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Abstract. In this paper we present an approach to formally defin-
ing different conceptualizations of configuration knowledge, mod-
eling configuration knowledge, and implementing the configuration
task on the basis of the formalization. The approach is based on a
weight constraint rule language and its efficient implementation de-
signed for representing different aspects of configuration knowledge
uniformly and compactly. The use of the language to represent con-
figuration knowledge is demonstrated through formalizing a unified
configuration ontology. The language allows a compact and simple
formalization. The complexity of the configuration task defined by
the formalization is shown to be NP-complete.

1 Introduction

Product configuration can be roughly defined as the task of produc-
ing a specification of a product individual, a configuration, from a
set of predefined component types while taking into account a set
of restrictions on combining the component types. Knowledge based
systems for configuration tasks, product configurators, have recently
become an important application of artificial intelligence techniques
for companies selling products tailored to customer needs.

Several approaches to configuration are based on relatively well-
understood general formalisms, such as constraint satisfaction, its ex-
tensions, and variants of description logics. Other approaches have
defined specific configuration domain oriented conceptual founda-
tions. These include the three main conceptualizations of configu-
ration knowledge as resource balancing, product structure and con-
nections within a product [11]. Despite the research, there are few
formal models of configuration aiming to unify the different formal
and conceptual approaches. Such models are needed to facilitate rig-
orous analysis and comparison of the different approaches.

In this paper we present an approach that facilitates formal rep-
resentation of configuration knowledge based on different and uni-
fied conceptualizations. In contrast to many previous approaches that
have developed special purpose algorithms for each conceptualiza-
tion, our aim is to provide for fast prototyping of conceptualizations
and configuration tasks based on them. This is accomplished by cap-
turing the configuration knowledge using a neutral representation
language called weight constraint rules and implementing the config-
uration task using a general implementation of such rules. Therefore,
when changing the configuration model or its underlying concep-
tual foundation, only the representation of the knowledge is changed.

1 Helsinki University of Technology, TAI Research Center and Lab. of In-
formation Processing Science, P.O.Box 9555, FIN-02015 HUT, Finland,
email: fTimo.Soininen,Juha.Tiihonen,Reijo.Suloneng@hut.fi

2 Helsinki University of Technology, Dept. of Computer Science and Eng.,
Lab. for Theoretical Computer Science, P.O.Box 5400, FIN-02015 HUT,
Finland, email: Ilkka.Niemela@hut.fi

There is no need to design a new algorithm for the configuration task,
as the general implementation of the rule language can still be used.

We first briefly introduce the logic program like rule language that
has been specifically designed to allow representing knowledge on
different aspects of configuration in a uniform and simple manner.
At the same time, the computational efficiency of the configuration
task has also been taken into account. The language has a declarative
semantics providing a formal definition for the product configuration
task. The semantics captures the property that a configuration can
only contain elements that are justified by the configuration model.
This property has been identified as important in e.g. the research on
dynamic constraint satisfaction problems (DCSP) [5]. The justifica-
tion property also allows a more compact and modular representation
of knowledge than e.g. classical logic or constraint satisfaction prob-
lems [10, 9]. For example, a subset of the rule language can represent
e.g. CSP and DCSP in a simple, compact manner [10]. It also extends
these approaches with cardinality and weight constraints.

After introducing the rule language we demonstrate its applicabil-
ity to configuration knowledge representation. This is done by show-
ing how a configuration model represented using a simplification of a
generalized configuration ontology [11] covering product structures,
resource balancing, connections and constraints is mapped to a set of
rules. The rules are not used by product modelers but as an interme-
diate language that a higher level configuration modeling language
is translated to. Due to the built-in justification property of the lan-
guage, the mapping is modular and relatively simple. Extending the
representation to cover a more complex conceptualization is straight-
forward, although we discuss in brief some challenges to this. The
relevant decision problem for the configuration task is defined and
shown to be NP-complete on the basis of the mapping to rules. Fi-
nally, we discuss our approach in relation to previous similar work.

