
Dynamic Constraint Satisfaction in Con�guration

Timo Soininen
TAI Research Centre, Helsinki University of Technology

P.O.B. 9555, FIN-02015 HUT
Finland

Timo.Soininen@hut.�

Esther Gelle
ABB Corporate Research AG

CHCRC.C2 Segelhof, CH-5405 Baden
Switzerland

Esther.Gelle@chcrc.abb.ch

Abstract

Con�guration tasks exhibit dynamic aspects which re-
quire extending the basic constraint satisfaction frame-
work. In this paper we give a new, well-founded and
relatively simple de�nition of such dynamic constraint
satisfaction problems (DCSP). On the basis of the def-
inition, we show that the decision problem for DCSP
is NP-complete. We also show that although the com-
plexity of DCSP is the same as for CSP, DCSP is
strictly more expressive in a knowledge representation
sense. However, DCSP has its limitations in represent-
ing con�guration knowledge. We generalise the activ-
ity constraints of DCSP with disjunctions and default
negation, and show that the decision problem remains
NP-complete with this generalization. We �nally de-
scribe two approaches to implementing DCSP and pro-
vide test results for both.

Introduction

Con�gurable products are important in domains where
standardized components are combined into customized
products, such as computers, elevators and industrial
mixers. A con�guration task takes as input a model
which describes the components that can be included
in the product and a set of constraints that de�ne how
components can be combined, and requirements that
specify properties of the product to be con�gured. The
output is a description of a product to be manufactured,
a con�guration. It consists of a set of components as
well as a speci�cation of how they interact to form the
working product. The con�guration has to satisfy the
constraints in the model and the requirements.
The combinatorial nature of a con�guration prob-

lem is well captured by constraint satisfaction prob-
lems (CSP). A CSP consists of a set of variables with
domains on which allowed value combinations are spec-
i�ed as constraints. Powerful search algorithms have
been developed for solving CSPs (Tsang 1993). A CSP
can be used to express compatibility knowledge in con-
�guration tasks, and the algorithms to �nd a solution.
In some con�guration tasks, however, optional com-

ponents may be added or some components may re-
quire the existence of another component. This type
of task leads to a constraint problem in which the

set of variables that must be assigned a value may
change dynamically in response to choices made in
the course of problem solving. The solutions to such
a problem di�er in the sets of variables that are as-
signed values. When con�guring a mixer, for exam-
ple, a condenser is a typical optional component which
does not have to be present in every solution. It is
only necessary if the vessel volume is large and chem-
ical reactions are expected to occur. This is di�-
cult to capture in a standard CSP in which all vari-
ables are assigned values in every solution. Much ef-
fort has therefore been put to include dynamic as-
pects in CSPs (Mittal & Falkenhainer 1990; Sabin &
Freuder 1996; Stumptner, Friedrich, & Haselb�ock 1998;
Gelle 1998).
In this paper, we continue this line of research by

giving a new de�nition of dynamic CSP that is equiv-
alent to the original de�nition in (Mittal & Falken-
hainer 1990), mathematically well-founded, and sim-
pler than the characterization by (Bowen & Bahler
1991). The de�nition utilizes a �x point condition in-
spired by the semantics of logic programs (Lloyd 1987;
Gelfond & Lifschitz 1988) instead of the minimality con-
dition in the original de�nition. Using the new de�-
nition, we show that DCSP is NP-complete. It also
remains NP-complete when suitably generalized with
default negations on constraints and disjunctions on
the activity of variables in activity constraints, which
are useful for representing con�guration knowledge.
Although there is no di�erence between DCSP and
CSP regarding computational complexity, we show that
DSCP is more expressive than CSP in a knowledge rep-
resentation sense. Finally, we sketch and compare two
novel implementations of DCSP based on a variant of
the original algorithm (Mittal & Falkenhainer 1990) and
on mapping DCSP to problem solving with proposi-
tional logic programs (Soininen & Niemel�a 1999).

