Framework and Conceptual Model for Reconfiguration

Tomi Mannistd, Timo Soininen, Juha Tiihonen and Reijo Sulonen

Product Data Management Group
TAI Research Centre and Laboratory of Information Processing Science
Helsinki University of Technology, P.O. Box 9555, FIN-02015 HUT, Espoo, FINLAND
{Tomi.Mannisto, Timo.Soininen, Juha.Tiihonen, Reijo.Sulonen}@hut.fi

Abstract

Reconfiguration is a significant area of after-sales, esp e-
cially for companies with configurable products. In this
paper, the field of reconfiguration is characterised and a
framework for reconfiguration is presented on the basis of
experiences gathered from Finnish manufacturing compa-
nies. Although the state of the practice leaves much room
for improvement, reconfiguration is an important business
in several companies. Based on the experiences, an ab-

stract conceptual model for reconfiguration is defined.

Introduction

After-sales is an increasingly important business area for
many companies. There is a need to provide support to
and maintenance for product individuals for extended
periods. One important task in the after-sales is to recon-
figure an existing product individual, i.e., to modify it to
meet new requirements. Although product configuration
tasks and their computer support have been actively
studied recently (see e.g., [1]), reconfiguration has not
been satisfactorily dealt with [2, 3, 4].

One of the main differences between configuration
and reconfiguration is the existing product individual,
which in reconfiguration serves as an input to the proc-
ess. For example, the platform for the machinery of an
elevator has holes for the ropes. In configuration these
holes are output as the platform is manufactured accord-
ing to the specification; in reconfiguration, the holes act
as inputs and their placement is very much fixed.

In this paper, we define a simple framework for recon-
figuration that outlines the characteristics of reconfigura-
tion from the business perspective. The framework is
based on our experiences on reconfiguration in two
dozen industrial companies, which we briefly summarise.
We then argue that reconfiguration is not always ade-
quately supported by similar means as configuration. We
define a conceptual model for the reconfiguration task
and knowledge that synthesizes and generalises our ex-
periences. Finally, the framework and model are dis-
cussed and topics for further work are given.

Our model differs from most of the approaches to con-
figuration, which simplify the reality by assuming that a
configuration model always represents the current situa-
tion—there is no history, future or changes of any kind to
the configuration model. Some authors have proposed
models for reconfiguration [5] or propose integration of
change management to configuration models [1, 3].

A closely related area to reconfiguration is schema-
evolution in databases, which addresses manipulating old

individuals with a new schema [6, 7]. There is, however,
a fundamental difference in the nature of schema-
evolution and evolution of configuration models. When a
configuration model is modified, it does not represent the
same product individuals with a different model—it rep-
resents a different set of product individuals. For exam-
ple, when a new component type is included in a product,
this does not mean that the old individuals should be
converted to have such a component. Schema-evolution
also occurs in configuration models, but is more related
to database management than to product evolution.

The main terminology of this paper is as follows. A
product individual is manufactured according to a con-
figuration that satisfies a configuration model. A con-
figuration model defines, among other things, component
types, which allows us to say a component individual is
of a certain component type. Term product typically re-
fers to a whole and component to a constituent of a prod-
uct. Furthermore, we assume that the distinction between
an individual as a physical entity and its description in an
information system is clear from the context.

Reconfiguration Framework

The feasibility of reconfiguration depends on the busi-
ness. In this section, we characterise reconfiguration as a
business and describe some factors affecting its feasibil-
ity. We then describe different modes of reconfiguration
and report our experiences with case companies.

Feasibility of Reconfiguration

Some trends make reconfiguration more desirable than
before. For example, the waste of natural resources can
be lessened by extending the lifetime of a product indi-
vidual and tighter investment budgets make extensible
products attractive.

Maintaining reconfigurability. Reconfiguration is
problematic since it cannibalises the markets from new
products. In addition, maintaining reconfigurability can
make introduction of new features based on new tech-
nology more difficult. These arguments easily lead to
trade-offs between developing new products and ex-
tending the reconfigurability of old ones.