2 Weight Constraint Rules

In this section we briefly introduce the weight constraint rule lan-
guage used for formalizing configuration knowledge (for more in-
formation on the language see [7, 8]). The language extends logic
programs by offering support for expressing choices as well as cardi-
nality and resource constraints that are often useful in configuration:

Example 1. A (partial) configuration model of a simplified PC could
consist of the following knowledge: There is a known set of different
types of IDE hard disks, IDE CD ROMs, scanners and SCSI cards
that can be parts of a PC. The different IDE hard disks and IDE CD
ROMs are IDE devices. A PC must have from one to two IDE de-
vices, of which at least one must be an IDE hard disk. In addition, a
desktop publishing PC must have a scanner, which can be a flatbed or
a slide scanner. As the slide scanner is a SCSI device, including it in
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a configuration requires a SCSI card. There are two different types of
SCSI cards to select from. Furthermore, each component has an asso-
ciated price. The customer might require that the total price, summed
over the components in a configuration, must be less than $900.

The rule language aims to capture the type of configuration knowl-
edge in the example in a compact form. To do this, it is equipped
with conditional literals restricted by domain predicates for repre-
senting the different types of components and other objects and the
knowledge on them, such as the IDE devices above. Cardinality con-
straints are introduced for representing choices with lower and upper
bounds, such as for the IDE devices in the above example. Resource
constraints on a configuration exemplified by the prices of the com-
ponents above are captured in the generalized language using weight
constraints, which give the language its name.

First we consider ground rules, i.e., rules where variables quan-
tifying over a rule are not allowed. Then we introduce rules with
variables. A weight constraint rule

C0  C1; : : : ; Cn (1)
is built from weight constraints Ci of form

L � fa1 = w1; : : : ; an = wn;

not an+1 = wn+1; : : : ; not am = wmg � U (2)
where L and U are two numbers giving the lower and upper bound
for the constraint, each ai is an atomic formula and each wi a number
giving the weight for the corresponding literal (an atom or its nega-
tion). Such a rule is intuitively read as follows: if the body, i.e. each of
C1 to Cn, holds then the head C0 must also hold. The semantics for
such rules is given in terms of models that are sets of ground atoms.
We say that a positive literal a is satisfied by a model S if a 2 S and
a negative literal not a is satisfied if a 62 S. A weight constraint is
satisfied by a model S if the sum of weights of the literals satisfied
by S is between the bounds L and U . Note that ”<” could also be
similarly used in a constraint. E.g.,

30 � f part(pc1; d1) = 10; part(pc1; d2) = 20;

part(pc1; d3) = 30; part(pc1; d4) = 30 g � 40

is satisfied by a model fpart(pc1; d1); part(pc1; d2)g for which
the sum of the weights is 10 + 20 = 30 but not by a model
fpart(pc1; d3); part(pc1; d4)g for which the sum is 60.

We use shorthands for some special cases of weight constraints. A
cardinality constraint where all weights are 1 is written as

L fa1; : : : ; an; not an+1; : : : ; not amg U (3)
and a cardinality constraint 1flg1 with one literal and 1 as both
bounds simply as a literal l. We call rules where all constraints Ci
are literals normal rules. We can also write mixed rules such as

1 fpart(pc1; sc1); part(pc1; sc2)g 1 part(pc1; sscan) (4)
The semantics of a set of rules is captured by a subclass of models

called stable models. They fulfill two important properties: (i) a sta-
ble model satisfies the rules and (ii) is justified by the rules. A rule r
of form (1) is satisfied by a model S iff S satisfies C0 at least when-
ever it satisfies each of C1; : : : ; Cn. A rule without a head is satisfied
if at least one of the body constraints is not. The technical details of
the justifiability property can be found in [7], but we explain the basic
intuition through an example. Consider rule (4). It is satisfied, e.g.,
by the model fpart(pc1; sc1)g. However, this model is not justified
by the rule since there is no reason to include the head of the rule in
the model, since the body of the rule, part(pc1; sscan), is not jus-
tified. Indeed, for the rule (4) the only stable model is the empty set
which also satisfies the rule. Suppose we add two rules

1 fpart(pc1; fscan); part(pc1; sscan)g 2  dtp(pc1) (5)

dtp(pc1)  (6)

to (4). Then each stable model of the rules (4–6) contains the atom
dtp(pc1) and at least one of fpart(pc1; fscan); part(pc1; sscan)g.
This holds because dtp(pc1) is justified by rule (6) and, hence, a
choice from fpart(pc1; fscan); part(pc1; sscan)g is justified by
(5). If part(pc1; sscan) is taken, then by (4) the choice between
fpart(pc1; sc1); part(pc1; sc2)g is justified. So this implies that
fdtp(pc1); part(pc1; fscan); part(pc1; sscan); part(pc1; sc1)g is
one stable model for the rules (4–6) but this not the case for the
set fdtp(pc1); part(pc1; fscan); part(pc1; sc1)g as part(pc1; sc1)
is not justified. We note that there is an important difference between
a rule with and a rule without a head: only the former can bring some-
thing into a stable model. The latter only exclude stable models.

