Towards Recommending Configurable Offerings

Tiihonen Juha ! and Felfernig Alexander 2

Abstract. Configuration technologies provide a solid basis
for the implementation of a Mass Customization strategy. A
side-effect of this strategy is that the offering of highly variant
products and services triggers the phenomenon of Mass Con-
fusion, i.e., customers are overwhelmed by the size and com-
plexity of the offered assortments. In this context, recommen-
dation technologies can provide help by supporting users in
the identification of products and services fitting their wishes
and needs. Recommendation technologies have been inten-
sively exploited for the recommendation of simple products
such as books or movies but have (with a few exceptions)
not been applied to the recommendation of complex products
and services such as computers or financial services. In this
paper we show how to integrate case-based and content-based
recommendation approaches with knowledge-based configura-
tors.

1 Introduction

In many domains, customers do not know and understand
in detail the complete set of options supported by a given
configurable product. On the one hand configuration options
are represented on a rather technical level and customers
are overwhelmed by the offered set of alternatives [6] - this
phenomenon is well known as Mass Confusion [14]. On the
other hand customers do not know their preferences before-
hand since preferences are typically constructed [13] within
the scope of a configuration session. Even experienced sales
persons tend to propose configurations they are used to thus
overlooking configuration alternatives which better suit to the
customers’ wishes and needs. This can cause unsatisfied cus-
tomers as well as the sales of less profitable configurations.
Consequently, users of configuration systems are in the need
of more intuitive interaction mechansisms effectively support-
ing the configuration and selection of interesting product and
service alternatives. With a few exceptions [5, 12, 16] exist-
ing recommender technologies [8] are primarily applied for
the recommendation of simple products and services such as
books, movies or compact discs. These technologies have not
been integrated into configuration environments dealing with
complex products and services. The major goal of this paper
is to discuss scenarios in which recommendation technologies
can be exploited in configuration sessions. This work has been
conducted within the scope of the COSMOS project?®.

I Deptartment of Computer Science and Engineering, Helsinki U
of Technology

2 Intelligent Systems and Business Informatics, U Klagenfurt

3 COSMOS (Customer-Oriented Systematically Managed Service
Offerings) is a project supported by the Finnish Funding Agency
for Technology and Innovation.

Proceedings
pp. 29-34,
Proceedings:

July 21 - 22, 2008,

ot the ECAI 2008 Workshop on Configuration
Patras,
http://www.soberit.hut.fi/configws08/

Recommendation Technologies. Collaborative filtering
(see, e.g., [1]) is one of the most commonly used recommenda-
tion technologies. It provides recommendations on the basis
of opinions of users (e.g., ratings or purchasing data). A sim-
ilarity function on opinions about items is exploited to calcu-
late nearest neighbors which are users with similar preference
structures. The basic idea is to identify similar users and to
recommend their highly rated items that are unknown to the
active user. In many B2C scenarios an individual user may
purchase too few configurable products to establish a dense
enough user profile to be suitable as a basis for pure collab-
orative filtering. However, collaborative filtering technologies
can be used in very specific settings supporting the collabora-
tive development of product innovations [10]. This issue will
not be further discussed in this paper.

Content based filtering (see, e.g., [15]) approaches recom-
mend items similar to those that the active user has preferred
in the past. Items are described by a number of keywords
or features. A user model contains previous opinions about
items, often presented as keywords or features. A similarity
function is used to calculate nearest neighbors [4] which are in
this case those items with the highest similarity compared to
the given preference information in the user profile. The ap-
proach is typically applied for recommending text-based items
such as articles or web pages. One challenge of applying this
technique to configurable offerings is that - beside the avail-
ability of textual component descriptions - building a user
profile requires repetitive configurations of one user. Further-
more, a profile may soon become outdated in rapidly evolving
domains such as PC’s. Beside the calculation of the k-nearest
neighbors predictions [4] on interesting items, recommenda-
tions can be based on naive Bayes predictors [15] which allow
the prediction of interesting items on the basis of their prob-
ability of being selected given the existing user preferences.
In this paper we will focus on the application of naive Bayes
predictors for the identification of interesting configurations.

