form understandable to domain
experts should be developed. The mapping from a configuration model repre-
sented in that language to DRWCRL should be formalized to allow rigorous
analysis of the different variants of configuration tasks and conceptualizations.
Such a language and its mapping are needed to implement the approach in this
work. Another related research direction would be to formalize the ontology
by giving the formal language based on the ontology a direct declarative se-
mantics instead of mapping it to another language. Such a semantics should
incorporate some form of the groundedness condition.

108

5 Conclusions

Many companies design and manufacture configurable products, i.e. products
that are routinely adapted to satisfy the specific needs of customers. For such
products, the configuration task can be very complex due to the large number
of components in the product and the large number of or highly complex in-
terdependencies of the rules of adaptation. Therefore, product configurators,
information systems that configure a product or support a person in doing it,
are needed.

Numerous diverging theoretical models of configuration tasks and prod-
uct configurators have been developed within the field of artificial intelligence.
The reports on these models have usually addressed the problems of develop-
ing a conceptualization and language for representing the configuration knowl-
edge and devising a problem solving method for supporting configuration
tasks. In addition, implementations of the languages and methods as well as
empirical evidence of their suitability to real-world configuration problems
have been reported.

Despite the research no widely accepted theoretical model of configura-
tion knowledge and tasks that would cover all the relevant aspects in a satis-
factory manner has emerged. Most of the models presented also lack a sound
formal basis that would allow a rigorous analysis and comparison of the mod-
els and their implementations. Only few models combine a detailed conceptu-
alization with its formalization. Thorough empirical study of the efficiency and
applicability of the implemented algorithms and systems is also mostly missing,
The empirical study is made difficult by the confidentiality of knowledge on
real products and the huge effort involved in modeling complex products.

This thesis attempts to provide a more unified and formal treatment of
configuration knowledge and tasks. A generalized ontology of product con-
figuration that combines the major conceptual approaches to configuration
knowledge representation was defined. In addition, declarative languages for
representing configuration knowledge were developed. Furthermore, a simpli-
fication of the ontology was formalized using the most expressive of these
languages. Separately defining a conceptualization, formal languages and a
formalization worked well in the situation where it was not clear what exactly
the conceptualization would be. This approach facilitates trying out different
variants of conceptualizations with relatively little formalization effort.

The languages and the formalization in this work are novel in that their
declarative semantics includes the notion of groundedness which means that a
configuration must not contain anything that is not mentioned in the configu-

109

ration model and needed for the product to work. Incorporating this property
and other configuration specific constructs in the languages made the formal-
ization of configuration knowledge straightforward. It also allows a uniform
representation of the different concepts.

The computational complexity of the configuration tasks for the lan-
guages and relative expressiveness of the languages were analyzed. For most of
the languages and the configuration task based on the simplified ontology, the
task is NP-complete. It could be shown that the groundedness property in-
creases in a clearly definable manner the expressive power of a language.

Most previous approaches have not precisely classified the complexity of
the configuration tasks. In this respect, this work provides new information on
the complexity of configuration tasks and shows that rather expressive combi-
nations of constructs can be used without increasing the complexity beyond
NP, given certain relatively natural assumptions.

Preliminary empirical evidence for the suitability of the ontology for
modeling real products and for the feasibility of implementing configuration
tasks on the basis of the formalization was found by modeling simple example
products. It may be that the in the worst case intractable configuration prob-
lem, as implied by the complexity result, is not quite so hard in practice. This
may be due to the structured nature of products designed by humans. Further
work in providing empirical evidence for the approach and to validate the
structured nature is needed, though.

The main conclusion from this work is that there is no generally accepted
formal model unifying the different approaches to product configuration.
There is no consensus on the definition of configuration task and configura-
tion ontology. This is witnessed by the abundance of different approaches.
However, the different approaches are slowly coming together. Some of them
have also become more or less generally accepted cornerstones. The results in
this work show that the different approaches can be brought together under a
formal framework. It is also clear that more theoretical work on developing
formal models and analyzing them is needed. Further theoretical work is also
needed for extending the approach in this work to better suit real configuration
problems.

110

References

Artale A., Franconi E., Guarino N. and Pazzi L. Part-whole relations in object-
centered systems: An overview. Data & Knowledge Engineering(20):347-83. 1996.

Axling T. and Haridi S. A tool for developing interactive configuration applications.
Journal of Logic Programming, 19:658-79. 1994.

Baader F, Burckert H.-]., Gunter A. and Nutt W. Proceedings of the Workshop on Know!-
edge Representation and Configuration WRKP'96. DFKI GmbH (German Research Center
for Artificial Intelligence). Document D-96-04. 1996.