For applications it is very useful to provide rules where variables
quantifying over the whole rule can be used. With the help of vari-
ables one can write rules in a compact and structured way and this
facilitates developing, updating and maintaining a rule set.

The semantics for rules with variables [7] is obtained by consid-
ering the ground instantiation of the rules with respect to their Her-
brand universe, i.e. all variable-free (ground) terms that can be built
from the constants and functions in the rules. However, in this general
case the rule language is highly undecidable. A decidable subclass
of rules with variables is obtained by considering the function-free
and domain-restricted case [7]. Here the intuition is that each vari-
able has a domain predicate which provides the domain over which
the variable ranges. Domain predicates can be defined using normal
rules starting from basic facts. Hence, it is possible to define new
domain predicates from already defined ones using union, intersec-
tion, complement, join, and projection. As an example, consider two
sets of ground facts fidehd(hi)  g and fidecd(ci)  g giving the
available IDE hard disks and IDE CD ROMs, respectively. Now both
idehd and idecd can be used as domain predicates. We can also de-
fine a new domain predicate ide as their union using the two rules

ide(X)  idehd(X) ; ide(X)  idecd(X)

where the variable X quantifies universally over a rule. Note that we
use ”;” as a separator of rules. We use the convention that variables
start with a capital and constants with a lower case letter. A rule is
domain-restricted if every variable in it appears in a domain predicate
in the body of the rule. E.g., the rule

1 fpart(X;d1); : : : ; part(X;dm)g 2 pc(X) (7)

is domain-restricted if pc(X) is a domain predicate. A simple way of
understanding the semantics of the rules with variables is to see them
as shorthands for sets of ground rules. For example, rule (7) can be
understood as a set of ground rules of form

1 fpart(pci; d1); : : : ; part(pci; dm)g 2 pc(pci) (8)

where X is replaced by each constant pci for which pc(pci) holds.
In order to compactly represent sets of literals in constraints con-

ditional literals, i.e., expressions such as part(X;D) : ide(D) can
be used in place of literals. Thus, rule (7) can be expressed as

1 fpart(X;D) : ide(D)g 2 pc(X) (9)

A rule with conditional literals is domain-restricted if each variable
in it appears in a positive domain predicate in body or the conditional
part (like ide(D) above) of some conditional literal in the rule.

When using conditional literals we need to distinguish between
local and global variables in a rule. The idea is that global variables
quantify universally over the whole rule but the scope of a local vari-
able is a single conditional literal. We do not introduce any notation
to make the distinction explicit but use the following convention: a
variable is local to a conditional literal if it appears only in this literal
in the rule and all other variables are global to the rule. For example,
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in the rule (9) the variable D is local to the conditional literal in the
head but X is a global variable. Again a rule with conditional literals
can be understood as a shorthand for a set of ground rules resulting
from a two step process. First all global variables are replaced by all
ground terms satisfying the domain predicates in every possible way.
This gives a set of rules where variables appear only as local vari-
ables in conditional literals. For example, for the rule (9) elimination
of the global variable X leads to a set of rules of the form

1 fpart(pci; D) : ide(D)g 2 pc(pci) (10)

one for each ground term pci for which pc(pci) holds. In the sec-
ond step, for each such rule, local variables are eliminated by re-
placing each conditional literal by a sequence of ground instances
of the main predicate such that domain predicate in the condi-
tional part holds. For example, in rule (10) the conditional literal
part(pci; D) : ide(D) is replaced by a sequence

part(pci; d1); : : : ; part(pci; dm)

where the ground terms d1; : : : ; dm are the only terms for which
ide(di) holds. Hence, the rule (9) can been seen as a shorthand for a
set of ground rules of the form (8). Conjunctions of form

part(P;D) : pc(P ) : ide(D)

are also allowed in conditional parts, corresponding to a sequence of
ground facts part(pci; dj) for which both pc(pci) and ide(dj) hold.