Utility based recommendation estimates the utility of an
item for a customer and recommends items with the highest
utility. Domain-specific interest dimensions have to be iden-
tified in this context. For PC’s, interest dimensions could be
economy, reliability, graphics performance and weight. Items
are given numeric utility values with respect to the interest
dimensions. The user specifies his preferences in terms of im-
portance (weight) of each interest dimension. Given this in-
formation, item utilities can be computed for the active user.
An example for the application of utility-based recommen-
dation approaches in the financial services domain is given
in [9]. A further discussion of utility-based approaches in the
configuration context is outside the scope of this paper.

Systems
Greece.

pages/WorkshopOnConfigurationSystemsECAI2008W12.pdf

jti
Typewritten Text
Proceedings of the ECAI 2008 Workshop on Configuration Systems
pp. 29-34, July 21 – 22, 2008, Patras, Greece.
Proceedings: http://www.soberit.hut.fi/configws08/
pages/WorkshopOnConfigurationSystemsECAI2008W12.pdf

Knowledge-based recommenders exploit explicit informa-
tion about items and explicit knowledge on how user re-
quirements on those items can be specified [4][9]. Constraint-
based recommendation is a knowledge-based approach where
alternative items and potential customer requirements are de-
scribed on the basis of a set of features and the corresponding
constraints. Filter constraints match customer requirements
to suitable items. Compatibility constraints ensure the consis-
tency of requirements. To resolve inconsistencies, explanation
and repair functionalities are provided [9]. Constraint-based
approaches exploit the same technologies as many knowledge-
based configuration environments and are additionally com-
bined with, e.g., utility-based recommendation approaches
supporting the ranking of candidate configurations. Case-
based recommendation [3] is another type of knowledge-based
recommendation. It exploits similarity functions to determine
items fitting to the wishes an needs of users. In contrast to
content-based filtering and collaborative filtering those simi-
larity functions compare elementary properties of items (e.g.,
PC price) rather than extracted keywords or categories. Our
major goal in this paper is to apply and extend different con-
cepts of case-based and content-based recommendation in or-
der to make them applicable in configuration settings.

Recommendation Scenarios. Recommendation of con-

figurable offerings can focus on

e selecting a suitable base product line to configure (such as
a car model)

e recommending a complete configuration (such as a com-
plete PC for gaming or a tractor for peat harvesting includ-
ing suitable wheels, air-intake filters, and other equipment)

e recommending how to complete a configuration (e.g., to
propose still unspecified details of a PC)

e recommending a subconfiguration (e.g., a storage subsys-
tem suitable for a particular type of use such as a PC stor-
age subsystem for full-HD video-editing and authoring)

e recommending individual attribute or component settings
(e.g., a mobile data connection for a business person)

Consequently, a high diversity of usage and integration sce-
narios for recommendation technologies in the configuration
context can be envisioned. In this paper our major focus is the
integration of case-based and content-based recommendation
into existing configurators. We analyze existing approaches
in the field [5, 12, 16] and show how to extend and improve
those approaches by developing a more sophisticated notion
of similarity between item features and explicitly taking into
account customer importance weights for features.

The remainder of the paper is organized as follows. In the
following section we introduce a working example from the
domain of configurable computers. In Section 3 we discuss
relevant case-based and content-based algorithms for config-
urable products and services and introduce our extensions to
those algorithms. A discussion of related and future work is
presented in Section 4. Section 5 concludes the paper.

2 Working Example

In this paper we consider (for reasons of simplicity) only “fat”
configuration models consisting of features (no variation of

structure or connections), each having a finite domain of pos-
sible values. Our example product is a PC, that has as features
a motherboard (mb), a hard disk (hd), an optical drive (od),
a processor (pr), and optionally a graphics card (gc). The
amount of memory (me) is specified in gigabytes (1, 2, 3, or
4). A complete configuration specifies a value for each feature.
Furthermore, a valid configuration is complete and consistent
with a defined set of constraints.

We represent some non-configurable attribute values re-
lated to features to specify constraints more intuitively. Pro-
cessors are introduced in Table 1(a). Processor performance
is approximated with an industry standard benchmark, spec-
ified by CScr. Socket determines a processor’s connection to
a motherboard. Motherboards (see Table 1(b)) are designed
to be compatible with either manufacturer A’s or I's pro-
cessors, socket 'a’ or 'i’, respectively. Thus, a specific con-
straint specifies that a processor must fit the motherboard:
pr.socket = mb.socket. In addition, some motherboards pro-
vide an integrated graphics card (IntGr = yes).