Baader E and Hollunder B. Computing Extensions of Terminological Default Theo-
ries. In Lakemeyer, G. and Nebel, B. (eds.) Foundations of Knowledge Representation and
Reasoning, Springer-Verlag, Pages 30-52. 1994.

Balkany A., Birmingham WP and Tommelein I.D. An analysis of several configura-
tion design systems. Al EDAM, 7(1):1-17. 1993.

Buchheit M., Klein R. and Nutt W. Constructive Problem Solving: A Model Con-
struction Approach towards Configuration. TM-95-01. Deutsches Forschungszentrum
fir Kinstliche Intelligenz GMBH (DFKI). 1995.

Biirckert H.-J., Nutt W, and Seel C. The Role of Formal Knowledge Representation in
Configuration. In Baader, E, Birckert, H.-]., Ginter, A., and Nutt, W. (eds.) Proceedings
of the Workshop on Knowledge Representation and Configuration WRKP'96, DFKI GmbH
(German Research Center for Artificial Intelligence). 1996.

Carson C. Intelligent Sales Configuration. PC_41. 1997.

Clarke B.R. Knowledge-based configuration of industrial automation systems. Interna-
tional Journal of Computer Integrated Manufacturing, 2(6):346-55. 1989.

Cohn A.G. Taxonomic reasoning with many-sorted logics. Artzficial Intelligence Review,
3:89-128. 1989.

Cunis R., Ginter A., Syska 1., Peters H. and Bode H. PLAKON — An Approach to
Domain-Independent Construction. The Second International Conference on Industrial &
Engineering Applications of Artificial Intelligence &> Expert Systems IEA/ AIE-89, pages 866-
74. 1989.

Darr T., McGuinness D. and Klein M. Special Issue on Configuration Design. .4l
EDAM, 12(4). 1998.

Dix J. Semantics of Logic Programs: Their Intuitions and Formal Properties. In

Fuhrmann, A. and Rott, H. (eds.) Logi, Action and Information -- Essays on Logic in Phi-
losophy and Artificial Intelligence, DeGruyter. Pages 241-327. 1995.

111

Faltings B. and Freuder E.C. Configuration—Papers From the 1996 AAAI Fall Symposium.
Technical report FS-96-03. Menlo Park, California: AAAI Press. Technical report FS-
96-03. 1996.

Faltings B. and Freuder E.C. Special Issue on Configuration. IEEE Intelligent Systems &
Their Applications:29-85. 1998.

Faltings B., Freuder E.C., Friedrich G.E. and Felfernig A. Configuration Papers from
the AAAI Workshop. AAAI Press. 1999.

Felfernig A., Friedrich G.E. and Jannach D. UML As Domain Specific Language for
the Construction of Knowledge Based Configuration Systems. In Proceedings of the 11th
International Conference on Software Engineering and Knowledge Engineering SEKE99. 1999.

Fleischandelr G., Friedrich G.E., Haselbock A., Schreiner H. and Stumptner M. Con-
figuring large systems using generative constraint satisfaction. IEEE Intelligent Systems
& Their Applications, 13(4):59-68. 1998.

Fowler M. UML Distilled: Applying the Standard Object Modeling Language. Addison-
Wesley. 1997.

Friedrich G.E. and Stumptner M. Consistency-Based Configuration. In Faltings, B.,
Freuder, E.C., Friedrich, G.E., and Felfernig, A. (eds.) Configuration Papers From the
AAAI Workshop, AAAT Press. Pages 35-40. 1999.

Gelle E. On the generation of locally consistent solution spaces. Ph.D. Thesis, Ecole Polytech-
nique Fédérale de Lausanne, Switzerland. 1998.

Ginsberg M.L. Readings in Nonmonotonic Reasoning. Morgan Kaufmann Publishers. 1987.

Gruber T. Ontolingua: A Mechanism to Support Portable Ontologies. Version 3.0.
KSL 91-66. Stanford University, Knowledge Systems Laboratory. 1992.

Gruber T. A Translation Approach to Portable Ontology Specifications. Knowledge
Acquisition, 5:199-220. 1993.

Gruber T. Toward principles for the design of ontologies used for knowledge sharing,
International Journal of Human-Computer Studies, 43:907-28. 1995.

Gruber T., Olsen G.R and Runkel J.T. The configuration design ontologies and the VT
elevator domain theory. International Journal of Human-Computer Studies, 44:569-98. 1996.