Domain predicates such as cost(X;C) giving the unique cost C
of each component X can also be used for defining weights:

 900 � fpart(X;Y ) : cost(Y;C) = Cg; pc(X) (11)

is a shorthand for a set of ground rules containing a rule

 900 � fpart(pci; d1) = c1; : : : ; part(pci; dn) = cng; pc(pci)

for each pci s.t. pc(pci) holds and where (d1; c1); : : : ; (dn; cn) are
the only pairs for which the domain predicate cost(di; ci) holds.

Example 2. Consider Example 1. Using the rule language the con-
figuration model can be represented in the following way. Basic com-
ponent types are given as corresponding facts and normal rules defin-
ing domain predicates as for ide. The rule (9) captures the require-
ment that a PC has from one to two IDE devices and a rule

 fpart(X;D) : idehd(D)g 0; pc(X)

the property that at least one of them is an IDE hard disk. The re-
quirements for the scanners and SCSI cards are captured using rules
(4–5) and the constraint on the total price of the components can be
stated using a rule like (11).

An implementation of the weight constraint rule language called
Smodels is publicly available at http://www.tcs.hut.fi/
Software/smodels/. It computes stable models of domain-
restricted rules using a precompilation technique and a Davis-
Putnam like procedure which employs efficient search space pruning
techniques and a powerful dynamic application-independent search
heuristic. The current implementation supports only non-recursive
definitions of domain predicates for efficiency, and integer weights
in order to avoid complications due to finite precision of standard
real number arithmetic. Smodels is competitive even against special
purpose systems, e.g., in planning and satisfiability problems [6].

3 Configuration Knowledge

In this section we show how to represent configuration knowledge
using the rule language. We distinguish between the rules giving
ontological definitions and the rules representing a configuration

model. The former are not changed when defining a new configu-
ration model and are enclosed in a box in the following. The latter
appear only in the examples. We further make the convention that
the domain predicates are typeset normally whereas other predicates
defining the configuration are typeset in boldface.

The representation is based on a simplified version of a general
configuration ontology [11]. In the ontology, there are three main
categories of knowledge: configuration model knowledge, require-
ments knowledge and configuration solution knowledge. Configura-
tion model knowledge specifies the entities that can appear in a con-
figuration and the rules on how the entities can be combined. In our
approach, it is represented as a set of rules. Configuration solution
knowledge specifies a configuration, defined in our approach as a
stable model of the set of rules in the configuration model. Require-
ments knowledge specifies the requirements on a configuration and
is defined as a set of rules that a configuration must satisfy.

3.1 Types, Individuals and Taxonomy

Most approaches to configuration distinguish between types and in-
dividuals, often called classes and instances. Types in a configuration
model define intensionally the properties, such as parts, of their indi-
viduals that can appear in a configuration. In the simplified ontology,
a configuration model includes the following disjoint sets: compo-
nent types, resource types, port types and constraints. The types are
organized in a taxonomy or class hierarchy where a subtype inherits
the properties of its supertypes in the usual manner. For simplicity we
only allow individuals of concrete, i.e. leaf, types of the taxonomy,
which unambiguously describe the product, in a configuration.

Individuals of concrete port and component types are naturally
represented as object constants with unique names. This allows sev-
eral individuals of the same type in a configuration. Types are rep-
resented by unary domain predicates ranging over their individuals.
Since a resource of a given type need not be distinguished as an indi-
vidual, there is exactly one individual of each concrete resource type.
The individuals that are included in a configuration are represented
by the unary predicate in() ranging over individuals.

The type predicates are used as the conditional parts of literals to
restrict the applicability of the rules to individuals of the type only.
This facilitates defining properties of individuals (see below). The
type hierarchy is represented using rules stating that the individu-
als of the subtype are also individuals of the supertype. This effects
monotonic inheritance of the property definitions.