[pr [socket] CScr | mb [socket [IntGr [GSer |

as a | 1250 Z; Z zleos 308
i4 i | 2858 i i e 300
i9 i | 4537 - Y

i2 i no 0
Table 1. Processors (a, left) and motherboards (b, right)

Separate graphics cards provide higher performance than
those integrated to motherboards. Graphics performance is
approximated with an industry standard benchmark, rep-
resented by graphics performance score (GScr). Similarly,
motherboards with integrated graphics card specify their
graphics performance with GScr. Graphics cards g2, g8, and
g9 have graphics performance scores 2800, 2200, and 5500,
respectively. A system must always have a way to produce
graphics. Thus the constraint (mb.IntGr = no) = (gc #
no) is introduced. pc.GScr refers to graphics performance of
the PC, determined as the maximum GSecr provided by the
graphics card or the motherboard.

Hard disks (hd) are available in different capacities (GB)
(h2.capacity = 250, h5.capacity = 500, and h9.capacity =
1000). All optical drives (see Table 2) read CD and DVD.
Some write DVD or DVD + Blu-ray.

od Write DVD & Read Blu-ray Write Blu-ray
CD (dw) (br) (bw)

dr no no no

dw yes no no

br no yes no

bw yes yes yes

Table 2. Properties of optical drives of the running example

Three additional features, namely video editing (vi), photos
(ph), and gaming (ga) are included in the configuration model
to describe intended use of the PC being configured. Details
are specified in Table 3.

The following domain knowledge is available:

ph # no = od.dw = yes: to archive photos

ph = adv = hd.capacity > 500: disk space for photos

ph =adv = pr.CScr > 2500: CPU for advanced photo

[Feature] Values |
Video no (no) standard high-definition
editing definition (hd)

(vi) (sd)
Photos no (no) normal advanced amateur
(ph) home use or professional
(std) (adv)
Gaming no or 2D 3d games enthusiast
(ga) games (3d) performance 3d
(2d) games, HD
resolutions (adv)
Table 3. Intended usage features of the running example

ph = adv = me > 2: RAM for advanced image process-
ing

vi =sd => pr.C'Scr > 2700: CPU for SD video editing

vi = hd = pr.CScr > 4500: CPU for HD video editing

vi = sd = od.dw = yes: burn DVD videos

vi = hd = od.bw = yes: burn Blu-ray videos

ga =3d = pr.CScr > 1500: CPU for 3D gaming

ga =3d = pc.GScr > 1500: graphics for 3D gaming

ga = adv = pr.C'Scr > 2800: CPU for advanced gaming

ga = adv = pc.GScr > 5000: graphics for advanced
gaming

For the formulas discussed in this paper, we assume the fol-
lowing distribution of feature importance weights: video edit-
ing w(vi) = 5%, photos w(ph) = 5%, gaming w(ga) = 9%,
processor w(pr) = 18%, motherboard w(mb) = 5%, amount
of memory w(me) = 15%, hard disk w(hd) = 16%, graphics
card w(gc) = 17%, optical drive w(od)=10%. Those features
could stem from direct customer specifications, representa-
tive preferences from statistical samples, or the application of
utility constraints as documented in [9].

Notation. We base the discussion of recommendation al-
gorithms on the following conventions. Relation Conf holds
previous K configurations, each having values for the existing
N features f1, .., fn. The value of feature f; in configuration
k is referred to as f; . The k"configuration is referred to as
Confi. Classification (discussed in Section 3.1) of configura-
tion k is referred to as ci. When referring to the profile of
the active user, we use index u, u ¢ K, e.g., fi,. refers to the
value of feature i for the active user. The set of specified fea-
tures in the active user profile is Fy. F, = {fj|fju # noval},
and the set of features for which the active user profile does
not have a value is F,. Furthermore, a projection 7p, (Conf)
of previous configurations for which the profile has (does not
have) values is referred to as Confr, (Confz,). The index
of a configuration (k) is considered to be included in Con fi
and projections, see Table 4, to avoid unintended removal of
duplicate tuples. Finally dom(f;) returns the domain of f;.