The DCSP Formalism

We �rst recall the original de�nition of a dynamic con-
straint satisfaction problem. An instance P of DCSP is
of form hV ;D;VI ; CC ; CAi, where V = fv1; : : : ; vng is the
set of variables, D = fD1; : : : ; Dng is the set of domains
of the variables, and Di = fdi1; : : : ; dijig are the values



in the domains. The set of initial variables is denoted
by VI , VI � V , the set of compatibility constraints by
CC and the set of activity constraints by CA. We assume
that all the sets in a DCSP are �nite. We de�ne a legal
assignment as follows:

De�nition 1 An assignment of a value dij to a vari-
able vi is of the form vi = dij , where dij 2 Di. A legal
assignment A to a DCSP hV ;D;VI ; CC ; CAi is a set of
such assignments with at most one assignment for each
variable. Formally: A � fvi = dik j vi 2 V ; dik 2 Di,
and for all i, j fvi = dik j vi = dik � Ag j� 1g

In contrast to CSP, an assignment to DCSP does not
necessarily assign a value to each variable. A variable
can thus be in one of two states: active or not active.
A variable is said to be active i� it is assigned a value
in an assignment.
A compatibility constraint ci with arity j speci�es the

set of allowed combinations of values for a set of vari-
ables v1; : : : ; vj as a subset of the Cartesian product of
the domains of the variables, i.e. ci � D1�: : :�Dj . We
say that a compatibility constraint is active i� all the
variables it constrains are active. An activity constraint

is of form cj
ACT
! v, where cj is de�ned equivalently to

a compatibility constraint and v is the variable that
must be active if cj is active and satis�ed. Note that
the original de�nition required that the activated vari-
able is distinct from the variables that the constraint
on the left hand side refers to. Our de�nition will work
for such constraints as well. Always require, require not
and always require not activity constraints (Mittal &
Falkenhainer 1990) are treated as shorthand notation
for simplicity. 1

A solution to a DCSP is a subset minimal legal as-
signment of values to the variables that satis�es all com-
patibility and activity constraints.

De�nition 2 A legal assignment A for a DCSP P =
hV ;D;VI ; CC ; CAi satis�es the constraints in P i� the
following conditions hold:

1. A satis�es the compatibility constraints CC , i.e. for
all c 2 CC s.t. c constrains variables v1; : : : ; vj it
holds that if c is active, i.e. fv1 = d1k1 ; : : : ; vj =
djkj g � A for some diki ; 1 � i � j, then
(d1k1 ; : : : ; djkj ) 2 ci.

2. A satis�es the activity constraints CA, i.e. for all a 2

CA; a = (c
ACT
! vk) it holds that if c is active in and

satis�ed by A then vk is active, i.e. (vk = dkj) 2 A
s.t. dkj 2 Dk.

De�nition 3 A legal assignment A is a solution to a
DCSP i� A

1. satis�es the constraints,

2. contains assignments of values to initial variables,

1For example, an always require constraint of the form

v1; : : : ; vi
ACT
! vj is de�ned as c

ACT
! vj where c allows all

value combinations on the variables v1; : : : ; vi, i.e c = D1 �
: : :�Di.

Variable Domain

Mt fdisp,entr,susp,blendg 2 VI
Mi fmixer,reactor,tankg 2 VI
V fspheric,cyl,ellipg
Coo fcoo1,coo2g
Con fcon1,con2g
Mt.press fhigh,lowg
Mt.trans ftrue,falseg
V.vol flarge,smallg

Figure 1: Variables of the mixer con�guration problem.

3. is subset minimal, i.e. there is no assignment A1 that
satis�es 1. and 2. s.t. A1 � A.

Example 1 We use a typical con�gurable product, an
industrial mixer (van Velzen 1993) to demonstrate
DCSP. The components of the mixer such as vessel,
cooler, condenser and their properties, for example the
vessel volume, are represented as variables. The cooler
and condenser are optional. The type of mixing task is
represented as the variable mixing task with properties
pressure and heat transfer. The components have di�er-
ent types, e.g. the mixer is of type reactor, storage tank,
or simple mixer. These as well as the di�erent mixing
tasks are represented as domains of the variables. To
designate variables in the problem, we use the �rst let-
ters of their names. The variables and domains of the
mixer con�guration problem are shown in Figure 1 and
the constraints in Figure 2. A cooler and condenser
need only be included in the solution if other variables
have speci�c values. Therefore, they are introduced by
activity constraints. Activity constraints are also used
to introduce the properties of components.
Two solutions to the mixer problem are fMt =

disp;Mi = mixer;Mt:trans = false;Mt:press =
high; V = spheric; V:vol = large; Con = con1g
and fMt = blend;Mi = reactor;Mt:trans =
true;Mt:press = high; V = spheric; V:vol =
small; Coo = coo1g. The �rst solution includes a con-
denser whereas the second has a cooler. There are also
solutions without cooler and condenser but no solutions
exist containing both. In the latter case, the compati-
bility constraints C3 and C4 require di�erent values for
the vessel volume.