Example 3. A computer is represented by component type pc (PC),
which is a subtype of cmp, the generic component type. For each
individual pci of component type pc in a configuration it holds that
pc(pci). Component type ide (IDE device) is also a subtype of cmp.
A type representing IDE hard disks, hd, is a subtype of ide. Actual
hard disks are represented as subtypes of hd, namely hda and hdb.
IDE CD ROM devices cda and cdb are subtypes of type cd, which
is a subtype of ide. Software packages are represented by type sw.
Software package types swa and swb are subtypes of sw. Port and
resource types are introduced in the following sections. The follow-
ing rules define the component types and their taxonomy:

cmp(C) pc(C) ; ide(C) hd(C) ;hd(C) hda(C)

cmp(C) ide(C) ; ide(C) cd(C) ;hd(C) hdb(C)

cmp(C) sw(C) ; sw(C) swa(C) ; cd(C) cda(C)

sw(C) swb(C) ; cd(C) cdb(C)
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3.2 Compositional Structure

The decomposition of a product to its parts, referred to as composi-
tional structure, is an important part of configuration knowledge. A
component type defines its direct parts through a set of part defini-
tions. A part definition specifies a part name, a set of possible part
types and a cardinality. The part name identifies the role in which
a component individual is a part of another. The possible part types
indicate the component types whose component individuals are al-
lowed in the part role. The cardinality, an integer range, defines how
many component individuals must occur as parts in the part role.

For simplicity, we assume that there is exactly one independent
component type, referred to as root component type. An individual
of this type serves as the root of the product structure. In a config-
uration there is exactly one individual of the root type. Component
types are also for simplicity assumed to be exclusive meaning that a
component individual is part of at most one component individual.
Further, no component type can have itself or any of its super- or
subtypes as a possible part type in any of its part definitions or the
part definitions of its possible part types, and so on recursively. This
implies that a component individual is not directly or transitively a
part of itself. These restrictions are placed to prevent counterintuitive
structures of physical products. In effect the compositional structure
of a configuration forms a tree of component individuals, and each
component individual in a configuration is in the tree.

The fact that a component individual has as a part another compo-
nent individual with a given part name is represented by the tertiary
predicate pa() on the whole component individual, the part compo-
nent individual and the part name. A part name is represented as an
object constant and the set of part names in a configuration model are
captured using the domain predicate pan().

A part definition is represented as a rule that employs a cardinality
constraint in the head. The individuals of possible part types in a
given part definition of a given component type are represented using
a domain predicate ppa. It is defined as the union of the individuals
of the possible component types.

Example 4. The root component type pc has as its parts 1 to 2 mass-
storage units (with part name ms) of type ide, and 0 to 10 optional
software packages (with part name swp) of type sw. Note that using
an abstract (non-leaf) type, such as ide, in a part definition effectively
enables a choice from its concrete subtypes. The fact that pc is the
root component type and the part names and possible part types of
PC are represented as follows:

root(C)  pc(C) ; ppa(C1; C2;ms) pc(C1); ide(C2)

pan(ms) ; ppa(C1; C2; swp) pc(C1); sw(C2)

pan(swp) 
The part definitions for the mass storage and software package

roles are represented as follows:
1 fpa(C1; C2;ms) : ppa(C1; C2;ms)g 2 in(C1); pc(C1)

0 fpa(C1; C2; swp) : ppa(C1; C2; swp)g 10 in(C1); pc(C1)

The ontological definitions that exactly one individual of the root
type is in a configuration, and that other component individuals are
in a configuration if they are parts of something are given as follows:

1 fin(C) : root(C)g 1  

in(C2)  pa(C1; C2; N); cmp(C1);

cmp(C2); pan(N)

The exclusivity of component individuals is captured by the fol-
lowing ontological definition that a component individual can not be
a part of more than one component individual:

 cmp(C2); 2 fpa(C1; C2; N) : cmp(C1) : pan(N)g

3.3 Resources

The resource concept is useful in configuration for modeling the pro-
duction and use of some more or less abstract entity, such as power
or disk space. Some component individuals produce resources and
other component individuals use them. The amount produced must
be greater than or equal to the amount used.

A component type specifies the resource types and amounts its
individuals produce and use by production definitions and use defi-
nitions. Each production or use definition specifies a resource type
and a magnitude. The magnitude specifies how much of the resource
type component individuals produce or use.