k| fil fo | fa | fa| f5
vi| ph | ga | pr| mb

fr| fs| fol| ¢
e| hd gc| od
h2| no| dr|| ba
h5| g2| dw]| st

h5| g9| dwl| ad
h9| g9| bw|| ad
h9| g8| dw]| st

1 no| no 2d as| al
2 | no| std 2d as| a2
3 sd| std | adv | i4 | i2
4 | hd| adv | adv | i9| i2
5
u

sd[adv | 3d | @[i1
[mofmo [3d] [[[]

Table 4. Previous configurations and active user profile

3 Recommendation Algorithms
3.1 Distance Metrics

The algorithms discussed in this paper use distance functions
to determine similarity or dissimilarity of individual feature
values, and ultimately that of configurations. The motivation
for using distance functions instead of equality when com-
paring feature values is that equality may be too strict for a
measure - close values or configurations could remain ignored.
We decided to include ideas of the Heterogeneous Value Dif-
ference Metric (HVDM) [17] to cope with symbolic (nominal)
and numeric features in a relatively simple manner. On the
feature level the distance is defined as follows where the func-
tion dy, (x,y) returns the distance between values x and y of
feature a, using a different sub-function for different types of
features: distances between symbolic feature values are com-
puted by function vdmy, (x,y), and those between linear val-
ues by function dif ff,(z,y). Based on experiments of [17],
these functions provide similar influence on the overall dis-
tance measurements. Distance values returned by dy, (z,y) are
normalized to usually (but not always) be in range 0 to 1.

1 if x or y is unknown; otherwise
vdmy, (x,y), if fi is symbolic
dif fy,(x,y), 1if f; is linear

The function vdmy, (z,y) learns the similarity of symbolic
values in a domain automatically. This takes place by exam-
ining the probability that individual feature values contribute
to the classification of the sample vector - in our case classi-
fication of configurations. Slightly oversimplifying, the closer
the probability of a pair of feature values to be present in iden-
tically classified configurations, the more similar these feature
values are considered. In this paper we take a simplistic view,
and consider a configuration to belong to one of three clusters
(basic (ba), standard (st), or advanced (ad)), which is used as
the classifier for HVDM (see column “c” in Table 4).

_ ¢ | Ngpwe Nfjye
vdmy;(z,y) = \/Zczl Np. T N,

C
\/Zc:l |Pfivzvc - Pfi,vyvc|2

In the function vdmy,(z,y), Ny, o is the number of in-
stances (configurations) in the training set 7" that have value
x for feature fi; Ny, 2. is the number of instances in T that
have value x for feature f; and output class ¢; C is the num-
ber of output classes in the problem domain (in our case 3 -
see Table 4). Py, 5. is the conditional probability of output
class c given that feature f; has the value z, i.e., P(c|fi = z).
When Ny, , =0, P(c|fi = x) is considered 0.

For example, in our example population Conf, Nprqs = 2,
Npria = 2, and Npr ;9 = 1. The classification frequencies for
processor Npr ... are presented on left half of Table 5, e.g.,
feature value as for classification basic (ba) occurs exactly
once. The resulting distance matrix for processors is presented
on the right half of Table 5.

Distances between linear values = and y of feature f; (in
Conf) are determined by function dif fy, (x,y). Since 95% of
the values in a normal distribution fall within two standard
deviations of the mean, the difference between numeric values

c,X as | i4 | 19 as i4 i9
ba 1 0 0 as 0 0.707 1.225
std 1 1 0 i4 0.707 0 0.707
adv 0 1 1 i9 1.225 0.707 0
Table 5. Classification frequencies of pr (left), and

corresponding distance matrix (right)

is divided by 4 standard deviations to scale each value into a
range that is usually (95% of cases) of width 1. As motivated
in [17] “distances are often normalized by dividing the dis-
tance for each variable by the range of that attribute, so that
the distance for each input variable is in the range 0..1. How-
ever, dividing by the range allows outliers (extreme values)
to have a profound effect on the contribution of an attribute.
For example, if a variable has values which are in the range
0..10 in almost every case but with one exceptional (and pos-
sibly erroneous) value of 50, then dividing by the range would
almost always result in a value less than 0.2.4

, _lz—yl
if 1, (@9) = <7

The distance metric dy, (z,y) usually returns a value from
0 to 1. The similarity simy, (x,y) between two feature values
x and y of feature f; can then be defined as simy, (z,y) =
1 —dy,(z,y). In the following subsections we show how these
metrics can be applied to the recommendation of feature val-
ues as well as to the recommendation of complete configura-
tions. In the sense of case-based configuration we investigate
existing (and similar) configurations in order to predict inter-
esting feature settings and complete solutions. Note that our
cases describe user preferences as well as technical features.