A Fixpoint De�nition of DCSP

In this section we give a new de�nition of a solution
to a DCSP that utilizes a �xpoint condition instead
of the minimality condition on the solutions. We then
show that the de�nition is equivalent to the original
de�nition. This allows a straightforward analysis and
generalization of DCSP in latter sections.
The �xpoint condition is another way of ensuring that

active variables are justi�ed by initial variables and ac-
tivity constraints. To capture this, we �rst de�ne a
reduction of a set of activity constraints and the initial
variables with respect to an assignment A. The intu-
ition behind the reduction is that the reduct contains



a1 Mi
ACT
! V

a2 V
ACT
! V:vol

a3 Mt
ACT
! Mt:trans

a4 Mt
ACT
! Mt:press

a5 Mi = reactor
ACT
! Coo

a6 Mt = disp
ACT
! Con

c1(Mt:press; V ) =
f(high; spheric); (high; ellip); (high; cyl); (low; cyl)g
c2(Mt:trans;Mi) =
f(true; reactor); (false;mixer); (false; tank)g
c3(Mi; V:vol) =
f(reactor; small); (tank; small); (tank; large)
(mixer; small); (mixer; large)g
c4(Con; V:vol) =
f(con1; large); (con2; large)g

Figure 2: Activity and compatibility constraints in the
mixer con�guration problem.

the possible justi�cations for the assignments of values
to variables in A in the form of a set of instantiated ac-
tivity constraints. These are obtained by instantiating
the activity constraints to re
ect A in the sense that
the variable in the right hand side of an activity con-
straint is replaced by its assignment in A. An activity
constraint whose activated variable is not active in A
is not included in the reduct. In addition, each initial
variable is given a special activity constraint form, the
left hand side of which is satis�ed by every assignment.

De�nition 4 We de�ne the reduct (CA;VI)A of a set
of activity constraints, CA, and a set of initial variables,
VI , w.r.t an assignment A as follows: (CA;VI)A =

fc
ACT
! vj = djk j (c

ACT
! vj) 2 CA; (vj = djk) 2 Ag [

f
ACT
! vj = djk j vj 2 VI ; (vj = djk) 2 Ag

We denote the reduct (CA;VI)A by the shorthand
notation CI . We now de�ne an operator on the lat-
tice formed by the sets of all possible assignments and
the subset relation on these. The operator intuitively
captures how the instantiated activity constraints intro-
duce new active variables to an assignment when their
left hand side constraints are active and satis�ed.

De�nition 5 Given a set of instantiated activity con-
straints CI , the operator TCI () on an assignment A is
de�ned as follows: TCI (A) =

fvj = djk j (c
ACT
! vj = djk) 2 CI , c is active in and

satis�ed by Ag.

Intuitively, a solution is a legal assignment that sat-
is�es the constraints in the DCSP and contains all and
only the active variables that are justi�ed by the set of
initial variables and activity constraints. Since active
variables may be justi�ed recursively, a solution to a
DCSP is de�ned as a �xpoint of the above operator for
a given reduct. A �xpoint q of an operator �(:) is such

that �(q) = q. This ensures that every variable with a
justi�cation is active in the solution.

The operator T is monotonic, i.e. for assignments Ai

and Aj , Ai � Aj , it holds that TCI (Ai) � TCI (Aj).
This can be seen by noting that if the constraint part
of an activity constraint is satis�ed by an assignment, it
is satis�ed by all its supersets as well. A monotonic op-
erator has a unique least �xpoint that can be computed
by iteratively applying the operator, starting from the
empty set (Lloyd 1987). As a solution must not contain
unjusti�ed active variables, it should be such a least �x-
point, denoted by lfp(:).

De�nition 6 A legal assignment A is a solution to a
DCSP P = hV ;D;VI ; CC ; CAi i� i) A satis�es the con-
straints in P, ii) the initial variables are active in A,
and iii) A = lfp(T(CA;VI)A)

Example 2 Consider the following simpli�ed version
of the mixer DCSP. Let V = fMi;Mt; V:vol; Cong,
DMi = fr;m; tg, DMt = fd; bg, DV:vol = fs; lg; DCon

= fc1; c2g, VI = fMi;Mtg. Further, let CC = fc1g,
where c1 = f(c1; l); (c2; l)g is a constraint on Con and
V:vol. The activity constraints CA = fa1; a2g are as

follows: a1 = (Mi
ACT
! V:vol) and a2 = (Mt =

d
ACT
! Con). The assignment A1 = fMi = r;Mt =

b; V:vol = lg is a solution since it clearly satis�es the

constraints, CI = (CA;VI)
A1 = f

ACT
! Mi = r;

ACT
!