Customers. Reconfigurable products also tend to bind
customers to the company. Even a relatively minor re-
configuration may allow significant added value to the
customer, thus providing wider profit margin for the
manufacturer. Furthermore, after-sales is typically less

dependent on the economic fluctuations than the sales of
new products.

Type of product. In addition to business aspects, the
feasibility of reconfiguration is also affected by the type
of the product. One-of-a-kind industrial products are
typically complex products that are designed and manu-
factured as separate projects. Examples include power
plants and paper machines. It is difficult to define sys-
tematic reusable knowledge on such products, e.g., for
reconfiguration, which implies that reconfiguration must
also be carried out in projects. The most relevant type of
products for reconfiguration seems to be configurable
products since they allow systematisation of the neces-
sary knowledge. Modular fixed products may resemble
configurable products in this sense.

A relevant factor in reconfiguration is also whether the
product individual is manufactured by the reconfiguring
company or by a competitor.

Product cost affects the feasibility of reconfiguration,
as it can be more economical to buy a new inexpensive
product individual than to reconfigure an old one.

Lifetime of product individuals is another factor that
affects reconfiguration. Product individuals with long life
times and high cost are typically investments, which are
often modernised at some point. Reconfiguration is sel-
dom relevant for commodity products due to short life
times and low cost of product individuals.

The rate of technological change also reflects on
reconfiguration—the higher the rate, the more problem-
atic the management of reconfiguration is. A very high
change rate can make reconfiguration unfeasible by
quickly outdating most of the product and thus requiring
the changes to almost every component. This is currently
the situation for modernisation of personal computers.

Experiences and Modes of Reconfiguration

Next, we briefly describe different modes of reconfigu-
ration and our experiences in 24 Finnish companies that
manufacture configurable or partially configurable prod-
ucts. The experiences were gathered in the period from
1994 to 1999. We have made a configuration survey of
ten companies [8], a design for configuration survey in
seven companies and cooperated with some of the sur-
veyed and several other companies in research projects
addressing product data management, configuration or
design for configuration.

The importance of reconfiguration varied. Fifteen
companies supported reconfiguration in some form.
However, only six of them considered reconfiguration a
significant business. These companies operated in tele-
communications, heavy machinery (4), and medical in-
strumentation. We next describe five modes of recon-
figuration and discuss the related experiences. Not all
categories are mutually exclusive, i.e., some companies
belonged to more than one category.

No reconfiguration. Companies that do not support
reconfiguration belong to this category. Eleven compa-
nies had no reconfiguration.

Project. Reconfiguration is a part of after-sales opera-
tions, but it is not systematically supported. Conse-

quently, separate projects design and implement the
needed modifications, which makes reconfiguration ex-
pensive. In case of expensive investment products, the
costs may still be justified. This category was common
for companies (9) who had some reconfiguration or
manufactured one-of-a-kind products.

Reconfiguration packages. In order to reduce the
amount of design work in reconfiguration, the company
develops reconfiguration packages. The idea is to iden-
tify possibilities for reconfiguration and package the nec-
essary modifications into reusable packages. Active mar-
keting of reconfiguration packages implies significance
of reconfiguration. Three heavy machinery companies
with significant reconfiguration used reconfiguration
packages and five others had some form of reconfigura-
tion packages. For example, typical reconfiguration op-
erations for an elevator manufacturer included modern-
ising doors, upgrading control systems and organising
separate elevators into an elevator group.

Systematic. In systematic reconfiguration, a signifi-
cant proportion of new features is offered to old product
individuals. This necessitates design of the product to
support this principle, typically in a modular manner.
The new features and other developments to the product
are introduced and documented in a disciplined way.
Systematic reconfiguration is based on a strategic deci-
sion. One of the companies belonged to this category. Its
success relied significantly on the customers’ confidence
on later extension possibilities to the system. This ap-
plied even to new features not available at the time of the
first purchase.