A resource type is represented as a domain predicate. Only one
resource individual with the same name as the type is needed, since a
resource is not a countable entity. A production and a use definition
of a component type is represented using a tertiary domain predicate
prd() on component individuals of the producing or using compo-
nent type, individual of the produced or used resource type and the
magnitude. Use is represented as negative magnitude.

Example 5. Disk space is used by the software packages and pro-
duced by hard disks. Disk space is represented by resource type ds.
Each subtype of type sw uses a fixed amount of disk space, repre-
sented by their use definitions: swa uses 400MB and swb 600 MB.
Hard disks of type hda produce 700MB and of type hdb 1500MB
of ds. The following rules represent the ds resource type and the
production and use definition of component types:

prd(C; ds;�400)  swa(C); res(R)  ds(R)

prd(C; ds;�600)  swb(C); ds(ds)  

prd(C; ds; 1500)  hdb(C); prd(C; ds; 700)  hda(C)

The production and use of a resource type by the component individ-
uals is represented as weights of the predicate in(). The ontological
definition that the resource use must be satisfied by the production
is expressed with a weight constraint rule stating that the sum of the
produced and used amounts must be greater than or equal to zero:

 res(R); fin(C) : prd(C;R;M) = Mg < 0

3.4 Ports and Connections

In addition to hierarchical decomposition, it is often necessary to
model connections or compatibility between component individuals.
A port type is a definition of a connection interface. A port individ-
ual represents a ”place” in a component individual where at most one
other port individual can be connected. A port type has a compatibil-
ity definition that defines a set of port types whose port individuals
can be connected to port individuals of the port type.

A component type specifies its connection possibilities by port
definitions. A port definition specifies a port name, a port type and
connection constraints. Port individuals of the same component indi-
vidual cannot be connected to each other. For simplicity, we consider
only a limited connection constraint specifying whether a connection
to a port individual is obligatory or optional. Effectively an obliga-
tory connection sets a requirement for the existence of and connec-
tion with a port of a compatible component individual.

Port types are represented as domain predicates and port individ-
uals as uniquely named object constants. Compatibility of port types
is represented as the binary domain predicate cmb() on port individ-
uals of compatible port types and a rule that any two compatible port
individuals can be connected. The connections are represented as the
symmetric, irreflexive binary predicate cn() on two port individuals.
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A port individual is connected to at most one other port individual.
The following rules represent these ontological definitions:

0 fcn(P1; P2)g 1  in(P1); in(P2); cmb(P1; P2)

cn(P2; P1)  cn(P1; P2); prt(P1); prt(P2)

 prt(P1); 2 fcn(P1; P2) : prt(P2)g

 prt(P1); cn(P1; P1)

Example 6. The configuration model includes port types idec and
ided that are subtypes of the general port type prt. These types rep-
resent the computer and peripheral device sides of IDE connection.
The compatibility definition of idec states that it is compatible with
ided. Correspondingly ided states compatibility with idec. The fol-
lowing rules represent the port types and compatibility definitions:

prt(P ) idec(P ) ; cmb(P1; P2) idec(P1); ided(P2)

prt(P ) ided(P ) ; cmb(P1; P2) ided(P1); idec(P2)

A port definition of a component type is represented as a rule very
similar to a part definition, but with the tertiary predicate po signi-
fying that a component individual has a port individual with a given
port name. The pon predicate captures the port names.

Example 7. Component type pc has two ports with names ide1 and
ide2 of type idec for connecting IDE devices. Component type ide
has one port of type ided, called idep, for connecting the device to a
computer. The idep port has a connection constraint that connection
to that port is obligatory. In rule form:

pon(ide1) ; pon(ide2) ; pon(idep) 

1 fpo(C;P; ide1) : idec(P )g 1  in(C); pc(C)

1 fpo(C;P; ide2) : idec(P )g 1  in(C); pc(C)

1 fpo(C;P; idep) : ided(P )g 1  in(C); ide(C)

 ide(C); ided(P1);po(C;P1; idep); fcn(P1; P2) : prt(P2)g 0

The ontological definitions that a port individual is in a configuration
if some component individual has it and that port individuals of one
component individual cannot be connected are also needed:

in(P )  cmp(C); pon(N); prt(P );po(C;P;N)

 cmp(C); pon(N1); prt(P1);po(C;P1; N1);

pon(N2); prt(P2);po(C;P2; N2); cn(P1; P2)

3.5 Constraints

All approaches to configuration have some kinds of constraints as
a mechanism for defining the conditions that a correct configuration
must satisfy. Rules without heads are used for this in our approach.