Following this approach, we extend existing algorithms [5]
to take into account similarity of feature values, not just direct
equality. Furthermore, we extend previous approaches to take
into account the weights of different features.

3.2 Nearest Neighbor

The idea of a nearest neighbor is simple: determine a neigh-
bor configuration, which is closest to the known parts of active
user’s profile, and recommend feature values of this nearest
neighbor. The nearest neighbor is determined as follows (dis-
tance between two configurations):

dist(Confu,Confa) = Z dy, (fiu, fi,a) * w(fs)

i€ Fy

For nearest neighbor ¢ the following has to hold: 3c,1 <
¢ < K :dist(Conf.,,Conf.) < dist(Conf.,Conf.).

In our example, the nearest neighbor relative to our user
profile is Con f1: dvi(no, no)= 0.000, w(vi)=0.050; dyx(no, no)
= 0.000, w(ph)=0.050; dga(3d,2d) = 0.707, w(ga)=0.090. To-
tal weighted distance dist(Conf.,Confi) = 0.064. Applying
the nearest neighbor formula to configurations Confa .. Con fs
provides distances 0.125, 0.224, 0.250, and 0.097. Unfortu-
nately, the combination of known feature values of the user
profile and Confi is not consistent (graphics and cpu perfor-
mances are not sufficient for 3d gaming). Feature values of the
nearest consistent neighbor Con f5 are recommended: pr = i4,
mb = il, me =2, hd = h9, gc = g8, od = dw.

3.3 Weighted Majority Voter

The weighted majority voter [5] recommends individual fea-
ture values based on each neighbor configuration in Conf
“voting” for its feature values. The weight of each neighbor
vote is determined by the number of equal feature values to
the user profile. For example, the weight of Con f1 for user u is
2, because fyi,1 = fvi,u = no, and fpr,1 = fph,u = no. Thus,
Confi would give 2 votes for pr = as, mb = al, me = 1,
hd = h2, gc = no, and od = dr. The following feature values
get most votes: pr = as (3 votes), mb = al (2), me =1 (3),
hd = h2 (2), gc = no (2), and od = dr (2).

The consistency of a potential recommendation is checked
by adding the proposed value to the known values in the user
profile. After user selects a feature value, recommendations
will be recalculated to reflect the new situation. Due to con-
sistency checks, pr = ¢4 (1 vote) and gc = g2 (1 vote) replace
those with most votes, assuming the selection of the first fea-
ture value in a domain in case of a tie in votes.

Next, we rewrite the formula of [5] and propose the corre-
sponding extensions. First, we define the equality function eq
to return 1 when two values are equal, otherwise 0.

1 if x=y
cq(w,y) = { 0 otherwise
The weight w(confz,conf.) of a neighbor configuration
confy with respect to configuration conf, (a user’s partial
configuration) is the number of equal feature values in fea-
tures for which conf, has a value (Fy):

w(confyz, confy) = Z eq(fizs fiu)

1€ Fy

The prediction score pr(confu, f;,v) for (user’s configura-
tion) con f,, having value v for feature f; is thus sum of weights
(votes) of neighbors having value v for feature f;:

pr(confu, f;,v) =Y eq(fj.,v) * w(confi, confu)

=1

A value v with maximum prediction score pr(confu, fj,v)
is the recommendation r(f;, conf.) for feature f; in configu-
ration con fy:

r(fj,conf.) = v such that
', € dom(f;) : pr(confu, fj,v') > pr(confu, fj,v)