Automatic. In this special category, reconfiguration is
automatic. The base product and crucial components are
designed so that reconfiguration is easy or even trivial
possibly because of built-in ‘intelligence’. ‘Plug and
play’ computers can be considered automatically recon-
figurable with respect to expansion cards. Another small-
scale example is SLR cameras with attachable accesso-
ries. The interface between lenses and the camera body
has in some makes been maintained for decades, thus
allowing the use of old lenses with the newest body, per-
haps with some lost functionality, such as, automatic
focusing. Two companies produced products that were
capable of partial automatic reconfiguration.

Implications of our experiences

Configuration models change. The changes need to be
managed to control and record which types of products
were sold at a given time. The changes are not only ad-
ditive; component types may be removed from the con-
figuration models and some dependencies between com-
ponent types may cease to be valid. A straightforward
approach to the evolution of configuration knowledge is
to retain versions of the whole model. A more advanced
method is to time stamp versions of more detailed con-
cepts, such as, component types and their relations.

Most approaches to configuration seem to assume that
reconfiguration can be accomplished using similar con-
figuration models as the configuration of new product
individuals. In other words, assume configuration models

CM, and CM, that were valid at times ¢, and f,, t,<t,, and
a configuration ¢ that was configured at time #; according
to CM;. At time ¢, it would be enough to load ¢ to the
configurator and reconfigure it according to CM,. We
feel that this is impossible in the general case.

The companies we have worked with have decided to
operate with the current configuration knowledge only
and handle reconfiguration separately. A configuration
model is used for configuring new products and consists
of surface knowledge. This means that the configuration
model abstracts away several issues that may affect the
validity of possible configurations. These include the
actual behaviour of current in a circuit, existence of mi-
nor components, most connections between components
as well as the compatibility of different component ver-
sions. Otherwise, the configuration model would become
much too complex. As a related work, Stumptner and
Wotawa [5] also separate reconfiguration from “conven-
tional configuration from scratch”.

When the product evolves, the assumptions made in
the abstraction may no longer hold. One needs to change
some of the assumptions behind the configuration model
to capture all the relevant issues. This implies that ¢ can-
not be considered to conform to CM, since it does not
represent the same products as CM;. The question is:
“can ¢ be changed to conform to the view of CM,?”

Some researchers have emphasised the depth of mod-
elling in alleviating this problem. While we believe that
deeper modelling can reduce the problem, especially if
resources can be found for “modelling from the first
principles”, the problem will come up eventually. Ad-
vances in technology will probably evolve beyond the
scope of the original abstraction, unless it is based on
very detailed first principles derived from physics. Low-
profit or simpler products do not necessarily allow deep
modelling since the effort would be too costly. A better
trade-off may be found by modelling with less depth but
systemizing the changes between configuration models.
The conceptual model we present in the next section
takes this approach.

Conceptual Model

In this section, we present an abstract conceptual model
of reconfiguration tasks and the knowledge required for
reconfiguration. The model does not define how exactly
the reconfiguration knowledge is represented but the
basic knowledge elements and their interactions are in-
cluded. This generality allows extending the model to
suit the needs of a particular application domain.

Reconfiguration Task
We define the reconfiguration task as:

Given an existing product individual, a set of re-
quirements and a reconfiguration model,

provide a modified product individual fulfilling the
requirements and the necessary changes,

such that, both the individual and the changes are cor-
rect with respect to the reconfiguration model.

In addition, the modified product individual and the
changes should be optimal in the sense that as much as
possible of the existing product individual is retained and
no unnecessary or unwanted changes are made. Without
these requirements, the definition would allow such
pathological reconfigurations as scrapping the whole
existing product individual and configuring a new one
from scratch. Sometimes this may be the only way to
satisfy the new requirements—and even feasible, e.g., in
case of software or other products with low manufactur-
ing costs. However, the optimality criterion is needed to
cover cases in which this is not desired.