Guarino N. Formal ontology, conceptual analysis and knowledge representation. Inzer-
national Journal of Human-Computer Studies, 43:625-40. 1995.

Guarino N. Understanding, building and using ontologies. International Journal of Hu-
man-Computer Studies, 46:293-310. 1997.

Guarino N. and Giaretta P. Ontologies and Knowledge Bases Towards a Terminologi-
cal Clarification. In Mars, N.J.I. (ed.) Towards Very Large Knowledge Bases. Amsterdam,
IOS Press. 1995.

112

Ginter A., Cunis R. and Syska 1. Separating Control From Structural Knowledge in
Construction Expert Systems. Proc. of the Third International Conference on Industrial and
Engineering Applications of Artificial Intelligence and Expert Systems (IEAJAIE 90), ACM,
pages 601-10. 1990.

Hales H.L., ed. Automating and Integrating the Sales Function: How to Profit From
Complexity and Customization. Enterprise Integration Strategies, 9(11):1-9. 1992.

Hodges W. Elementary Predicate Logic. In Gabbay, D. and Guenthner, F. (eds.) Hand-
book of Philosophical Logic, D. Reidel Publishing Company. Pages 1-131. 1983.

Jungst W, and Heinrich M. Using resource balancing to configure modular systems.
IEEE Intelligent Systems & Their Applications, 13(4):50-8. 1998,

Klein R. A Logic-Based Description of Configuration: the Constructive Problem
Solving Approach. In Faltings, B. and Freuder, E.C. (eds.) Configuration—Papers From the
1996 AAAI Fall Symposium, AAAIL Press. Pages 1-10. 1996.

Klein R., Buchheit M. and Nutt W. Configuration As Model Construction: The Con-
structive Problem Solving Approach. In Proceedings of Artificial Intelligence in Design 1994.
Pages 201-18. 1994.

Knuth D.E. The Stanford GraphBase A Platform for Combinatorial Computing. ACM Press.
1994.

Kramer B.M. Knowledge-Based Configuration of Computer Systems Using Hierar-
chical Partial Choice. Proc. of the Third International Conference on Tools for Artificial Intelli-
gence T/AL 91, IEEE, pages 368-75. 1991.

Lakemeyer G. and Nebel B. Foundations of Knowledge Representation and Reason-
ing. A Guide to This Volume. In Lakemeyer, G. and Nebel, B. (eds.) Foundations of
Knowledge Representation and Reasoning, Springer-Verlag, Pages 1-12. 1994.

Lloyd J.W. Foundations of Logic Programming. Second ed. Springer-Verlag, 1987.

Mackworth A.K. Consistency in Networks of Relations. Artificial Intelligence, 8:99-118.
1977.

McDermott J. R1: a rule-based configurer of computer systems. Artificial Intelligence,
19(1). 1982.

McGuinness D. and Wright J.R. An Industrial-strength Description Logic-Based Con-
tigurator Platform. IEEE Intelligent Systems & Their Applications, 13(4):69-77. 1998.

McGuinness D. and Wright J.R. Conceptual modelling for configuration: A descrip-
tion logic-based approach. AT EDAM, 12(4):333-44. 1998.

Mittal S. and Falkenhainer B. Dynamic Constraint Satisfaction Problems. Proc. of the
8th National Conference on Artificial Intelligence (A4.41-90), MIT Press, pages 25-32. 1990.

113

Mittal S. and Frayman E Towards a Generic Model of Configuration Tasks. Proc. of the
11th International Joint Conference on Artificial Intelligence (IJCAIL), pages 1395-401. 1989.

Najman O. and Stein B. A Theoretical Framework for Configuration. In Belli, F and
Radermacher, EJ. (eds.) Proceedings of Industrial and Engineering Applications of Artificial
Intelligence and Excpert Systems, 5th International Conference, IEA/ AIE 92, Springet-Vetlag,
Pages 441-50. 1992.

Owsnicki-Klewe B. Configuration As a Consistency Maintenance Task. Proc. of Kiinstlr-
che Intelligens, GW.AI-8S, Eringerfeld, Springer-Verlag, pages 77-87. 1988.

Papadimitriou C.H. Computational Complexity. Reading, Massachusetts: Addison-Wesley
Publishing Company, Inc. 1994.

Peltonen H., Minnistd T., Alho K. and Sulonen R. Product Configurations—An Ap-
plication for Prototype Object Approach. Proc. of the 8th Eunropean Conference on Object-
Oriented Programming (ECOOP '94), Springer-Vetlag, pages 513-34. 1994.