Mt = b;Mi
ACT
! V:vol = lg, and lfp(TCI ) = A1. The

assignment A2 = fMi = r;Mt = b; V:vol = l; Con =
c1g is not a solution. It does satisfy the constraints,

but CI = (CA;VI)A2 = f
ACT
! Mi = r;

ACT
! Mt =

b;Mi
ACT
! V:vol = l;Mt = d

ACT
! Con = c1g, and

lfp(TCI ) = fMi = r;Mt = b; V:vol = lg 6= A2.

We now show that our de�nition is equivalent to the
original de�nition.

Theorem 1 De�nition 6 is equivalent to De�nition 3.

Proof: The minimality condition of De�nition 3 is re-
placed by the �xpoint condition in De�nition 6. In or-
der to prove the equivalence it remains to show that
the �xpoint condition is equivalent to subset minimal-
ity. This can be done using the following observations.
A solution according to De�nition 3 is a minimal set sat-
isfying the constraints and making the initial variables
active. Hence, it is contained in a solution according
to De�nition 6 which also satis�es the constraints and
makes the initial variables active. On the other hand, a
solution according to De�nition 3 is contained in a so-
lution according to De�nition 6 as it can be constructed
iteratively by starting from the empty assignment and
by applying the operator T. It can be shown induc-
tively that the result of this iteration is contained in a
solution according to De�nition 3.



Properties of DCSP

In this section we show that the decision task of DCSP
is NP-complete and therefore the same as for CSP.
However, we also show that DCSP is strictly more ex-
pressive than CSP in a knowledge representation sense.

De�nition 7 DCSP (D): Given a DCSP P, is there
a solution for P?

Theorem 2 DCSP (D) is NP-complete.

Proof: The task is NP-hard since CSP, which is
known to be NP-complete, is a special case of DCSP
with VI = V and no activity constraints. Further,
DCSP (D) is NP-complete because it is in NP. The
containment in NP is due to the fact that whether an
assignment is a solution can be checked in polynomial
time. This result can be shown by noting that whether
an assignment satis�es a set of constraints and whether
it is the least �x-point of the operator on the reduced
activity constraints can be both decided in polynomial
time. The latter property holds since the reduct can
obviously be computed in polynomial time, by process-
ing one rule at a time, and the least �x-point of the
operator can be computed in polynomial time.

Thus, from the computational complexity point of
view, there is no di�erence between DCSP and CSP.
However, we next show that DCSP is strictly more ex-
pressive than CSP by using the concept of modular-
ity (Soininen & Niemel�a 1999). Intuitively, a modular
representation of knowledge is such that a small change
in the knowledge leads to a small change in the repre-
sentation. This property is important for maintaining
the knowledge in a con�gurator. For example, if knowl-
edge represented as a DCSP were mapped to a CSP, a
simple update like adding a variable to the set of initial
variables should result in a local change in the CSP.
More precisely, we say that DCSP is representable by

CSP i� there is a mapping for every DCSP P to a CSP
T(P) such that the solutions to T(P) agree with the
solutions to P . The solutions agree i� the assignments
of values to the variables of T(P) are the same as for P
if the variables are active, and NULL otherwise. Note
that this requirement is not a real restriction, as T(P)
may contain additionally arbitrary variables, domains
and constraints. It is made to ensure that the solution
to P can be easily recovered from the solution to T(P).
Further, we say that such a mapping is modular if

the mapping of the initial variables is independent of
the other parts. This means that a change in the initial
variables of P leads only to simple updates to T(P). A
simple update consists of arbitrary number of either i)
additions of constraints, removals of allowed tuples from
constraints, removals of values from domains, and re-
movals of variables with their domains, or ii) removals of
constraints, additions of allowed tuples to constraints,
additions of values to domains and additions of vari-
ables with their domains. In other words, in a sim-
ple update it is not allowed to mix changes in the �rst

and second sets. In the case of removing the variables,
the constraints and assignments are projected to the
remaining variables appropriately. We note that this
concept of modularity and the following result can be
extended to involve more complex changes to DCSP,
such as additions and removals of compatibility and ac-
tivity constraints and their allowed value tuples.