Reconfiguration Knowledge

Managing configuration models and configurations over
time requires extending the concepts used for represent-
ing configuration knowledge (for a unified conceptuali-
zation of configuration knowledge, see [9]). The exten-
sions include versions of component types and other
knowledge elements, effectivity of versions, and other
concepts related to configuration management and prod-
uct data management. In addition, it may be necessary to
represent manufacturing or maintenance related knowl-
edge such as serial numbers.

In reconfiguration representation, we assume two lan-
guages: Crand CMy, for representing augmented configu-
rations and augmented configuration models, respec-
tively. The languages C and CM underlying these can be
any languages used for representing configurations and
configuration models. The augmented versions contain
additionally the concepts for reconfiguration.

As usual, we consider a language equivalent with the
set of sentences belonging to the language. Under this
view, each (augmented) configuration ¢, belongs to Cy
and each reconfiguration model m, to CMp, formally,
¢, € Crand m, € CM.

A reconfiguration model m, consists of two parts:

- A set of reconfiguration operations, denoted by m,,,
that defines the possible changes to configurations. A
reconfiguration operation consists of a precondition
and an action. The operation can be applied to a con-
figuration if it satisfies the precondition. The action
defines the change on the configuration. Typical ac-
tions include adding, removing and replacing compo-
nent individuals or relations between them.

- A set of reconfiguration invariants, denoted by m,,;,
that defines the invariant conditions that configura-
tions must satisfy to be correct.

Intuitively, the reconfiguration operations both limit the
possible changes and describe the changes. In addition,
their preconditions can control the order of changes. In
contrast, reconfiguration invariants specify the conditions
that must hold across and between all versions of con-
figuration models, independently of the operations.

In order to represent the operations m,, and invariants
m,; of a reconfiguration model m,, we define CMy to con-
sist of two sublanguages CMpoand CMp,.

Manufacturing view

Reconfiguration mode

Reconfiguration

Models

Configuration model
Product Individual ¢
Individuals ‘as-configured’

Individual c
‘as-manufacture

Augmented description
of individualc =
Basel, S96, M-rev1.0, ..

operatiorr = <p,a>
<“Basel and S96”
“replace Basel...">

Individual c updated
byr, i.e.,a(c) =
Base3, S99, K1, K1C
M-rev2.0...

Figure 1. Sample reconfiguration operation.

- CMpo consists of reconfiguration operations » of form
(p, a), where precondition p € CMp; and a is a deter-
ministic action. An action a is formally a function a:
Cr—> Cp, i.e., it maps an initial configuration to a final
configuration. We denote the fact that c,, is the result
of applying the action a of operation r to ¢, by ¢,, =
a(c,1), and use shorthand form c,, = r(c,;) for this. Note
that we do not assume that reconfiguration operations
are atomic. They may change the configuration in ar-
bitrary ways as long as the resulting configuration is
uniquely determined.

- CMp,; is any suitable language for defining conditions
on a configuration. A condition may, for example,
state that there is a component individual of given type
and version in the configuration, maybe in a specific
relation to another component individual.

As an example from the case company, we discuss here a
reconfiguration operation that adds to a product a new
feature called ‘record keeping’. The operation is actually
divided into four similar cases. Each case has a precon-
dition, for example, p = “the product has modules Basel
and S96”. The corresponding upgrade action is a = “re-
place Basel by Base3 and S96 by SA99, add K1 and
K1C”. The other three cases are similar describing the
operation for other combinations of Base and S modules.
In addition, there were invariant conditions such as
“SA99 requires M version 2.0 or higher”.

Figure 1 presents the same example for a sample indi-
vidual ¢. The individual has been configured according
to a configuration model and then manufactured. Based
on this information the augmented representation is cre-
ated. The precondition of the operation r is evaluated
against ¢ and since c satisfies the precondition, the action
a can be applied. Individual ¢ is modified accordingly
and is no longer a configuration to which » can be ap-
plied.