We propose a modified algorithm to derive neighbor
weights. Neighbor weights are determined by the similarity
of neighbor and user profile feature values instead of equality
used by [5]. Thus, similar values compared to user’s exist-
ing selections contribute to the weight of a neighbor. Further,
we take into account the importance of individual features
for a user (feature weights). Both of those aspects are ex-
tremely important for interactive settings. Thus, the weight
w(confz,confy) of a neighbor configuration conf, with re-
spect to configuration conf, is defined as follows:

w(confy, confy,) = Z simy, (fix, fiu) * w(fi)

i€Fy

The weights of example neighbors are w(confi,conf.) =
0.126, w(con fz,confy) = 0,065, w(confs,conf,) = —0.034,
w(con fs, conf,) = —0.060, and w(confs,conf,) = 0.093. Us-
ing these weights, the first potential recommendations are
pr = as (0.191), mb = al (0.126), me = 1 (0.191), hd = h2
(0.126), gc = no (0.126), and od = dr (0.126). To provide
(locally) consistent recommendations, pr and gc must be sub-
stituted with pr = ¢4 (0.060), and gc = g8 (0.093).

3.4 Most Popular Choice

The most popular choice algorithm [5] recommends entire re-
maining configurations, typically to complete a configuration.
The probability estimate for a configuration ¢ € Conf with
respect to known features in user’s profile Fy, (and correspond-
ing unknown features F,) is calculated as:

PT‘(C, u, Fu) = Prbasic(c7 Fu) * H P?"(iju = fj7u|COTLf)

JEFy

In the original formula, basic probability Pryssic(c, Fiu) of
a neighbor configuration ¢ is based on the popularity of it’s
feature values on features for which the user profile does not
have a value, F,,. The basic probability for feature f; having
the value that configuration ¢ has (fj.) is simply the propor-
tion of neighbors having that value for feature f;. Basic prob-
ability of a configuration is determined by multiplying the
basic probabilities for its feature values. We apply function
count(fj,v) that returns the number of neighbors in Conf
having value v for feature f;: count(f;,v) = Zle eq(fjk,v).

_ Hh e
medq&):Ilgﬂﬂ%&&l

JEFy

We extend the concept of basic probability by giving each
feature value support when neighbour configurations have fea-
ture values within maximum distance A, (dy, (fj,u, fi,a) < A).
The support is defined as term (1 —dy, (fj,u, fi.a))? to quickly
lessen its significance when the distance increases. We define
support sy, (,y)

1—dy (z,9)?, ifds(z,y) <A
55, (@) = { ((), otjijl(grw?s)e) 59
Maintaining these as probabilities requires that the sum of
probabilities of existing values is 1. Thus, the sum of supports
for feature f; having the value that configuration c has (fjc) is
divided by the sum of supports given to all values in domain of
f; that exist in at least one neighbor configuration. Therefore

Prbasic(cy Fu) =
H _ Yhet sp; (Fi,e085.%)
JEFu Zvedovn(fj) Yy sr; (0.5, k) xmin(1,count(f;,v))

The basic probability is weighted with a Bayesian predictor
for the user profile u to have the values already selected, given

the existing neighbors, [[,;cp P(fiu = fiulConf). P(fju =
fiulConf), is defined to be an m-estimate [2] to stabi-
lize probability calculations even in case of (too) few sam-
ples. The m-estimate assumes m virtual samples with ini-
tial probability p that augment the estimation of probabil-
ity. mest(Ne, N,p,m) = %. We apply the following m-
estimate parameters: 1) the number of “in-samples” N, is the
number of such neighbor configurations that have equal value
(fj,u) as the user profile for feature f; being inspected, and
that have the same configuration with respect to features (F.,)
that the user profile does not have a value; 2) the number of
all samples NV is the number of such neighbor configurations
that have the same configuration with respect to those fea-
tures (F,) that the user profile does not have a value; and
3) m-estimate virtual sample parameters are p = 1/K, and
m =K.