Theorem 3 DCSP is not modularly representable by
CSP.

Proof: Consider the DCSP P = hV ;D;VI ; CC ; CAi with
V = fv1; v2g;VI = fv1g; D1 = fag; D2 = fbg; CC =
CA = ;, and assume it can be modularly represented by
a CSP. Hence, there is a CSP T(P) such that in all the
solutions of T(P) v1 = a and v2 = NULL, as that is the
only solution to P . Consider now adding v2 to VI . The
resulting DCSP has only one solution where v1 = a and
v2 = b. This means that T(P) updated with v2 must
not have a solution in which v1 = a and v2 = NULL.
In addition, T(P) updated with v2 must have at least
one solution in which v1 = a and v2 = b. It can be
shown that simple updates cannot both add solutions
and remove them, which is a contradiction and hence
the assumption is false.

The fact that there is no modular representation of
DCSP in the CSP formalism is caused by the require-
ment that activity constraints or initial variables justify
the activity of a variable in a solution. We note that
there obviously is a modular mapping from a CSP to
DCSP, since CSP is a special case of DCSP.

Generalizing DCSP

In this section we generalize the activity constraints of
DCSP. The aim is to extend the expressiveness of activ-
ity constraints while keeping the complexity of the cor-
responding decisions problems in NP. We show that
this indeed is the case for our generalization.
The activity constraints of DCSP are not very ex-

pressive. For instance, in some cases a functional re-
quirement can be satis�ed by any one of a given set of
components, which would require disjunctive activity
constraints. Another case that cannot be represented
in a straightforward manner is that a variable is ac-
tive if some constraints are not active or satis�ed in an
assignment, i.e. complements of activity or constraints.
To enable succinct representation of such knowledge,

we allow activity constraints of the following form:

c1; : : : ; cj ; not(cj+1); : : : ; not(ck)
ACT
! mfv1 j : : : j vlgn

(1)
where 0 � m � n. Intuitively, this activity constraint
states that if constraints c1; : : : ; cj are satis�ed by an
assignment A and the constraints cj+1; : : : ; ck are not
satis�ed by or not active in A, then a subset of the vari-
ables v1; : : : ; vl is active in A, such that the cardinality
of the subset is between m and n. If m = 1 and n is
the number of variables in the right hand side, this be-
comes an inclusive disjunction of the variables. On the



other hand, if m = n = 1, the right hand side becomes
an exclusive disjunction. We allow activity constraints
with m = 0 for representing optional variables.
We next de�ne when an assignment satis�es the new

form of activity constraints and the reduction of ac-
tivity constraints w.r.t. an assignment. The reduct
handles default negations by pruning from the instanti-
ated activity constraints those for which one of the con-
straints within default negation is active and satis�ed,
and by removing the default negations from the rest
of the instantiated activity constraints. This is similar
to the stable model semantics of logic programs (Gel-
fond & Lifschitz 1988). The operator on assignments is
extended to handle the remaining activity constraints
with several constraints in their left hand side in the
obvious manner, i.e. all of the constraints need to be
active and satis�ed. The de�nition of when a compat-
ibility constraint is satis�ed by an assignment and the
de�nition of a solution remain the same as previously.

De�nition 8 A legal assignment A for a DCSP P =
hV ;D;VI ; CC ; CAi satis�es the activity constraints in P
i� for each activity constraint in CA of the form (1)
the following holds: if c1 : : : cj are active and satis�ed,
and cj+1; : : : ; ck are not satis�ed by or not active in
A, then some set V � fv1; : : : ; vlg is active in A, and
m �j V j� n.

De�nition 9 We de�ne the reduct (CA;VI)A of a set
of activity constraints of the form (1), CA, and a
set of initial variables, VI , w.r.t an assignment A as

follows: (CA;VI)A = fc1; : : : ; ci
ACT
! vj = djm j

(c1; : : : ; ci; not(ci+1); : : : ; not(ck)
ACT
! mfv1 j : : : j

vlgn) 2 CA; (vj = djm) 2 A for some j where 1 � j � l,
ci+1; : : : ; ck are not satis�ed by or not active in Ag
[
f
ACT
! vj = djk j vj 2 VI ; (vj = djk) 2 Ag

Example 3 Consider a DCSP with variables
Mi;Mt; V:vol; Coo; Con with domains as given in
Figure 1, a set of initial variables fMi;Mt; V:volg,

an activity constraint c1
ACT
! 1fCoo j Cong1

with c1 a constraint f(reactor; disp)g de�ned
on Mi and Mt, and a compatibility constraint
c2 = f(con1; large)(con2; large)(con2; small)g de�ned
on Con and V:vol. The assignment A1 = fMi =
reactor;Mt = disp; V:vol = small; Con = con2g is a
solution since it clearly satis�es the constraints and

for the reduct (CA;VI)A1 = f
ACT
! Mi = reactor;

ACT
!