Redefinition of reconfiguration task

In order to define the reconfiguration task more pre-
cisely, we first define when a configuration satisfies a set
of conditions, when a reconfiguration operation is appli-
cable to a configuration and the concept of a sequence of
reconfiguration operations. We further define at an ab-
stract level the optimality of reconfiguration operations.

We assume that there is a relation “satisfies” on con-
figurations and conditions, denoted by |= < Cr x CMpy,,
usually used in infix form. This relation defines when a
configuration satisfies a set of conditions according to
the semantics of the language CMy,. We say that a recon-
figuration operation » ={p, a) is applicable to a configu-
ration c¢,; with result ¢,, iff ¢,; |= p and c¢,,=r(c,;).

A sequence of reconfiguration operations is of form
(1, ..., r) = (ps, ap), ..., {pu, a,y) and is applicable (in
order from 7; to r,) to a configuration c,; with the result
¢, denoted as ¢, = (71, ..., 1,)(c,;), iff the following con-

ditions hold
)] for all i < n, there exists ¢;, ¢is; € Cg S.t.
G |=Pz‘ and ¢;; = r{(c;)
(ii) C =Cy

(ii1) Cu |= pnand ¢, =r,(c,)

We assume the existence of a value function v that gives
a value to a combination of a sequence of operations and
the change between the existing and solution configura-
tion. This function is needed to define the optimality of a
solution to reconfiguration task. Its precise definition is
dependent on the application domain, but we assume for
simplicity that for any <c,,, ¢,», (71, ..., r,)> such that c,,
=(r, ..., ry)(cy) it provides a unique value. We note that
it may not be enough to provide a solution that is optimal
with respect to the sequence of operations, as it may be
that the resulting configuration is not acceptable to the
customer. Similarly, the sequences of changes leading to
an optimally modified configuration may be unaccept-
able. It would seem reasonable, that the optimality crite-
ria includes some forms of the following principles:

- as few or inexpensive things as possible should be
changed, expressed as (possibly a function on) the dif-
ference between the original and result configuration,

- as few or inexpensive operations as possible should be
used to accomplish the change.

We now have the ingredients for a more precise defini-

tion of the reconfiguration task:

Given: a configuration c, € Cg, a set of requirements
expressed as a set of conditions R in language CMp,;, a
value function v on the changes to ¢, and the resulting
¢, and a reconfiguration model m, in language CMp,
i.e., m, consisting of operations m,, and invariants m,;

Provide: a modified configuration c,, and a sequence
of required changes (ry, ..., r,) where each r;em,,,

such that
(l) Cr |=R
(ii) co=@1, ..., r)(cr)

(iii) <c,1, Cna, (11, ..., 1,)> is optimal according to v
(lV) Cr2 |= m;

Note that invariants may be broken in intermediate

states.

Discussion

In this section, we compare our conceptual model to the
practices of a case company. We then discuss the gener-
ality and properties of the conceptual model.

Comparison to Case Company

A case company has defined reconfiguration operations
each with a precondition and an action similar to our
model. The case product is configured from plug-in
components called modules. The reconfiguration opera-
tions cover all the allowed ways of modifying the prod-
uct in a single step.

The simplest operations only add new modules, which
is possible because of guaranteed compatibility of mod-
ules. Some modules can also be upgraded to provide en-
hanced functions. The pre-conditions for module up-
grades are simple—they only refer to the version of the
module.

The product also has more complex functional up-
grades. Their pre-conditions refer to the existence of
components of a given type and occasionally also to ver-
sions of components. The actions contain component
additions, component replacements and version up-
grades. Further, some reconfiguration operations require
checking that simple additional dependencies are re-
spected. These dependencies are represented by recon-
figuration invariants in our conceptual model.