II P(fiw = fiulConf) =

ijF

H meSt(eqcfgsm(c7FUfj7fj7fj7u)7eqcfgs(C7F)71/K7 K)
fiE€F

eqcfg(i,j, F) tests if neighbor configurations ¢ and j are
equal with respect to a set of features F'. It returns 1 iff pro-
files 7 and 5 have equal feature values for all features f € F.
Otherwise it returns 0.

oo [1 iV e Freq(fra, fry) =1
eqcfg(i, j, F) = { 0 otherwise

eqcfgs(c, F) returns the number of neighbor configurations
that are equal to configuration ¢ with respect to a set of fea-
tures F. eqcfgs(c, F) = Zszl eqefg(e, k, F).

eqcfgsm(c, F, fj,v) returns the number of neighbor config-
urations that are equal to configuration c¢ with respect to
a set of features F', and which have value v for feature f;.
cacfgsm(c, F, f,0) = S, eqcfg(c, k, F) + eq(fyx,v).

In our example, the basic probability of con f5 with the orig-
inal formula [5] is 0.003072 = 0.4 * 0.2 * 0.2 * 0.4 * 0.2 * 0.6,
because fpr = i4 two times, other terms for basic probability
are 0.2 (mb), 0.2 (me), 0.4 (hd), 0.2 (gc), and 0.6 (od). With
our modified formula and (a large) A= 0.8 they are: 0.403
(pr), 0.286 (mb), 0.280(me), 0.444 (hd), 0.286 (gc) 0,600 (od)
= 0,00246

[Lier, P(fiw = fiulConf) = mest(1,1,0.2,5) =
Mest(0,1,0.2,5) * mest(0,1,0.2,5). For example, for the
first term N. = 1, because configuration confs has vi = sd
just as the user profile, and there are no other equal con-
figurations to confs with respect to features absent from
user profile. The second term for ph has N. = 0, because
con f5 has different value for ph than the user profile u. confs
becomes the configuration of choice (with estimate 1.12E-07,
thus its value are recommended: pr = i4, mb = il, me = 2,
hd = h9, gc = ¢8, and od = dw.

4 Related and Future Work

The paper of [5] presents a recommender implementation for
on-line PC configuration and underlying recommendation al-
gorithms. We extended the recommendation algorithms of [5]

in order to be able to take into account the aspects of im-
portance weights and similarity (which substitutes the notion
of equality). Furthermore, we take into account the notion of
consistency, i.e., we only allow recommendations which are
consistent with the given set of customer requirements. Ad-
mittedly, the evaluation of our approach has not been com-
pleted up to now but will be a strong focus of future work.

The contribution of [12] presents an approach to integrate
case-based reasoning with constraint solving with the goal to
adapt identified nearest neighbors to the new configuration
problem. The used algorithm for calculating nearest neigh-
bors takes into account component structures but does not
take into account probabilities of selection. The authors then
discuss an approach to the calculation of adaptations for the
identified nearest neighbors in order to conform with the new
customer preferences. No details are provided regarding the
minimality of changes or how the adaption effects the given
customer requirements. One of our major goals for future re-
search is to integrate mechanisms which allow the calculation
of minimal adaptations in the case of recommendations par-
tially inconsistent with the given customer requirements.

[16] present an approach to the application of case-based
reasoning for product configuration tasks. The authors de-
velop their approach on the basis of a high-level product struc-
ture where instance similarities are determined on the basis
of simple equality relations. Compared to the approach pre-
sented in this paper, the authors do not take into account
propabilities which provide an indication of the most promis-
ing similar cases.

Management of consistency of recommendations with re-
spect to an existing (partial) configuration is an important
topic. In cases where there exist interesting configurations for
customers but those are incompatible with the initial set of re-
quirements, corresponding explanations have to be provided.
Vice versa, such explanations should take into account min-
imal distances to existing nearest neighbours. The develop-
ments in this area will rely on existing work related to the
determination of explanations [11, 7].

We proposed to apply a similarity metric that automat-
ically determines the similarity of feature values based on
classification outcomes of configurations. This approach has
potential to improve the quality of identified cases and fea-
ture settings. However, efforts have to be invested to evaluate
the proposed metrics within the scope of user studies. An in-
teresting open question in this context is whether classifiers
should be based on the whole configurable product, or should,
e.g., sub-system-specific classifiers be applied to provide more
accurate similarity metrics.

Reconfiguration of products and services could benefit from
personalized recommendation support. For example, in insur-
ance and financial domains situation or needs of individuals
or customer organizations change within long relationships
of customership. It should be possible to update the config-
ured solution correspondingly while avoiding solutions that
introduce sub-optimal switching costs or weakening of cur-
rent contractual terms. These are open questions which are
within the focus of the COSMOS project.