Mt = disp;
ACT
! V:vol = small; c1

ACT
! Con = con2g,

lfp(T(CA;VI)A1 ) = A1. On the other hand, A2 = fMi =
reactor;Mt = disp; V:vol = small; Con = con2; Coo =
coo1g is not a solution since it does not satisfy the
constraint that only one of the variables Coo and Con
should be active.

A similar argument as for Theorem 2 can be used to
establish the following result.

Theorem 4 DCSP (D) is NP-complete when ex-
tended with activity constraints of the form (1).

In order to retain the same complexity for the gen-
eralized DCSP we in fact relax the subset minimality
condition. Each active variable in a solution is justi�ed
by the activity constraints or initial variables, but the
solutions may not be minimal, since an activity con-
straint may justify more variables than a minimal so-
lution would contain. We believe that in con�guration
problems minimality is more related to optimality of
a solution rather than correctness of a solution, and
therefore consider our generalization a reasonable one.

Implementation
In this section, we brie
y discuss two novel implemen-
tations of DSCP. The �rst is similar to the original
algorithm described in (Mittal & Falkenhainer 1990)
whereas the second is based on mapping a DCSP to
a type of propositional logic programs (Soininen &
Niemel�a 1999). To test the performance of both al-
gorithms, we use a set of examples from the con�g-
uration domain, CAR (Mittal & Falkenhainer 1990),
CARx2 (Soininen & Niemel�a 1999), a simpli�ed form
of a hospital monitor problem (Soininen et al. 1998)
and the mixer problem in Example 1.
The �rst implementation di�ers from the one de-

scribed in (Mittal & Falkenhainer 1990) in that it does
not use an ATMS. The algorithm is based on a simple
backtracking algorithm used to solve standard CSPs.
As long as variables are not yet assiged a value the al-
gorithm chooses the next variable and a value to assign
to that variable such that the value is still consistent
with the compatibility constraints. Then the algorithm
checks if some activity constraint has become relevant,
i.e. if the condition in an activity constraint is con-
sistent with the already assigned values. In that case,
new variables are activated and added to the list of not
yet assigned variables. If all values of a variable have
been considered, the algorithm backtracks to the last
variable that still has values left. Variables that have
been activated by an activity constraint based on the
value of a variable deassigned in the backtracking step
have to be deactivated as well. The algorithm contin-
ues until no more activity constraints can be activated
and all currently active variables have been assigned a
value. The implementation was written in Java (Sun's
JDK) and run on a Pentium II, 266 MHz, with 96MB
of memory, Windows NT operating system. The im-
plementation and the test problems are available at
www.cs.hut.fi/~pdmg/CP99/.
The second implementation is based on �rst trans-

lating the DCSP to a set of rules in Con�guration Rule
Language (CRL), a type of propositional logic pro-
grams (Soininen & Niemel�a 1999), for which the so-
lutions are found using an e�cient C++ implemen-
tation of the stable model semantics of normal logic
programs. The tests were run on a Pentium II 266
MHz with 128MB of memory, Linux 2.2.3 operat-
ing system, smodels version 1.12 and lparse ver-
sion 0.9.25. Further details can be found in (Soini-
nen & Niemel�a 1999) and the implementation and the



Table 1: Characteristics of the examples.
Example # solutions) Search space
Car CRL 198 1296
Carx2 CRL 44456 331776
Monitor CRL 1320 196608
Mixer CRL 88 1152