Generally, the reconfiguration operations of the com-
pany fit into the conceptual model. However, a few re-
configuration operations specify conditions in which it is
necessary to contact the company for detailed instruc-
tions. Nevertheless, the number of these exceptions is
small and reconfiguration is mostly possible without the
help of product experts.

Conceptual Model

The conceptual model is general enough to include sev-
eral more restricted reconfiguration scenarios as special
cases. For example, in the model of Fleishandler et al.
[10] it is assumed that both the existing product individ-
ual and the modified product individual must be correct
with respect to temporally different configuration mod-
els. We do not assume this, allowing configurations that
mix components in several versions of configuration
models, as long as they respect the invariants in the re-
configuration model. However, the conditions can repre-
sent entire configuration models, in which case the re-
configuration operations can be used as conversion rules
between different versions of configuration models.
Stumpner and Wotawa [5] doubt the feasibility of “fixes”
in modelling reconfiguration. We, however, have seen
that reconfiguration operations of the form discussed in
this paper are feasible in practice.

The approach of the case company where all the pos-
sible reconfiguration packages are explicitly defined is
covered by our model. Another approach that seems to
be included in our model is case based reasoning, where
the possible modifications to cases retrieved from solu-
tion library can be encoded as reconfiguration operations.
In fact, our model also subsumes configuration if all op-
erations needed in construction of a configuration, e.g.,
adding a component to configuration, are defined as re-
configuration operations. The “existing configuration”
would simply be empty. Our model also subsumes con-
figuration tasks where the requirements are given using
optimality criteria instead or in addition to hard criteria
that must be satisfied.

In some domains, the ordering of the reconfiguration
operations is crucial, such as for configuring software
systems where libraries need to be compiled in the order
implied by their dependencies. In complex and large
products, such as paper machines, one may need to cre-
ate a good plan for how to change the product. For ex-
ample, physical obstructions or the need for fixing things
to each other makes the ordering a non-trivial task. For
some domains, the ordering is not relevant and only the
set of changes is required.

We refrain from defining more precisely the condi-
tions that an optimal sequence of reconfiguration opera-
tions or an optimal configuration should fulfil. This is
due to several reasons. It is not clear that, for instance,
changing the configuration as little as possible is the de-
sired goal. Companies may want to restrict the set of
different versions of components that are in the field to
have better control of the product and to restrict the types
of components that they need to keep in stock for serv-
icing the products individuals. This can be accomplished
by changing the products more than what is strictly re-
quired when reconfiguring them, for example by always
updating certain key components or ones that tend to
wear out. In addition, it is not clear which optimisation
criteria should be used. These obviously include costs of
labour for the reconfiguration, cost of new components,
prices on the reconfiguration operations and added com-

ponents, desirability of certain functions or components,
e.g., manufactured by a given company, over others, etc.

Our approach allows inclusion of other after-sales op-
erations, such as, component replacements, under a sin-
gle reconfiguration framework. All spare part replace-
ment operations are inevitably related to reconfiguration
since they in fact are simple reconfiguration operations.

In this paper, we have only discussed the evolution of
product individuals and developed mechanisms to sup-
port that. The reconfiguration knowledge, however, is
not static, which may necessitate consideration of this
sort of ‘meta-evolution’.

Our conceptual model of reconfiguration also bears
strong resemblance to planning problems (see e.g., [11]).
Configurations can be understood as world states, recon-
figuration operations as planning operations, existing
configuration as the initial world state and requirements
as the goal state. The main distinction is that the basic
definitions of planning problems do not usually consider
the optimality of plans. Optimality of the modified con-
figuration or its difference from the original configura-
tion has no analogue in basic planning. However, in the
representation of reconfiguration knowledge and auto-
mated or supported reconfiguration similar issues need to
be addressed and hence the results and recent advances
from the planning domain can be used.