Example 8. In the PC configuration model, there is a constraint that
a hard disk of type hd must be part of PC:

 pc(PC1); fpa(C1; C2; N) : hd(C2) : pan(N)g 0

4 Computational Complexity

We make the following assumptions. A configuration model CM
represented according to the ontology is translated to a set of rules
CM as in Section 3, including the rules for ontological definitions.
Then, a set of ground facts S is added, providing the individuals that
can be in a configuration. S is constructed out of the domain predi-
cates representing the concrete types in CM and unique object con-
stants for the individuals of concrete types. The set of rules CM [S
is all that is needed for representing the product, and subsequently
configuring it. The requirements are represented using another set of
rules R.

The set S can be thought of as a storage of individuals from which
a configuration is to be constructed. The set S thus induces an upper
bound on the size of a configuration. This is important since if such
a bound cannot be given, the configurations could in principle be ar-
bitrarily large, even infinite. However, for any configuration model
CM agreeing with the ontology in Section 3, a finite, bounded set
maxi(CM) containing the maximum number of individuals of any
concrete type can be shown to exist. It can be constructed using the
following observations. For each concrete resource type there is ex-
actly one individual. Every concrete component individual is a node
in the maximal compositional structure tree rooted at the unique root
component individual. The tree can be constructed by going through
the part definitions starting from the root component type. Finally,
the number of port individuals is bounded by the number of compo-
nent individuals. Now, a set S defining enough individuals for any
correct configuration w.r.t. CM can be constructed by adding a fact
t(ij)  for each individual ij in maxi(CM) whose concrete type
is t.

We further make the assumption that the number of variables in
the rule representation of each constraint in CM and each rule in R
is bounded by some constant cl. This is based on the observation that
even checking whether a constraint rule or requirement rule of ar-
bitrary length is satisfied by a configuration is computationally very
hard. This would be contrary to the intuition that checking whether
a constraint or requirement is in effect in a configuration should be
easy. Since the ontological definitions in CM have at most five vari-
ables, this assumption implies that there is a bound c = max(cl; 5)

on the number of variables in any rule of any CM and R.
The above assumptions lead to the following definition of the de-

cision version of the configuration task:

Definition 9. CONFIGURATION TASK(D): Given a configuration
model CM translated to a set of rules CM , a set of ground facts S,
and a set of rules R, where the number of variables in any rule of
CM and R is bounded by a constant c, is there a configuration C, a
stable model of CM [ S, such that C satisfies R?

Theorem 4.1. CONFIGURATION TASK(D) is NP-complete in the
size of CM [ S [R.

Proof. (Sketch) Task is in NP: For CONFIGURATION TASK(D)
there is the following polynomial time non-deterministic algorithm:

1. Guess a configuration C. It holds thatC is of polynomial size w.r.t.
jCM [ S [Rj since C is a subset of the Herbrand Base (HB) of
CM [ S and jHB j is at most polynomial w.r.t. jCM [ Sj. The
latter holds since the number of variables in any rule of CM [ S
is bounded by c and the size of the Herbrand Universe of CM is
bounded by jCM [ Sj.

2. Check that C is a stable model of CM [ S. This is accomplished
by instantiating CM [S with its Herbrand Universe, thus obtain-
ing the set of ground rules (CM [ S)G, and checking that C is
a stable model of (CM [ S)G. Since the number of variables in
any rule of CM [ S is bounded by c and the size of the Her-
brand Universe of CM is bounded by jCM [ Sj, j(CM [ S)Gj
is polynomial w.r.t. jCM [ Sj and the instantiation can also be
computed in polynomial time. Checking if C is a stable model of
a set of instantiated rules can be done in polynomial time [7].

3. Check that C satisfies R. This can be accomplished in polynomial
time similarly as in Step 2 by instantiating R[S with its Herbrand
Universe and checking that C satisfies (R [ S)G.