Table 2: Results for the examples.
Problem, implem. First solution All solutions
Car, backtrack 0.04 s 0.07 s
Car, CRL 0.05 s 0.07 s
Carx2, backtrack 0.01 s 11.8 s
Carx2, CRL 0.08 s 5.1 s
Monitor, backtrack < 1 ms 0.08 s
Monitor, CRL 0.10 s 0.39 s
Mixer, backtrack < 1 ms 0.01 s
Mixer, CRL 0.05 s 0.06 s

test problems at www.tcs.hut.fi/pub/smodels and
www.tcs.hut.fi/pub/smodels/tests/cp99.tar.gz.
The number of solutions to the problems found by

the implementations and the potential search space for
them are given in Table 1. The size of the potential
search space is calculated by multiplying the sizes of the
domains of the variables. The times to �nd the �rst and
all solutions are given in Table 2. We note that for the
�rst implementation, the problem inputs and outputs
are handled in main memory, whereas the results for the
second implementation include the time for reading the
input from a �le and parsing it. However, the execution
time for the second implementation does not include the
time for manually translating the DCSP to CRL.

Conclusions and Future Work

Dynamic constraint satisfaction problems were intro-
duced to capture the dynamic aspect of, e.g., con�g-
uration (Mittal & Falkenhainer 1990). We present a
relatively simple and mathematically well-founded def-
inition of such problems which is equivalent to the orig-
inal. We then show that the decision problem of DCSP
is NP-complete. Thus, from the complexity point of
view, DCSP and CSP are equivalent. However, we also
show that DCSP is strictly more expressive than CSP in
a knowledge representation sense and thus indeed seems
a more feasible representation for dynamic problems.
The activity constraints of DCSP are limited with

regard to con�guration knowledge modeling. We gen-
eralize them with default negation on constraints and
their activity, and a generalized disjunction of activ-
ity of variables. The decision problem for the general-
ized DCSP is shown to remain NP-complete. As fur-
ther work, resource constraints and non-prede�ned sets
of variables (Stumptner, Friedrich, & Haselb�ock 1998)
should also be cleanly included in our de�nition to rep-
resent resource interactions and con�gurations whose

size is not known in advance.
There are few reports on implementations of algo-

rithms for the original DCSP. We sketch two imple-
mentations, one based on a modi�ed CSP algorithm,
the other based on the mapping from DCSP to propo-
sitional logic programs. The test results for both on
a set of simple problems are close to each other and
acceptable for practical applications. The implementa-
tions should be extended to handle the generalizations
in this paper and outlined as future work and empiri-
cally tested on larger problems.

Acknowledgements
The work of the �rst author has been supported by
the Helsinki Graduate School in Computer Science and
Engineering (HeCSE) and the Technology Development
Centre Finland. We thank Ilkka Niemel�a and Tomi
M�annist�o for their comments on the paper.

References
Bowen, J., and Bahler, D. 1991. Conditional exis-
tence of variables in generalized constraint networks.
In Proc. of the Ninth National Conf. on Arti�cial In-
telligence, 215{220.

Gelfond, M., and Lifschitz, V. 1988. The stable
model semantics for logic programming. In Proc. of the
5th International Conf. on Logic Programming, 1070{
1080.

Gelle, E. M. 1998. On the generation of locally consis-
tent solution spaces. Phd thesis, Ecole Polytechnique
F�ed�erale de Lausanne, Switzerland.

Lloyd, J. 1987. Foundations of Logic Programming.
Springer-Verlag, second edition.

Mittal, S., and Falkenhainer, B. 1990. Dynamic con-
straint satisfaction problems. In Proc. of the 8th Na-
tional Conf. on Arti�cial Intelligence, 25{32.

Sabin, D., and Freuder, E. C. 1996. Con�guration as
composite constraint satisfaction. In Con�guration {
Papers from the 1996 Fall Symposium. AAAI Techni-
cal Report FS-96-03.

Soininen, T., and Niemel�a, I. 1999. Developing a
declarative rule language for applications in product
con�guration. In Practical Aspects of Declarative Lan-
guages (PADL99), LNCS 1551. Springer-Verlag.

Soininen, T.; Tiihonen, J.; M�annist�o, T.; and Sulonen,
R. 1998. Towards a general ontology of con�guration.
AI EDAM 12:357{372.

Stumptner, M.; Friedrich, G.; and Haselb�ock, A.
1998. Generative constraint-based con�guration of
large technical systems. AI EDAM 12:307{320.

Tsang, E. 1993. Foundations of Constraint Satisfac-
tion. Academic Press.

van Velzen, M. 1993. A Piece of CAKE, Computer
Aided Knowledge Engineering on KADSi�ed Con�g-
uration Tasks. Master's thesis, Univeristy of Amster-
dam, Social Science Informatics.