Conclusions and Future Work

Reconfiguration is often a problematic area because of
the uncontrolled nature of the population of product indi-
viduals. What customers do with their product individu-
als is inherently difficult to control since it is very much
“their own business”. We presented a framework that
characterises products and business with respect to re-
configuration and discussed our experiences with case
companies. The experiences show that despite the inher-
ent complexity of the field, reconfiguration is a success-
ful business for certain companies and there are system-
atic ways to handle it.

From the premises set out in the framework, we devel-
oped an abstract conceptual model for reconfiguration.
The model contains reconfiguration operations, which
each consists of a precondition that controls the applica-
bility of the operation and an action that describes the
modifications to the product individual. In addition, the
model includes invariant conditions for controlling the
validity of resulting configurations and a value function
for selecting optimal or good operation sequences. The
complexity of reconfiguration is inherently at least the
same as for configuration, since configuration is a special
case of reconfiguration. The requirement for optimality
may lead to higher complexity.

Our conceptual model reflects the reconfiguration in a
successful case company. Nevertheless, the company
does not have any advanced tools supporting reconfigu-
ration. As a future work, the model should be made more
accurate and a tool for supporting it needs to be imple-
mented. With such a tool, both the conceptual and the
computational feasibility of the model could be tested on

case products. In addition, trade-offs between the com-
plexity and feasibility of the conceptual model needs to
be investigated.

Acknowledgements

This research has been partly funded by the Technology
Development Centre of Finland (TEKES) and Helsinki
Graduate School of Computer Science and Engineering.
The work has benefited greatly from the discussions with
the other members of Product Data Management Group.

References

1. Sabin D and Weigel R. Product configuration
Frameworks—A survey. [EEE Intelligent Systems
& Their Applications, 13(4):42-9. 1998.

2. Franke DW. Configuration research and commer-
cial solutions. A EDAM (Artificial Intelligence for
Engineering Design, Analysis and Manufacturing),
12(4):295-300. 1998.

3. Haag A. Sales configuration in business process.
IEEE Intelligent Systems & Their Applications,
13(4):78-85. 1998.

4. Mainnistd T, Peltonen H, and Sulonen R. View to
Product Configuration Knowledge Modelling and
Evolution. In Faltings, B. and Freuder, E.C. (eds.)
Configuration—Papers From the 1996 AAAI Fall
Symposium (AAAI Technical Report FS-96-03),
AAAI Press. Pages 111-18. 1996.

5. Stumptner M and Wotawa F. Model-Based Recon-
figuration. Proceedings of the 5th Conference on
Artificial Intelligence in Design '98. 1998.

6. Banerjee J, Kim W, Kim H-J, and Korth HF. Se-
mantics and Implementation of Schema Evolution
in Object-Oriented Databases. Proc. of the Interna-
tional Conference on Management of Data
(SIGMOD), pages 311-22. 1987.

7. Monk S and Sommerville I. Schema evolution in
OODBs using class versioning. SIGMOD Record,
22(3):16-22. 1993.

8. Tiihonen J, Soininen T, Ménnisté T, and Sulonen
R. State-of-the-Practice in Product Configuration—
A Survey of 10 Cases in the Finnish Industry. In
Tomiyama, T., Mantyld, M., and Finger, S. (eds.)
Knowledge Intensive CAD. London, Chapman &
Hall. Pages 95-114. 1996.

9. Soininen T, Tiihonen J, Ménnist6 T, and Sulonen
R. Towards a General Ontology of Configuration.
Al EDAM (Artificial Intelligence for Engineering
Design, Analysis and Manufacturing), 12(4). 1998.

10. Fleishandler G, Friedrich GE, Haselbock A, Schre-
iner H, and Stumptner M. Configuring large sys-
tems using generative constraint satisfaction. /EEE
Intelligent Systems & Their Applications, 13(4):59-
68. 1998.

11. Russel S and Norvig P. Artificial Intelligence—A
Modern Approach. Prentice-Hall. 1995.