5 Conclusions

In this paper we have shown the potential benefitss of inte-
grating case-based/content-based recommendation with con-
figuration technologies. This integration allows for the deriva-
tion of individualized and personalized product and service
offerings. Those technologies show great potential for re-
ducing the so-called mass confusion phenomenon which pre-
vents users from identifying products and services fitting their
wishes and needs. The recommendation approach presented
in this paper is a first but important step towards personal-
ized configuration systems which more actively support users
in preference construction processes.

References

[1] G. Adomavicius and A. Tuzhilin, ‘Toward the next generation
of recommender systems: a survey of the state-of-the-art and
possible extensions’, Knowledge and Data Engineering, IEEE
Transactions on, 17(6), 734-749, (2005).

[2] I. Bratko, B. Cestnik, and I. Kononenko, ‘Attribute-based
learning’, AI Communications, 9(1), 27-32, (1996).

[3] R. Burke, ‘Knowledge-based Recommender Systems’, Ency-
clopedia of Library and Information Systems, 69(32), (2000).

[4] R. Burke, ‘Hybrid Recommender Systems: Survey and Exper-
iments’, User Modeling and User-Adapted Interaction, 12(4),
331-370, (2002).

[5] R. Coester, A. Gustavsson, R. Olsson, and A. Rudstroem,
‘Enhancing web-based configuration with recommendations
and cluster-based help’, in AH’02 Worksh. on Recommenda-
tion and Personalization in EComm., Malaga, Spain, (2002).

[6] W. Emde, C. Beilken, J. Boerding, W. Orth, U. Ptersen,
J. Rahmer, M. SPenke, A. Voss, and S. Wrobel, ‘Configura-
tion of Telecommunication Systems in KIKon’, in Workshop
on Configuration, pp. 105-110, Stanford, California, (1996).

[7] A. Felfernig, G. Friedrich, D. Jannach, and M. Stumpt-
ner, ‘Consistency-based Diagnosis of Configuration Knowl-
edge Bases’, Artificial Intelligence, 2(152), 213-234, (2004).

[8] A. Felfernig, G. Friedrich, and L. Schmidt-Thieme, ‘Recom-
mender systems’, IEEE Intelligent Systems-Special Issue on
Recommender Systems, 22(3), (2007).

[9] A. Felfernig, K. Isak, K. Szabo, and P. Zachar, ‘The vita
financial services sales support environment’, in AAAI pp.
1692-1699, (2007).

[10] N. Franke, P. Keinz, and M. Schreier, ‘Complementing mass
customization toolkits with user communities’, Journal of
Product Innovation Management, forthcoming, (2008).

[11] G. Friedrich, ‘Elimination of Spurious Explanations’, in 16"
European Conference on Artificial Intelligence (ECAI 2004),
eds., G. Miiller and K. Lin, pp. 813-817, Valencia, Spain,
(2004).

[12] L. Geneste and M. Ruet, ‘Experience based configuration’,
in 17th International Conference on Artificial Intelligence,
volume 1, pp. 4-10. IJCAI, (2001).

[13] G. Haeubl and K.B. Murray, ‘Preference Construction and
Persistence in Digital Marketplaces: The Role of Electronic
Recommendation Agents’, Journal of Consumer Psychology,
13(1), 75-91, (2003).

[14] C. Huffman and B. E. Kahn, ‘Variety for sale: Mass cus-
tomization or mass confusion?’, Journal of Retailing, 74(4),
491-513, (1998).

[15] M.J. Pazzani and D. Billsus, ‘Content-based recommendation
systems’, The Adaptive Web: Methods and Strategies of Web
Personalization, Lecture Notes in Computer Science, 4321,
(2006).

[16] H. Tseng, C. Chang, and S. Chang, ‘Applying case-based rea-
soning for product configuration in mass customization envi-
ronments’, Expert Sys. with Applic., 29(4), 913-925, (2005).

[17] D. Wilson and T. Martinez, ‘Improved Heterogeneous Dis-
tance Functions’, Journal of Artificial Intelligence Research,
6, 1-34, (1997).