Przymusinska H. and Przymusinski T. Semantic Issues in Deductive Databases and
Logic Programs. In Banerji, R.B. (ed.) Formal Technigues in Artificial Intelligence A Source-
book, Elsevier Science Publishers B.V. (North-Holland). Pages 321-67. 1990.

Richardson T. Using Information Technology During the Sales Visit. Cambridge, UK: Hew-
son Group. 1997.

Sabin D. and Freuder E.C. Configuration As Composite Constraint Satisfaction. In
Faltings, B. and Freuder, E.C. (eds.) Configuration—_Papers From the 1996 AAAI Fall
Symposium, AAAI Press. Pages 28-36. 1996.

Sabin D. and Weigel R. Product configuration Frameworks—a survey. IEEE Intelligent
Systems & Their Applications, 13(4):42-9. 1998.

Schlipf].S. Complexity and undecidability results for logic programming, Awnnals of
Mathematics and Artificial Intelligence, 15:257-88. 1995.

Schreiber A/'T. and Birmingham WDP. The Sisyphus-V'T initiative. International Journal of
Human-Computer Studies, 44(3). 1996.

Schreiber G. and Wielinga B. Configuration-Design Problem Solving, IEEE Ex-
pert:49-56. 1997.

Schroder C., Moller R. and Lutz C. A Partial Logical Reconstruction of PLA-
KON/KONWERK. In Baader, E, Burckert, H.-J., Gunter, A., and Nutt, W. (eds.)
Proceedings of the Workshop on Knowledge Representation and Configuration WRKP'96, DFKI
GmbH (German Research Center for Artificial Intelligence). 1996.

Searls D.B. and Norton L.M. Logic-based configuration with a semantic network. Jour-
nal of Logic Programming.53-73. 1990.

Simons P. Extending and Implementing the Stable Model Semantics. Ph.D. Thesis, Helsinki
University of Technology, Finland. 2000.

114

Soininen T. Product configuration knowledge: Case study and general model. Mastet's thesis,
Helsinki University of Technology. 1996.

Soininen T. and Niemeld I. Formalizing Configuration Knowledge Using Rules with
Choices. Technical report TKO-B142. Laboratory of Information Processing Science,
Helsinki University of Technology. 1998.

Stumptner M., Friedrich G.E. and Haselbock A. Generative constraint-based configu-
ration of large technical systems. Al EDAM, 12(4):307-20. 1998.

Stumptner M. and Haselbéck A. A Generative Constraint Formalism for Configura-
tion Problems. Advances in Artificial Intelligence, Berlin, Springer-Verlag Berlin Heidel-
berg, pages 302-13. 1993.

Sytjanen T. A Rule-Based Formal Model for Software Configuration. Mastet's thesis, Helsinki
University of Technology, Department of Computer Science, Laboratory for Theo-
retical Computer Science. 1999.

Tithonen J. Computer-assisted elevator configuration. Mastet's thesis, Helsinki University of
Technology. 1994.

Tithonen J. and Soininen T. Product Configurators — Information System Support for
Configurable Product. Technical Report TKO-B137. Laboratory of Information
Processing Science, Helsinki University of Technology. 1997.

Tiihonen J., Soininen T., Mannisté T. and Sulonen R. State-of-the-Practice in Product
Configuration—A Survey of 10 Cases in the Finnish Industry. In Tomiyama, T.,
Mintyld, M., and Finger, S. (eds.) Knowledge Intensive CAD. London, Chapman & Hall.
Pages 95-114. 1996.

Tithonen J., Soininen T., Mannist6 T. and Sulonen R. Configurable Products - Lessons
Learned From the Finnish Industry. In Proceedings of 2nd International Conference on Engi-
neering Design and Antomation, Integrated Technology Systems, Inc. 1998,

Tong C. and Sriram D. Introduction. In Artsficial Intelligence in Engineering Design, Aca-
demic Press Inc. Pages 1-53. 1992.

Weida R. Closed Terminologies in Description Logics. In Faltings, B. and Freuder,
E.C. (eds.) Configuration—_Papers From the 1996 AAAI Fall Symposium, AAAIL Press.
Pages 11-18. 1996.

Weigel R. and Faltings B. Abstraction Techniques for Configuration Systems. In Falt-
ings, B. and Freuder, E.C. (eds.) Configuration—Papers From the 1996 AAAI Fall Sympo-
sinm, AAAI Press. Pages 55-60. 1996.

Yu B. and Skovgaard H.J. A configuration tool to increase product competitiveness.
IEEE Intelligent Systems & Their Applications, 13(4):34-1. 1998,