NP-hardness: The NP-complete 3-SAT problem of whether a
propositional sentence (l1 _ l2 _ l3) ^ : : : ^ (lm�2 _ lm�1 _ lm)
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is satisfiable can be reduced to the configuration task e.g. as follows:
Introduce in CM a root component type r and add a distinct compo-
nent type for each variable that appears in the sentence. Add to r a
part definition for each variable such that the component type is the
same as the variable, and the cardinality is [0; 1]. For each clause
(l1 _ l2 _ l3), introduce the constraint rule  t(l1); t(l2); t(l3),
where t(li) = not in(X); vi(X) if li is a positive literal and
t(li) = in(X); vi(X) if li is a negative literal, where vi is the vari-
able in li. Finally, construct S by including a fact r(r1)  and the
facts vi(vi1) for each variable vi. Now, the sentence is satisfiable
iff there is a configuration of CM and S satisfying R = ;.

5 Previous Work

There are several approaches that define a configuration oriented lan-
guage, a mapping to an underlying language, and implement the con-
figuration task using an implementation of the underlying language.
Our approach differs from these in the following respects. The un-
derlying languages do not always have a clear declarative semantics
or their implementations are incomplete. They were usually not de-
signed for configuration typical knowledge representation. Finally,
the complexity of the configuration task has not been precisely clas-
sified. The last issue holds also for the approaches discussed next.

Some exceptions to the above pattern exist. In [1], a formal defini-
tion of configuration as constructing a Herbrand model of a descrip-
tion logic-like language is given. Another approach defining (implic-
itly) configurations as models of a language is described in [4], where
a component and connection based ontology is formalized using On-
tolingua. In [1], the ontological foundation of configuration is not
explored, whereas in [4] the ontology is more restricted than ours.

The approach with perhaps the most similar goals to ours is de-
scribed in [2, 3]. A similar configuration domain oriented conceptu-
alization and a configuration model are given a formal semantics us-
ing a restricted variant of predicate logic extended with set constructs
[2]. This definition is then mapped to a generative constraint satisfac-
tion problem (GCSP), and implemented using its implementation. In
our approach, the formalization is done directly using the language
that provides the implementation. In contrast to our approach, the
configuration task is cast as the task of finding a subset minimal set
of sentences representing the configuration such that the union of
the configuration model and the configuration together with require-
ments is consistent. The subset minimality condition is a stronger
form of justification than ours based on a fixpoint definition [7].

The mapping from the conceptualization to the formalization in
[2] is more complex than in our approach. This is partially due to a
more complex conceptualization, but there are also other significant
differences. First, unlike in [2], our mapping is modular in the sense
that each type, property definition and constraint can be formalized
independently of other things in the configuration model. The struc-
ture of the product is represented in [2] using ports and connections,
which leads to more complexity. Furthermore, defining the configu-
ration as a stable Herbrand model eliminates the need for ”closure”
axioms required in [3, 2] to restrict the set of sentences correspond-
ing to a configuration to be complete and not to contain extraneous
things. In addition, the weight constraints allow a compact represen-
tation of things which require complex predicates in [2].

It is relatively easy to extend our representation to cover a more
complex conceptualization such as those in [11, 2]. These include
additional concepts for representing attributes and functionality and
additional definitions for the concepts. However, some aspects can-

not be captured in a straightforward manner. E.g., the implementa-
tion does not yet include arithmetic for reals which is useful for ex-
pressing, e.g., attribute values and resource amounts. However, inte-
ger arithmetic is included as built-in functions.

6 Conclusions and Future Work

We have presented an approach to formally defining different con-
ceptualizations of configuration knowledge, modeling configuration
knowledge, and implementing the configuration task on the basis of
the formalization. The approach is based on a novel weight constraint
rule language designed for representing different aspects of configu-
ration knowledge uniformly and in a straightforward manner. Using
the language to represent different aspects of configuration knowl-
edge is demonstrated through formalizing a unified configuration on-
tology. The language allows a compact and simple formalization.
The complexity of the configuration task defined by the formaliza-
tion is shown to be NP-complete.

However, the language does not allow real number arithmetic. Ex-
tending the implementation with these and further aspects of config-
uration and formalizing a more extensive configuration ontology are
important subjects of further work. In addition, the computational
complexity of different possible conceptualizations should be further
analyzed, and the implementation performance should be tested.
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